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Abstract

We develop a physics-informed neural network (PINN) framework for parameter estimation
in fractional-order SEIRD epidemic models. By embedding the Caputo fractional derivative into
the network residuals via the L1 discretization scheme, our method simultaneously reconstructs
epidemic trajectories and infers both epidemiological parameters and the fractional memory
order α. The fractional formulation extends classical integer-order models by capturing long-
range memory effects in disease progression, incubation, and recovery. Our framework learns
the fractional memory order α as a trainable parameter while simultaneously estimating the
epidemiological rates (β, σ, γ, µ). A composite loss combining data misfit, physics residuals,
and initial conditions, with constraints on positivity and population conservation, ensures both
accuracy and biological consistency. Tests on synthetic Mpox data confirm reliable recovery of
α and parameters under noise, while applications to COVID-19 show that optimal α ∈ (0, 1]
captures memory effects and improves predictive performance over the classical SEIRD model.
This work establishes PINNs as a robust tool for learning memory effects in epidemic dynamics,
with implications for forecasting, control strategies, and the analysis of non-Markovian epidemic
processes.

Keywords: Fractional epidemic models, Physics-informed neural networks, Caputo derivative,
Parameter estimation, Memory effects in epidemics.
2020 Mathematics Subject Classification: 92C60, 26A33, 65L05, 68T07.

1. Introduction

The global spread of infectious diseases such as the Black Death (1347–1351 in Europe,
Asia, and North Africa), smallpox (16th–20th century, eradicated the Americas in 1980),
cholera (seven waves from 1817 to 1975), H1N1 influenza (2009–2010, swine flu), Ebola (no-
tably 2014–2016 in West Africa), and COVID-19 (2019–present, caused by SARS-CoV-2) has
highlighted the importance of reliable epidemic models for understanding disease dynamics and
guiding public health interventions [1–7]. Traditional compartmental models, such as the classi-
cal SI, SIR, SEIR and SEIRD frameworks, have long served as fundamental tools for capturing
the transmission, progression, and recovery processes in populations [8–14]. These models are
widely used due to their simplicity and analytical tractability. However, they often fail to fully
capture the real-world epidemic dynamics, such as the long-term memory effects and anomalous
diffusion observed in disease spreading.
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To address these limitations, researchers have increasingly turned to fractional-order epi-
demic models. These models incorporate memory and hereditary effects into disease dynamics
by replacing classical integer-order derivatives with fractional operators [15–21]. The fractional-
order parameter, usually denoted by α, characterizes the degree of memory in the system.
When α = 1, the model reduces to the standard integer-order case. When 0 < α < 1, the
model reflects subdiffusive, history-dependent dynamics. Several studies have demonstrated
that fractional epidemic models can provide more accurate fits to epidemiological data and
reveal dynamics not captured by classical models [21–23]. Readers seeking a more in-depth
discussion are referred to the following comprehensive studies [24–33]. These studies provide
extensive coverage of fractional calculus applications.

Despite these advantages, applying fractional epidemic models presents several challenges.
Estimating the memory order α from real epidemic data is particularly challenging. It is
often nonintuitive and highly sensitive to noise or data sparsity. Furthermore, it is strongly
correlated with other epidemiological rates. Furthermore, classical fitting approaches based
on least-squares optimization require repeated numerical simulations of the fractional model.
These simulations are computationally demanding due to the nonlocal nature of the Caputo
derivative [34–37]. Conversely, purely data-driven machine learning approaches often ignore
the underlying epidemiological structure, leading to biologically inconsistent outcomes, such
as negative compartment sizes or loss of population conservation. These challenges motivate
developing hybrid approaches that integrate the mechanistic structure of epidemic models with
the flexibility of modern data-driven methods.

In this regard, physics-informed neural networks (PINNs) are a promising alternative. By
embedding the governing equations into the neural network training process, PINNs enforce
physical consistency while fitting observational data simultaneously [38–40]. This makes them
particularly attractive for epidemiological models, where constraints such as positivity, conser-
vation, and dynamical consistency are essential. While recent works have successfully applied
PINNs to epidemic modeling in the integer-order setting [40–43], the integration of fractional-
order operators into PINNs remains largely unexplored.

In this study, we present a PINN-based framework for estimating the memory order α
and, optionally, key epidemiological parameters, such as transmission, recovery, and mortality
rates, in fractional SEIRD models. Our methodology uses the L1 discretization scheme for the
Caputo derivative to represent fractional dynamics in the neural network loss function. We
validate our approach on synthetic datasets where the ground-truth parameters are known and
on real datasets from multiple regions in Europe. In addition to demonstrating the feasibility
of estimating α from data, we examine the identifiability and interpretability of fractional
epidemic dynamics compared to classical integer-order models. The main contributions of this
study are:

• We develop a fractional SEIRD model with Caputo derivatives that incorporates memory
effects into epidemic dynamics.

• We design a PINN framework that can handle fractional operators via the L1 scheme and
enforce epidemiological constraints.

• We demonstrate that the method can recover the fractional memory order α and epi-
demiological parameters from synthetic and real epidemic datasets.

• We perform uncertainty and identifiability analyses to highlight the role of memory effects
in the spread of epidemics and their implications for forecasting.

This work lies at the intersection of fractional calculus, epidemiological modeling, and ma-
chine learning. It offers a novel perspective on data-driven parameter estimation in epidemic
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systems. The rest of the paper is organized as follows. Section 2 provides the necessary prelim-
inaries on fractional calculus and neural networks. Section 3 introduces the fractional SEIRD
model and presents its well-posedness analysis. The proposed methodology, including the PINN
framework, the discretization of the Caputo derivative, the parameter estimation strategy, the
loss function, and the training algorithm, is detailed in Section 4. Section 5 describes the
experiments on both synthetic and real epidemic datasets and discusses the obtained results.
Finally, Section 6 concludes the paper and outlines directions for future work.

2. Preliminaries

This section establishes the mathematical foundation of our study. Its purpose is to enable
readers, especially those unfamiliar with fractional calculus, to understand the subsequent
model description. In this work, we adopt the Caputo fractional derivative of order α ∈ (0, 1),
which is well-suited for initial value problems. Let T > 0 be a finite time horizon, and let
f : [0, T ] → R be a sufficiently smooth function.

First, we recall the Gamma function, which generalizes the factorial function to complex
arguments and often appears in the formulation of fractional operators.

Definition 1 (See [44, p. 24]). Let ω ∈ C such that Re(ω) > 0. The Gamma function is given
by

Γ(ω) :=

∫ +∞

0

e−ττω−1dτ.

The Gamma function can be used to introduce the fractional integral operator, which gen-
eralizes the concept of repeated integration to include non-integer orders.

Definition 2 (See [44, p. 69]). The fractional integral operator with base point 0 is written as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ.

For completeness, we recall the definitions of the left- and right-sided Caputo derivatives,
since they play a central role in the formulation and analysis of fractional differential equations.

Definition 3 (See [44, p. 91]). The left and right fractional derivatives in the Caputo sense of
f with base point 0 and T , respectively, are defined by

CDα
t f(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−αf ′(τ) dτ, (1)

and
C
TDα

t f(t) =
−1

Γ(1− α)

∫ T

t

(τ − t)−αf ′(τ) dτ.

Remark 1. As α approaches 1 from below, the case reduces to the classical first-order deriva-
tive, recovering the memoryless ordinary differential equation (ODE) framework.

We now recall a useful identity linking the Caputo derivative and the fractional integral,
which will be used later in the analysis of our model.

Lemma 1 (See [44, p. 96]). One has

Iα
(CDα

t f(t)
)
= f(t)− f(0).
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3. Model Description

This section presents the mathematical framework used to describe the transmission dy-
namics of infectious diseases. We adopt an SEIRD compartmental model, which partitions
the population into five epidemiological groups. This structure provides a flexible basis for
incorporating fractional-order dynamics that capture memory effects in disease progression.

3.1. Fractional SEIRD Model

The SEIRD model is a widely adopted compartmental structure in mathematical epidemiol-
ogy because it captures the fundamental stages of disease progression from exposure to removal.
In this formulation, the total population is divided into five epidemiological classes: susceptible
individuals S(t), who are at risk of infection; exposed individuals E(t), who have been infected
but are not yet infectious; infectious individuals I(t), who can transmit the disease to others;
recovered individuals R(t), who have acquired immunity; and deceased individuals D(t), who
have died due to the disease.

The transmission dynamics are governed by four key epidemiological parameters:

(i) the infection rate β,

(iii) the recovery rate γ,

(ii) the incubation rate σ,

(iv) the disease-induced mortality rate µ.

To incorporate memory effects and long-range temporal dependencies, we extend the model
using a Caputo fractional derivative of order α ∈ (0, 1]. This generalization allows the current
rate of change in each compartment to depend on both the present state and the history of the
process. Thus, it captures the nonlocal character of epidemic spread.

Mathematically, the resulting fractional-order SEIRD system can be written as

CDα
t S(t) = −β S(t)I(t)

NL(t)
,

CDα
t E(t) = β

S(t)I(t)

NL(t)
− σE(t),

CDα
t I(t) = σE(t)− (γ + µ)I(t),

CDα
t R(t) = γI(t),

CDα
t D(t) = µI(t),

(2)

supplied with the initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, D(0) = D0 ≥ 0. (3)

Here, NL(t) = S(t) +E(t) + I(t) +R(t) denotes the total living population, and N = NL(t) +
D(t) = S(t) + E(t) + I(t) + R(t) + D(t) represents the total population. In the absence of
natural births and deaths, N remains constant over time, as shown in Section 3.2.

This fractional SEIRD formulation (2) generalizes the classical integer-order model: when
α = 1 (i.e. α → 1−), the system reduces to the standard SEIRD model; when α < 1,
the system captures memory-driven dynamics, reflecting the influence of past states on present
transmission. This property is particularly relevant in real epidemics, where delays in infection,
incubation, and recovery processes often exhibit non-exponential waiting time distributions that
cannot be adequately captured by ODEs.

Remark 2. In this formulation (2), we do not include vital dynamics such as natural births
and deaths. This choice is justified by the fact that epidemic outbreaks typically evolve on a
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much shorter timescale than demographic changes. By excluding vital dynamics, we ensure
that the total population remains constant, allowing us to isolate the effects of disease-induced
transitions and the fractional memory order α, which is the main focus of this study.

Before we proceed to the methodological aspects of model learning with PINNs, we must
first establish the mathematical soundness of the proposed system. The following subsection
examines the well-posedness of the fractional SEIRD model (2)–(3), focusing on the existence,
uniqueness, and positivity of solutions under biologically meaningful conditions.

3.2. Well-posedness Analysis

This section establishes that the model (2)–(3)is mathematically and biologically well-posed.
Consider each equation in (2) on the boundary of the non-negative orthant

CDα
t S(t)

∣∣
S=0

= 0, CDα
t E(t)

∣∣
E=0

= β
S(t)I(t)

NL(t)
≥ 0, CDα

t I(t)
∣∣
I=0

= σE(t) ≥ 0,

CDα
t R(t)

∣∣
R=0

= γI(t) ≥ 0, CDα
t D(t)

∣∣
D=0

= µI(t) ≥ 0.

Thus, on each coordinate hyperplane, the corresponding derivative points inward to R5
+. By

the generalized mean value theorem for Caputo derivatives [45, p. 288], the solution remains
non-negative for all t ≥ 0.

Now, summing the first four equations of (2) yields

CDα
t NL(t) = −µI(t) ≤ 0.

Hence, NL is non-increasing and bounded above by its initial value, i.e. NL(0) = NL0 . Moreover,

CDα
t N(t) = 0,

which means N(t) ≡ N(0) = N0. Therefore, every trajectory of (2) remains in the compact
positively invariant set

Ω =
{
(S,E, I, R,D) ∈ R5

+ : S + E + I +R +D = N0

}
.

Let us denote X(t) =
(
S(t), E(t), I(t), R(t), D(t)

)T
. The system (2) can be written in a

compact form as
CDα

t X(t) = F (X(t)), where X(0) = X0 ∈ R5
+,

where F : R5
+ → R5, the right-hand side of (2), is continuous and locally Lipschitz, because of

the boundedness of X. By the general theory of fractional differential equations (see e.g. [19]),
the system admits a unique solution defined on [0,∞). The proposition below summarizes this
section.

Proposition 1. For any given positive initial conditions and positive parameters β, σ, γ, µ,
the fractional system (2)–(3) has a unique global solution X(t) on [0,∞). Furthermore, this
solution remains positive and bounded for all t ≥ 0.
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3.3. Normalization and Scaling

To facilitate the analysis and design of the PINN framework, we introduce dimensionless
variables that represent proportions of the total population

s(t) =
S(t)

N
, e(t) =

E(t)

N
, i(t) =

I(t)

N
, r(t) =

R(t)

N
, and d(t) =

D(t)

N
,

where NL(t) = N(1 − d(t)). Dividing the fractional SEIRD model (2) by N , and using the
linearity of the Caputo operator CDα

t , we obtain the normalized system

CDα
t s(t) = −β s(t) i(t)

1− d(t)
,

CDα
t e(t) = β

s(t) i(t)

1− d(t)
− σe(t),

CDα
t i(t) = σe(t)− (γ + µ)i(t),

CDα
t r(t) = γi(t),

CDα
t d(t) = µi(t),

(4)

supplied with initial conditions

s(0) = s0, e(0) = e0, i(0) = i0, r(0) = r0, and d(0) = d0. (5)

Since CDα
t (s+ e+ i+ r + d) = 0, showing that the simplex

∆ =
{
(s, e, i, r, d) ∈ R5

+ : s+ e+ i+ r + d = 1 and d < 1
}
,

is forward invariant. Thus, all state variables remain nonnegative and bounded by 1 whenever
the initial conditions belong to ∆.

This normalized formulation (4)–(5) offers several advantages for the subsequent PINN
methodology: (i) the state variables are naturally bounded in [0, 1], which improves numer-
ical conditioning and facilitates the use of positivity or conservation constraints within the
neural network; (ii) working with proportions yields more easily interpretable and comparable
parameters across different datasets; (iii) the explicit denominator 1 − d(t) preserves the im-
pact of mortality on transmission while keeping the equations scale-free. All methodological
developments in the subsequent subsections are based on this normalized system (4)–(5).

4. Methodology

This section describes the proposed methodology for learning epidemic trajectories and es-
timating the parameters of the fractional SEIRD model. Our approach leverages PINNs, which
integrate observational data with the governing fractional differential equations to ensure con-
sistency with epidemic dynamics. Using system (4)–(5), the PINN simultaneously approximates
the compartmental trajectories and recovers the parameters, including the fractional order α,
while enforcing positivity and conservation of the total population.

4.1. PINN Framework

The key idea of PINNs is to approximate the solution to a system of differential equations
using a neural network whose training is guided by both observational data and the governing
equations. In our setting, the network learns the normalized epidemic trajectories(

s(t), e(t), i(t), r(t), d(t)
)
∈ ∆,

along with the unknown parameters β, σ, γ, µ, and, most importantly, the fractional order α.
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4.1.1. Network Architecture

We employ a fully connected feedforward neural network (multilayer perceptron) that takes
time t ∈ [0, T ] as input and outputs approximations

NN θ,Θ : t 7→
(
ŝ(t; θ), ê(t; θ), î(t; θ), r̂(t; θ), d̂(t; θ)

)
,

where θ and Θ denote the trainable weights and biases of the network, respectively.
To maintain epidemiological validity, we enforce nonnegativity and approximate population

conservation through the output layer. This can be achieved either by using softplus, an
activation function defined as softplus(x) = ln(1 + ex). This function smoothly maps real
numbers to positive values, ensuring nonnegativity without sharp cutoffs, or activations to
guarantee positivity. Alternatively, we can apply a softmax, a normalization function that
transforms a vector into positive components that sum to one: softmax(zi) = ezi∑

j e
zj . It is

commonly used to represent probabilities or normalized fractions. The softmax projection
ensures

ŝ(t) + ê(t) + î(t) + r̂(t) + d̂(t) ≈ 1,

so that the total population is conserved. This constraint can be imposed explicitly via a
simplex-based architecture or softly enforced through a penalty term in the loss function (see
Sections 4.4 and 4.5).

4.1.2. Physics-Informed Residuals

Rather than training solely on observed data, the PINN incorporates the fractional SEIRD
equations (4) into the loss function by ensuring that the neural outputs satisfy the dynamics
in the sense of the Caputo derivative. Specifically, the fractional derivatives CDα

t ŝ(t),
CDα

t ê(t),
etc., are approximated numerically (see Section 4.2) and substituted into the right-hand side
of the system. The resulting residuals vanish for the true solution; therefore, minimizing them
enforces consistency between the neural predictions and the governing epidemic model.

4.1.3. Joint Learning of Trajectories and Parameters

The network weights θ and the epidemiological parameters Θ = {β, σ, γ, µ, α} are updated
simultaneously. This hybrid approach allows the model to reconstruct unobserved states and
estimate parameters from limited data. The embedded physics serve as a regularizer, mitigating
overfitting and enhancing interpretability.

4.2. Caputo Derivative Discretization

For a sufficiently smooth function ψ, we recall the Caputo derivative CDα
t ψ defined in (1).

Its nonlocal nature introduces long-range memory effects, which are central to our analysis. To
efficiently approximate the derivative at discrete time points tn = n∆t, we adopt the classical
L1 scheme (see, e.g., [46, p. 34-40])

CDα
t ψ(tn) ≈ 1

∆tα

n−1∑
k=0

c
(n)
k

(
ψ(tn−k)− ψ(tn−k−1)

)
, (6)

with weights

c
(n)
k =

1

Γ(2− α)

[
(k + 1)1−α − k1−α

]
, with k = 0, 1, . . . , n− 1.

This discretization plays a crucial role in the PINN framework developed in this paper because
it allows fractional-order dynamics to be directly embedded into the loss function. The L1
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scheme (6) is differentiable with respect to both ψ(t) and α, enabling gradients to propagate
through the discretization during training. In practice, the L1 operator is implemented as a
differentiable layer within the PINN to ensure efficient backpropagation.

The neural network outputs ŝ(t), ê(t), î(t), r̂(t), and d̂(t) are evaluated at collocation points
{tj}, and their Caputo derivatives are computed using the L1 scheme (6). These approximations
are substituted into the residuals of the fractional SEIRD system to ensure that the network
predictions satisfy the underlying dynamics.

4.3. Parameter Estimation Strategy

The PINN is designed not only to approximate epidemic trajectories but also to identify
the epidemiological parameters

Θ = {β, σ, γ, µ, α}.

All parameters are treated as trainable variables and updated jointly with the network weights.
To ensure admissibility and stability, the following design choices are imposed:

- Positivity: All rates are parameterized via softplus transformations, e.g. β = softplus(Cβ),
ensuring β > 0, where Cβ ∈ R and β ≤ βmax.

- Fractional Order: The memory parameter α is restricted to (αmin, 1] using a sigmoid
mapping

α = αmin + (1− αmin)σ(zα),

where zα ∈ R and σ(·) denotes the sigmoid function.

- Staged Optimization: Training proceeds in two phases:

(i) an initialization phase where α is fixed at 1 (classical SEIRD) and only the epidemi-
ological parameters are trained;

(ii) a joint phase where α is released and estimated simultaneously with the other pa-
rameters.

Initial guesses for Θ are obtained from classical SEIRD fits or epidemiological literature, and
parameter bounds are imposed to exclude unrealistic values.

4.4. Loss Function

In the PINN framework, the loss function plays a central role in guiding the neural network
to approximate both the epidemic trajectories and the underlying dynamics of the fractional
SEIRD system (4)–(5). Unlike purely data-driven models, which only minimize prediction er-
ror, here the loss function in the PINN framework must balance multiple objectives: fitting
available observations, enforcing the governing fractional differential equations, satisfying ini-
tial conditions, and maintaining epidemiological consistency, such as positivity and population
conservation. To achieve this balance, we construct a composite loss function that integrates
data misfit with physics-based residuals and additional structural constraints. This design en-
sures that the trained network accurately reflects the observed data while remaining faithful to
the model’s mathematical and biological principles.

The PINN is trained by minimizing the composite loss functional

L(θ,Θ) = λdataLdata + λphysLphys + λICLIC + λconsLcons + λregLreg. (7)

Each component is defined as follows:
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Data Misfit: Penalizes discrepancies between predicted and observed compartments
O = {s, e, i, r, d},

Ldata =
1

Ndata

Ndata∑
j=1

∑
x∈O

∣∣x̂(tj)− xobsj

∣∣2.
Physics Residual: Enforces consistency with the fractional SEIRD dynamics at collo-
cation points

Lphys =
1

Ncoll

Ncoll∑
j=1

∑
x∈O

∣∣Rx(tj)
∣∣2,

where Rx(t) = CDα
t x̂(t) − Fx(x̂, β, σ, γ, µ) is the residual of the governing equation (4),

and CDα
t is discretized using the L1 scheme (6).

Initial Conditions: Ensures agreement with prescribed initial values

LIC =
∑
x∈O

∣∣x̂(0)− x0
∣∣2.

Conservation: Penalizes violations of the population balance ŝ + ê + î + r̂ + d̂ = 1 at
collocation points

Lcons =
1

Ncoll

Ncoll∑
j=1

(
ŝ(tj) + ê(tj) + î(tj) + r̂(tj) + d̂(tj)− 1

)2

.

Regularization: ℓ2 penalties on the network weights (and optionally the parameters θ)
to avoid overfitting

Lreg = λΘ∥Θ∥22 + λθ∥θ∥22.

The weights λ∗ balance the contributions of each term and are tuned empirically to achieve
stability between data fidelity and physics enforcement.

Figure 1 summarizes the complete architecture of the proposed PINN. The neural net-
work receives time t as input and outputs approximations of the compartmental trajectories
(ŝ, ê, î, r̂, d̂). These outputs are processed through the Caputo derivative operator CDα

t , dis-
cretized using the L1 scheme (6), and compared against the fractional SEIRD dynamics (4) to
form physics residuals. Along with the data misfit, physics and initial condition enforcement,
conservation penalties, and regularization, these residuals contribute to the composite loss (7),
which guides the training.

t ŝ, ê, î, r̂, d̂

Neural Network: NN θ,Θ(t)

CDα
t

Rx(t) = CDα
t x̂(t) −

Fx(x̂, β, σ, γ, µ)

Fractional SEIRD System (4)

LOSS: L = Ldata + Lphys + LIC + Lcons + Lreg

Figure 1: Schematic diagram of the proposed PINN for the fractional SEIRD model (4)–(5).
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4.5. Training Algorithm

The training procedure integrates the loss function defined in Section 4.4 with staged opti-
mization strategies that are designed to improve the stability and identifiability of the fractional
order α. The workflow is summarized below.

Algorithm 1 Fractional-SEIRD PINN Training Algorithm

1: Initialization: Neural network weights Θ are initialized using Xavier initialization [47].
Epidemiological parameters θ = (β, σ, γ, µ) are drawn from admissible ranges informed by
prior studies, while the fractional order α is initialized close to 1 to reflect the classical
Markovian case (see Remark 3)

2: Staged Optimization: Training proceeds in two phases:

i : Pretraining : Fix α = 1 and minimize a reduced loss Ldata + LIC to fit observations
and initial conditions;

ii : Joint training : Release α and optimize the full composite loss L in (7), updating both
network weights and epidemiological parameters.

3: Optimization Scheme: We employ a hybrid optimizer [38, 48, 49]: Adam with a decaying
learning rate is used for initial exploration, followed by L-BFGS for fine-tuning. This hybrid
strategy has been shown to be effective in PINNs.

4: Constraints and Monitoring: Positivity and conservation are enforced through the loss
penalties described in Section 4.4. Training is monitored via the total loss and its compo-
nents. Early stopping is applied when improvements fall below the tolerance threshold.

Remark 3. When α = 1, the fractional derivative reduces to the classical first-order deriva-
tive, resulting in the standard Markovian SEIRD model with memoryless dynamics. Therefore,
initializing α near 1 therefore, lets the model begin training close to the classical case and adapt
toward sub-exponential, memory-dependent dynamics if the data supports it.

Algorithm 1 simultaneously reconstructs latent epidemic trajectories and reliably estimates
the fractional order α, thereby quantifying memory effects while maintaining epidemiological
interpretability.

5. Results and Discussion

To evaluate the proposed fractional SEIRD model (4)–(5) with PINNs, we conduct experi-
ments on both synthetic and real epidemic datasets, designed to address the following questions:

- Can the framework accurately recover the fractional memory order α and epidemiological
parameters from noisy data?

- How does the inclusion of memory effects improve predictive performance compared to
classical integer-order SEIRD models?

- What is the role of different architectural and methodological choices (e.g., fixed vs train-
able α, conservation constraints) in the model’s performance?

- How reliable are the estimated parameters and predictions, given uncertainty and data
limitations?

To this end, we first validate the approach using synthetic epidemic trajectories that mimic
the dynamics of the Mpox epidemic, for which the ground-truth parameters (β, σ, γ, µ, α) are
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known. We simulate the dynamics of the fractional SEIRD model (4) through the L1 discretiza-
tion of the Caputo derivative (6) for various values of α ∈ (0, 1], with Gaussian noise added to
replicate observation errors. Next, we use the procedure in Section 4.5 to train the PINN to
infer α and the epidemiological parameters from partial and noisy observations. This confirms
the identifiability and stability of the proposed learning strategy before turning to real-world
data. We then apply the method to COVID-19 datasets, focusing on confirmed, recovered, and
deceased case counts from several European regions. We assess performance through trajec-
tory fitting, estimation of the optimal fractional order α, and comparison with the predictive
accuracy of the fractional SEIRD model.

Section 5.1 presents the results for the synthetic setting, based on numerical solutions ob-
tained using the L1 discretization scheme (6). Section 5.2 details the evaluation on real datasets,
emphasizing predictive accuracy, parameter estimation, and epidemiological interpretation.

5.1. Synthetic Data Experiments

The parameters were selected within biologically plausible ranges reported in the literature
for Mpox, as shown in Table 1.

Table 1: Epidemiological parameters for the SEIRD model applied to Mpox (clade Ib, 2024–2025).

Epidemic β σ γ µ References

Mpox 0.1 – 0.3 0.077 – 0.2 0.036 – 0.071 0.001 – 0.03 [50, 51]

Specifically, the fixed values were set to

β = 0.25, σ = 0.13, γ = 0.052, µ = 0.005,

while the memory order varied as α ∈ {1, 0.95, 0.9}. The case α = 1 corresponds to the clas-
sical integer-order SEIRD model, while α < 1 incorporates fractional memory effects. The
values α = 0.95 and α = 0.9 were chosen to introduce moderate deviations from the classical
case. These values remain close enough to α = 1 to ensure biological plausibility and numer-
ical stability, while still reflecting realistic long-memory effects, such as incubation variability,
reporting delays, or behavioral adaptation.

Figures 2 and 3 provide a visual comparison of the reconstructed epidemic dynamics and the
corresponding parameter estimates under different fixed values of α. Figure 2 shows that the
predicted trajectories for all compartments (S,E, I, R,D) closely align with the ground-truth
synthetic data, demonstrating the PINN’s ability to capture both the transient and steady-
state behaviors of the system. As α decreases, the infectious peak is slightly delayed and
flattened, highlighting the moderating role of memory effects in epidemic progression. Figure 3
complements this analysis by illustrating the estimated epidemiological parameters across the
three scenarios. Table 2 summarizes these estimated values.
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Figure 2: PINN predictions of SEIRD dynamics under different fixed values of α.
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Figure 3: Estimated epidemiological parameters under different fixed α.
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The recovered parameters remain within the biologically relevant ranges listed in Table 1,
demonstrating good consistency with the ground-truth settings. Notably, as α decreases, σ
increases slightly, while µ decreases. This trend aligns with the idea that fractional dynamics
introduce memory effects that slow down epidemic progression while effectively reducing its
severity. Meanwhile, β and γ remain relatively stable across all cases.

Table 2: Estimated epidemiological parameters for Mpox with α fixed at 1, 0.95, and 0.9.

Parameter α β σ γ µ

α = 1 0.989349 0.133711 0.144335 0.065966 0.027749
α = 0.95 0.962859 0.139901 0.151477 0.065746 0.010705
α = 0.9 0.914439 0.136780 0.155774 0.066356 0.008520

5.2. Application to Real-World COVID-19 Data

To further assess the applicability of the proposed framework further, we examined real-
world epidemic data from Germany and Sweden during the COVID-19 outbreaks. We selected
these two countries due to the availability of their daily case and mortality reports and their
contrasting epidemic trajectories within Europe. The corresponding epidemiological parameters
were constrained within biologically plausible ranges, as shown in Table 3.

Table 3: Epidemiological parameters for the SEIRD model applied to COVID-19 in Europe (2024).

Epidemic β σ γ µ References

COVID-19 0.2 – 0.4 0.1 – 0.3 0.05 – 0.1 0.001 – 0.01 [52, 53]

The daily number of confirmed cases and deaths were extracted for each country from
publicly available databases [54–57]. Cumulative counts were transformed into compartmental
trajectories consistent with the SEIRD structure. Specifically, the infected class I was re-
constructed from active case estimates, the deceased class D from reported daily deaths, and
the removed class R by aggregating recoveries and deaths, when recovery data were available.
Since the exposed population E was not directly observed, it was treated as a latent state to
be inferred by the model.

Figures 4 and 5 present the application of the proposed fractional-SEIRD PINN framework
to real-world COVID-19 data from Germany and Sweden. Figure 4 compares the reconstructed
epidemic dynamics with the reported data for both countries. The trajectories of the suscep-
tible, exposed, infected, recovered, or deceased populations show close agreement with the
observations. This indicates that the PINN can capture the underlying transmission dynamics
despite data noise and reporting variability. Notably, the German outbreak exhibits a sharper
infection peak and a faster decline, while the Swedish epidemic has a more prolonged infectious
curve. These differences are consistent with the different public health interventions imple-
mented in the two countries.
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(b) Sweden data

Figure 4: PINN predictions of SEIRD dynamics for real data.

Figure 5 illustrates the corresponding parameter estimation outcomes. The recovered values
remain within the admissible ranges provided in Table 3, confirming both the validity of the
training process and the biological plausibility of the estimates. The fractional order α was
consistently identified as less than one for both Germany and Sweden, reflecting the presence
of long-memory effects in the epidemic data. Additionally, subtle differences emerge across the
two case studies: the Swedish data suggest a slightly lower α, accompanied by higher incubation
and recovery rates, whereas the German data yield higher transmission and mortality rates.
These contrasts demonstrate how fractional dynamics can reveal country-specific heterogeneity
in epidemic progression that standard integer-order models may miss.
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Figure 5: Estimated epidemiological parameters for real data.

Table 4 summarizes the estimated parameters for Germany and Sweden. All recovered values
fall within the biologically plausible ranges reported in Table 3, confirming the reliability of the
framework when applied to real data.

Table 4: Estimated epidemiological parameters for COVID-19.

Parameter α β σ γ µ

Germany 0.915016 0.305806 0.274704 0.059172 0.002286
Sweden 0.970250 0.355629 0.134239 0.062103 0.002757

Overall, the results confirm that the proposed PINN framework generalizes well to real-
world COVID-19 data, providing both accurate trajectory reconstruction and interpretable
parameter estimates. The identification of α < 1 reinforces the epidemiological relevance of
fractional-order models in accounting for memory effects such as delayed reporting, behavioral
adaptation, and variability in disease progression.
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5.3. Limitations of the PINN Training

Although the proposed fractional-SEIRD PINN framework yields promising results on syn-
thetic and real datasets, it has several limitations.

First, the framework relies on the availability and quality of epidemiological data. For real-
world COVID-19 datasets, reporting delays, under-reporting, and missing recovery information
can introduce uncertainties that affect the accuracy of reconstructed trajectories.

Estimating the susceptible and exposed compartments is inherently challenging because they
are usually unobserved and must be inferred indirectly. While the PINN provides a principled
way to address this issue, further refinements could enhance robustness.

These limitations do not undermine the validity of the present results. Rather, they highlight
areas for methodological improvement.

6. Conclusion

In this work, we developed a PINN framework for the fractional SEIRD epidemic model.
Our focus was on estimating the fractional memory order α alongside classical epidemiological
parameters. Leveraging the Caputo fractional derivative and the L1 discretization scheme, our
method incorporates memory effects into epidemic dynamics, and captures long-range depen-
dencies that are absent in classical integer-order formulations. Validation on Mpox synthetic
datasets demonstrated that the proposed framework can accurately recover α and epidemio-
logical parameters, even in the presence of observational noise. Applications to real datasets
further confirmed that α < 1, supporting the hypothesis that epidemic spreading processes ex-
hibit non-Markovian behavior. Let us note that a fractional derivative with order α < 1 implies
that system dynamics depend on the entire history of the process, not just the present state.
This nonlocality captures the heavy tails of the incubation and infectious periods, reflecting
empirical evidence that epidemic processes exhibit memory effects that are inconsistent with
purely Markovian (exponential waiting time) assumptions. A comparative analysis against the
classical SEIRD model revealed clear improvements in predictive accuracy and interpretability
when memory was incorporated. Overall, our findings suggest that the fractional SEIRD model
coupled with PINNs is a powerful tool for epidemic analysis, offering improved predictions and
deeper insights into the underlying dynamics of infectious diseases.

Figure 6 illustrates the overall workflow of the proposed approach. Both synthetic and real
datasets serve as inputs to the fractional SEIRD model, which uses a PINN architecture to
maintain dataset fidelity and ensure physical consistency. The model outputs compartmental
trajectories, from which key quantities such as the fractional order α and epidemiological pa-
rameters are inferred. The schematic also illustrates the importance of conservation constraints
and uncertainty analysis inensuring, that the learned parameters are interpretable and reliable.
The diagram emphasizes the integration of data-driven learning and fractional epidemic mod-
eling into a unified framework.
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Figure 6: Workflow of PINNs in the Fractional SEIRD Model.

This study reveals several promising directions. One natural extension is introducing a
time-varying fractional order α(t), which would enable the model to capture evolving memory
effects during different epidemic phases, such as periods of intervention or changes in pop-
ulation behavior. Another important avenue is integrating multi-region and network-based
epidemic models. Spatial coupling and mobility data could be incorporated to infer α across
interconnected regions, improving large-scale epidemic forecasting. Developing spatiotemporal
extensions of the fractional SEIRD model within the PINN framework would be particularly
appealing in this context because it would enable the simultaneous representation of memory
effects, temporal evolution, and spatial heterogeneity in epidemic dynamics.

In terms of uncertainty quantification, shifting from bootstrap-based methods to Bayesian
formulations, such as Bayesian neural operators or variational inference, could yield more re-
liable posterior distributions for α and epidemiological parameters. Improving scalability and
efficiency is essential on the computational side, especially by designing fast algorithms for frac-
tional derivative evaluation, such as reduced-memory kernels or GPU-accelerated schemes, to
make the framework practical for real-time epidemic monitoring. Finally, applying the approach
to other infectious diseases, such as seasonal influenza, dengue, and vector-borne epidemics, in
addition to Mpox and COVID-19, would demonstrate its generality and highlight the role of
long-memory effects in different epidemiological contexts.

In summary, this work establishes a foundation for integrating fractional dynamics with
PINNs in epidemic modeling. By demonstrating the identifiability and usefulness of the frac-
tional memory order α, it paves the way for richer, spatiotemporal, memory-aware epidemic
models that can improve scientific understanding and public health decision-making.
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