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Abstract

In this work, we propose a generalized, second-order, nonstandard finite difference (NSFD) method for
non-autonomous dynamical systems. The proposed method combines the NSFD framework with a new
non-local approximation of the right-hand side function. This method achieves second-order convergence
and unconditionally preserves the positivity of solutions for all step sizes. Especially, it avoids the restrictive
conditions required by many existing positivity-preserving, second-order NSFD methods. The method is easy
to implement and computationally efficient. Numerical experiments, including an improved NSFD scheme
for an SIR epidemic model, confirm the theoretical results. Additionally, we demonstrate the method’s
applicability to nonlinear partial differential equations and boundary value problems with positive solutions,
showcasing its versatility in real-world modeling.
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1. Introduction

Various important processes and phenomena in real-world situations can be modeled mathematically by
non-autonomous dynamical systems of the form:

y′(t) = F (t, y(t)), y(0) = y0 ∈ Rn, (1.1)

where y(t) = [y1(t), y2(t), . . . , yn(t)]
⊤ : R → Rn is an unknown function that must be determined as the

solution; F (t, y) = [F1(t, y), F2(t, y), . . . , Fn(t, y)]
⊤ : R × Rn → Rn satisfies conditions that guarantee the

existence and uniqueness of solutions to (1.1) [4, 15, 28, 40].
For these dynamical systems, the positivity of the solutions can be considered as the most common and

important characteristic [4, 28, 40]. This characteristic can be easily investigated by a simple necessary
and sufficient condition (see [22, Lemma 1] and [40, Proposition B.7]): The solution of (1.1) admits the set
Rn

+ = {(y1, y2, . . . , yn) ∈ Rn|y1 ≥ 0, y2 ≥ 0, . . . , yn ≥ 0} as a positively invariant set if and only if

Fi(t, y)|yi=0 := Fi(t, y1, . . . , yi−1, 0, yi+1, . . . yn) ≥ 0 (1.2)

for i = 1, 2, . . . , n and (t, y) ∈ R+ × Rn
+.

Numerical methods that preserve the positivity of solutions to (1.1) are essential in both theory and
practice (see, for instance, [22, 23, 30, 31, 32, 33, 34]). Nonstandard finite difference (NSFD) schemes,
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which were first introduced by Mickens in the 1980s [30, 31, 32, 33, 34], have become an efficient approach
to the positivity-preserving problem of numerical methods. Specifically, NSFD schemes have the ability to
preserve not only the positivity of the solutions but also other qualitative dynamical properties for all step
sizes [30, 31, 32, 33, 34, 38, 39]. However, NSFD schemes typically achieve only first-order accuracy. For
this reason, high-order NSFD schemes for dynamical systems governed by nonlinear ordinary differential
equations (ODEs), mainly second-order schemes, have been intensively studied in recent years (see [1, 2, 10,
16, 17, 18, 19, 20, 25] and references therein). These NSFD schemes are derived from methodology of Mickens
[30, 31, 32, 33, 34] with a non-local approximation for the right-hand side functions and renormalization of
the denominator functions.

Second-order NSFD methods have been developed for one-dimensional dynamical systems (see, e.g.,
[16, 17, 18, 25]). For multi-dimensional dynamical systems, Alalhareth et al. [1] have been developed the
approach used in [43] to construct second-order modified positive and elementary stable (SOPESN) NSFD
methods for n-dimensional autonomous differential equations. These SOPESN methods were subsequently
employed in [3] to numerically solve a mathematical model of nutrient recycling and dormancy in a chemostat.
In a recent work [20], the authors have used a nonlocal approximation with right-hand side function weights
and nonstandard denominator functions to construct a second-order and dynamically consistent NSFD
method for a general Rosenzweig-MacArthur predator-prey model. Recently, Conte et al. [10] have derived
a general procedure to obtain unconditionally positive second-order NSFD methods. Furthermore, adding
parameters to these schemes for each particular problem allows one to determine the optimal parameter
values to guarantee positivity, elementary stability, and minimization of the local truncation error.

Inspired by the importance of positivity-preserving numerical methods, this work proposes a straight-
forward method for constructing second-order positivity-preserving numerical methods for system (1.1).
Throughout this paper, we will consider the system (1.1) under the condition (1.2).

It is not difficult to show that for each 1 ≤ i ≤ n:

• if Fi(t, y)|yi=0 = 0 and yi(0) = 0, then yi(t) = 0 for all t ≥ 0 is the unique solution;

• if Fi(t, y)|yi=0 = 0 and yi(0) > 0, then yi(t) > 0 for all t > 0;

• if Fi(t, y)|yi=0 > 0 and yi(0) > 0, then yi(t) > 0 for all t > 0;

• if Fi(t, y)|yi=0 > 0 and yi(0) = 0, then there exists t0 > 0 such that yi(t) > 0 for all t ≥ t0.

Consequently, without loss of generality, we can consider (1.1) with strictly positive solutions, that is for
each i

yi(0) > 0 =⇒ yi(t) > 0 for t > 0. (1.3)

In other words, the system (1.1) admits the interior int(Rn
+) of Rn

+ as a positively invariant set. Therefore,
our goal is to develop second-order numerical methods that possess the property

yi(0) > 0 =⇒ yki > 0 for all k = 1, 2, . . . and ∆t > 0, (1.4)

where ∆t > 0 is the step size and yki is the intended approximation of yi(tk) with tk = k∆t for k = 1, 2, . . ..
Based on a representation theorem [12, Theorem 10], it is important to note that the system (1.1) can

be represented in the form
y′i(t) = fi(t, y)− yi gi(t, y), i = 1, 2, . . . , n (1.5)

where fi and gi are two functions from R+ × int
(
Rn

+

)
→ R+.

From now on, we will work with (1.5) instead of (1.1). Using the approaches used in [1, 2] and [10], one
can obtain second-order positivity-preserving schemes for (1.1). However, as will be discussed in Section 2,
the resulting NSFD schemes require a strict and indispensable condition (Condition (2.10)), which limits
their applicability in computations. In contrast, the NSFD method proposed in this work relaxes this
condition. As a result, its computational implementation is straightforward. It is well-known that Runge-
Kutta methods only guarantee the positivity preserving property in many situations if the step size is
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smaller than a positivity step size threshold (see, e.g., [22, 23]). However, the constructed NSFD method is
positivity-preserving regardless of the chosen step size. In other words, it is unconditionally positive.

The paper is organized as follows. In Section 2, we apply the well-known approaches proposed in
[1, 2] and [10] to obtain second-order positivity-preserving NSFD schemes for (1.5), thereby identifying a
strict and indispensable condition (Condition (2.10)) imposed on the resulting NSFD schemes. In Section
3, we construct and analyze a generalized second-order positivity-preserving NSFD method for which the
condition (2.10) is relaxed. In Section 4, we conduct a set of numerical experiments to support and illustrate
the theoretical results. In these experiments, we consider a modified Susceptible-Infected-Removed (SIR)
model [6] as a test problem. An important consequence is that the dynamically consistent NSFD scheme
for the SIR model, constructed very recently in [27], is improved. Finally, in Sections 5 and 6, we apply
the constructed NSFD method to solve some classes of partial differential equations (PDEs) and boundary
value problems (BVPs) with positive solutions. The last section includes some concluding remarks and
discussions.

2. NSFD Schemes Based on Well-Known Approaches

In this section, we apply the NSFD methods constructed in [1, 2] and [10] to obtain second-order NSFD
positivity-preserving NSFD schemes for (1.5).

First, applying the approach in [2] leads to the following NSFD scheme for (1.5):

yk+1
i − yki

ϕi(∆t, tk, yk)
= fi(t

k, yki )− yk+1
i gi(t

k, yki ), (2.1)

where ϕi(.) is a function satisfying

ϕi(∆t, t, y) > 0 for all ∆t > 0, (t, y) ∈ R+ × int(Rn
+),

ϕi(∆t, t, y) = ∆t+O(∆t2) as ∆t → 0.
(2.2)

The system (2.1) can be written in the form

yk+1
i =

yki + ϕi fi(t
k, yk)

1 + ϕi gi(tk, yk)
. (2.3)

This implies that (2.1) preserves the positivity of the solutions for all ∆t > 0. Note that first-order NSFD
schemes for a general class of two ODEs constructed [11] and for a n-dimensional productive-destructive
systems [44] can be derived from (2.3) with ϕi = ϕ for all i = 1, 2, . . . n.

A condition ensuring the second-order accuracy of (2.1) is determined via Taylor’s expansion theorem
as follows (see [2]).

Lemma 2.1. Assume that the denominator functions ϕi (i = 1, 2, . . . , n) satisfy (2.2). Then, the truncated
error of (2.1) is O(∆t3) as ∆t → 0 whenever

∂2ϕi

∂∆t2
(0, t, y) = 2gi(t, y) +

1

Fi(t, y)

(
∂Fi

∂t
(t, y) +

n∑
j=1

∂Fi

∂yj
(t, y)Fj(t, y)

)
(2.4)

for all t ≥ 0, y ∈ int(Rn
+) such that Fi(t, y) ̸= 0, where Fi(t, y) = fi(t, y) + yi g(t, y) is the right-hand side

function of the i-th equation of (1.1).

Next, we apply the approach used in [1] (as well as in [2]) to obtain a second-order and positive NSFD
scheme for (1.1). The resulting NSFD scheme is given by

yk+1
i − yki

ϕi(∆t, tk, yk)
= wk

i Fi(t
k, yk), (2.5)
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where

wk
i :=


1, if Fi(t

k, yk) ≥ 0,

yk+1
i

yki
, if Fi(t

k, yk) < 0,

and ϕi(.) are functions satisfying (2.2).
The following result is proven based on the proof of [2, Theorem 3.2.1] (see also [1]).

Lemma 2.2. Assume that the denominator functions ϕi (i = 1, 2, . . . , n) satisfy (2.2). Then, the truncated
error of (2.1) is O(∆t3) as ∆t → 0 whenever

∂2ϕi

∂∆t2
(0, t, y) =



1

Fi(t, y)

(
∂Fi

∂t
(t, y) +

n∑
j=1

∂Fi

∂yj
(t, y)Fj(t, y)

)
if Fi(t, y) ≥ 0,

2
Fi(t, y)

y2i
− 1

Fi(t, y)y2i

n∑
j=1

(
∂Fi

∂t
(t, y) +

n∑
j=1

∂Fi

∂yj
(t, y)Fj(t, y)

)
if Fi(t, y) < 0

(2.6)

for all t ≥ 0, y ∈ int(Rn
+) such that Fi(t, y) ̸= 0, where Fi(t, y) is the right-hand side function of the i-th

equation of (1.1).

We now construct another positivity-preserving and second-order NSFD scheme for (1.1), based on the
α-NSFD method recently formulated in [10]. The resulting NSFD scheme is given by

yk+1
i − yki

ϕi(∆t, tk, yk)
= Fi(t

k, yk)− αi y
k+1
i − yki

yki
Fi−(t

k, yk), (2.7)

where the right-side functions Fi = Fi+ +Fi− are split into a positive F+ term and a negative Fi− term; αi

are non-negative real numbers for i = 1, 2, . . . , n.
Applying (2.7) to (1.5) yields

yk+1
i − yki

ϕi(∆t, tk, yk)
= Fi(t

k, yk)− αi y
k+1
i − yki

yki
yki gi(t

k, yk). (2.8)

Note that (2.8) reduces to (2.1) if αi = 1. Furthermore, we deduce from [10, Theorem 3] that (2.9) preserves
the positivity of the solutions of (1.5) if αi ≥ Fi(t

k, yk)/(yki gi(t
k, yk)) for all tk ≥ 0 and yk ∈ int(Rn

+). A
condition for (1.1) to be second-order accurate was given in [10, Theorem 4]. Based on this, we obtain the
following lemma.

Lemma 2.3. Assume that the denominator functions ϕi (i = 1, 2, . . . , n) satisfy (2.2). Then, the truncated
error of (2.1) is O(∆t3) as ∆t → 0 provided that

∂ϕi

∂∆t
(0, t, y) = 2αi gi(t, y) +

1

Fi(t, y)

(
∂Fi

∂t
(t, y) +

n∑
j=1

∂Fi

∂yj
(t, y)Fj(t, y)

)
(2.9)

for all t ≥ 0, y ∈ int(Rn
+) such that Fi(t, y) ̸= 0, where Fi(t, y) is the right-hand side function of the i-th

equation of (1.1)

Remark 2.4. Consistency is a local property of one-step schemes, such as the NSFD schemes (2.1), (2.5),
and (2.7). Using the well-known result that the convergence order can follow from the consistency order [5],
we obtain the NSFD schemes convergence of order 2 from the second-order consistent ones.
Remark 2.5. Lemmas 2.1–2.3 provide the conditions for the NSFD schemes to be convergent of order 2.
However, it is easy to see a strict and indispensable condition for the NSFD schemes (2.1), (2.5) and (2.7) is

Fi(t
k, yk) ̸= 0 for all k ≥ 0 and i = 1, 2, . . . , n. (2.10)
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This condition can be removed for 1-D dynamical systems [16, 17, 18, 25]; however, it limits the applicability
of the corresponding NSFD schemes for computing solutions to multi-dimensional dynamical systems. To
illustrate this, we consider the following simple system

y′1 = F1(t, y1, y2) := t2(y1 − a)2 + t4(y2 − b)4,

y′2 = F2(t, y1, y2) := t4(y1 − c)2 + t2(y2 − d)2,

subject to the initial data: y1(0) > 0 and y2(0) > 0, where a, b, c, d are positive real numbers. If at a certain
iteration k (k ≥ 0) we obtain yk1 = a, yk2 = b, then F1(t

k, yk1 , y
k
2 ) = 0; consequently, the condition (2.10)

is violated. The same can be said if yk1 = c, yk2 = d for some k ≥ 0. For autonomous dynamical systems,
(2.4), (2.6) and (2.9) are not satisfied if there exists an approximation yk belonging to the nullclines of the
dynamical systems under consideration.

The NSFD scheme (2.5) requires determining the sign of the right-hand side function at each iteration
step to choose wk

i . Similarly, the NSFD scheme (2.9) requires choosing the value of αi at each iteration step.

3. Construction of New Second-Order Positivity-Preserving NSFD Method

In this section, we will construct a generalized, second-order, positivity-preserving NSFD method that
relaxes the condition (2.10).

For any function u from int(Rm
+ ) to R+, we define

D(u) = {(u+, u−)|u+, u− : int(Rm
+ ) → R;u+, u− ≥ 0, u+ − u− = u}.

It is easy to see that D(u) is not empty. Indeed, the following are elements of D(u):(
u+ =

u+ |u|
2

, u− = −u− |u|
2

)
, (u+ = u2 + 1 + u, u− = u2 + 1), (eu + u, eu).

We propose the following NSFD model for (1.5)

yk+1
i − yki

ϕi(∆t, tk, yk)
= fi(t

k, yk)− yk+1
i gi(t

k, yk) + φi(∆t, tk, yk)

(
Ai(t

k, yk)− yk+1
i

yki
Bi(t

k, yk)

)
, (3.1)

where

• ϕi(.) (i = 1, 2, . . . , n) are denominator functions satisfying (2.2);

• Ai(.) and Bi(.) (i = 1, 2, . . . , n) are functions from R+ × int(Rn
+) to R+, which will be determined so

that the NSFD scheme is convergent of order 2;

• φi(∆t) (i = 1, 2, . . . , n) are functions of ∆t that satisfy

φi(∆t) > 0 for all ∆t > 0,

φ′
i(0) := κi > 0.

(3.2)

First, we investigate the positivity of solutions to the system (3.1).

Theorem 3.1. If Ai(t, y) and Bi(t, y) (i = 1, 2, . . . , n) satisfy Ai(t, y) ≥ 0 and Bi(t, y) ≥ 0 for all (t, y) ∈
R+ × int(Rn

+), then the model (3.1) admits the set int(Rn
+) as a positively invariant set for all ∆t > 0. In

other words, the NSFD method (3.1) preserves the positivity of the solution to the dynamical system (1.1)
for all finite values of the step size.
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Proof. We must prove that yk ∈ int(Rn
+) for k > 0 whenever y0 = y(0) ∈ int(Rn). Indeed, we transform

(3.1) into the explicit form

yk+1
i =

yki + ϕi fi(t
k, yk) + ϕi φi Ai(t

k, yk)

1 + ϕi gi(tk, yk) + ϕi φi Bi(tk, yk)/yki
=

(yki )
2 + ϕi y

k
i fi(t

k, yk) + ϕi φi y
k
i Ai(t

k, yk)

1 + ϕi yki gi(t
k, yk) + ϕi φi Bi(tk, yk)

, (3.3)

which implies that yk+1
i > 0 if yki > 0. Therefore, by mathematical induction, we obtain the desired

conclusion. The proof is complete.

We will now determine the conditions under which the NSFD method (3.1) is convergent of order 2. To
this end, let us denote

vi(t, y) =
∂Fi

∂t
(t, y) +

n∑
j=1

∂Fi

∂yj
(t, y)Fj(t, y), i = 1, 2, . . . , n (3.4)

Theorem 3.2. Assume that the following conditions hold for i = 1, 2, . . . , n:

• ϕi(∆t, t, y) are denominator functions with the property that

∂2ϕi

∂∆t2
(0, t, y) = 2gi(t, y) (3.5)

for all (t, y) ∈ R+ × int(Rn
+).

• φi(∆t) satisfy (3.2);

• (Ai, Bi) is an element of the set D(vi/(2κi)).

Then, the NSFD method (3.1) satisfies (1.4) and its truncated error is O(∆t3) as ∆t → 0.

Proof. First, the positivity of the approximate solutions generated by (3.1) is a direct consequence of The-
orem 3.1. To analyze the truncated error, we rewrite (3.3) in the form

yk+1
i := Vi(∆t, tk, yki , y

k) = yki +
ϕi Fi(t

k, yk) + ϕi φi

(
Ai(t

k, yk)−Bi(t
k, yk)

)
1 + ϕi gi(tk, yk) + ϕi φi Bi(tk, yk)/yki

.

By some simple manipulations, we obtain

Vi(0, t
k, yki , y

k) = yki ,

∂Vi

∂∆t
(0, tk, yki , y

k) = Fi(t
k, yk),

∂2Vi

∂∆t2
(0, tk, yki , y

k) = Fi(t
k, yk)

[
∂2ϕi

∂∆t2
(0, tk, yk)− 2gi(t

k, yk)

]
+ 2κi

(
Ai(t

k, yk)−Bi(t
k, yk)

)
.

(3.6)

On the other hand, applying Taylor’s expansion for yi(t) yields

yi(t
k +∆t) = yi(t

k) + y′i(t
k)∆t+

1

2
y′′i (t

k)∆t2

= yi(t
k) + Fi

(
tk, y(tk)

)
∆t+

1

2
vi
(
tk, yi(t

k)
)
∆t2 +O(∆t3),

(3.7)

where vi is defined in (3.4). It follows from (3.5) and (3.6) that

yk+1
i = Vi(∆t, tk, yki , y

k)

= Vi(0, t
k, yki , y

k) +
∂Vi

∂∆t
(0, tk, yki , y

k)∆t+
1

2

∂2Vi

∂∆t2
(0, tk, yki , y

k)∆t2 +O(∆t3)

= yki + Fi(t
k, yk)∆t+ 2κi

(
Ai(t

k, yk)−Bi(t
k, yk)

)
∆t2 +O(∆t3).

(3.8)
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From (3.7), (3.8) and (Ai, Bi) ∈ D(vi/(2κi)), we obtain

yk+1
i − yi(t

k+1) = O(∆t3).

This is the desired conclusion. The proof is complete.

Remark 3.3. Theorem 3.2 provides a second-order and positivity-preserving NSFD method for (1.1) but
it does not require the condition (2.10). A suitable denominator function that satisfies the condition of
Theorem 3.2 is

ϕi(∆t, t, y) =


e2gi(t,y)∆t − 1

2gi(t, y)
if gi(t, y) > 0,

∆t if gi(t, y) = 0.

(3.9)

Since gi(t, y) ≥ 0, another denominator function can be

ϕi(∆t, t, y) = gi(t, y)∆t2 +∆t, (3.10)

which is simpler that (3.9). The functions defined in (3.9) and (3.10) are not bounded as ∆t → ∞. A
denominator function that is bounded as t → ∞ is given by

ϕ(∆t, t, y) =
γ1(t, y)∆t+ γ2(t, y)∆t2

γ3(t, y) + γ4(t, y)∆t3
, γi(t, y) > 0,

γ1(t, y) = γ3(t, y),
γ2(t, y)

γ3(t, y)
= g(t, y), m > 2,

(3.11)

which is suitable when large step sizes are used to observe the behaviour of the dynamical system over long
time periods.

In general, the values of the denominator functions ϕi are updated at each iteration step. However, if
the functions gi are identical constants, that is gi(t, y) = gi, then the denominator functions do not require
an update at each iteration step. Assume that the functions Fi (i = 1, 2, . . . , n) have the property that there
exists αi > 0 such that

Fi(t, y) + αiyi ≥ 0 for all t ≥ 0, y ∈ int(Rn
+). (3.12)

Many differential equation models have this property (see [4, 22, 23, 40]). Hoang [21] constructed a gen-
eralized NSFD method preserving the positivity of the solutions and the local dynamics of autonomous
dynamical systems with the property (3.12).

Systems that satisfy (3.12) can written in the form

y′i = fi(t, y)− yigi(t, y), fi(t, y) = (Fi(t, y) + αiyi
)
, gi(t, y) = αi. (3.13)

Therefore, (3.1) provides a second-order positivity-preserving NSFD method for which the denominator
functions in the form (3.9)-(3.11) do not require updating values at each iteration step.

4. Numerical Simulation of an SIR Epidemic Model

In this section, we perform numerical experiments to support and illustrate the theoretical results. These
experiments consider a mathematical epidemiological model.

We consider a modified Susceptible-Infected-Removed (SIR) model [6] as a test problem, which reads

y′1(t) = − by1(t)y2(t)

y1(t) + y2(t)
, y1(0) > 0,

y′2(t) =
by1(t)y2(t)

y1(t) + y2(t)
− cy2(t), y2(0) > 0,

y′3(t) = cy2(t), y3(0) ≥ 0,

(4.1)
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where b and c are positive real numbers; y1(t), y2(t) and y3(t) represent the number of susceptible individuals
infected individuals and removed individuals at the time t, respectively. We refer the readers to [6] for more
details of (4.1).

In a recent work [27], Lemos-Silva et al. applied the Mickens’ methodology [30, 31, 32, 33, 34] to obtain
an NSFD model of the following form:

yk+1
1 − yk1

∆t
= −byk+1

1 yk2
yk1 + yk2

,

yk+1
2 − yk2

∆t
=

byk+1
1 yk2

yk1 + yk2
− cyk+1

2 ,

yk+1
3 − yk3

∆t
= cyk+1

2 .

(4.2)

Notably, the exact solution of (4.2) has been explicitly determined in [27, Theorem 1]. Previously, Bohner
et al. [7] had proposed a new method for finding the exact solution of (4.1), considering not only constant
b, c but also variable coefficients b, c : R+ → R+.

In this example, we will consider (4.1) with variable coefficients. Since the total population N(t) =
y1(t) + y2(t) + y3(t) is constant for t ≥ t0, it is sufficient to consider the first two equations of (4.1):

y′1(t) = −b(t)y1(t)y2(t)

y1(t) + y2(t)
, y1(0) > 0,

y′2(t) =
b(t)y1(t)y2(t)

y1(t) + y2(t)
− c(t)y2(t), y2(0) > 0.

(4.3)

We now apply the NSFD method (3.1) to (4.3). First, we decompose the right-hand side function of (4.3)
as follows:

F1(t, y) = −b(t)y1y2
y1 + y2

, f1(t, y) = 0, g1(t, y) = − b(t)y2
y1 + y2

,

F2(t, y) =
b(t)y1y2
y1 + y2

− c(t)y2, f2(t, y) =
b(t)y1y2
y1 + y2

, g2(y) = −c(t)

(4.4)

By simple calculations, we obtain

v1(t, y) = − b′y1y2
y1 + y2

+
b2y1y

3
2

(y1 + y2)3
− b2y31y2

(y1 + y2)3
+

bcy21y2
(y1 + y2)2

,

2κ1A1(t, y) = − (b′)−y1y2
y1 + y2

+
b2y1y

3
2

(y1 + y2)3
+

bcy21y2
(y1 + y2)2

,

2κ1B1(t, y) =
(b′)+y1y2
y1 + y2

+
b2y31y2

(y1 + y2)3
,

(
(b′)+, (b

′)−
)
∈ D(b′),

v2(t, y) =
b′y1y2
y1 + y2

− c′y2 −
b2y1y

3
2

(y1 + y2)3
+

b2y31y2
(y1 + y2)3

− bcy21y2
(y1 + y2)2

− bcy1y2
y1 + y2

+ c2y2,

2κ2A2(t, y) =
(b′)+y1y2
y1 + y2

− (c′)−y2 +
b2y31y2

(y1 + y2)3
+ c2y2,

(
(c′)+, (c)

′
−
)
∈ D(c′),

2κ2B2 =
(b′)−y1y2
y1 + y2

− (c′)+y2 −
b2y1y

3
2

(y1 + y2)3
− bcy21y2

(y1 + y2)2
− bcy1y2

y1 + y2
.

(4.5)

Once the 4-tuple (ϕ1, ϕ2, φ1, φ2) is chosen, (4.4) and (4.5) define a second-order positivity-preserving NSFD
scheme for (4.3). In the numerical examples reported below, we will use some NSFD schemes derived from
(4.4) and (4.5), that utilize the functions ϕi and φi given in Table 1.
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Table 1: NSFD schemes derived from (4.4) and (4.5) (τ > 0)

NSFD scheme ϕ1 ϕ2 φ1 φ2

2dPNSFD1 g1(t, y)∆t2 +∆t g2(t, y)∆t2 +∆t ∆t ∆t

2dPNSFD2
e2g1(t,y)∆t − 1

2g1(t, y)

e2g2(t,y)∆t − 1

2g2(t, y)
∆t ∆t

2dPNSFD3
∆t+ g1(t, y)∆t2

1 + ∆t3
∆t+ g2(t, y)∆t2

1 + ∆t3
1− e−τ∆t 1− e−τ∆t

Assume that b(t) and c(t) are bounded for t ≥ 0, that is, there exist c∗ and b∗ such that

max
t≥0

b(t) = b∗ > 0, max
t≥0

b(t) = c∗ > 0. (4.6)

Then, (4.3) can be rewritten as

y′1 =

(
b∗y1 −

b(t)y1y2
y1 + y2

)
− b∗y1,

y′2 =

(
b(t)y1y2
y1 + y2

− c(t)y2 + c∗y2

)
− c∗y2.

(4.7)

Then, the right-hand side function of (4.7) can be decomposed in the form

f1(t, y) = b∗y1 −
b(t)y1y2
y1 + y2

, g1(t, y) = b∗,

f2(t, y) =

(
b(t)y1y2
y1 + y2

− c(t)y2 + c∗y2

)
, g2(t, y) = c∗.

(4.8)

Therefore, once the 4-tuple (ϕ1, ϕ2, φ1, φ2) is determined, (4.5) and (4.8) define a second-order positivity-
preserving NSFD scheme for (4.3). We consider the following NSFD schemes derived from (4.5) and (4.8)
with the functions ϕi and φi in Table 2

Table 2: NSFD schemes derived from (4.5) and (4.8) (τ > 0)

NSFD scheme ϕ1 ϕ2 φ1 φ2

2dPNSFD4 b∗∆t2 +∆t c∗∆t2 +∆t ∆t ∆t

2dPNSFD5
e2b

∗∆t − 1

2b∗
e2c

∗∆t − 1

2c∗
∆t ∆t

2dPNSFD6
e2b

∗∆t − 1

2b∗
e2c

∗∆t − 1

2c∗
1− e−τ∆t 1− e−τ∆t

Next, we consider (4.3) with (see [7])

b(t) = 1/(1 + t), c(t) = 2/(2 + t), y1(0) = 0.8, y2(0) = 0.2.

The exact solution is given by [7]:

y1(t) = y1(0)
(y2(0)/y1(0)) + 1 + t[
(y2(0)/y1(0) + 1

]
(t+ 1)

,

y2(t) = y2(0)
(y2(0)/y1(0)) + 1 + t[

(y2(0)/y1(0) + 1
]
(t+ 1)2

.

Note that b′(t), c′(t) < 0 for t ≥ 0. Hence, we choose (b′)+ = 0 and (c′)+ = 0 in (4.5). On the other hand,
b(t) and c(t) satisfy (4.6) with b∗ = 1 and c∗ = 2.
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We now compare global errors (err) at T = 1 and rates of convergence (ROC) estimated from the
NSFD schemes: 2ndNSFD1, 2ndNSFD2, 2ndNSFD3, 2ndNSFD4, 2ndNSFD5 and 2ndNSFD6 and (4.2).
The results are reported in Tables 3–6. In these tables, the quantities err and ROC are computed similarly
to [5, Example 4.1].

err(∆t) = |yN1 − y1(tN )|+ |yN2 − y2(tN )|, tN = 1, ∆t =
1

N
,

ROC = log(∆t1
∆t2

)(
err(∆t1)

err(∆t2)

)
.

Additionally, the graphs of the errors obtained from the second-order NSFD scheme 2ndNSFD2 and the
first-order NSFD scheme (4.2) with ∆t = 0.01 over [0, 1] are depicted in Figure 1.

The results in Tables 2–5 show that all second-order NSFD schemes 2ndNSFD1, 2ndNSFD2, 2ndNSFD3,
2ndNSFD4, 2ndNSFD5 and 2ndNSFD6 are convergent of order 2, whereas (4.2) is convergent only order 1.
Furthermore, the errors of the second-order NSFD schemes depend on the decomposition of the right-hand
side function and the chosen 4-tuple (ϕ1, ϕ2, φ1, φ2). This leads to the problem of optimizing the errors of
the second-order NSFD schemes.

Table 3: Computed errors and ROC of the 2ndNSFD1 and 2ndNSFD2 schemes

∆t 2ndPNSFD1 err 2ndPNSFD1 rate 2ndPNSFD2 err 2ndPNSFD2 rate
0.5 6.559410475124927e-002 6.094269133987174e-002
0.25 1.781929796473945e-002 1.8801 1.337060657340174e-002 2.1884
10−1 3.275021538910197e-003 1.8487 2.110852617736816e-003 2.0146
10−2 3.365172105951331e-005 1.9882 1.971819766188876e-005 2.0296
10−3 3.366450123387654e-007 1.9998 1.954409423743364e-007 2.0039
10−4 3.366496442724909e-009 2.0000 1.952614056555113e-009 2.0004
10−5 3.368197387665362e-011 1.9998 1.954746087218240e-011 1.9995
10−6 5.451750162421831e-013 1.7909 3.052558206206868e-013 1.8064
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Figure 1: Errors obtained from the second-order and first-order NSFD schemes with ∆t = 0.01.
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Table 4: Computed errors and ROC of 2ndNSFD3 (τ = 5) and 2ndNSFD4 schemes

∆t 2ndPNSFD3 err 2ndPNSFD3 rate 2ndPNSFD4 err 2ndPNSFD4 rate
0.5 6.944878986451183e-002 7.902791685990487e-002
0.25 1.644040274307838e-002 2.0787 2.262044634310900e-002 1.8047
10−1 2.314507864212931e-003 2.1397 3.725237331228468e-003 1.9685
10−2 2.233206780007102e-005 2.0155 4.118012549277073e-005 1.9565
10−3 2.220343807701752e-007 2.0025 4.161038818784046e-007 1.9955
10−4 2.219014763604754e-009 2.0003 4.164809150331017e-009 1.9996
10−5 2.825792377869618e-011 1.8950 4.781298967859726e-011 1.9400
10−6 2.506370111454714e-012 1.0521 8.942110940601822e-012 0.7281

Table 5: Computed errors and ROC of the 2ndNSFD5 and 2ndNSFD6 schemes (τ = 5)

∆t 2ndPNSFD5 err 2ndPNSFD5 rate 2ndPNSFD6 err 2ndPNSFD6 rate
0.5 3.095702263303372e-002 2.508826597831147e-002
0.25 1.271590524117193e-002 1.2836 8.484925721237491e-003 1.5640
10−1 2.564051674735432e-003 1.7476 1.583635745764422e-003 1.8319
10−2 2.849100598348309e-005 1.9542 1.715684442334109e-005 1.9652
10−3 2.874830316440535e-007 1.9961 1.728584778509790e-007 1.9967
10−4 2.877374796761423e-009 1.9996 1.729869816835539e-009 1.9997
10−5 2.876071603097330e-011 2.0002 7.268394219828167e-012 2.3766
10−6 5.016959070403004e-013 1.7584 2.456840286768625e-012 0.4711

Table 6: Computed errors and ROC of the first-order NSFD (4.2)

∆t 1stNSFD err 1stNSFD rate
0.5 4.272727272727273e-002
0.25 2.312169312169320e-002 0.8859
10−1 9.738562091503381e-003 0.9437
10−2 1.006246214038789e-003 0.9858
10−3 1.009623162852857e-004 0.9985
10−4 1.009962301373735e-005 0.9999
10−5 1.009996232648192e-006 1.0000
10−6 1.010000383189214e-007 1.0000

Before concluding this section, we will examine the dynamic behavior of the numerical solution generated
by the second-order NSFD method using large step sizes. To this end, we use the 2ndPNSFD3 scheme to
simulate the dynamics of (4.3) over [0, 100] and then, compare the numerical solution obtained with those
generated by the explicit Euler (first-order) and trapezoidal (second-order) methods (see [5]). The solutions
are depicted in Figures 2 and 3. Clearly, the 2ndPNSFD3 scheme preserves the dynamical behavior of the
continuous model. In contrast, the explicit Euler and trapezoidal schemes produce negative approximations
that are negative and differ from the exact solution.
Remark 4.1. The NSFD schemes (2.1), (2.5) and (2.9) are only applicable for the SIR model (4.3) when(

b(tk)− c(tk)
)
yk1 ̸= c(tk) y

k
2 , k ≥ 0.

5. Second-Order Positivity-Preserving NSFD Method Applied to Nonlinear PDEs

In this section, we present an application of the constructed numerical method (2.1) in solving a class of
nonlinear PDEs whose solutions are positive.
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Figure 2: Approximate solutions for the y1-components generated by the second-order NSFD scheme and two standard nu-
merical schemes.

Many important phenomena and processes arising in mechanics, physics, chemistry, biology, ecology,
finance, environment, etc. can be modeled mathematically by nonlinear PDEs (see, e.g., [4, 37]). The
solutions of these PDEs often possess essential properties; the most notable of these is the positivity of the
solutions. Therefore, constructing numerical methods that preserve the positivity of PDEs is important but
not simple in general (see, e.g., [13, 30, 31, 32, 33, 34, 35, 36, 38, 39]).

We now consider a class of nonlinear PDEs of the form

∂u(x, t)

∂t
+ C(u)

∂u(x, t)

∂x
= D(u)

∂2u(x, t)

∂x2
+ f(u), a ≤ x ≤ b, 0 ≤ t ≤ T, (5.1)

associated with the boundary conditions

u(a, t) = a(t), u(b, t) = b(t), 0 ≤ t ≤ T (5.2)

and the initial condition
u(x, 0) = u0(x), a ≤ x ≤ b. (5.3)

In (5.1)–(5.3), C(u), D(u), f(u), a(t), b(t) and u0(x) are functions that satisfy conditions necessary to
guarantee unique, positive solutions to the problem (5.1)-(5.3) on [a, b] × [0, T ]. The following theorem
provides a condition for the solutions of (5.1)–(5.3) to be positive.

Theorem 5.1. Assume that C(u), D(u), f(t, u), a(t), b(t) and u0(x) satisfy conditions that guarantee that
the solutions to the PDE model (5.1)-(5.3) exist and are unique. Then, u(t, x) ≥ 0 for (x, t) ∈ [a, b]× [0, T ]
if

C(0) ≥ 0, D(0) ≥ 0, f(0) ≥ 0,

a(t) ≥ 0, b(t) ≥ 0, t ∈ [0, T ],

u0(x) ≥ 0, x ∈ [a, b].

Proof. To prove the theorem, we first use the method of lines (MOL) [5, 42] to discretize (5.1)-(5.3) with
respect to the space variable. To do so, we fix a regular partition a = x0 < x1 < . . . < xM = b of

12



0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

y 2

 

 

Euler scheme

RK2

2ndPNSFD

Exact solution

Figure 3: Approximate solutions for the y2-components generated by the second-order NSFD scheme and two standard nu-
merical schemes.

[a, b] with a step size ∆x = (b − a)/M and denote by ui(t) the approximate the value of u(x, t) at (xi, t)
for i = 0, 1, . . . ,M . In these terms, the partial derivatives with respect to x are approximated by finite
difference quotients as follows:

∂u(x, t)

∂x
≈ ui(t)− ui−1(t)

∆x
∂2u(x, t)

∂x2
≈ ui+1(t)− 2ui(t) + ui−1(t)

(∆x)2
, i = 1, 2, . . .M − 1.

(5.4)

Consequently, we obtain a system of ODEs for ui(t) (i = 1, 2, . . . ,M − 1):

u′
i(t) = −C

(
ui(t)

)ui(t)− ui−1(t)

∆x
+D

(
ui(t)

)ui+1(t)− 2ui(t) + ui−1(t)

(∆x)2
+ f

(
ui(t)

)
,

ui(0) = u0(xi).

(5.5)

Note that u0(t) = a(t) ≥ 0 and uN (t) = b(t) ≥ 0. It follows from (5.5) that

u′
i|ui=0 = C(0)ui−1 +D(0)

ui+1 + ui−1

(∆x)2
+ f(0).

Therefore, if C(0), D(0), f(0) ≥ 0 then u′
i

∣∣
ui=0

≥ 0 for ui+1, ui−1 ≥ 0. By using [23, Lemma 2] and [40,
Proposition B.7], we conclude that the set RM−1

+ is a positively invariant set of the system (5.5).
Conversely, the space discretization (5.5) is convergent (see [42]), that is, ui(t) → u (t, xi) as ∆x → 0.

Therefore, we conclude that u(t, x) ≥ 0 for t ∈ [0, T ] and x ∈ [a, b]. The proof is complete.

By using suitable forms of the 3-tuple C(u), D(u) and f(u), we can obtain a huge variety of highly
important PDEs models. Below, we mention some mathematical models represented by (5.1).

• If we take C = 0, D > 0 and define f(u) = u(1− u)(α − u) with 0 ≤ α ≤ 1, we obtain the Fitzhugh-
Nagumo equation

∂u(x, t)

∂t
= D(u)

∂2u(x, t)

∂x2
+ u(1− u)(α− u), (5.6)
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which arises in population genetics. More details of this model are provided in [14].

• In the case C = 0, D > 0, and the function f is given by f(u) = αu+βum with α, β,m ̸= 1, we obtain
the Kolmogorov-Petrovskii-Piskunov (KPP) equation:

∂u(x, t)

∂t
+ C(u)

∂u(x, t)

∂x
= D(u)

∂2u(x, t)

∂x2
+ αu+ βum, (5.7)

which arises in heat and mass transfer, combustion theory, biology, and ecology. More details about
the equation can be found in [29]. An explicit positivity-preserving finite-difference scheme for (5.7)
was constructed in [13].

• If C = 0, D > 0 and f(u) = u(1−uτ ) with τ > 1, then (5.1) generates the Fisher-Kolmogorov equation
with applications in biology, see [37]

∂u(x, t)

∂t
= D(u)

∂2u(x, t)

∂x2
+ u (1− uτ ) . (5.8)

In the case C,D > 0 and f(u) = λ1u − λ2u
2, where λ1 and λ2 are both positive, (5.1) becomes the

Fisher PDE
∂u(x, t)

∂t
= D(u)

∂2u(x, t)

∂x2
+ λ1u− λ2u

2. (5.9)

This equation was considered in [35], in which a positivity-preserving NSFD scheme was constructed.

• Especially, if D > 0, C(u) = u and f(u) = u(1 − u), we obtain from (5.1) the Fisher PDE having
nonlinear diffusion:

∂u(x, t)

∂t
+ u

∂u(x, t)

∂x
= D

∂2u(x, t)

∂x2
+ u(1− u). (5.10)

This equation was considered in [36], in which a positivity-preserving NSFD scheme was formulated.

In this section, we consider (5.1)–(5.3) with strictly positive solutions:

u(x, t) > 0 for all (x, t) ∈ [a, b]× [0, T ].

In order to obtain a positivity-preserving numerical scheme, we apply the second-order NSFD method
(3.1) for (5.5). For this purpose, we rewrite the system (5.5) in the form

u′
i(t) = −

[
C+(ui)− C−(ui)

]ui(t)− ui−1(t)

∆x

+
[
D+(ui)−D−(ui)

]ui+1(t)− 2ui(t) + ui−1(t)

(∆x)2
+ fi(ui)− uigi(ui),

(C+, C−) ∈ D(C), (D+, D−) ∈ D(D), (fi, uigi) ∈ D(f(ui)),

ui(0) = u0 (xi) ,

(5.11)

or equivalently,
u′
i := Fi(u) = Fi(u)− uiGi(u), (5.12)

where u = [u1 u2 . . . uM−1]
⊤ and

Fi(u) = C−(ui)
ui

∆x
+ C+(ui)

ui−1

∆x
+D+(ui)

ui+1 + ui−1

(∆x)2
+D−(ui)

2ui

∆x2
+ fi(ui),

Gi(u) =
C+(ui)

∆x
+

C−(ui)

ui

ui−1

∆x
+D−(ui)

ui+1 + ui−1

ui∆x2
+ gi(ui).

We then obtain a second-order, positivity-preserving numerical scheme for the original PDE model (5.1)–
(5.3)by applying the NSFD method (3.1) to (5.12).
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Remark 5.2. The NSFD schemes constructed in [35] for the Fisher PDE (5.9) and in [13] for the KPP
model (5.7) are essentially applications of the NSFD methodology to the resulting ODE systems obtained
by applying the MOL to the PDE models. Therefore, they only achieve first-order convergence with respect
to ∆t. The second-order positivity-preserving NSFD method (3.1) is generally applicable not only for (5.12)
but also to ODE systems obtained by applying the MOL to PDEs. Thus, it is useful for solving several
PDE models with positive solutions.

6. Second-Order Positivity-Preserving NSFD Method Applied to BVPs

This section introduces the application of the constructed NSFD method to solving nonlinear BVPs
whose solutions are positive.

It is well-known that both linear and nonlinear shooting methods for BVPs lead to solving systems of
ODEs [5, 9]. Therefore, the NSFD method (3.1) can be used to solve the resulting ODE systems. To
illustrate this observation, we consider a class of nonlinear BVPs of the form:

u′′(t) + λf(u(t)) = 0, 0 ≤ t ≤ L, u(0) = u(L) = 0, (6.1)

which models certain physical problems [26], where

• f(w) > 0 for w > 0;

• λ > 0 is a physical parameter

Laetsch [26] investigated the values of λ for which the BVP (6.1) admits positive solutions, as well as how
the behavior of these solutions changes with respect to λ. One of the main results addresses the case in
which f is a convex function of w satisfying f(w) > 0 for w > 0. We refer the reader to [26] for a more
detailed discussion of these findings.

A particularly important special case of the BVP (6.1) is the Bratu equation [8]:

u′′(t) = −λeu(t), 0 ≤ t ≤ 1,

subject to the boundary condition
u(0) = u(1) = 0.

This equation has many important theoretical and practical applications, and it is widely used as a bench-
mark to verify the reliability and efficiency of various approximation methods (see, e.g., [24, 41] and references
therein).

We now assume that the solutions to (6.1) exist. To apply the constructed second-order NSFD method
(3.1), we first use the solutions’ symmetry to transform the problem of solving (6.1) into the problem of
solving a sequence of ODEs with positive solutions. Any solution of (6.1) is symmetric about the point
t = L/2, that is u(t) = u(L/2− t) for 0 ≤ t ≤ L [26]; hence, we only need to consider (6.1) on the interval
[0, L/2]. On this interval, it is easy to verify that

• u(t) > 0 for 0 < t ≤ L/2;

• u′(t) > 0 for 0 < t < L/2;

• u′(L/2) = 0 and therefore, max0≤t≤L u(t) = u(L/2).

As a result, we transform (6.1) to the following system of ODEs:

u′ = v, u(0) = 0,

v′ = −λf(u), v(0) = s > 0,
(6.2)
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where the first slope s is determined such that v′(L/2) = 0. (6.2) can be rewritten in the form (1.5) as
follows:

y′1 = f1(y1, y2)− y1g1(y1, y2),

y′2 = f2(y1, y2)− y2g2(y1, y2),
(6.3)

where

y1 = u, y2 = v,

f1(y1, y2) = y2, g1(y1, y2) = 0,

f2(y1, y2) = 0, g2(y1, y2) = −λ
f(y1)

y2
.

We obtain positive approximate solutions with second-order accuracy by applying the NSFD method
(3.1) to (6.3). The solution of the BVP is obtained by solving a sequence of initial value problems, for which
the initial slope is determined via the equation y2(s, L/2) = 0.

7. Concluding Remarks and Discussions

In this work, we we have proposed a simple and efficient approach for constructing a generalized, second-
order, positivity-preserving numerical method for non-autonomous dynamical systems. This method is
based on a new non-local approximation of the right-hand side function combined with the normalization
of denominator functions. Notably, the constructed method does not require the strict and indispensable
conditions imposed by some well-known second-order positivity-preserving NSFD methods. Therefore, a
computational implementation is straightforward.

Important applications of the constructed NSFD method are also provided, and numerical experiments
are carried out to support and illustrate the theoretical results. As a result, the NSFD scheme for the SIR
epidemic model constructed in [27] has been improved. Additionally, applications of the constructed second-
order positivity-preserving NSFD method to solving classes of PDEs and BVPs that arise in real-world
situations have been introduced and analyzed.

In the near future, we will expand upon the present approach and the results obtained in this work to
study the construction of higher-order, dynamically consistent numerical methods for differential equation
models with complex dynamics. Additionally, the practical applications of the proposed methods will be of
particular interest.
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