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Abstract. This work introduces a new framework integrating port-Hamiltonian
systems (PHS) and neural network architectures. This framework bridges the gap
between deterministic and stochastic modeling of complex dynamical systems. We
introduce new mathematical formulations and computational methods that expand
the geometric structure of PHS to account for uncertainty, environmental noise, and
random perturbations. Building on these advances, we introduce stochastic port-
Hamiltonian neural networks (pHNNs), which facilitate the accurate learning and
prediction of non-autonomous and interconnected stochastic systems.
Our proposed framework generalizes passivity concepts to the stochastic regime,
ensuring stability while maintaining the system’s energy-consistent structure. Ex-
tensive simulations, including those involving damped mass-spring systems, Duff-
ing oscillators, and robotic control tasks, demonstrate the capability of pHNNs to
capture complex dynamics with high fidelity, even under noise and uncertainty.
This unified approach establishes a foundation for the robust, data-driven model-
ing and control of nonlinear stochastic systems.
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1 Introduction

This research introduces a pioneering approach that combines port-Hamiltonian sys-
tems (PHS) with neural network architectures. The focus is on transitioning from de-
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terministic frameworks to stochastic models. Through an in-depth analysis of sophis-
ticated mathematical formulations, we seek to enhance our comprehension of dynam-
ical systems operating under uncertainty, encompassing a variety of intricate interac-
tions and the potential for measurement errors.

PHS are defined as a synthesis of port modeling and geometric Hamiltonian dy-
namics, focusing on the Dirac structure. The Dirac structure generalizes traditional
Poisson and pre-symplectic frameworks, enabling a nuanced representation of ener-
getic topology within dynamical systems. PHS’s stochastic adaptation incorporates
uncertainties, such as inherent noise and environmental variabilities, directly into the
system’s ports. In this context, noise is not merely an external disturbance but an
integral component of the system’s behavior.

In our work, we offer a coordinate-free geometric formulation of deterministic
PHS. This formulation employs generalized Poisson brackets and Hamiltonian func-
tions to describe the underlying dynamics comprehensively. We seamlessly transition
these theoretical constructs into local equations characterized by Jacobians and vector
fields, providing a clear mathematical foundation. Furthermore, we extend this for-
mulation to implicit systems with algebraic constraints by modeling energy storage
and exchange using flow and effort variables and power ports.

The Dirac structure elucidates power-conserving interconnections within the sys-
tem, which are essential for maintaining the principle of passivity. This property is
crucial to stability in control applications. Building on this theoretical groundwork,
we derive stochastic port-Hamiltonian neural networks (pHNNs) by incorporating noise
within the port structure. This innovative framework is based on the methodology es-
tablished by Cordoni, Di Persio, and Muradore [3], which adeptly integrates random
perturbations to mitigate the impacts of measurement noise, parameter uncertainties,
and environmental interactions, hence enriching the model’s robustness.

The paper is organized as follows: Section 1 introduces key concepts and the vari-
ous types of PHS, including discrete forms and their integration with neural networks.
Basic concepts and definitions for PHS are introduced in Section 2. Section 3 ex-
tends PHS to include random elements for modeling systems with uncertainties. Sec-
tion 4 generalizes the concept of passivity to stochastic systems by defining strong and
weak passivity, as well as providing criteria for passivity in stochastic port-Hamiltonian
systems (SPHS). Section 5 applies and develops stochastic PHS in different contexts.
Section 6 presents simulation results of pHNNs on damped mass-spring and chaotic
Duffing systems. Section 6 concludes with a summary and discusses how we adapted
Colonius and Grüne’s neural network–based controller design method for systems
with stochastic dynamics [2].
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2 Preliminaries on Port-Hamiltonian and Stochastic Models

2.1 Basic Concepts

Cordoni, Di Persio, and Muradore [3] describe an input-state-output (I-S-O) determin-
istic PHS using a geometric, coordinate-free formulation in terms of Poisson brackets:ẋ = XH(x) +

m
∑

i=1
uiXHgi

(x),

yi = {H, Hgi}.
(2.1)

This is called an (explicit) input-state-output port-Hamiltonian system (PHS) on a Poisson
manifold (X, {·, ·}) with a Hamiltonian function H ∈ C∞(X ), x ∈ Rn, the i-th input
ui ∈ U, the i-th output yi ∈ U∗, and the Hamiltonian vector field XHgi

associated with
the Hamiltonian Hgi . In local coordinates, the previous system (2.1) readsẋ = J(x)∂x H(x) +

m
∑

i=1
uigi(x),

yi = g⊤i (x)∂x H.
(2.2)

Moreover, given XL
H(·) := [·, H]L, we can define the (explicit) input-state-output port-

Hamiltonian system with dissipation as follows:ẋ = XL
H(x) +

m
∑

i=1
ui Hgi(x),

yi = [H, Hgi ],
(2.3)

and in local coordinates, this system (2.3) readsẋ =
(

J(x)− R(x)
)
∂x H(x) +

m
∑

i=1
uigi(x),

yi = g⊤i (x)∂x H(x),
(2.4)

where R(x) := (gR(x))⊤R̃(x)gR(x).
Consider a physical system consisting of energy-storing elements, energy-dissipating

elements, and power ports. These elements are connected by power-preserving links,
which can only transfer energy and cannot produce it. Such a system can be described
by extending the port-Hamiltonian system framework to implicit systems, i.e., sys-
tems with algebraic constraints. Given a state space X (a smooth manifold whose
elements represent the energy stored in the system), a vector space of flow variables
V and its dual space of effort variables V∗ (representing the power ports), a geometric
Dirac structure, D, and a Hamiltonian function, H, representing the total energy of the
system in a given state, we can define an implicit port-Hamiltonian system correspond-
ing to (X ,V ,D,H) as

v = −ẋ and v∗ =
∂H
∂x

(x) , (2.5)
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implying the system is defined by(
−ẋ,

∂H
∂x

(x), f , e
)
∈ D(x). (2.6)

The Dirac structure discussed here describes the internal interconnection behavior of
a port-Hamiltonian system and provides a mathematical framework for understand-
ing how its components interact. A key attribute of Dirac structures is their power-
conserving composition yields another valid Dirac structure. This property is cru-
cial because it implies that any interconnection of port-Hamiltonian systems that pre-
serves power will also result in a valid system that maintains the underlying principle
of energy conservation. Specifically, when combining these systems, the overall Dirac
structure is constructed by integrating the individual structures, and the total Hamil-
tonian of the interconnected system is expressed as the sum of the Hamiltonians of its
components.

Furthermore, a fundamental characteristic of these systems is the concept of pas-
sivity, which states that the total energy supplied to the system must equal or exceed
the energy released, assuming no losses due to friction, resistance, or other dissipative
effects. This principle of passivity is essential for ensuring stability in various control
applications because it reveals how a system behaves in response to energy inputs
and outputs. Passivity naturally arises from the underlying Dirac structure and is
closely tied to the energy-dissipation relationship inherent to port-Hamiltonian sys-
tems. This relationship guarantees that energy is neither created nor destroyed within
the system, only shifted between different forms and components. Ultimately, this
relationship facilitates robust and stable control strategies.

In summary, understanding the dynamics and stability of PHSs require grasping
the interplay between the Dirac structure, power conservation, and passivity. This
interplay allows us to design and analyze complex, interconnected systems for various
engineering and physical applications.

2.2 Discrete Systems

Until now, we have only considered port-Hamiltonian systems in continuous time.
However, it is crucial to determine if their fundamental properties, such as energy
conservation, are maintained during time discretization. As Viswanath, Clemente-
Gallardo, and van der Schaft [12] demonstrated, Hamiltonian systems can be dis-
cretized to preserve energy-conserving behavior. Discrete port-Hamiltonian systems
can be formed by discretizing continuous models or formulating them directly in dis-
crete time. In the latter case, Poisson brackets are used to retain the critical structural
properties necessary to preserve the Hamiltonian framework in the discrete domain:
skew symmetry, bilinearity, and a modified Leibniz rule.

First, we must define the discrete Dirac structure. To do so, we denote a space
of discrete vector fields by X(A) and a space of discrete 1-forms by Λ1(A). Then, a
generalized Dirac structure on an n-dimensional discrete manifold is an n-dimensional
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linear subspace D ⊂ X(A)× Λ1(A) such that D = D⊤ with

D⊤ =
{
(Y, β) ∈ X(A)× Λ1(A) where ⟨α, X⟩+ ⟨β, Y⟩ = 0, ∀ (X, α) ∈ D

}
,

where ⟨·, ·⟩ is the pairing between Fn and Fn∗. Consider the configuration of the effort-
flow pairs shown in Figure 1. Let Fi denote the space of flow and Di the space of effort
of the Dirac structure for systems i = A, B. The interconnection between the two Dirac
structures DA and DB can then be defined as

DA ◦ DB :=
{
( f1, e1, f2, e2) ∈ F1 ×F ∗

1 ×F2 ×F ∗
2 such that

∃( f , e) ∈ F ×F ∗ with ( f1, e1, f , e) ∈ DA and (− f , e, f2, e2) ∈ DB
}

.
(2.7)

Then DA ◦ DB is a Dirac structure.

Figure 1: Interconnection of two port-Hamiltonian systems.

Definition 2.1 (Implicit discrete port-Hamiltonian system [12]). Let H : Z → F be a
discrete Hamiltonian, FP be the space of external flows f , EP = F ∗

P be the space of external
effort e, and D be the Dirac structure depending only on the coordinate z. Then, the implicit
discrete port-Hamiltonian system is defined as(

−∆z
∆t

, f ,⅁zH(z), e
)
∈ D(z). (2.8)

A system may consist of continuous and discrete port-Hamiltonian components
encountered in various applications. To effectively manage these hybrid systems,
Viswanath, Clemente-Gallardo, and van der Schaft [13] proposed a methodology that
reinterprets energy-conserving interconnections at discrete sampling points as inter-
connections incorporating an external flow source. This transformation ensures en-
ergy conservation throughout sampling intervals, preserving the passive and port-
Hamiltonian characteristics of the system.

This approach allows for integrating discrete computational models with contin-
uous physical systems without compromising overall stability or passivity. However,
it is noteworthy that this setup does not guarantee exact energy conservation because
of the discrete sampling intervals.
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To address the potential energy conservation issue, Kotyczka and Lefevre [9] in-
troduced a discrete-time Dirac structure and a discrete-time port-Hamiltonian frame-
work. Their methodology uses symplectic integration techniques, specifically collo-
cation methods, to approximate the energy balance observed continuously. Their ap-
proach maintains the fidelity of the system’s dynamics to the original continuous-time
port-Hamiltonian representation by ensuring structural consistency over discrete time
steps, allowing for the effective integration of numerical algorithms.

3 Stochastic port-Hamiltonian systems

In this section, we move to a stochastic setting. Random perturbations cause system
trajectories to become stochastic processes. The deterministic duality pairing previ-
ously used to define Dirac structures must now be interpreted using stochastic integrals;
moreover, it also necessitates a generalized definition of orthogonality that remains
consistent with the energetic interpretation under stochastic dynamics.

Let
(
Ω,F , (Ft)t∈R+ , P

)
be a complete probability space. Denote the Stratonovich

integral by δZ and the Itô integral by dZ along the semimartingale Z. As previously
discussed, the stochastic port-Hamiltonian framework incorporates randomness by
modeling each system component as a semimartingale. Using Stratonovich calculus
aligns with the geometric structure of Dirac formulations. However, for analytical con-
venience and to leverage the probabilistic tools of stochastic analysis, this formulation
can equivalently be expressed in terms of Itô calculus. Consider the system{

δXt =
(

J(Xt)− R(Xt)
)

∂x H(Xt) δZt + g(Xt)u δZg
t + ξ(Xt) δZN

t ,
yt = g⊤(Xt) ∂x H(Xt),

(3.1)

where R(x) := (gR(x))⊤R̃(x)gR(x), W denotes a Brownian motion, and Z, Zg, and ZN

are semimartingales. Then (3.1) describes the stochastic PHS in local coordinates, and
the obtained framework can be further extended to scenarios in which noise enters the
system by generalizing the concept of a Dirac structure. Noise can enter the system
as a stochastic external field or as random perturbations affecting any of the system’s
connected ports.

Next, we introduce the orthogonal complement D⊥, consisting of all pairs (δXt, σ)
that satisfy an energy-balance relation (expressed using Stratonovich integrals) con-
cerning all elements of a given subbundle D. The condition ensures no net energy
is produced or lost by pairing these elements over time.

Definition 3.1 (Orthogonal complement, [3]). Given a manifold X , I ⊂ R+, a bun-
dle D ⊂ TX ⊕ T∗X , a differential 1-form σ on X and an integral curve X : I → X of a
Stratonovich vector field δXt, the orthogonal complement of D is

D⊥ =
{
(δXt, σ) ⊂ TX ⊕ T∗X :

∫ t

0
⟨σ, δX̄s⟩+

∫ t

0
⟨σ̄, δXs⟩ = 0, ∀ (δX̄t, σ̄) ∈ D, t ∈ I

}
(3.2)
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From this, we define a generalized stochastic Dirac structure as a subbundle D ⊂
TX ⊕ T∗X that equals its orthogonal complement: D = D⊥. This condition ensures
that D is both isotropic (energetically neutral) and maximal (it includes all such neu-
tral pairs), thereby generalizing the classical concept of a Dirac structure to systems
evolving under stochastic dynamics.

Definition 3.2 (Generalized Dirac structure, [3]). With the same notation as above, we call
generalized stochastic Dirac structure a smooth vector subbundle D ⊂ TX ⊕ T∗X such that
D = D⊥.

Remark 3.1. We note that the above Definition 3.2 of generalized stochastic Dirac struc-
tures via Stratonovich pairing is not canonically anchored in geometric mechanics. Using
energy-preserving pathwise integrals to define orthogonality lacks local (fiber-wise) meaning
and bypasses the axiomatic isotropy and maximality central to Dirac theory.
To resolve this issue, one can replace the integral criterion with a structure-preserving pairing
induced by a stochastic symplectic form on the Itô tangent bundle. This pairing is defined as
a bilinear form, denoted by ωX

(
(δX, σ), (δY, ρ)

)
:= ⟨ρ, δX⟩ − ⟨σ, δY⟩, and construct Dx as

the maximally isotropic subspace satisfying ωX|Dx ≡ 0. This aligns with stochastic analogs of
Courant algebroids.

We define an implicit generalized stochastic port-Hamiltonian system (IGSPHS), which
naturally arises from extending Dirac structures to the stochastic setting. These gener-
alized structures provide a geometric framework for capturing energy-conserving re-
lations under stochastic perturbations. Classical PHSs use differential equations con-
strained by Dirac structures and driven by Hamiltonian functions representing stored
energy. To model stochastic effects like noise or uncertainty, we introduce semimartin-
gale perturbations and apply Stratonovich calculus, which aligns with the system’s
geometric nature. The IGSPHS ensures that the pair

(
δXt, dH(Xt)

)
lies in the Dirac

structure D(Xt) at each time, preserving energy consistency under randomness. Ex-
tending this formulation to include resistive and controlled ports allows for modeling
dissipation and external interactions. Resistive elements are described by a subbundle
R, while controlled ports represent inputs and outputs.

Definition 3.3 (Implicit generalized stochastic PHS, [3]). Let H : X → R be a Hamilto-
nian function, Z a semimartingale perturbing the system, then an implicit generalized stochas-
tic port-Hamiltonian system on X is a 4-tuple (X , Z,D, H) such that(

δXt, dH(Xt)
)
∈ D(Xt) ∀ t ∈ I. (3.3)

Including a resistive element and an external element control, then an implicit generalized
port-Hamiltonian system with resistive structure R is a 5-tuple (X , Z,F ,D, H) such that

(−δXt, dH, δ f R
t , eR

t , δ f C
t , eC

t ) ∈ D(X )⊔ with (δ f R
t , eR

t ) ∈ R(X )t.

A significant advantage of the port-Hamiltonian framework is its ability to track
energy flow within a dynamical system. When adapting the framework to a stochas-
tic context, verifying that the fundamental energy-consistency property is maintained
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is crucial. Proposition 3.1 establishes that Interconnected Generalized Stochastic Port-
Hamiltonian Systems (IGSPHS) uphold a form of energy balance in both the pathwise
and expectation senses.

The classical criterion of nonpositive energy dissipation through resistive ports is
too strict in the presence of stochasticity. A more relaxed condition based on mean
power balance ensures that energy dissipation occurs on average. This modifica-
tion creates a robust, applicable framework for modeling stochastic energy exchange
within the port-Hamiltonian paradigm.

Proposition 3.1 (Energy balance of IGSPHS, [3]). Implicit port-Hamiltonian systems sat-
isfy an energy conservation property that is

H(Xt)− H(X0) =
∫ t

0
⟨dH, δXs⟩, (3.4)

or, in short notation
δH(Xt) = ⟨dH, δXt⟩. (3.5)

The energy balance is

H(Xt)− H(X0) =
∫ t

0
⟨eR

s , δ f R
s ⟩+

∫ t

0
⟨eC

s , δ f C
s ⟩ ≤

∫ t

0
⟨eC

s , δ f C
s ⟩. (3.6)

However, the condition
∫ t

0 ⟨e
R
s , δ f R

s ⟩ ≤ 0 imposed on the resistive port is too strong since it is
difficult for it to happen in practice, so the idea is to introduce the following weaker definition
of the resistive relation RW ⊂ FZR × ER:

E

∫ t

0
⟨eR

s , δ f R
s ⟩ ≤ 0. (3.7)

Consequently, the mean power balance requires that the energy be conserved and dissipated in
mean value, i.e. it reads

E
(

H(Xt)− H(X0)
)
= E

∫ t

0
⟨eR

s , δ f R
s ⟩+ E

∫ t

0
⟨eC

s , δ f C
s ⟩ ≤ E

∫ t

0
⟨eC

s , δ f C
s ⟩. (3.8)

It is possible to further generalize the Hamiltonian by introducing an external per-
turbation of the system, i.e. a new type of port called noise port perturbed by the semi-
martingale ZN (see Figure 2). Thus, in this case, the IGSPHS with resistive structure is a
5-tuple (X , Z,F ,D, H) such that(

−δXt, dH, δ f R
t , eR

t , δ f C
t , eC

t , δ f N
t , eN

t
)
∈ D(Xt), (3.9)

and the weak energy balance is given by

EH(Xt)− EH(X0) ≤ E

∫ t

0
⟨eN

s , δ f N
s ⟩+ E

∫ t

0
⟨eC

s , δ f C
s ⟩. (3.10)

Furthermore, we can reformulate the SPHS in Itô form by defining the following
alternative representation of the Dirac structure.
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Figure 2: Schematic representation of a general implicit port-Hamiltonian system.

Definition 3.4 (Dirac structure, [3]). Let F := FZR ×FZC ×FZN be the space of flows δ f ,
E = F ∗ be the dual space of efforts e, Gθ : FZθ

→ FZθ
be a function such that ⟨eS

t , Gθδ f θ
t ⟩ =

⟨G∗
θ eS

t , δ f θ
t ⟩ and J be a matrix with J = −J⊤. Then the Dirac structure D can be defined as

D :=
{
(δ f S

t , δ f R
t , δ f C

t , δ f N
t , eS

t , eR
t , eC

t , eN
t ) ∈ F × E :

δ f S
t = −JeS

t δZt − GRδ f R
t − GCδ f C

t − GNδ f N
t ,

eR
t = G∗

ReS
t , eC

t = G∗
CeS

t , eN
t = G∗eS

t
}

.

(3.11)

Example 3.1. Consider the special case

δ f R
t = −R̃eR

t δZt, δ f N
t = ξtδZN

t , δ f C
t = utδZC

t

with E

∫ t

0
⟨eR

s , R̃eR
s δZs⟩ − E

∫ t

0
⟨eN

s , f N
s δZN

s ⟩ ≥ 0,
(3.12)

where the reason for the minus sign in front of R̃ is that we want it to be the incoming power
regarding the interconnection (as in [14]).

Definition 3.5 (Stochastic input-output PHS with stochastic Dirac structure, [3]). Us-
ing the same notation as above, if Z = (Z, ZR, ZC, ZN) is a semimartingale and H : X → R

is a Hamiltonian function, then the stochastic input-output port Hamiltonian system with
stochastic Dirac structure is given by

δXt = −JdH(Xt) δZt + GRR̃eR
t δZt − GCut δZC

t − GNξt δZN
t ,

eN
t = G∗

NdH(Xt),
eC

t = G∗
CdH(Xt)

(3.13)
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and by taking J̃ = −J and eR
t = G∗

RdH(Xt), the system (3.13) becomes
δXt =

(
J̃ + GRR̃G∗

R
)
dH(Xt) δZt − GCut δZC

t − GNξt δZN
t ,

eN
t = G∗

NdH(Xt),
eC

t = G∗
CdH(Xt).

(3.14)

Theorem 3.1 provides an explicit conversion from the Stratonovich formulation
of an IGSPHS to its equivalent Itô representation. Under mild assumptions about the
independence of the semimartingales driving the system, the resulting Itô formulation
separates the contributions of the stochastic, resistive, and controlled components.

Theorem 3.1 (Conversion of IGSPHS, [3]). If X is a solution of the equation (3.14) and
Z, ZN , ZC are such that

⟨Z, ZC⟩t = ⟨Z, ZN⟩t = ⟨Z, ZC⟩t = 0,

where ⟨·, ·⟩t is the quadratic covariation at time t, then X can be equivalently rewritten in Itô
terms as

dXt = VS(Xt) dZt + LVS VS(Xt) d⟨Z, Z⟩t

−
nN

∑
i=1

VN
i (Xt) dZN

t − 1
2

nN

∑
i,j=1

LCN
j

VN
i (Xt) d⟨ZN;i, ZN;j

t ⟩t

−
nC

∑
i=1

VC
i (Xt)ui

t dZC;i
t − 1

2

nC

∑
i,j=1

LVC
j

VC
i (Xt)ut d⟨ZC;i, ZC;j⟩t,

(3.15)

where L is the Lie derivative and Vα, α = S, N, C are defined as

(
J̃ + GRR̃G∗

R
)

dH = VS, GNξt =
nN

∑
i=1

VM
i , GC =

nC

∑
i=1

VC
i . (3.16)

4 Passivity in Stochastic Systems

Extending passivity to stochastic systems is challenging because noise directly influ-
ences the energy dynamics of the system. In particular, the standard condition that
the structure matrix R be symmetric and positive semidefinite is insufficient in the
stochastic setting. The presence of a semimartingale Z can introduce energy influx,
rendering the system non-dissipative. Moreover, we need additional constraints on
the stochastic perturbations to preserve losslessness and passivity.

To analyze the behavior of observables in I-S-O stochastic PHS, it is essential to
understand how smooth functions φ ∈ C∞(X ) evolve along the system trajectories.
Proposition 4.1 shows that the evolution of such observables follows the same Lie
bracket structure that defines the system dynamics. In this way, the geometric consis-
tency of the Hamiltonian formulation is preserved under stochastic perturbations.
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Proposition 4.1 (Evolution along system trajectories, [3]). If X is the solution of an ex-
plicit I-S-O stochastic PHS with dissipation, i.e.{

δXt = XL
H(Xt) δZt + uXL

Hg
(Xt) δZg

t + XL
HN

(Xt) δZN
t ,

yt = [H, Hg]L,
(4.1)

with
XL

H(·) := [·, H]L, XL
Hg
(·) := [·, Hg]L, XL

HN
(·) := [·, HN ]L,

then for all φ ∈ C∞(X ) it holds{
δφ(Xt) = [φ, H]L(Xt) δZt + u[φ, Hg]L(Xt) δZg

t + [φ, HN ]L(Xt) δZN
t ,

yt = [H, Hg]L.
(4.2)

To assess the stability and energy behavior of stochastic PHSs, extending the clas-
sical concept of passivity to the stochastic setting is essential. We distinguish between
two levels of passivity: strong passivity, which ensures energy bounds almost surely,
and weak passivity, which guarantees these bounds in expectation, see Definition 4.1.

Definition 4.1 (Strong and weak passivity, [3]). If H ∈ C∞(X ) is the total energy of the
explicit I-S-O stochastic PHS with dissipation, then it is strongly passive if for all t ≥ 0 holds

H(Xt) ≤ H(X0) +
∫ t

0
u⊤(s)y(s) δZC

s , (4.3)

or weakly passive if for all t ≥ 0 it holds

EH(Xt) ≤ EH(X0) + E

∫ t

0
u⊤(s)y(s) δZC

s . (4.4)

Now, assuming ξ = 0, the energy conservation relation of the system{
δXt =

(
J(Xt)− R(Xt)

)
∂x H(Xt) δZt + g(Xt)u δZC

t + ξ(Xt) δZN
t ,

eC = g⊤(Xt)∂H
x (Xt),

(4.5)

where J = −J⊤, is given by

H(Xt)− H(X0) =
∫ t

0
⟨dH, δXs⟩ =

∫ t

0
⟨eR

s , δ f R
s ⟩+

∫ t

0
⟨eC

s , δ f C
s ⟩

=
∫ t

0

〈
∂x H(Xs), R(Xs)eR δZs

〉
+

∫ t

0
⟨y, u δZC

s ⟩

=
∫ t

0

〈
∂x H(Xs),−R(Xs)∂x H(Xs)δZs

〉
+

∫ t

0
y⊤u δZC

s

= −
∫ t

0
∂⊤x H(Xs)R(Xs)∂x H(Xs)δZs +

∫ t

0
y⊤u δZC

s .

(4.6)
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Even if the matrix R is strictly positive, this alone does not guarantee strong passivity.
In particular, we must also require the condition∫ t

0
∂⊤x H(Xs)R(Xs)∂x H(Xs) δZs ≥ 0. (4.7)

However, satisfying this condition in practice is often unrealistic. A more tractable
alternative is to impose the weaker requirement

E

∫ t

0
∂⊤x H(Xs)R(Xs)∂x H(Xs) δZs ≥ 0, (4.8)

which ensures weak passivity, cf. Def. 4.1. However, working directly with expectations
of Stratonovich integrals can be technically challenging. To overcome this, it is natural
to convert the expression in (4.4) into Itô form, by applying Theorem 3.1 to equation
(4.4), to exploit related probabilistic tools then.

5 Application and Generalization

5.1 Interconnection of Multiple SPHS

An essential property of port-Hamiltonian systems (PHSs) is their interconnectivity,
which allows complex systems to be viewed as compositions of simpler parts. The re-
sulting interconnectivity regarding the components and how they are interconnected
can be analyzed. In particular, through the composition of Dirac structures, the power-
preserving interconnection of PHSs defines another PHS. The Hamiltonian of the in-
terconnected PHS is the sum of the Hamiltonians of its components, and the energy-
dissipation relation is the union of the energy-dissipation relations of the subsystems.

The following Proposition 5.1 discusses the connection of multiple SPHS, defining
a new system with interconnected Dirac structures and combined Hamiltonians.

Proposition 5.1. Suppose we have N stochastic port-Hamiltonian systems with state space
Xi, Hamiltonian Hi, flow-effort space Fi ×Ei and perturbation Zi for i = 1, . . . , N. Assuming
that they are connected by DI (see Figure 3), then their interconnection defines a stochastic
port-Hamiltonian system with Dirac structure D ◦DI and Hamiltonian H := ∑N

i=1 Hi.

5.2 Discrete Stochastic PHS

Consider the continuous stochastic port-Hamiltonian system
dXt =

(
(J − R)∂x H(Xt) + g(Xt)ut

)
dt + ξ(Xt) δWt,

yt = g⊤(Xt)∂x H(Xt),
zt = ξ⊤(Xt)∂x H(Xt),

(5.1)
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Figure 3: Interconnection of N implicit port-Hamiltonian systems.

where J = −J⊤, R positive semidefinite, g represents control port, H is the Hamilto-
nian, u ∈ U is the control input, y ∈ Y is the output of the system, ξ is a matrix, z
is the associated effort to δWt and W is a standard Brownian motion adapted to the
reference filtration (Ft)t≥0. Then we can introduce the discretization

Ẋ(tk
0 + τh) = − f (tk

0 + τh) = −
s

∑
j=1

f k
j lj(τ), (5.2)

with

Ẋ(tk
i ) := − f k

i , li(τ) =
s

∏
j=1

τ − cj

ci − cj
, τ ∈ [0, 1],

where li is the ith Lagrange interpolation polynomial of order s and τ is the normalized
time parameterizing the sampling intervals. Thus, we can generalize the continuous
SPHS to a discrete form, preserving the structure of the Hamiltonian and the control
inputs, as follows:

Definition 5.1 (Discrete stochastic port-Hamiltonian system, [9]). A discrete stochastic
port-Hamiltonian system can be written as

X(tk
0 + cih) = xk

0 − h
s
∑

i=1
aij f k

j ,

X(tk
0 + h) = xk

0 − h
s
∑

i=1
aj f k

i ,

−aij f k = (Jk
j − Rk

j ) aijek
j + aijgk

j uk
j + bijξ

k
j ∆W,

(5.3)

where ∆W is a truncated centered Gaussian random variable with variance h, aij =
∫ ci

0 lj(σ) dσ,
aj =

∫ 1
0 lj(σ) dσ and M = M⊤, cf. [9].
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Note that in the discrete case, the system is passive if it holds

E
[
∆Hk] ≤ h E

[
(yk)⊤uk]. (5.4)

5.3 Stochastic Motion Model of Agents

Ehrhardt, Kruse, and Tordeux present an application to a stochastic motion model of
agents [6], who analyze the case where positions and velocities of agents are modeled
in a ring structure. The initial positions and velocities are set, and the system is gov-
erned by differential equations involving the velocities and positions of neighboring
agents [6]. The dynamic equations of the agents are given by:

dQn(t) =
(

pn+1(t)− pn(t)
)

dt,
dpn(t) =

(
U′(Qn(t))− U′(Qn−q(t))

)
dt

+β
(

pn+1(t)− 2pn(t) + pn−1(t)
)

dt + σ dWn(t),
(5.5)

with Q(0) = Q0 ∈ [0,+∞)N the initial distance, p(0) = p0 the initial velocity, β ∈
(0,+∞) a dissipation rate, σ ∈ R the noise volatility, U′ the derivative of a convex po-
tential U ∈ C1(R, [0,+∞)) and W = (Wn)N

n=1 : [0,+∞)× Ω → RN an N-dimensional
standard Brownian motion defined on (Ω,F , P). These equations represent the ac-
celeration of the nth agent depending on its neighbors’ velocities and the Brownian
motion’s stochastic perturbations [7].

The motion of the agents is further formulated using a stochastic port-Hamiltonian
framework

dZ(t) = (J − R)∇H(Z(t)) dt + G dW(t),

where Z(t) =
(
Q(t), p(t)

)⊤ ∈ R2N , t ∈ [0,+∞), J and R are defined as skew-sym-
metric and symmetric positive semidefinite matrices, respectively. This formulation
allows the application of Hamiltonian dynamics to model agents’ behaviour under
stochastic influences. In particular, the Hamiltonian is independent of Q and U, and
its expectation could increase with time. Moreover, describing the limiting behavior of
these stochastic systems is challenging, so the authors [6] focus on the specific scenario
where the quadratic function characterizes the potential

U(x) =
(αx)2

2
x ∈ R, α ∈ (0, ∞), (5.6)

in which the process reads

dZ(t) = BZ(t) dt + G dW(t), Z(0) = (Q0, p0)
⊤, (5.7)

where B is defined such that BZ(t) = (J − R)∇H(Z(t)). In this case, the resulting
process converges for t → ∞ in distribution to a normal distribution with known
expectation and covariance matrix.
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6 Applications of Port-Hamiltonian Neural Networks

In this section, we examine the performance of port-Hamiltonian neural networks (pHNNs)
on a mass-spring system, both with and without damping.

Here, pHNNs provide a robust framework for learning the dynamics of non-auto-
nomous systems, which often involve time-dependent inputs and dissipative effects.
These aspects typically pose challenges for conventional learning models.

As Desai et al. [4] have shown, pHNNs can accurately model such systems and
capture complex behaviors. Notably, pHNNs can reconstruct Poincaré sections of
chaotic systems, demonstrating their ability to learn the underlying structure from
limited data, making pHNNs promising for applications involving nonlinear, forced,
and damped systems, such as molecular dynamics, robotic control, and physical sys-
tems with unknown damping or input forces.

Figure 4: Schematic representation of a port-Hamiltonian neural network (pHNN).

As illustrated in Figure 4, the core idea is to leverage port-Hamiltonian theory to
explicitly learn the force term Fθ2 , the damping term Nθ3 , and the Hamiltonian Hθ1 .
This framework enables the prediction of the time derivatives:

[ ˆ̇qt
ˆ̇pt

]
=

 dĤθ1
dpt

− dĤθ1
dqt

+ N̂θ3

dĤθ1
dpt

+ F̂θ2

 . (6.1)

6.1 First loss function

We can define a loss function using the observed time derivatives [q̇, ṗ] from the data,
as described in [16]:

Lqp = || ˆ̇qt − q̇t||22 + || ˆ̇pt − ṗt||22. (6.2)
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6.2 Second loss function

Recall that the following Itô SDE can model a stochastic port-Hamiltonian system

dXt = f (Xt) dt + Σ(Xt) dWt, Xt = [q⊤t , p⊤t ]
⊤,

with Brownian motion Wt. Over one sampling interval ∆t the Euler–Maruyama in-
crement ∆Xt = Xt+∆t − Xt satisfies E[∆Xt] = f (Xt)∆t + O(∆t2) and cov[∆Xt] =
ΣΣ⊤(Xt)∆t +O(∆t2). Substituting neural predictions f̂θ and Σ̂θ for the unknown drift
and diffusion yields the loss

LDDpHNN =
1

∆t
∥∆Xt − f̂θ∆t∥2

2 +
1

∆t
∥∆Xt∆X⊤

t − Σ̂θΣ̂⊤
θ ∆t∥2

F, (6.3)

The drift-diffusion loss function (6.3) combines a drift term and a diffusion term:

LDDpHNN =
1

∆t
∥∆Xt − f̂θ∆t∥2

2︸ ︷︷ ︸
Ldrift

+
1

∆t
∥∆Xt∆X⊤

t − Σ̂θΣ̂⊤
θ ∆t∥2

F︸ ︷︷ ︸
Ldiff

.

We scale the second term of the drift-diffusion loss by λ to rebalance the training
gradients and prevent the model from exaggerating the predicted noise magnitude,
all while leaving drift learning unaffected. This results in well-calibrated diffusion
without changing the network architecture

L(λ)
DDpHNN = Ldrift + λLdiff, (6.4)

and to prevent the unbounded growth of Σθ , we add a ℓ1-term (α << 1) to control the
diffusion amplitudes

L(λ,α)
DDpHNN = Ldrift + λLdiff + α∥Σ̂θ∥1. (6.5)

Unlike standard HNN/pHNN training, which only accounts for deterministic drift
and usually disregards stochasticity, (6.5) explicitly learns a state-dependent diffu-
sion Σθ by matching the first two moments of Euler-Maruyama increments. This
moment matching, together with the weighted and ℓ1-regularized variant L(λ,α)

DDpHNN,
promotes calibrated noise magnitudes while leaving drift learning intact, hence pro-
viding one of the novel contributions of this paper. Typically, neural-SDE models
learn drift and diffusion using either moment-matching of Euler-Maruyama incre-
ments or likelihood-based training. For example, [20] fit drift/diffusion via one-step
EM maximum likelihood, while [21] proposes a hybrid objective that outperforms
pure moment-matching. Our contribution is to introduce this approach into a port-
Hamiltonian setting with a weighted moment-matching loss and an ℓ1 penalty on Σθ ,
a method which, as far as we know, has not been reported before.
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6.3 Third loss function

Let a minibatch B = {(xi, fi, hi)}m
i=1 be given, with the states xi = (qi, pi), ground truth

vector field fi = (q̇i, ṗi), and ground truth energy hi = Htrue(xi). In our model, we
define Hθ(x) and the Hamiltonian vector field

fθ(x) = J∇x Hθ(x) =
( ∂Hθ

∂p , − ∂Hθ
∂q

)
, J =

[
0 I
−I 0

]
.

We build a new loss function from the following three terms:

Vector field MSE

Lvf =
1
m

m

∑
i=1

∥∥ fθ(xi)− fi
∥∥2

2.

this serves to predict the Hamiltonian vector field (q̇, ṗ) =
(

∂H
∂p ,− ∂H

∂q

)
and minimize

MSE to the ground-truth (q̇, ṗ). This is the core loss used by Hamiltonian Neural
Networks (HNN) [8] and follow-ups that supervise time derivatives rather than states.

Batch centered energy MSE

We regress the scalar energy H(x), but we compare the centered values H − H̄batch, so
the loss is invariant to an additive constant. In Hamiltonian mechanics, the equations
of motion depend on gradients of H, so adding a constant to H changes nothing phys-
ically. Centering makes the regression immune to unknown offsets while teaching the
network the shape and scale of the energy landscape.

H̄θ =
1
m

m

∑
i=1

Hθ(xi), h̄ =
1
m

m

∑
i=1

hi,

LE =
1
m

m

∑
i=1

((
Hθ(xi)− H̄θ

)
−

(
hi − h̄

))2
.

One period symplectic rollout MSE

For a set of K one-period rollouts {X(r)
t }L

t=0 with step ∆t (so T = L∆t), generate a
predicted path {X̂(r)

t } with the implicit midpoint update

X̂(r)
t+1 = X̂(r)

t + ∆t J∇Hθ

(
X̂(r)

t +X̂(r)
t+1

2

)
, X̂(r)

0 = X(r)
0 ,

and define

Lroll =
1
K

K

∑
r=1

1
L + 1

L

∑
t=0

∥∥X̂(r)
t − X(r)

t

∥∥2
2.

Lroll serves for long-horizon trajectory fidelity. The total loss is:

LVER = Lvf + λE LE + Lroll, (6.6)
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with λE > 0 a tuning weight.

The VER objective (LVER) unifies three complementary signals-vector-field MSE,
batch-centered energy regression, and a symplectic rollout penalty, into a single loss.
To our knowledge this exact combination has not appeared before. This combination
is interesting because it simultaneously constrains local derivatives, the global energy
landscape, and long-horizon trajectory fidelity under a structure-preserving integra-
tor. The VER loss combines three terms: a vector-field MSE that matches (q̇, ṗ) =
J∇Hθ to the observed derivatives, a batch-centered energy regression comparing Hθ −
H̄θ to Htrue − h̄ to make the target invariant to additive constants while shaping the
energy landscape, and a one-period symplectic rollout penalty that enforces long-
horizon fidelity. The first component follows the HNN paradigm of supervising time
derivatives, as proposed by H [8], and the third uses “symplectic in the loss” training
with structure-preserving schemes [19]. To our knowledge, unifying all three in a sin-
gle objective is novel, as it jointly constrains local dynamics, global energy structure,
and multi-step stability.

We will now test the three objectives. The resulting learning curves, phase por-
traits, energy traces, state trajectories, and error statistics are presented in the follow-
ing figures and discussed below.

6.4 Tests and Results

6.4.1 Comparing Lqp and LDDpHNN :

We test the first and second objectives on the canonical damped-mass-spring system.
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Training loss

Figure 5: Training-loss curves.

Figure 5 confirms stable convergence for both objectives. The loss LDDpHNN (orange)
decays one order of magnitude below the deterministic loss Lqp (blue) and plateaus
without signs of overfitting. This shows that the additional diffusion term is well
behaved.
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Phase portrait and energy evolution

(a) Phase portrait (b) Energy evolution

Figure 6: Phase portrait and corresponding energy evolution of the undamped mass-
spring system.

As shown in Figure 6a, both models closely follow the true spiral trajectory for the
entire time window. Figure 6b tracks the Hamiltonian H(q, p). Both networks exhibit
the dissipative trend.

Position and momentum

Figure 7: Position and momentum.
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All three trajectories begin with the same damped oscillatory pattern and gradually
diverge as the rollout progresses, demonstrating a consistent decrease in amplitude.

6.4.2 Comparing LVER to a baseline Multi-Layer Perceptron (MLP)

The 3-DOF robotic arm

We consider a 3-DOF arm (three joints). For brevity, we present Joint 1 plots, results
for Joints 2–3 are similar.

Figure 8: Training-loss curves PHNN vs baseline model (MLP).

PHNN converges faster and lower than the MLP, training and validation track
closely which indicate no overfitting.
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(a) p1(t) (b) Mean absolute error

(c) q1(t) (d) Phase portrait (q1, p1)

Figure 9: PHNN vs MLP: time series, error, and phase portrait.

The PHNN trajectories are nearly indistinguishable from the ground truth. How-
ever, the MLP shows phase lag. The PHNN tracks amplitude and phase closely, while
the MLP accumulates phase error. PHNN errors remain low and consistent, whereas
MLP errors increase over time.

And now we do the same tests but for a longer time interval [0, 120]:
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(a) p1(t) (b) Mean absolute error

(c) q1(t) (d) Phase portrait (q1, p1)

Figure 10: PHNN vs MLP (extended): time series, error, and phase portrait.
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The Duffing Oscillator

Figure 11: Training-loss curves PHNN vs baseline model (MLP).

Both models drop quickly. PHNN converges faster and to a lower level. The training
and validation curves track each other, indicating that there is no overfitting.
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Figure 12: Evolution of q and p for two different trajectories.

Figure 13: Evolution of q and p for two different trajectories in a longer time interval
[0, 120].
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Figure 14: Phase portrait for two different trajectories.

The PHNN is on top of the closed ground truth orbits. The MLP is close, but
shows minor phase distortions near the turning points, hence demonstrating that both
models have good short-horizon fidelity.

Figure 15: Phase portrait for two different trajectories and a longer time interval
[0, 120]

The PHNN aligns well. While the PHNN stays synchronized over the extended
horizon, the MLP accumulates phase lag and amplitude drift.

Figure 16: Mean Absolute Error.
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PHNN’s q and p errors remain low and bounded over time, MLP’s errors grow
progressively, reflecting dephasing miscalibration during long rollouts.

7 Conclusions and Outlook

The method of Colonius and Grüne [2] uses a neural network to estimate a gradient
field for controller design, removing the necessity to solve complicated partial differ-
ential equations. To extend this framework to stochastic port-Hamiltonian systems
(SPHS), however, we must incorporate stochastic elements into the system model and
the control synthesis.

First, we defined a stochastic version of the port-Hamiltonian system using stochas-
tic differential equations (SDEs), such as:

dx =
(

J(x)− R(x)
)
∇H(x) dt + G(x)u dt + Σ(x) dW,

Here, Σ(x) is a matrix that captures the noise intensity, and dW represents a Wiener
process. Second, the control strategy must be adapted to handle stochasticity. A mod-
ified control law can be written as follows

u = −K(x) + µ(x)

Here, K(x) is derived from the deterministic system, and µ(x) compensates for stochas-
tic effects. A suitable Lyapunov function is constructed and analyzed using Itô’s calcu-
lus to ensure system stability. The objective is to demonstrate that the expected value
of the Lyapunov function decreases over time, guaranteeing stability under stochastic
dynamics. Evolutionary optimization strategies should be adapted for this stochas-
tic setting by redefining the fitness function to reflect expected performance across
a range of noise conditions. The ball-and-beam system will be extended to include
stochastic disturbances as a practical demonstration. Simulations will illustrate the
effects of noise and validate the proposed stochastic control approach.

An important direction for future research is to extend our conversion framework
beyond the assumption of pairwise uncorrelated stochastic drivers, as required by
Theorem 3.1. This assumption excludes a wide class of practical systems with inher-
ently coupled control and noise inputs. Future work could address this limitation
and enable a more general and realistic modeling of coupled stochastic systems by
incorporating non-orthogonal stochastic drivers using the full cross-variation tensor,
⟨Zi, Zj⟩ . This approach would require applying Itô’s Lemma in manifold coordinates
equipped with a nontrivial Levi-Civita connection.

A Stochastic Neural Networks

Neurons are the basic computational units of the brain and form neural networks
(NNs) through synaptic connections. Unlike deterministic NNs, real neurons intro-
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duce noise, resulting in probabilistic rather than fixed outputs. This stochastic behav-
ior helps NNs avoid local minima during training, making them more robust to noisy
or incomplete data. However, it increases the complexity of implementation and train-
ing. Moreover, the NNs inherent randomness also reduces overfitting by preventing
the exact memorization of noisy training data.

Stochastic neural networks consist of interconnected neurons across layers. A key
component is the stochastic neuron, which is often implemented using magnetic tunnel
junctions (MTJs). An MTJ consists of two ferromagnets separated by a thin insulator
and exhibits probabilistic switching behavior, see [18] for details. In neural network
models, input spikes enter weighted synapses, as Figure 17 illustrates.

Figure 17: Schematic representation of a basic artificial Neuron block.

Σ := Input × Weights = Summed Output

defines the weighted sum, after which the neuron fires based on a threshold or activa-
tion function.

Vreeken [15] introduced Spiking Neural Networks (SNNs), which closely mimic bio-
logical neurons. Neurons emit brief electrical spikes when sufficient input is accumu-
lated. These spikes travel through axons and across synapses, comprising the axon
terminal, synaptic gap, and dendrite, and convey information via spatial and tem-
poral spike patterns. Yu et al. [17] proposed the Simple and Effective Stochastic Neural
Network (SE-SNN), which models activation uncertainty at each layer by predicting a
Gaussian mean and variance and sampling during the forward pass. This approach
improves robustness in pruning, adversarial defense, learning with label noise, and
model calibration with the help of an activation regularizer.

Rather than binary encoding, values can be represented by the probability of en-
countering ones in bit streams, which is central to stochastic computing (SC) [1]. SC
uses random bit streams and standard digital logic for computation, allowing for sim-
pler, fault-tolerant hardware. Functions such as sigmoid and tanh are implemented
via linear finite state machines, reducing cost at some precision’s expense. As noted
in [10], the noise in SC can also reduce overfitting and enhance inference accuracy.
Both inputs and outputs are represented as probabilistic bit streams, merging stochas-
tic methods with digital computation in a novel data processing framework.
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Some Remarks and Suggestions

On the Validity of Proposition 3.1 and the Role of Coisotropy
In Proposition 3.1, the stochastic energy balance for an implicit generalized stochastic
port-Hamiltonian system is formulated via Stratonovich integration:

H(Xt)− H(X0) =
∫ t

0
⟨∇H(Xs), δXs⟩, (A.1)

while this pathwise identity is formally correct in the framework of Stratonovich cal-
culus, it implicitly assumes that the stochastic perturbations are compatible with the
geometry of the Hamiltonian, in the sense that they do not induce any net drift in the
energy evolution. To rigorously ensure the validity of the stochastic energy balance
(A.1), we must verify that the stochastic dynamics satisfy a coisotropy condition:

∇H(x)⊤Σ(x) = 0 for all x ∈ X , (A.2)

where Σ is the diffusion matrix of the Itô representation of the system, hence asserting
that the stochastic perturbations act tangentially to the level sets of the Hamiltonian.
Therefore, any diffusion-driven motion does not change the energy of the system. Ge-
ometrically, the diffusion vector fields must lie in the coisotropic subspace orthogonal
to ∇H, thereby preserving the energy structure of the Hamiltonian dynamics. With-
out this assumption (A.2), the stochastic integral in (A.1) may possess a non-zero drift.
Therefore the identity may not hold in expectation or even in distribution. This issue
becomes particularly relevant when attempting to apply probabilistic tools, as in the
case of Dynkin’s formula, which relies (also) on Itô calculus, hence requiring knowl-
edge of the drift and diffusion terms of the process.

To overcome these limitations of the pathwise formulation and to ensure com-
patibility with probabilistic analysis, we reformulate the energy balance in the weak
(expectation) sense using the infinitesimal generator of the underlying Itô diffusion.

Let us consider a stochastic port-Hamiltonian system (SPHS) evolving under the
Itô SDE:

dXt = f (Xt) dt + Σ(Xt) dWt, (A.3)

where Xt ∈ Rn is the state vector, f : Rn → Rn is the drift vector field, Σ : Rn →
Rn×m is the diffusion matrix, and Wt is an m-dimensional Brownian motion adapted
to the filtration (Ft)t≥0. In the port-Hamiltonian formulation, the drift vector f has
the structure:

f (x) =
(

J(x)− R(x)
)
∇H(x) + G(x)u(t), (A.4)

where (as before):

• H : Rn → R is the Hamiltonian, i.e., the energy function,

• J(x) is a skew-symmetric structure matrix representing the interconnection (sat-
isfying J(x)⊤ = −J(x)),
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• R(x) is a symmetric positive semi-definite matrix modeling dissipation,

• G(x) is the control port matrix,

• u(t) is the control input.

Accordingly, we compute the infinitesimal generator L of the diffusion process Xt
applied to the observable H. Since H ∈ C2, the generator reads:

LH(x) = ∇H(x)⊤ f (x) +
1
2

tr
(
Σ(x)Σ(x)⊤∇2H(x)

)
, (A.5)

and, under the coisotropy condition (A.2), the first term ∇H⊤Σ vanishes identically.
Consequently, the diffusion term in (A.5) does not contribute to the drift of H(Xt) in
the Itô expansion. Therefore, we have:

LH(x) = ∇H(x)⊤
(

J(x)− R(x)
)
∇H(x) +∇H(x)⊤G(x)u(t), (A.6)

and via the skew-symmetry of J, we observe that:

∇H(x)⊤ J(x)∇H(x) = 0,

and hence:
LH(x) = −∇H(x)⊤R(x)∇H(x) + y(x)⊤u(t), (A.7)

where y(x) = G(x)⊤∇H(x) is the output port variable conjugate to the input u(t).
Now, applying Dynkin’s formula to the process H(Xt), we obtain the weak energy

balance:

d
dt

E
[
H(Xt)

]
= E

[
LH(Xt)

]
= −E

[
∇H(Xt)

⊤R(Xt)∇H(Xt)
]
+E

[
y⊤t ut

]
. (A.8)

Moreover, if R(x) ⪰ 0 for all x, then the first term in (A.8) is non-positive, and we
obtain the inequality:

d
dt

E
[
H(Xt)

]
≤ E

[
y⊤t ut

]
, (A.9)

which expresses the weak passivity of the system in the sense of expected energy. Let us
underline that Equation (A.9) provides a rigorous foundation for the expected energy
dissipation of SPHSs and constitutes a more robust and mathematically sound alter-
native to the pathwise identity (A.1): it shows that energy dissipation in expectation
is guaranteed under two verifiable structural assumptions:

1. The damping matrix R(x) is positive semi-definite;

2. The coisotropy condition (A.2): ∇H⊤Σ = 0 holds globally.

These hypotheses ensure that the stochastic perturbations do not inject energy into the
system on average, and that the deterministic dissipation encoded in R(x) governs the
energy decay.
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Remark A.1. We also remark that the passivity inequality (A.9) extends naturally to more
general settings, including time-varying or control-dependent Hamiltonians, provided suitable
regularity and compatibility conditions are satisfied. Furthermore, this framework enables a
natural definition of a storage function and the use of stochastic Lyapunov techniques to
assess stability in expectation.

Accordingly to what above, we could think about addressing the missing verifi-
cation of coisotropy (A.2) in Proposition 3.1, providing the following amendments to
the paper:

• Introduce the coisotropy condition (A.2) explicitly as a structural assumption
required for the validity of the energy balance (A.9).

• Add a new proposition (as above) that derives the energy balance in the weak
sense using the Itô generator and Dynkin’s formula.

• Optionally, retain Proposition 3.1 as a formal identity under the Stratonovich cal-
culus, but clearly delimit its domain of validity and contrast it with the expectation-
based result.

What is above preserves the original Stratonovich formulation’s geometric intu-
ition, enhances the paper’s analytic rigor, and bridges the gap with stochastic con-
trol theory. Moreover, we align the generalized stochastic Dirac structures introduced
earlier in the manuscript, while ensuring consistency across the geometric and proba-
bilistic formulations.

Point (5) - Passivity in the Stochastic Regime (detailed). Let us start by reminding
the reader that strong passivity is declared through the pathwise inequality

H(Xt) ≤ H(X0) +
∫ t

0
u⊤(s) y(s) δZC

s , (Ps)

where the storage is the Hamiltonian H and the supply rate is u⊤y. For the stochastic
PHS

δXt =
(
J − R

)
∇H(Xt) δZt + G(Xt)ut δZC

t + Σ(Xt) δWt,

the ensuing energy balance (4.6) contains the Stratonovich line integral
∫ t

0 ∇H⊤R∇H δZs.
Imposing its pathwise non-negativity (condition (4.7)) is generically impossible, even
with R ≥ 0, because the signed measure δZs may reverse sign along a single trajectory.
Moreover, concerning the Mean-Square Passivity (MSP), replace (Ps) by the mean-square
dissipativity inequality

E
[

H(Xt)
]
− E

[
H(X0)

]
≤ E

[∫ t

0
u⊤(s) y(s) ds

]
(Pms)
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together with the coisotropy constraint

∇H(x)⊤Σ(x) = 0, ∀x ∈ X, (CΣ)

which forces the diffusion to act tangentially to the energy level sets. And we can state
a result of the following type

Theorem A.1 (MSP Sufficiency). Assume H ∈ C2, R(x) ⪰ 0, and (CΣ). Let L be the Itô
generator L f = 1

2 tr
(
ΣΣ⊤∇2 f

)
+

[
(J − R)∇H + Gu

]⊤∇ f . Then

LH = −∇H⊤R∇H ≤ u⊤y,

and consequently inequality (Pms) holds for all t ≥ 0.

Sketch of a possible proof Apply Dynkin’s formula to H(Xt) and exploit (CΣ) to cancel
the diffusion term; since J is skew, ∇H⊤J∇H ≡ 0, and the remainder yields the stated
bound.

Storage Functions & Martingale Structure. Under MSP, V(t) := H(Xt)−
∫ t

0 u⊤y ds
is a supermartingale: E[V(t)] ≤ E[V(0)], hence H acts as a Lyapunov function in
expectation; stability follows by Doob’s supermartingale convergence theorem. Con-
cerning what we can define as the problem of designing guidelines for Data-Driven
models, we have [I know what follows is very sketchy, but we deepen the arguments,
in case we decide to harm ourselves :) ]

1. Positive damping. Parameterize Rθ = LθL⊤
θ (Cholesky or softplus), guaranteeing

Rθ ⪰ 0 during training.

2. Noise orthogonality. Constrain Σθ via a projection Σθ(x) :=
(
I − ∇Hθ∇H⊤

θ

∥∇Hθ∥2

)
Σ̃θ(x),

which enforces (CΣ).

3. Loss augmentation. Add λ
∥∥(∇Hθ)

⊤Σθ

∥∥2
2 to the training loss and fit λ ≫ 0 adap-

tively.

Interconnection. For two MSP systems (Σ1, R1, H1) and (Σ2, R2, H2) intercon-
nected via power ports, the composite storage H := H1 + H2 remains MSP, because
the supermartingale property is additive and the supply rates cancel internally. This
generalizes the deterministic passivity theorem to the stochastic domain.

Final considerations
Let us emphasize that strong (pathwise) passivity cannot be upheld for generic diffusion-
driven port-Hamiltonian systems. Consider any semimartingale Zt with unbounded
variation, such as Brownian motion or a Lévy process. The Stratonovich integral,
which appears in the energy balance, is given by I =

∫ t
0 ∇H⊤R∇H δZs. Even when

R ⪰ 0, the integrand is nonnegative, while the differential δZs changes sign infinitely
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often on almost every trajectory. Consequently, the integral itself oscillates and may be
positive or negative on arbitrarily short intervals. A pointwise inequality of the form

H(Xt) ≤ H(X0) +
∫ t

0
u⊤(s) y(s) δZC

s

is therefore violated with probability one, unless Zt has bounded variation. This justi-
fies abandoning strong passivity in favor of a weaker, yet attainable, notion. Moreover,
mean-square passivity (MSP) replaces the pathwise energy constraint with an expecta-
tion inequality

E
[
H(Xt)

]
− E

[
H(X0)

]
≤ E

[∫ t

0
u⊤(s) y(s) ds

]
. (MSP)

This inequality (MSP) states that the expected stored energy never exceeds the supplied
work. Indeed, by writing the Itô dynamics in the form dXt = f (Xt, ut) dt + Σ(Xt) dWt
with f = (J −R)∇H +Gu and imposing the orthogonality constraint ∇H⊤Σ ≡ 0, the
Itô generator becomes LH = −∇H⊤R∇H +u⊤y, and since R is positive semidefinite,
LH ≤ u⊤y, and Dynkin’s formula yields (MSP) automatically. Hence the require-
ment boils down to two constructive conditions: positivity of the damping matrix R
and covariance-orthogonality of the diffusion Σ concerning the Hamiltonian gradient.
Such conditions can be encoded directly in data-driven (neural) surrogates. A com-
mon strategy is to parameterize the damping through a Cholesky factor, Rθ = Lθ L⊤

θ ,
guaranteeing Rθ ⪰ 0 for all network parameters. Orthogonality of the diffusion can be
enforced by projecting a free network output Σ̃θ onto the tangent space of the energy
level sets,

Σθ(x) =
(

I −
∇Hθ∇H⊤

θ

∥∇Hθ∥2
2 + ε

)
Σ̃θ(x),

where ε is a small constant preventing numerical blow-up when ∇Hθ is near zero. In
practice, one augments the training loss with large penalties on both the violation of
the orthogonality condition and the discrepancy Lθ Hθ − u⊤yθ . After training, long-
horizon roll-outs can be used to verify empirically that the map t 7→ E[Hθ(Xt)] −
E
[∫ t

0 u⊤yθ ds
]

is non-increasing, confirming that MSP holds in simulation.
Unlike the unattainable strong passivity constraint, MSP is achievable for diffusion-

driven systems, retains the intuitive energy cannot be created on average interpretation,
remains closed under interconnection of subsystems (the sum of two MSP storage
functions is again MSP), a perfect (well done) puzzle with statistical learning where
expectations are estimated empirically. Summing up, unless we want to keep chas-
ing unicorns in the Stratonovich jungle, we might as well accept that MSP isn’t just a
convenient compromise; it’s the only passivity notion that won’t collapse under the
weight of actual stochasticity.
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