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Mlynská dolina, 842 48 Bratislava, Slovakia

Abstract

The port-Hamiltonian framework is a structure-preserving modeling approach that preserves key physical properties
such as energy conservation and dissipation. When subsystems are modeled as port-Hamiltonian systems (pHS) with
linearly related inputs and outputs, their interconnection remains port-Hamiltonian. This paper introduces a system-
atic method for transforming coupled port Hamiltonian ordinary differential equations systems (pHODE) into a single
monolithic formulation, and for decomposing a monolithic system into weakly coupled subsystems. The monolithic
representation ensures stability and structural integrity, whereas the decoupled form enables efficient distributed sim-
ulation via operator splitting or dynamic iteration.
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1. Introduction

In today’s rapidly evolving technological landscape, the ability to model and analyze complex systems is more
crucial than ever. Port-Hamiltonian Systems (pHS) integrate Hamiltonian mechanics with network theory to provide
unparalleled insight into multi-component systems. First, pHS exhibit a Hamiltonian structure, i.e., pHS provide an
energy-based modeling approach, essential for understanding the dynamics of modern systems (see related papers
[4], [5], [10], [11] and book [9]). Next, they allow for dissipation in the system. This accurately models energy
losses, ensuring realistic simulations and designs. They have ports that allow for input/output connections to the
outside world, i.e. this approach facilitates energy exchange with the external environment. Finally, pHS have an
interconnection property: multiple subsystems can be coupled to a monolithic joint pH system, preserving the overall
energy structure and increasing reliability of the system.

In this work, we investigate a) how coupled port-Hamiltonian ordinary differential equation (pHODE) systems
can be formulated as a single joint pHODE and b) vice-versa, how a single joint pHODE system can be decoupled
into subsystems of pHODE, and generalize some ideas mentioned in [3]. While a) allows for monolithic simulation
with excellent stability properties, b) is the starting point for an efficient distributed simulation via operator splitting
and/or dynamic iteration.

The paper is organized as follows: after an introduction, in Section 2 we define the setting of port-Hamiltonian
ODE systems. Section 3 deals with the coupling of pHODE subsystems into a joint pHODE, and Section 4 discusses
the decoupling of a single pHODE system into pHODE subsystems. Section 5 discusses briefly the advantages and
disadvantages of both approaches. We conclude with final remarks in Section 6.

2. Port-Hamiltonian ODE systems

Following the lines of [13, Definition 1], we define the general setting of port-Hamiltonian ordinary differential
equations (pHODEs). Consider a time interval I ⊂ R, a state space X ⊂ Rn. A pHODE is a (possibly implicit) system
of ordinary differential equations (ODEs) of the form:

E(x)ẋ =
(
J(x) − R(x)

)
z(x) +

(
B(x) − P(x)

)
u, (1a)

y =
(
B(x) + P(x)

)⊤z(x) +
(
S (x) − N(x)

)
u, (1b)
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associated with a Hamiltonian function H ∈ C1(X,R), where x(t) ∈ X is the state, u(t), y(t) ∈ Rm are the input
and output functions, r, z ∈ X(S,R]) are the time-flow and effort functions, E ∈ C(X,Rn×n) is the regular flow
matrix, J,R ∈ X(S,Rn×n) are the structure and dissipation matrices, B, P ∈ C(X,Rn×p) are the port matrices and
S ,N ∈ C(X,Rp×p) are the feed-through matrices. Furthermore, the following property must hold:

Γ :=
[

J B
−B⊤ N

]
= −Γ⊤, W :=

[
R P

P⊤ S

]
⪰ 0,

i.e. Γ is a skew-symmetric matrix and W is a positive semidefinite matrix. The gradient of the Hamiltonian function
satisfies ∇H = E(x)⊤z. The key property of such pHODE systems (1) is the following dissipation inequality

d
dt

H(x) = −
(
z
u

)⊤
W

(
z
u

)
+ u⊤y, (2)

for the Hamiltonian (we refer to [13, Section 2.2.1] for a proof).

Remark 1. In many engineering applications, the feed-through matrices S and N may vanish. In this case, one has
to also set the port matrix P to zero because otherwise

W :=
[

R P
P⊤ 0

]
will become indefinite for P , 0. Therefore, we will often consider the special case of port-Hamiltonian ODE systems

E(x)ẋ =
(
J(x) − R(x)

)
z(x) + B(x) u, (3a)

y = B(x)⊤z(x). (3b)

3. Coupling Port-Hamiltonian ODE Systems

To define coupled port-Hamiltonian ODE systems, we consider s subsystems of pHODEs (3)

Ei(xi) ẋi(t) + ri(xi) =
(
Ji(xi) − Ri(xi)

)
zi(xi) + B̂i(xi) ûi(t) + B̄i(xi) ūi(t),

ŷi(t) = B̂i(xi)⊤zi(xi),
ȳi(t) = B̄i(xi)⊤zi(xi),

i = 1, . . . , s, with Ji = −J⊤i and Ri ⪰ 0 and a Hamiltonian Hi(xi), which fulfills the compatibility conditions E⊤i zi =

∇xi Hi, i = 1, . . . , s. Here, we distinguish inputs ûi and outputs ŷi, which arise in the coupling between the subsystems,
and inputs ūi and outputs ȳi, which couple the single system with the outer world.

The subsystems are coupled via external inputs and outputs by
û1
...

ûk

 + Ĉ


ŷ1
...

ŷk

 = 0, Ĉ = −Ĉ⊤. (4)

These s systems can be condensed into a large monolithic port-Hamiltonian descriptor system (pHDAE) consisting of
differential-algebraic equations of the type (3) (cf. [3] for the linear case)

E(x)ẋ =
(
J(x) − R(x)

)
z(x) + B̄(x) ū, (5a)

ȳ = B̄(x)⊤z(x)), (5b)

with J(x) := diag(J1(x1), . . . , Js(xs)) − B̂ĈB̂⊤, F = diag (F1, . . . , Fs) for Fi ∈ {E,R, B̄} and H(x) :=
∑s

i=1 Hi(xi).
The Schur complement BCB⊤ defines the off-diagonal block entries of J.

Remark 2. If the matrix Ĉ in the input-output coupling (4) is not skew-symmetric, then one can split Ĉ = Ĉsymm +

Ĉskew−symm into its symmetric and skew-symmetric parts, and one gets an equivalence with the pHODE system (5) by
replacing J(x) and R(x) by

J(x) := diag
(
J1(x1), . . . , Js(xs)

)
− B̂Ĉskew−symmB̂⊤ and R(x) := diag

(
R1(x1), . . . ,Rs(xs)

)
+ B̂ĈsymmB̂⊤,

provided that R(x) ⪰ 0 is still positive semidefinite. If not, one must use (6) to follow the approach discussed in the
following Remark 3.
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Remark 3. In many engineering applications, the inputs and outputs of the subsystems are coupled via a skew-
symmetric coupling condition. In general, if an arbitrary linear relation Mu + Ny = 0 exists, then the coupled
system of pHODEs is equivalent to a pHDAE system (cf. [13, Section 2.2.4]), but this comes at the cost of introducing
additional dummy variables û and ŷ that copy u and y:

Eẋ
0
0
0

 =

diag(J1, . . . , Js) − diag(R1, . . . ,Rs) B 0 0

−B⊤ 0 I −M⊤

0 −I 0 −N⊤

0 M N 0



∇H(x)

û
ŷ
0

 +

0
0
I
0

 u, (6a)

y = ŷ. (6b)

4. Decoupling pHODE systems

Decoupling is only possible if there is a differentiable transformation of the state w = F(x) such that the Hamilto-
nian becomes separable:

H(x) = H̃(w) =
s∑

i=1

H̃i(wi), w =


w1
w2
...

ws

 , ni := dim(wi), i = 1, . . . , s,
s∑

i=1

ni = n.

In this case, the pHODE system (3) can be transformed into the pHODE system

(F′(x)−1)⊤E(x)ẋ = (F′(x)−1)⊤E(x)F′(x)−1︸                       ︷︷                       ︸
Ẽ(w)

ẇ (7a)

= (F′(x)−1)⊤
(
J(x) − R(x)

)
F′(x)−1︸                                   ︷︷                                   ︸

J̃(w) − R̃(w)

F′(x)z(x)︸    ︷︷    ︸
z̃(w)

+ (F′(x)−1)⊤B(x)︸            ︷︷            ︸
B̃(w)

u,

y = B̃(w)⊤z̃(w), (7b)

with Ẽ⊤z̃(w) = ∇wH̃(w), as ∇xH(x) = F′(x)⊤∇wH̃(w) holds. Note that we have replaced x with F−1(w).
Next, we split J̃ and R̃ with respect to splitting of w:

J̃ = diag(J̃11, . . . , J̃ss) + J̃offdiag, R̃ = diag(R̃11, . . . , R̃ss)R̃diag + R̃offdiag, B̃ =


B̃1
...

B̃s

 ,
where we have used the abbreviations for the ni × n j matrices J̃i j and R̃i j

J̃i j;=
(
Jk,l

)
k=

∑i−1
l=0 nl+1,...,

∑i
l=0 nl

l=
∑ j−1

l=0 nl+1,...,
∑ j

l=0 nl

R̃i j :=
(
Rk,l

)
k=

∑i−1
l=0 nl+1,...,

∑i
l=0 nl

l=
∑ j−1

l=0 nl+1,...,
∑ j

l=0 nl

, n0 := 0.

Provided that J̃ii, R̃ii and B̃i depend only on wi (for i = 1, . . . , s), and the transformed flow matrix is block-diagonal
of the form Ẽ = diag(Ẽ11(wi), . . . , Ẽss(ws)), we can decouple the pHODE system into s coupled pHODE systems as
follows:

Case 1: R̃offdiag = 0.
If we define B̂ = I and Ĉ = −J̃offdiag, then the pHODE system (7) is analytically equivalent to the s pHODE

subsystems

Ẽii(wi) ẇi =
(
J̃ii − R̃ii(wi)

)
z̃i(wi) +

[
I, B̃i(wi)

] [ûi

u

]
,

[
ŷi

ȳi

]
=

[
I, B̃i(wi)

]⊤
z̃i(wi),

coupled by the skew-symmetric coupling condition
û1
...

ûk

 + Ĉ


ŷ1
...

ŷk

 = 0, Ĉ = −Ĉ⊤,

and fulfilling the compatibility conditions Ẽ⊤ii z̃i = ∇wi H̃wi .
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Case 2: R̃offdiag , 0.
Here we define B̂ = I and Ĉ = −J̃offdiag + R̃offdiag to obtain the decoupled system (8). However, the coupling

condition is no longer skew-symmetric, but a general linear one with M = I and N = Ĉ (see Remark 2).

Case 3: General coupling.
We can use s different port matrices B̂i to define the equivalent pHODE system

Ẽii(wi)ẇi =
(
J̃ii(wi) − R̃ii(wi)

)
z̃i(wi) +

[
B̂i, B̃i(wi)

] [ûi

u

]
,[

ŷi

ȳi

]
=

[
B̂i, B̃i(wi)

]⊤
z̃i(wi),

(9a)

coupled by the input-output coupling condition


û1
...

ûs

 + Ĉ


ŷ1
...

ŷs

 = 0, Ĉ :=


0 Ĉ12 · · · Ĉ1s

Ĉ⊤12 0 · · · Ĉ2s
...

...
. . .

...

Ĉ⊤1s Ĉ⊤2s · · · 0

 (9b)

provided that a)
J̃i j − R̃i j = −B̂iĈi jB̂⊤j ⇒ J̃i j = −B̂iĈ

symm
i j B̂⊤j and R̃i j = B̂iĈ

skew−symm
i j B̂⊤j ,

holds with Ĉsymm and Ĉskew−symm corresponding to the symmetric and skew-symmetric part of Ĉ, respectively, and
and b) the port matrices B̂i depend only on wi. The latter can always be achieved by defining B̂i = I and

Ĉi j := −(J̃i j − Ri j).

Remark 4. In the case of a block-diagonal matrix R̃, i.e., R̃i j = 0 for i , j, we obtain a skew-symmetric coupling with
0 Ĉ12 · · · Ĉ1p

−Ĉ⊤12 0 · · · Ĉ2p
...

...
. . .

...

−Ĉ⊤1p −Ĉ⊤2p · · · 0

 .
For this case, the obvious choice in the last section was B̂i = B̂ j = I, Ĉi j = −J̃i j.

Remark 5. Since R is positive semidefinite, all Rii are also positive semidefinite. Additionally, if J is skew-symmetric,
then the block-diagonal matrices Jii are also skew-symmetric, which defines s pHODE systems.

Example 1. Consider the dissipative Hamiltonian system (pHODE system without external input, see Fig. 1)

ẋ = (J − R)∇H(x),

with

J =


0 −1 −1 0 0
1 0 0 0 0
1 0 0 −1 0
0 0 1 0 −1
0 0 0 1 0

 , R =


r1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 r2 0
0 0 0 0 0

 , H(x) = x⊤



1
m1

0 0 0 0
0 K1 0 0 0
0 0 K 0 0
0 0 0 1

m2
0

0 0 0 0 K2

 x.

Next, we want to decouple this pHODE into two pHODE subsystems

ẋ1 = (J1 − R1)∇1H1(x1) + B1u1, ẋ2 = (J2 − R2)∇2H2(x2) + B2u2,

y1 = B⊤1∇1H1(x1), y2 = B⊤2∇2H2(x2),
0 = u +Cy.

We have a lot of flexibility here: for example, if we split with respect to the first three and last two components, we
have

J1 =

0 −1 −1
1 0 0
1 0 0

 , J2 =

[
0 −1
1 0

]
, R1 =

r1 0 0
0 0 0
0 0 0

 , R2 =

[
r2 0
0 0

]
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H1(x1) = x⊤1


1

m1
0 0

0 K1 0
0 0 K

 x1, H2(x2) = x⊤2

[ 1
m1

0
0 K2

]
x2.

The flexibility lies in the definition of the port matrices B1 and B2:

a) We set B1 = I3 and B2 = I2 and

C = −


0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

 = −Joffdiag.

b) Here, we set

B1 =

001
 , B2 =

[
−1
0

]
, C =

[
0 C12
−C⊤12 0

]
, C12 = −1,

and check

B1C12B⊤2 =

001
 · (−1) ·

[
−1, 0

]
=

0 0
0 0
1 0

 = −J12 with J =
[

J1 J12
−J⊤12 J2

]
.

This splitting is in accordance with the modeling of a two-mass and three-spring system with damping, as
described in [3]. This is achieved by setting x1 = [p1, q1, q1 − q]⊤ and x2 = [p2, q2]⊤.

Remark 6. Properly choosing the port matrices minimizes the dimension of the coupling condition, i.e., the coupling
matrix Ĉ. With the former, we need only one scalar input for each subsystem. However, choosing B1 and B2 as
identities requires as many inputs as there are state variables.

m1 m2

K

q2q1

K1

r1

K2

r2

Figure 1: ODE two masses oscillator with damping [3]. The coordinates q1, q2 describe the position of the masses.

Another splitting splits with respect to components 1,4 and components 2,3,5. In this case we have

J1 =

[
0 0
0 0

]
, J2 =

0 0 0
0 0 0
0 0 0

 , R1 = diag(r1, r2), R2 =

0 0 0
0 0 0
0 0 0

 ,
H1(x1) = x⊤1 diag

( 1
m1
,

1
m2

)
x1, H2 = x⊤2 diag(K1,K,K2)x2.

A nontrivial choice of the port matrices is

B1 =

[
1 0
0 −1

]
, B2 =

−1 1
0 1
1 0

 , C12 =

[
0 1
−1 0

]
,

and we check B1C12B⊤2 = −J12. One may also split the system into 3, 4 and 5 subsystems as well.

Example 2 (Poroelastic network model). A discretized version of the poroelastic network model [1] reads

Eẋ = (J − R)x + Bu,

y = B⊤x,
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with

E =

ρMu 0 0
0 Ku(µ, λ) 0
0 0 1

M Mp

 , J =

 0 −Ku(µ, λ) αD⊤

Ku(µ, λ)⊤ 0 0
−αD 0 0

 , R =

0 0 0
0 0 0
0 0 κ

ν
Kp

 ,
B =

B f 0
0 0
0 Bg

 , x =

w(t)
v(t)
p(t)

 , u =
[

f (t)
g(t)

]
,

where w, v, p are the discretized velocity, displacement and pressure fields, f , g are the discretized volume-distributed
forces and the external injection, µ and λ are the Lame coefficients, α is the Biot-Willes fluid-solid coupling coefficient,
κ is the permeability and ρ is the density. Mu and Mp are mass matrices with respect to u and p, Ku is a stiffness
matrix with respect to u and D is a damping matrix, see [14] for more details. We can easily split this implicit pHODE
system with respect to the first two and the third block and obtain[

ρMu 0
0 Ku(µ, λ)

]
·

[
ẇ(t)
u̇(t)

]
=

[
0 −Ku(µ, λ)

Ku(µ, λ)⊤ 0

]
·

[
w(t)
v(t)

]
+

[
αD⊤

0

]
u1, (10a)

y1 =

[
αD⊤

0

]⊤ [
w(t)
v(t)

]
= αDw(t), (10b)

1
M

Mp ṗ = −
κ

ν
Kp p + u2, (10c)

y2 = p, (10d)

0 =
[
u1
u2

]
+

[
0 I
−I 0

] [
y1
y2

]
. (10e)

Because the first subsystem lacks a dissipative part and the second lacks a skew-symmetric part, symplectic time
integration can be used for the first part and dissipative time integration can be used for the second part in a dynamic
iteration procedure.

Example 3 (Discretized full set of Maxwell’s equations). The full set of Maxwell’s equations formulated with elec-
trodynamic potentials and discretized forms a pHDAE system with Mε MεG 0

G⊤Mε G⊤MεG 0
0 0 Mµ

︸                          ︷︷                          ︸
:=EMaxwell

dt

dta
φ
h

︸︷︷︸
:=x

=


0 0 −C⊤

0 0 0
C 0 0

︸            ︷︷            ︸
:=J(=−J⊤)

−

 Mκ MκG 0
G⊤Mκ G⊤MκG 0

0 0 0

︸                       ︷︷                       ︸
=R≥0


dta
φ
h

︸︷︷︸
:=z

+

 I
G⊤

0

 js, (11)

where C, G are discrete curl and gradient matrices, Mκ, Mε, Mµ are discrete material matrices for electric conductivity
κ, permittivity ε and permeability µ, respectively, a, φ, h are the degree of freedom vectors and u = js is the input
vector of source currents and the output vector y = dta+Gφ(= −e) is the negated vector of electric grid voltages. The
Hamiltonian associated with (11) is the discrete electromagnetic grid energy is given by

H =
1
2

(
φ⊤G⊤MεGφ + h⊤Mµh

)
+ φ⊤G⊤Mεdta + dta⊤Mεdta, (12)

and the compatibility condition holds with

∇H =
(
Mε(dta +Gφ),G⊤Mε(dta +Gφ),Mµh

)⊤
= E⊤Maxwellx. (13)

Again, we can easily split with respect to the first two and the last block with Hamiltonians

H1 =
1
2
φ⊤G⊤MεGφ + φ⊤G⊤Mεdta + dta⊤Mεdta and H2 =

1
2

h⊤Mµh,[
Mε MεG

G⊤Mε G⊤MεG

]
dt

[
dta
φ

]
=

[
Mκ MκG

G⊤Mκ G⊤MκG

] [
dta
φ

]
+

[
I

G⊤

]
js +

[
C⊤

0

]
u1,

ỹ1 =

[
I

G⊤

]⊤ [
dta
φ

]
, y1 =

[
C⊤

0

]⊤ [
cdta
φ

]
,

Mµdth = u2, y2 = h, 0 =
[
u1
u2

]
+

[
0 I
−I 0

] [
y1
y2

]
.
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5. Numerical Aspects of Monolithic and Decoupled Formulations

In numerical simulations, the monolithic and decoupled formulations of port-Hamiltonian ODE systems offer
distinct advantages. The monolithic formulation preserves the full system structure and typically exhibits superior
stability properties, particularly when integrated with structure-preserving or symplectic time-stepping schemes. This
makes it ideal for stiff or highly coupled systems where global energy conservation is crucial. Nevertheless, one may
reduce computational time by applying operator splitting techniques to the general systems which preserve the port-
Hamiltonian structure, for example, J − R coupling [2] or diagonal/off-diagonal coupling [12], jointly with multirate
approaches.

In contrast, the decoupled formulation offers greater flexibility and computational efficiency in multiphysics or
large-scale contexts. It allows for the use of specialized numerical solvers, such as mimetic or energy-consistent
methods, which are tailored to individual subsystems and respect local conservation laws. This partitioned approach
also enables parallel or distributed computation via dynamic iteration [8], although with potentially weaker global
stability. The monolithic formulation favors global stability, whereas the decoupled approach provides modularity
and solver flexibility, at the cost of potentially reduced overall stability.

6. Conclusion

We have presented a unified framework for coupling and decoupling nonlinear port-Hamiltonian ordinary dif-
ferential equation systems. The analysis demonstrates how multiple pH subsystems can be reformulated as a single
monolithic system, and conversely, how a monolithic pHODE can be decomposed into weakly coupled subsystems
without losing the underlying Hamiltonian structure. The results provide a theoretical basis for structure-preserving
simulation strategies that balance stability and flexibility. Future research will address adaptive coupling strategies,
structure-preserving time discretizations, and extensions to port-Hamiltonian differential-algebraic [7] and stochastic
systems [6].
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