
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 25/14

Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko,
Alexey Pereselkov and Nikolay Ladykin

Application of the Fractional Fourier Transform
to Hologram Formation of a Moving Acoustic Source

September 6, 2025

http://www.imacm.uni-wuppertal.de



Article

Application of the Fractional Fourier Transform to
Hologram Formation of a Moving Acoustic Source
Sergey Pereselkov1,* , Venedikt Kuz’kin2 , Matthias Ehrhardt3 , Sergey Tkachenko1 and
Alexey Pereselkov1 and Nikolay Ladykin1

1 Voronezh State University, Mathematical Physics and Information Technology Department, 394018 Voronezh, Russia;
tkachenko.edu@yandex.ru (S.T.); pereselkov.edu@yandex.ru (A.P.)

2 Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia; kumiov@yandex.ru
3 University of Wuppertal, Chair of Applied and Computational Mathematics, Gaußstraße 20, 42119 Wuppertal, Germany;

ehrhardt@uni-wuppertal.de
* Correspondence: pereselkov@yandex.ru

Abstract: This paper examines how the fractional Fourier transform (FrFT) can be used to form and 1

analyze acoustic holograms produced by a moving, linear, frequency-modulated (LFM) source in 2

a shallow-water waveguide. In these environments, the source sound field creates an interference 3

pattern, referred to as a two-dimensional interferogram, which represents the distribution of acoustic 4

intensity in the frequency-time domain. This interferogram consists of parallel interference fringes. 5

Consequently, focal points are formed and aligned along a straight line in the source hologram, which 6

is represented by the two-dimensional Fourier transform of the interferogram. We have developed a 7

holographic method for constructing the interferogram of an LFM source signal and transforming it 8

into a Fourier hologram based on FrFT in the presence of strong noise. A key finding of this study 9

is that the FrFT-based holographic method enables localized focal regions to emerge from modal 10

interference even under high-intensity noise conditions. The positions of these focal spots are directly 11

related to the source parameters, enabling the estimation of key characteristics such as the distance 12

and velocity of the LFM source. We analyzed the effectiveness of the FrFT-based holographic method 13

through numerical experiments in the 100–150 Hz frequency band. The results demonstrate the 14

method’s high noise immunity for source localization in realistic shallow-water environments under 15

strong noise. 16

Keywords: fractional Fourier transform; FrFT-based holographic method; interferogram; hologram; 17

linear frequency-modulation; shallow water 18

1. Introduction 19

The mathematical theory of the fractional Fourier transform (FrFT) was first proposed in 1980 [1] 20

and laid the theoretical foundation for its application in signal processing. Currently, the FrFT is an 21

effective mathematical framework for processing various types of complex signals, as demonstrated 22

in various studies [2–6]. Unlike traditional methods, FrFT enables the development of a broader set 23

of tools for signal analysis, including those that do not conform to the assumptions of integer-order 24

Fourier transform (FT) [7]. By introducing fractional parameters, FrFT-based methods extend the 25

concept of the Fourier transform, providing a more generalized framework for the time-frequency 26

analysis of signals. This deepens our understanding of the time-frequency structure of signals and 27

creates new opportunities for designing more efficient signal processing algorithms in many areas 28

of application. The FrFT has found applications in quantum mechanics [1,2], optics [8–11], acoustics 29

[12,13] as well as in different signal processing tasks [14–26]. It can be interpreted as a rotation in the 30

time-frequency plane (Almeida, 1994). In other words, the FrFT defines the structure of a signal in 31

FrFT domain coordinates. In this context, the concept of frequency is extended to FrFT frequency. 32

From this perspective, the FrFT can be regarded as the spectral representation of a signal in the FrFT 33
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domain. Next, the FrFT can be interpreted as the decomposition of a signal into sets of linear frequency 34

modulation (LFM) signals [3]. In this case, the matched-order FrFT spectrum of the signal is more 35

localized than its spectral distribution in the conventional Fourier transform (FT) domain. 36

Often, it is necessary to analyze the temporal structure of a signal in accordance with its FrFT 37

frequencies. To accomplish this, the signal must be represented in the joint time-FrFT frequency 38

domain. This representation is called the short-time fractional Fourier transform (STFrFT), an analog of 39

the short-time Fourier transform (STFT) [27–30]. This topic has been studied in [31–34]. The most 40

efficient STFrFT-based signal processing method was proposed in [35]. The STFrFT signal processing 41

method proposed in this work differs from the approaches in [31–34] in that it enables analysis of the 42

two-dimensional (2D) signal structure in the time-frequency domain, i.e., the STFrFT domain. When 43

the matched order of the STFrFT is selected, the chirp signal exhibits a compact localization region 44

in the STFrFT domain. This indicates that the STFrFT plays an important role in two-dimensional 45

signal processing. Furthermore, as demonstrated in [35], the STFrFT possesses rotational additivity, 46

providing a horizontal orientation to the signal structure, which is advantageous for analyzing and 47

processing chirp signals. The STFrFT method, as presented in [35], proves to be highly effective in 48

suppressing noise in signals. 49

Advances in signal processing methods based on the Fourier transform (FrFT) have occurred 50

simultaneously with the above-described developments. Significant progress has also been made 51

in interferometric signal processing (ISP) for underwater acoustics. ISP is founded on analyzing stable 52

interference structures in the time-frequency domain that arise during the propagation of broadband 53

acoustic signals in shallow-water waveguides [36,37]. This makes the ISP approach conceptually simi- 54

lar to signal processing methods based on the FT and FrFT. Several seminal studies [38–40] provided 55

comprehensive accounts of the theoretical underpinnings and methodological aspects of ISP. A diverse 56

body of research has demonstrated the applicability of ISP across multiple practical domains. For 57

instance, [41,42] used interferometric methods to estimate waveguide-invariant parameters. Another 58

study illustrated the enhancement of weak signals when ISP is combined with array beamforming [43]. 59

In [44], ISP techniques were used for seabed classification with ship-generated acoustic fields. Other 60

contributions include developing a range-estimation algorithm for shallow-water environments [45] 61

and an invariant-based method independent of source distance [46]. Additionally, [47] established a 62

direct link between interference fringes and eigenray (or eigenbeam) arrival times. 63

The versatility of ISP has also been confirmed in deep-ocean scenarios, where it has been adapted 64

for passive sonar applications [48,49]. ne of the most advanced ISP-based methodologies in this context 65

is holographic signal processing (HSP) [50–52]. The fundamental physical and mathematical principles 66

governing hologram formation were first formulated in [51,52]. According to the HSP paradigm, 67

quasi-coherent integration of acoustic intensity in the frequency-time domain produces an interferogram 68

I(ω, t) [52]. To further interpret the accumulated intensity distribution, a two-dimensional Fourier 69

transform is applied, yielding the so-called Fourier hologram: F(τ, ν̃) = F2D{I(ω, t)}. This hologram 70

representation F(τ, ν̃) concentrates the acoustic energy contained in I(ω, t) into localized focal regions 71

that arise as a consequence of modes interference. The hologram F(τ, ν̃) exhibits a high focusing 72

capability surpassing the performance of traditional focusing techniques. Such techniques include 73

wavefront reversal or time reversal of the wave to the position of the primary source [53]. Unlike 74

these approaches, the proposed method automatically localizes the two-dimensional source intensity 75

directly at the receiver point, without the need for extended antenna arrays. 76

The papers [51,52], analyzed HSP for the low-frequency band for a regular waveguide. In paper 77

[54], HSP was analyzed for the high-frequency band. The HSP method was analyzed for an irregular 78

waveguide in the presence of internal waves [55,56] and in the presence of irregular bathymetry [57]. 79

A review of the results obtained to date within the framework of the HSP method is presented in [58]. 80

However, the potential of the HSP method for processing LFM signals [12] in the presence of noise 81

[59,60] has not yet been explored. LFM signals are widely used in large-scale ocean field experiments. 82

They are an effective tool for studying the oceanic environment and are used in many large-scale field 83
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experiments [61–65]. This paper addresses this issue. The authors believe that applying the FrFT to the 84

hologram formation of an LFM source yields stable results, even when the noise level significantly 85

exceeds that of the signal. 86

This paper studies the application of the FrFT to the formation and analysis of acoustic holograms 87

generated by a moving LFM signal source in a shallow-water waveguide. In these environments, the 88

source sound field creates an interference pattern, known as a two-dimensional interferogram, which 89

represents the distribution of acoustic intensity in the frequency-time domain. This interferogram 90

consists of parallel interference fringes. Consequently, focal points are formed and aligned along a 91

straight line in the source hologram, which is represented by the two-dimensional Fourier transform 92

of the interferogram. A holographic method has been developed for constructing the interferogram of 93

an LFM signal source and transforming it into a Fourier hologram based on the FrFT in the presence 94

of strong noise. A key finding of this study is that the FrFT-based holographic method can produce 95

localized focal regions resulting from modal interference, even in the presence of high-intensity noise. 96

The positions of these focal spots are directly related to the source parameters, enabling the estimation 97

of such key characteristics, such as the distance and velocity of the LFM signal source. The effectiveness 98

of the FrFT-based holographic method has been analyzed through numerical experiments in the 100– 99

150 Hz frequency band. The presented results demonstrate the method’s high immunity to noise for 100

source localization in realistic, shallow-water environments with strong noise. 101

This paper is organized into five sections. Section 1 provides an introduction. Section 2 presents 102

the theoretical foundations of holographic signal processing based on the FrFT, including the shallow- 103

water waveguide model, the formulation of the LFM source signal, the waveguide’s transfer function, 104

and the mathematical framework for interferogram and hologram formation. The use of STFrFT for 105

analyzing and filtering chirp signals in the time-FrFT-frequency domain is emphasized. Section 3 106

describes the setup and results of the numerical simulations. It provides the acoustic parameters 107

of the shallow-water environment and details the characteristics of the LFM signal used for the 108

simulations. It also analyzes the structure of the received LFM signal for stationary and moving 109

LFM sources under different noise conditions, including noise-free and with noise (SNR=-30 dB). 110

The structures of the interferograms and holograms of the LFM source are also analyzed under 111

various noise conditions. This section demonstrates that FrFT-based filtering enables the recovery of 112

interferogram and hologram structures close to those obtained in the absence of noise, even under 113

severe noise contamination. Estimates of key source parameters (range and velocity) are derived from 114

the positions of the hologram’s focal spots for different noise conditions. A comparative analysis of 115

these estimates demonstrates the effectiveness of FrFT-based holographic signal processing in shallow 116

water. Section 4 concludes the study by summarizing the main findings and outlining potential 117

directions. Section 5 describes the next phase of our research. 118

2. Holographic Signal Processing Based on Fractional Fourier Transform 119

This section presents an algorithm for constructing the hologram of a moving LFM signal source 120

using on the FrFT. Section 2 consists of seven parts. The first part, Section 2.1, describes the shallow wa- 121

ter waveguide model used in the paper. The shallow water waveguide transfer function is constructed 122

within the framework of the modal description of the acoustic field in Section 2.2. Section 2.3 is devoted 123

to describing of the LFM signal model emitted by the source. Section 2.4 presents a description of 124

the LFM signal model as it propagates through the shallow water waveguide and is received by the 125

receiver. Section 2.5 is devoted to applying the FrFT to process the LFM signal recorded by the receiver. 126

Section 2.6 presents the interferogram of the signal obtained at the receiver. Section 2.7 provides a 127

description of the signal hologram at the receiving point. 128

2.1. Shallow Water Waveguide Model 129

First, we describe the two-dimensional representation of the shallow-water waveguide used in 130

our work (see Figure 1). The waveguide is formulated in the Cartesian coordinate system (r, z) and is 131

characterized by the depth-dependent sound speed c(z), refractive index n(z), and density ρ(z). The 132
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water layer is bounded at the top by the free surface at z = 0 and at the bottom by the seabed located 133

at z = H. 134
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Figure 1. Shallow water waveguide model. Moving source and receiver.

The seabed is characterized by its density ρb and by the refractive index nb(1 + iκ) [66–68], 135

where κ is the attenuation parameter expressed as κ = χcb/(54.6 f ). Here, χ stands for the bottom 136

loss coefficient, cb is the sound speed within the bottom medium, and f corresponds to the acoustic 137

frequency. 138

2.2. Shallow Water Waveguide Transfer Function 139

Consider an underwater acoustic scenario in a shallow water waveguide (Figure 1). The receiver 140

is positioned at point Q(rq, zq), and the stationary source is assumed to be placed at the origin of 141

the coordinate system (rq = 0). A moving sound source is located at point S(rs, zs), with its velocity 142

denoted by v⃗. Under the assumptions of vertical modes and the approximation of horizontal rays, the 143

transfer function H(ω, rs) of the shallow water waveguide (see Section 2.1) can be written as follows, 144

cf. [66–68]: 145

H(ω, rs) =
ie−iπ/4

ρ(zs)
√

8π

M

∑
m=1

ϕm(zs, ω) ϕm(zq, ω)
√

hm
exp(irshm − rsγm) (1)

In this context, rs represents the distance between the source and the receiver, and ϕm(z, ω) 146

corresponds to the vertical distribution (mode shape) of the m-th acoustic mode in the shallow- 147

water waveguide. The complex horizontal wavenumber of a given mode is expressed as ξm(ω) = 148

hm(ω) + i γm(ω), where hm and γm denote its real and imaginary components, respectively. The 149

summation is carried out up to M, which is the total number of propagating modes in the shallow- 150

water environment. The angular frequency is defined as ω = 2π f . The mode functions ϕm(z, ω) 151

together with the complex wavenumbers ξm are determined by solving the corresponding Sturm- 152

Liouville eigenvalue problem subject to the boundary conditions imposed by the free surface at the top 153

and the seabed at the bottom, [66–68]: 154

d2ϕm(ω, z)
dz2 + k2n2(z) ϕm(ω, z) = ξ2

mϕm(ω, z), (2)

155

ϕm(ω, z)
∣∣
z=0 = 0, ϕm(ω, z)

∣∣
z=H + g(ξm)

dϕm(ω, z)
dz

∣∣∣
z=H

= 0. (3)

Here 156

g(ξm) = η
/√

ξ2
m − k2n2

b(1 + iκ), k = ω/c. (4)

The mode functions ϕm(ω, z) satisfy the following orthonormality condition: 157

∫ H

0
ϕlϕm dz + η

∫ ∞

H
ϕlϕm dz = δml , (5)

where δml denotes the Kronecker delta. 158

Hereafter, the transfer function of the waveguide will be denoted as H(ω, rs) = H(ω). 159
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2.3. Source LFM Signal 160

Consider the LFM source signal at the emission point. An LFM signal is a type of waveform 161

whose instantaneous frequency changes linearly with time and is also commonly referred to as a chirp 162

signal. LFM signals are widely used in large-scale ocean acoustic experiments in underwater acoustics. 163

They are an efficient tool for investigating the marine environment and have been used in many field 164

campaigns [61–65]. 165

2.3.1. Time Domain 166

The time instantaneous frequency of an LFM signal sweeping from a starting frequency f1 to an 167

ending frequency f2 over a time interval τ is given by 168

f (t) = f1 +
( f2 − f1)

τ
t, 0 ≤ t ≤ τ. (6)

The time instantaneous phase φ(t) of the signal can be obtained by integrating the instantaneous 169

angular frequency ω(t) = 2π f (t): 170

φ(t) =

2π
(

f1t + f2− f1
2τ t2

)
, 0 ≤ t ≤ τ,

0, t > τ.
(7)

The instantaneous LFM signal in the time domain is expressed as 171

s(t) =

A cos
(

2π f1t + π
f2− f1

τ t2
)

, 0 ≤ t ≤ τ,

0, t > τ.
(8)

2.3.2. Frequency Domain 172

The instantaneous LFM signal in the frequency domain derived by the FT of s(t) is 173

S(ω) =
∫ ∞

0
s(t) e−iωt dt. (9)

This integral corresponds to a Fresnel-type integral. Its approximate closed-form solution yields the 174

complex spectrum as 175

S(ω) =

A
√

τ
| f2− f1|

exp
[
−i (ω−2π f0)

2 τ
4π( f2− f1)

]
, ω ∈ [2π f1, 2π f2],

0, ω /∈ [2π f1, 2π f2].
(10)

The magnitude spectrum |S(ω)| therefore has the form 176

|S(ω)| ≈

A
√

τ
| f2− f1|

, ω ∈ [2π f1, 2π f2],

0, ω /∈ [2π f1, 2π f2].
(11)

The phase of the complex spectrum arg
(
S(ω)

)
has the form: 177

arg{S(ω)} ≈

− τ
4π( f2− f1)

(ω − 2π f0)
2, ω ∈ [2π f1, 2π f2],

0, ω /∈ [2π f1, 2π f2].
(12)

2.3.3. Parameters of LFM Signal 178

• f1 is the initial frequency at t = 0, 179

• f2 is the final frequency at t = τ, 180

• f0 = ( f1 + f2)/2 is the central frequency, 181
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• τ is the duration of the frequency sweep, 182

• ∆ f = f2 − f1 is frequency bandwidth, 183

• LFM is called an up-chirp if f2 > f1, 184

• LFM is called a down-chirp if f2 < f1, 185

• A is the signal amplitude. 186

Hereafter, the source signal will be denoted as ss(t) in the time domain and as Ss(ω) in the frequency 187

domain. 188

2.4. Receiver LFM Signal 189

Now, let us examine the acoustic signal observed at the receiver location. Let Sr(ω) be the 190

spectrum of the received waveform. When the transmitted signal propagates through a shallow water 191

waveguide, the medium can be modeled as a linear, time-invariant system characterized by its transfer 192

function H(ω) (Equation (1)). Under this assumption, the received spectrum is obtained as the product 193

of the transmitted spectrum Ss(ω) (Equation (10)) and the transfer function H(ω) of the propagation 194

channel, namely 195

Sr(ω) = Ss(ω) H(ω). (13)

This relation emphasizes that the spectral content of the received signal is shaped by the properties of 196

the source waveform and the frequency-dependent response of the shallow water waveguide. 197

Assuming that the source signal is an LFM waveform, it sweeps continuously from the initial 198

frequency f1 to the final frequency f2 within the duration of the emission interval τ. As a result, we 199

obtain the following expression for the spectrum of the received signal 200

Sr(ω) =

H(ω) A
√

τ
| f2− f1|

exp
[
−i (ω−2π f0)

2 τ
4π( f2− f1)

]
, ω ∈ [2π f1, 2π f2],

0, ω /∈ [2π f1, 2π f2].
(14)

The magnitude spectrum |S(ω)| therefore has the form 201

|Sr(ω)| ≈

|H(ω)| A
√

τ
| f2− f1|

, ω ∈ [2π f1, 2π f2],

0, ω /∈ [2π f1, 2π f2].
(15)

The phase of the complex spectrum arg
(
S(ω)

)
has the form 202

arg{Sr(ω)} ≈

arg{H(ω)} − τ
4π( f2− f1)

(ω − 2π f0)
2, ω ∈ [2π f1, 2π f2],

0, ω /∈ [2π f1, 2π f2].
(16)

The LFM signal’s wide bandwidth ([ f1, f2]) allows its interaction with the shallow-water waveg- 203

uide to be described in terms of amplitude and phase distortions introduced by the channel. At the 204

receiver, the chirp’s overall spectral extent remains essentially unchanged: the signal’s frequency 205

content still occupies the interval [ f1, f2], and no additional frequencies are generated outside this band. 206

However, the propagation medium selectively modifies the relative amplitudes and phases of the indi- 207

vidual harmonic components within this spectral range. Specifically, the amplitude response |H(ω)| 208

does not remove frequencies from the interval [ f1, f2] but rather introduces frequency-dependent 209

attenuation that reshapes the spectral envelope. Consequently, while the useful chirp bandwidth 210

is preserved in a nominal sense, the relative energy distribution across the band may no longer be 211

uniform. This reduces the effective resolution attainable after matched filtering. Similarly, the phase 212

response arg H(ω) alters the phase relationships among the spectral components. This corresponds to 213

frequency-dependent group delays, meaning that different portions of the chirp spectrum arrive at the 214

receiver with varying temporal offsets. For an LFM signal, this effect manifests itself as a nonlinear 215

distortion of the instantaneous frequency law f (t), leading to temporal dispersion, pulse broadening, 216
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and a departure from the ideal linear chirp structure. These amplitude and phase effects preserve 217

the nominal spectral support of the transmitted waveform while significantly modifying the detailed 218

structure of the received spectrum inside the interval [ f1, f2]. 219

2.5. Fractional Fourier Transform 220

Next, let us review the background of the FrFT in holographic signal processing. 221

2.5.1. Fractional Fourier Transform 222

The Sp(u) is the FrFT of the signal s(t) and can be expressed by the following way [31–33,35? ] 223

Sp(u) = F p{s(t)} =
∫ +∞

−∞
s(t)Kp(t, u) dt (17)

where Kp(t, u) is the kernel function of the FrFT, p = 2α
π is the order of the FrFT, and α is the rotation 224

angle of the u-axis in the FrFT domain. 225

The FrFT kernel function Kp(t, u) is expressed as follows 226

Kp(t, u) =


√

1−i cot α
2π exp

(
i t2+u2

2 cot α − itu csc α
)

, α ̸= kπ,

δ(u − t), α = 2kπ,

δ(u + t), α = (2k + 1)π,

(18)

where δ(u) denotes the Dirac delta function. The inverse FrFT provides a way to reconstruct the 227

original signal s(t) from its known transformed representation Sp(u) : 228

s(t) =
∫ +∞

−∞
Sp(u)K∗

p(t, u) du. (19)

2.5.2. Short Time Fractional Fourier Transform 229

Consider the short-time extension of the fractional Fourier transform (STFrFT) [35]. Unlike 230

conventional approaches, the STFrFT represents both temporal and FrFT frequency information simul- 231

taneously on the joint time-FrFT frequency plane. This provides the signal with a two-dimensional 232

support region. When performed with the appropriate fractional order, the transform yields a compact 233

support region for chirp signals in this domain, demonstrating the STFrFT’s effectiveness in holo- 234

graphic signal processing. Furthermore, the STFrFT preserves the additivity property of rotation and 235

yields a horizontally oriented support region for LFM signals, significantly facilitating their analysis 236

and processing. For example, the STFrFT is an effective tool for suppressing noise and enhancing the 237

clarity of LFM signals in holographic signal processing. 238

The STFrFT is obtained by multiplying the signal by a window function before applying the FrFT: 239

Sp(t, u) =
∫ +∞

−∞
s(τ)w(τ − t)Kp(τ, u) dτ. (20)

where w(t) is the window function. The efficiency of an STFrFT at a given order depends on both 240

the form and duration of the window. In [? ], the optimal window function was analyzed. Two main 241

conditions are typically applied when selecting an appropriate window function: (1) achieving high 242

2D resolution, and (2) ensuring a compact STFrFD support region of the signal. Therefore, the optimal 243

window function provides the STFrFT with maximum 2-D resolution while keeping the support 244

region as small as possible. A Gaussian window function leads to the maximum 2D resolution. For 245

convenience, consider a unit-energy Gaussian window: 246

w(t) = (π σ2)−1/4 e−t2/(2σ2), (21)
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where σ is the width of the window function. 247

The inverse short-time fractional Fourier transform enables us to reconstruct the original signal 248

s(t) from its transformed form Sp(u): 249

x(ρ) =
∫ +∞

−∞

∫ +∞

−∞
Sp(t, u)w(ρ − t)K−p(ρ, u) dt du. (22)

Here, K−p(t, u) is the kernel function of the inverse FrFT: 250

K−p(t, u) = K∗
p(t, u). (23)

In summary, the STFrFT provides a powerful framework for holographic signal processing. It 251

enables the denoising and reconstruction of LFM signals with enhanced time-frequency resolution and 252

robustness against noise. 253

• The FrFT is equivalent to a rotation in the time-frequency plane. For an LFM signal, this rotation 254

transforms an oblique spectral line into a vertical concentration, thereby maximizing energy 255

compaction. 256

• The STFrFT inherits the localization properties of the short-time transform, enabling joint (t, u) 257

analysis and effective denoising. 258

2.6. Interferogram of LFM Signal 259

In this section, we analyze the interferogram produced by a moving acoustic source. The distance 260

between the source and the receiver varies over time and can be expressed as follows 261

r(t) = r0 − vt, (24)

where r0 is the initial position of the source at t0 = 0, t is the current observation time, and v denotes 262

the constant velocity of the moving source. 263

The two-dimensional interferogram I(ω, t) describes the distribution of the received acoustic 264

intensity in the joint frequency-time domain (ω, t) and is initially expressed as 265

I(ω, t) = |Sr(ω, t)|2. (25)

According to Eq. (13), this representation can be further written in terms of the power spectrum of the 266

transmitted waveform and the channel response: 267

I(ω, t) = |Ss(ω)|2 |H(ω, t)|2. (26)

In turn, the transfer function of the shallow-water waveguide H(ω, t) is expressed, following 268

Eq. (1), in terms of the normal modes of the environment: 269

H(ω, t) =
M

∑
m=1

Hm(ω, t) exp
{

ihm (r0 − vt)
}

, (27)

where the individual mode contribution Hm(ω, t) is defined as 270

Hm(ω, t) =
i e−iπ/4

ρ(zs)
√

8π

ϕm(zs, ω) ϕm(zq, ω)
√

hm
exp

{
−γm(r0 − vt)

}
. (28)

Here ϕm(z, ω) are the mode eigenfunctions, hm and γm represent the real and imaginary parts of the 271

modal horizontal wavenumber, respectively, and ρ(zs) is the density at the source depth. 272
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As a result, the interferogram I(ω, t) of the moving source in the frequency-time domain can be 273

expressed as the coherent superposition of cross-terms between different modes: 274

I(ω, t) = |Ss(ω)|2 ∑
m

∑
n

Hm(ω, t) H∗
n(ω, t) exp

[
ihmn(ω)(r0 − vt)

]
= ∑

m
∑
n

Imn(ω, t), m ̸= n,
(29)

where hmn(ω) = hm(ω)− hn(ω) is the difference of the real parts of the modal horizontal wavenum- 275

bers. The term Imn(ω, t) represents a partial interferogram that results from the interference between 276

the m-th and n-th modes. The superscript ∗ denotes complex conjugation. The restriction m ̸= n 277

indicates that the mean (auto-term) contribution has been excluded. Thus, I(ω, t) reflects only the 278

modal interference structure. 279

2.7. Hologram of LFM Signal 280

This section focuses on the holographic representation of a moving source of LFM signals in 281

a shallow water waveguide. To extract the holographic features from the measured acoustic field, 282

we apply a two-dimensional Fourier transform (2D-FT) to the interferogram I(ω, t), which was 283

introduced in Eq. (14). This transformation maps the signal from the frequency-time domain (ω, t) 284

into the hologram domain (τ, ν̃), producing the function F(τ, ν̃) that can be written as 285

F(τ, ν̃) = ∑
m

∑
n

∫ ∆t

0

∫ ω2

ω1

Imn(ω, t) exp
[
i(ν̃t − ωτ)

]
dt dω

= ∑
m

∑
n

Fmn(τ, ν̃),
(30)

where τ is the time-lag variable, and ν̃ = 2πν is the angular frequency in the hologram plane. Each 286

term Fmn(τ, ν̃) corresponds to the interference contribution between the m-th and n-th acoustic modes. 287

The integration over ω extends across the signal band, from ω1 = ω0 − ∆ω/2 to ω2 = ω0 + ∆ω/2, 288

where ∆ω is the bandwidth of the transmitted waveform, ω0 is the central frequency, and ∆t is the 289

total observation time. 290

Assuming that the modal amplitudes and the spectral distribution of the field vary only slowly 291

with frequency compared to the rapid oscillatory dependence of the phase term exp
[
i hm(ω)(r0 − vt)

]
, 292

the partial hologram can be approximated by the simplified analytical form 293

Fmn(τ, ν̃) = |Ss(ω)|2 Hm(ω0)H∗
n(ω0)∆ω ∆t exp

[
i Φmn(τ, ν̃)

]
×

×
sin

{[
r0

dhmn(ω0)
dω − τ

]∆ω
2

}
sin

{[
vhmn(ω0) + ν̃

]∆t
2

}
[
r0

dhmn(ω0)
dω − τ

]∆ω
2

[
vhmn(ω0) + ν̃

]∆t
2

, (31)

with the phase of the partial hologram given by 294

Φmn(τ, ν̃) =
(

ν̃∆t
2 − τω0

)
+ hmn(ω0)

(
∆t
2 v + r0

)
. (32)

The location of the focal spot closest to the origin in the hologram plane yields direct estimates 295

of the kinematic parameters of the moving source, namely, its radial velocity and initial position. 296

Following [50–52], these estimates are obtained from 297

v̇ = −kvν̃1, ṙ0 = krτ1, (33)

where the proportionality coefficients are defined as 298

kv = (M − 1)
(
h1M(ω0)

)−1, kr = (M − 1)
(

dh1M(ω0)
dω

)−1
. (34)
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Here the overdot notation indicates that the values are not the exact source parameters, but rather their 299

estimates obtained by means of holographic processing. 300

The holographic signal processing algorithm operates as follows. The spatial-spectral structure 301

of the hologram F(τ, ν̃) is markedly different from that of the original interferogram I(ω, t), the 302

relationship between them is strictly bijective. In other words, the hologram provides a complete and 303

unique representation of the interferogram. Consequently, applying the inverse 2D Fourier transform 304

to F(τ, ν̃) fully reconstructs the original interferogram I(ω, t), thus ensuring that no information about 305

the propagation channel or modal interference pattern is lost. 306

3. Numerical Simulation Results 307

The Section 3 presents the configuration and outcomes of the numerical simulations. The acoustic 308

parameters of the shallow-water environment are presented, and stationary and moving low-frequency 309

modulation (LFM) sources are examined in the presence of noise. The analysis focuses on the structure 310

of interferograms and holograms of an LFM signal in the presence of noise. It illustrates how the 311

STFrFT can suppress noise and how the positions of focal spots can accurately estimate key source 312

parameters, such as range and velocity, even in noisy environments. Particular emphasis is placed on 313

applying the STFrFT to analyze and filter chirp signals in the time-FrFT-frequency domain. 314

Section 3 consists of five parts. The Section 3.1 provides a detailed description of the parameters 315

of the transmitted LFM source signal, including the carrier frequency, bandwidth, duration, and 316

modulation characteristics. These parameters form the basis for the simulation scenarios. Section 3.2 317

introduces the acoustic parameters of the shallow water waveguide and the waveguide transfer 318

function. Section 3.3 defines the simulation framework for the received LFM signal in the presence 319

of noise. The received signal spectrum is modeled as the product of the LFM source spectrum and 320

the waveguide transfer function, plus a realization of the noise spectrum. Section 3.4 presents and 321

analyzes the interferogram and hologram for a stationary LFM source. The focus is on using the SFrFT 322

for noise suppression and forming focal spots, which enable the accurate estimation of stationary- 323

source parameters in noisy environments. The feasibility of estimating these parameters under noisy 324

conditions is demonstrated. Section 3.5 examines interferograms and holograms generated by a moving 325

LFM source. The emphasis is on applying the SFrFT to suppress noise and on focal spot formation to 326

accurately estimate the parameters of a moving source in a noisy environment. The motion-induced 327

displacement of focal spots is analyzed, and the feasibility of estimating the parameters of a moving 328

LFM source in a noisy environment is demonstrated. 329

3.1. Source LFM Signal Parameters 330

At the source, we consider an LFM (up-chirp) waveform. Its instantaneous frequency sweeps 331

linearly over time (see Eqs. (6)–(8)). These signals are widely used in large-scale ocean acoustic 332

experiments because they efficiently probe the marine environment. They have been used in numerous 333

field campaigns [61–65]. 334

Table 1 summarizes the parameters of the LFM source signal used in the numerical simulation. 335

Table 1. LFM source signal parameters.

Parameter ∆ f = 100–150 Hz

1. Initial frequency at t = 0 100 Hz
2. Final frequency at t = τ 150 Hz
3. Central frequency f0 = ( f1 + f2)/2 f0 = 125 Hz
4. Duration of the frequency sweep τ = 3 s
5. Frequency bandwidth ∆ f = f2 − f1 ∆ f = 50 Hz
6. Slope k = ( f2 − f1)/τ k = 16.667 Hz/s
7. LFM type signal up-chirp: f2 > f1
8. Signal amplitude A = 1
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Figure 2. Source LFM signal: (a) signal time dependence s(t); b) signal spectrum S( f ).

Figure 2 illustrates the LFM signal used in the study. Figure 2(a) shows the time-domain waveform 336

s(t). The signal has a unit amplitude and a finite duration of τ = 3 s; outside this interval, the signal 337

is (approximately) zero. To reduce spectral smearing, smooth rise and fall segments are applied at 338

the beginning and end. The instantaneous frequency linearly increases from f1 = 100 Hz at t = 0 to 339

f2 = 150 Hz at t = τ = 3 s, i.e., an up-chirp with slope k = ( f2 − f1)/τ = 16.667 Hz/s. Figure 2(b) 340

presents the normalized magnitude spectrum |S( f )|. The energy is concentrated within the passband 341

of 100–150 Hz (bandwidth of ∆ f = 50 Hz, center frequency of f0 ≈ 125 Hz), producing a nearly flat-top 342

profile within the band and a rapid roll-off outside it. 343
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Figure 3. STFrFT of LFM source signal: (a) S(t, u) – STFrFT of s(t), parameter value is p = 1; (b) S(t, u) – STFrFT
of s(t), parameter value is p = 0.994.

Figure 3 visualizes the STFrFT of the LFM source signal. Figure 3(a) corresponds to order 344

p = 1 (i.e., the conventional STFT). The energy forms an oblique ridge that tracks the linear sweep 345

f (t) = f1 + kt from 100–150 Hz over 0–3 s, with k = 16.667 Hz/s. Figure 3(b) uses an order matched 346

to the chirp rate, p = 0.994; the representation is effectively de-chirped, and the energy collapses 347

into a nearly horizontal ridge, indicating the transformed signal’s near time-invariance. In both 348

panels, the vertical axis is frequency (Hz), the horizontal axis is time (s), and the color scale shows 349

the normalized magnitude (from 0 to 1). In the STFrFT, the order p sets the rotation angle α = pπ/2 350

of the time-frequency plane. Optimal de-chirping occurs when the rotation compensates for the 351

chirp slope in the (t, u) plane: which is represented by the equation α = arctan(2πk), p = 2
π α. With 352

f1 = 100 Hz, f2 = 150 Hz, and τ = 3 s, we obtain k = 16.667 Hz/s, α ≈ 1.561 rad, and p ≈ 0.994. For 353

a down-chirp (k < 0), the optimal angle flips sign (α → −α), so the optimal order becomes −p. In 354

practice, the horizontal orientation of the STFrFT S(t, u) Figure 3(b) yields higher energy concentration 355

and substantially increases the signal-to-noise ratio (SNR) of the received signal. 356
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3.2. Shallow Water Waveguide and Transfer Function 357

Consider the canonical shallow-water waveguide. The waveguide consists of a shallow, horizon- 358

tally homogeneous water layer of constant depth over a flat seabed. This model is widely used in 359

underwater acoustics because it provides a simplified yet rigorous context for isolating the influence 360

of individual environmental parameters. 361

The parameters used in the numerical simulation of the shallow-water waveguide are listed in 362

Table 2. 363

Table 2. Shallow water waveguide parameters.

Parameter ∆ f = 100–150 Hz

1. Waveguide depth H 50 m
2. Water sound speed 1500 m/s
3. Bottom refractive index nb = 0.84 (1 + i 0.03)
4. Bottom density ρb = 1.8 g/cm3

5. Modes count M = 3
6. Receiver coordinates rq = 0, zq = 45 m
7. Source coordinates rs = 10 km, zs = 15 m

Calculations were performed for the frequency band of ∆ f = 100–150 Hz. The waveguide has a 364

depth of H = 50 m and a water sound speed of c = 1500 m s−1. The seabed is modeled with a complex 365

refractive index of nb = 0.84 (1 + i 0.03) and a density ρb = 1.8 g cm−3. The receiver is placed at a 366

range of rq = 0 and a depth of zq = 45 m, while the source is located at rs = 10 km and a depth of 367

zs = 15 m. 368

The sound field is represented by M = 3 normal modes. The values of the propagation constants 369

are hm(ω0) and group velocities um(ω0) = 1/
( dhm(ω0)

dω

)
, ω = 2π f , for the considered shallow water 370

waveguide with the depth of H = 50 m are given in Table 3. As can be seen, hm(ω0) ∼ 0.49 − 0.52 m−1
371

and dhm(ω0)
dω ∼ 6.7 · 10−4 − 7.0 · 10−4 (m/s)−1. 372

Table 3. Sound field mode parameters ( f = 110 Hz).

m-th mode (dhm/dω) · 104, (m/s)−1 hm, m−1

1 6.7015 0.474323
2 6.8212 0.464355
3 7.0596 0.446709
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Figure 4. Shallow water waveguide transfer function H( f ): (a) real part of transfer function Re H( f ); (b) imaginary
part of transfer function Im H( f ).

Figure 4 shows the complex transfer function H( f ) of the shallow water waveguide across the 373

100–150 Hz band. Figure 4(a) shows the real part, Re H( f ). Figure 4(b) illustrates the imaginary part, 374

Im H( f ). Both components exhibit pronounced quasi-periodic oscillations with frequent zero crossings, 375
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which are characteristic of modes interference in shallow water. The real and imaginary parts of H( f ) 376

have comparable magnitudes (normalized to unity), indicating a strongly frequency-dependent phase 377

response over the considered frequency band. 378

| |
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1

Figure 5. Shallow water waveguide transfer function H( f ): absolute value |H( f )|.

Figure 5 presents the magnitude of the shallow-water waveguide transfer function, |H( f )|, over 379

the 100–150 Hz band. The normalized curve (0–1) and shows pronounced variability with alternating 380

peaks and deep notches, reflecting constructive and destructive modal interference in the waveguide. 381

Unlike the LFM signal at the source, the shallow-water waveguide transfer function exhibits substantial 382

frequency dependence within the 100–150 Hz band, as seen in the figure. This, in turn, modifies the 383

spectral (frequency) structure of the LFM source signal at the receiver after propagation through the 384

shallow-water waveguide. We will examine this structure in the next section. 385

3.3. Receiver LFM Signal 386

This simulation considers the received LFM signal in the presence of noise. The received signal 387

spectrum Sr(ω) is modeled as the product of the LFM source spectrum Ss(ω) and the shallow water 388

waveguide transfer function H(ω), plus a realization of the noise spectrum realization in the frequency 389

domain N(ω): 390

Sr(ω) = Ss(ω) H(ω) + N(ω). (35)

Equation (35) shows that the observed spectrum is the source spectrum modulated by the frequency- 391

dependent characteristics of the shallow water waveguide H(ω). 392

Figure 6 presents the received LFM signal with the parameters given in Table 1 in a shallow water 393

waveguide with the parameters in Tables 2 and 3. Figure 6(a) shows the time domain of the receiver 394

LFM signal s(t): a finite-duration, amplitude-tapered chirp that occupies approximately the first 3 s 395

of the record and is followed by silence. The instantaneous frequency increases with time, consistent 396

with an up-chirp. Figure 6(b) displays the magnitude spectrum |S( f )| computed from s(t). The signal 397

energy is concentrated in the 100–150 Hz band, which corresponding to the band-limiting of the LFM 398

source signal. Unlike the source signal, the spectrum of the received LFM signal is characterized by 399

pronounced variability with alternating peaks and deep notches, resulting from constructive and 400

destructive modal interference in the shallow water waveguide. 401
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Figure 6. Receiver LFM signal: (a) signal time dependence s(t); (b) signal spectrum S( f ). Noise is absent.
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Figure 7 illustrates the STFrFT of the received LFM waveform s(t) for two fractional orders in the 402

noise-free case. Figure 7(a), with p = 1 (i.e., the conventional STFT), shows the characteristic up-chirp 403

as a bright ridge rising from about 100 to 150 Hz over 0–3 s. In contrast, Figure 7(b) with p = 0.994 404

(α ≈ 1.561 rad) effectively rotates the time-frequency representation: the chirp is nearly flattened and 405

its energy is concentrated in a narrow, almost horizontal band near 100 Hz. Though the received LFM 406

signal is characterized by pronounced variability with alternating peaks and deep notches due to 407

constructive and destructive modal interference, Figure 7 demonstrates the usefulness of the STFrFT 408

for de-chirping the received LFM signal in a shallow-water waveguide. 409
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Figure 7. STFrFT of receiver LFM signal: (a) S(t, u) – STFrFT of s(t), parameter value is p = 1; (b) S(t, u) – STFrFT
of s(t), parameter value is p = 0.994. Noise is absent.

Figure 8 shows the short-time fractional Fourier transform (STFrFT) of the noisy received LFM 410

waveform s(t) at SNR = −30 dB. Figure 8(a), with p = 1 (the conventional STFT), is dominated by 411

diffuse noise and the up-chirp is not discernible. Figure 8(b) with p = 0.994, effectively de-chirps the 412

waveform and concentrates its energy into a narrow, nearly horizontal band near 100 Hz by selecting 413

a fractional order close to the LFM signal’s chirp rate. This makes it possible to effectively filter the 414

received LFM signal from the noise. The result of this filtering is presented in the next figure. 415

(a) (b)

Figure 8. STFrFT of receiver LFM noisy signal after denoising. (a) S(t, u) – STFrFT of s(t), parameter value is
p = 1; (b) S(t, u) – STFrFT of s(t), parameter value is p = 0.994. SNR = −30 dB.

Figure 9 shows the result of noise filtering in the STFrFT domain for the noisy received LFM 416

signal with an input of SNR = −30 dB. The received LFM signal is filtered in the STFrFT domain, as 417

shown in Figure 9(a), with an order matched to the chirp parameter (p = 0.994). In this case, the signal 418

representation is effectively de-chirped, that is, the energy collapses into a narrow, nearly horizontal 419

band near 100 Hz. This ensures high filtering effectiveness. After filtering the LFM signal, the inverse 420

STFrFT (p = 0.994) is applied. Then, the forward STFrFT (p = 1) is then applied to the denoised signal. 421

Figure 9(b) shows that, using the conventional STFT (p = 1), the energy of the denoised received LFM 422

signal aligns with the expected LFM trajectory. This forms an ascending ridge from approximately 100 423
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to 150 Hz over 0–3 s. Consequently, we obtain the spectral distribution (STFT) of the noise-suppressed 424

LFM signal, which can be used to construct the source interferogram and hologram. 425
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Figure 9. STFrFT of receiver LFM noisy signal: (a) S(t, u) – STFrFT of s(t), parameter value is p = 0.994; (b) S(t, u)
– STFrFT of s(t), parameter value is p = 1. SNR = −30 dB.

Compared to the noisy case, denoising significantly reduces the spectral noise floor and reveals 426

the signal structure. This improves chirp-parameter estimation accuracy and enables more effective 427

Fourier transform (FT)-based holographic processing of low-signal-to-noise ratio (SNR) LFM signals. 428

The following sections examine the effectiveness of this FrFT-based holographic processing for LFM 429

signals at low SNR. 430

3.4. Interferogram and Hologram of Non-Moving LFM Source (v = 0 m/s) 431

This section reports on the results of holographic processing obtained from numerical simulations 432

for a stationary LFM source, v = 0 m/s, in a shallow-water waveguide. The LFM waveform parameters 433

used in the simulations are listed in Table 1, and the shallow water waveguide parameters are compiled 434

in Table 2. 435

Simulation geometry. The source was placed at (rs, zs) = (10 km, 15 m), the receiver was located 436

at (rq, zq) = (0, 45 m). Thus, the horizontal separation remained fixed at r0 = 10 km. The numerical 437

simulation model is shown in Figure 10. 438

Holographic Signal Processing Settings. The analysis was confined to the frequency band f = 100– 439

120 Hz. The total observation interval was ∆t = 300 s; individual realizations had a duration T = 5 s 440

with a hop of δT = 4 s between consecutive segments. A modal representation with M = 3 modes 441

was employed. The corresponding propagation constants hm(ω0) and group velocities um(ω0) = 442(
dhm(ω0)/dω

)−1 are reported in Table 3. 443
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Figure 10. Numerical simulation model. LFM source signal. Non-moving source: (v = 0 m/s).

Figure 11 presents the results of the holographic signal processing for a stationary LFM signal 444

source in a shallow water waveguide. No noise is present. Figure 6(a) shows the interferogram I( f , t), 445

where the spectral content in the 100–120 Hz band remains stable throughout the observation interval, 446

reflecting the absence of variations due to source motion. Figure 11(b) displays the hologram F(τ, ν̃). 447

As can be seen, the focal spots in the hologram domain for a stationary source are located along the 448

τ-axis. 449
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(a) (b)

Figure 11. Receiver LFM signal. (a) Distribution I( f , t) in interferogram domain. (b) Distribution F(τ, ν̃) in
hologram domain. Frequency band: ∆ f = 100–120 Hz. Non-moving source: v = 0 m/s. Noise is absent.

Table 4. Source of LFM signal parameters estimation. Non-moving source. Noise is absent.

No. ∆ f = 100–120 Hz

1. δ f /δt ≈ −0.0 s−2

2. τ1 = 1.25 · 10−1 s
3. ν1 = 0.0 · 10−3 Hz
4. v̇ = 0.0 m/s
5. ṙ0 = 10.43 km

Table 4 compiles the holographic signal processing results for the frequency band ∆ f = 100– 450

120 Hz. As Figure 11 shows, the interferogram exhibits essentially no frequency drift, δ f /δt ≈ 0.0 s−2. 451

In the hologram domain, the dominant focal spot is located at τ1 = 0.125 · 10−1 s and ν1 = 0.0 · 10−3 Hz, 452

consistent with a stationary source. Inverting the holographic parameters yields the following source 453

estimates v̇ = 0.0 m/s and ṙ0 = 10.43 km. The corresponding errors are 0 % for the velocity and 4.3 % 454

for the range. 455

(a) (b)

Figure 12. Receiver LFM noisy signal. Conventional HSP. (a) Distribution I( f , t) in interferogram domain. (b)
Distribution F(τ, ν̃) in hologram domain. Frequency band: ∆ f = 100–120 Hz. Non-moving source: v = 0 m/s.
Noise is present. SNR = −30 dB.

Figure 12 presents the conventional HSP outputs for the noisy received LFM signal in the band 456

∆ f = 100–120 Hz for a stationary source (v = 0) at SNR = −30 dB. Figure 12(a) shows the interfero- 457

gram I( f , t). Without FrFT-based filtering of the receiver LFM signal, the Figure 12(a) is dominated by 458

broadband noise. The quasi-periodic vertical interference fringes observed in the noise-free case are 459

no longer discernible. No persistent time-frequency structure can be reliably identified. Figure 12(b) 460

shows the hologram F(τ, ν). For a stationary source the focal spots should lie along the abscissa 461
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(ν = 0). However, the high noise level in Figure 12(b) largely masks the focal spots, distributed across 462

the hologram domain. Clearly, the noisy hologram in panel (b) does not allow for reliable estimation 463

of the coordinates of the LFM source’s focal spots or reconstruction of its parameters. These results 464

underscore the need for FrFT-domain denoising prior to holographic signal processing under low-SNR 465

conditions (SNR ≤ −30 dB). 466

(a) (b)

Figure 13. Receiver LFM noisy signal after denoising. HSP based on FrFT. (a) Distribution I( f , t) in interferogram
domain. (b) Distribution F(τ, ν̃) in hologram domain. Frequency band: ∆ f = 100–120 Hz. Non-moving source:
v = 0 m/s. Noise is present. SNR = −30 dB.

Figure 13 presents the results of holographic signal processing for the noisy received LFM 467

signal after FrFT-based denoising (∆ f = 100–120 Hz, v = 0 m/s, SNR = −30 dB). Using the 468

FrFT filter significantly improves the outcome of the holographic processing. In the interferogram 469

domain (Figure 13(a)), the time-frequency structure is clearer, with pronounced vertical, quasi-periodic 470

interference fringes now visible. In the hologram domain (Figure 13(b)), the focal spots associated with 471

a stationary source are sharply localized along the ν = 0 axis. This enhancement enables the reliable 472

determination of the focal-spot coordinates and, consequently, the accurate estimation of the source 473

parameters. 474

Table 5. Source of LFM signal parameters estimation. Non-moving source. Noise is present.

No. ∆ f = 100–120 Hz

1. δ f /δt ≈ −0.0 s−2

2. τ1 = 1.27 · 10−1 s
3. ν1 = 0.0 · 10−3 Hz
4. v̇ = 0.0 m/s
5. ṙ0 = 10.61 km

Table 5 compiles the holographic signal processing results for a stationary source in the presence 475

of noise across the band ∆ f = 100–120 Hz. The interferogram shows essentially no frequency drift 476

in the noisy case (see Figure 13), with a value of approximately δ f /δt ≈ −0.0 s−2. In the hologram 477

domain, the dominant focal spot is located at τ1 = 1.27 · 10−1 s and ν1 = 0.0 · 10−3 Hz, consistent 478

with a non-moving source. Inverting these holographic parameters yields the source estimates of 479

v̇ = 0.0 m/s and ṙ0 = 10.61 km. These values are consistent with a stationary source. The range 480

estimate remains close to the nominal value. The error in the reconstructed source values amounts to 0 481

% for the velocity and 6.1 % for the range. The presented results demonstrate the high effectiveness of 482

FrFT-based denoising in holographic signal processing of an LFM signal from a stationary source in a 483

shallow water waveguide under low SNR conditions (SNR = −30 dB). 484
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3.5. Interferogram and Hologram of Moving LFM Source (v = −3 m/s) 485

This section presents the results of holographic processing obtained from numerical simulations 486

for a moving LFM signal source with a velocity of v = −3 m/s, in a shallow water waveguide. The 487

LFM signal parameters used in the simulations are listed in Table 1, and the shallow water parameters 488

are compiled in Table 2. 489

Simulation geometry. The source was placed at (rs, zs) = (10 km, 15 m), and the receiver was 490

located at (rq, zq) = (0, 45 m), so the horizontal separation remained fixed at r0 = 10 km. The 491

numerical simulation model is shown in Figure 14. 492

Holographic Signal Processing settings. The analysis was confined to the band f = 100–120 Hz. The 493

total observation interval was ∆t = 300 s; individual realizations had a duration T = 5 s with a hop of 494

δT = 4 s between consecutive segments. A modal representation with M = 3 modes was employed. 495

The corresponding propagation constants hm(ω0) and group velocities um(ω0) =
(
dhm(ω0)/dω

)−1
496

are reported in Table 3. 497
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Figure 14. Numerical simulation model. LFM source signal. Moving source (v = −3 m/s).

Figure 15 shows the results of holographic signal processing for a moving LFM source in a 498

shallow-water waveguide with a velocity of v = −3 m/s. There is no noise. Figure 15(a) shows the in- 499

terferogram I( f , t): pronounced oblique, quasi-periodic fringes with a non-zero slope δ f /δt ≈ −0.037, 500

s−2 traverse the 100–120 Hz band over the observation interval, reflecting the induced frequency 501

variation due to the source motion. Figure 15(b) displays the hologram F(τ, ν). The focal spots are 502

clearly resolved, displaced from the τ-axis and centered at ν ̸= 0, and appear approximately symmetric 503

about τ = 0 along an oblique locus in the (τ, ν) plane. The locations of these spots provide reliable 504

coordinates of focal spots for estimating the source parameters (range and velocity), consistent with a 505

moving source. 506

(a) (b)

Figure 15. Receiver LFM signal. (a) Distribution I( f , t) in interferogram domain. (b) Distribution F(τ, ν̃) in
hologram domain. Frequency band: ∆ f = 100–120 Hz. Moving source: v = −3 m/s. Noise is absent.

Table 6 summarizes the holographic signal processing results for a moving source in the band 507

∆ f = 100–120 Hz (noise-free case). The interferogram indicates a non-zero frequency drift, δ f /δt ≈ 508

−0.037 s−2. In the hologram domain, the dominant focal spot is found at τ1 = 1.21 · 10−1 s and 509
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ν1 = 3.45 · 10−3 Hz, which is consistent with a frequency shift due to source motion. Inverting these 510

holographic parameters yields the source estimates v̇ = −3.47 m/s and ṙ0 = 10.1 km. These values 511

are consistent with a moving source and are close to the nominal settings. The corresponding errors 512

are 15 % for the velocity and 1.0% for the range. 513

Table 6. Source of LFM signal parameters estimation. Moving source. Noise is absent.

No. ∆ f = 100–120 Hz

1. δ f /δt ≈ −0.037 s−2

2. τ1 = 1.21 · 10−1 s
3. ν1 = 3.45 · 10−3 Hz
4. v̇ = −3.47 m/s
5. ṙ0 = 10.1 km

Figure 16 presents holographic signal processing results for the noisy received LFM signal 514

without FrFT-based denoising (∆ f = 100–120 Hz, v = −3 m/s, SNR = −30 dB). Omitting the FrFT 515

filter markedly degrades the outcome of the holographic processing. In the interferogram domain 516

(Figure 16(a)), the time–frequency structure is overwhelmed by broadband noise and the slanted, 517

quasi-periodic interference fringes expected for a moving source are not visible. In the hologram 518

domain (Figure 16(b)), the energy is diffuse and low-contrast. The focal spots cannot be localized. 519

They are heavily masked by noise. The absence of a well-defined structure prevents determination of 520

the focal-spot coordinates and, consequently, makes source parameters estimation impossible. These 521

results underscore the need for FrFT-domain denoising prior to holographic signal processing under 522

low-SNR conditions (SNR ≤ −30 dB). 523

(a) (b)

Figure 16. Receiver LFM signal. Conventional HSP. (a) Distribution I( f , t) in interferogram domain. (b) Distri-
bution F(τ, ν̃) in hologram domain. Frequency band: ∆ f = 100–120 Hz. Moving source: v = −3 m/s. Noise is
present. SNR = −30 dB.
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(a) (b)

Figure 17. Receiver LFM signal. HSP based on FrFT. (a) Distribution I( f , t) in interferogram domain. (b)
Distribution F(τ, ν̃) in hologram domain. Frequency band: ∆ f = 100–120 Hz. Moving source: v = −3 m/s. Noise
is present. SNR = −30 dB.

Figure 17 presents the results of holographic signal processing for the noisy received LFM signal 524

after FrFT-based denoising (∆ f = 100–120 Hz, v = −3 m/s, SNR = −30 dB). Applying the FrFT 525

filter significantly improves the outcome of the holographic processing. In the interferogram domain 526

(Figure 17(a)), the time-frequency structure is clear: slanted, quasi-periodic interference fringes with 527

a non-zero slope δ f /δt are visible across the band, which is consistent with Doppler variation from 528

the moving source. In the hologram domain (Figure 17(b)), energy collapses into compact focal spots 529

displaced from the ν = 0 axis. This enhancement enables the reliable determination of the focal-spot 530

coordinates and, consequently, accurate estimation of the source parameters (velocity and range) under 531

low-SNR shallow-water conditions. 532

Table 7. Source of LFM signal parameters estimation. Moving source. Noise is present.

No. ∆ f = 100–120 Hz

1. δ f /δt ≈ −0.036 s−2

2. τ1 = 1.15 · 10−1 s
3. ν1 = 3.81 · 10−3 Hz
4. v̇ = −3.82 m/s
5. ṙ0 = 9.6 km

Table 7 summarizes the holographic signal processing results for a moving source in the band 533

∆ f = 100–120 Hz with noise present. The interferogram shows a non-zero frequency drift, δ f /δt ≈ 534

−0.036 s−2. In the hologram domain, the dominant focal spot is located at τ1 = 1.15 · 10−1 s and 535

ν1 = 3.81 · 10−3 Hz, which is consistent with a nonzero Doppler shift. Inverting these holographic 536

parameters yields the following source estimates v̇ = −3.82 m/s and ṙ0 = 9.6 km. These values are 537

consistent with a moving source. Compared with the nominal settings (v = −3 m/s, r0 = 10 km), the 538

errors are about 27.3 % in velocity and 4% in range. 539

These results demonstrate that incorporating FrFT-based denoising as a preprocessing step in 540

holographic signal processing is highly effective for LFM signals from a stationary source in a shallow- 541

water waveguide under very low SNR. At (SNR = −30 dB), the method markedly lowers the spectral 542

noise floor, restores the interferometric structure, and produces well-localized focal spots in the 543

hologram. This improves detectability, as well as the accuracy and stability of subsequent parameter 544

estimates (e.g., range) compared to conventional processing. 545

4. Conclusions 546

The paper proposes a FrFT-based holographic signal processing method for an LFM signal of a 547

moving source in shallow water waveguide. The study demonstrates that applying the short-time 548

fractional Fourier transform for the formation and analysis of holograms of a moving LFM source 549
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provides reliable estimations of the source parameters even under high noise levels. Under strong 550

noise conditions: (i) rotating the FrFT representation in the time-frequency domain concentrates the 551

energy of the LFM chirp in the frequency domain, (ii) denoising the compacted energy, and (iii) then 552

performing quasi-coherent interferometric accumulation is performed by means of a two-dimensional 553

Fourier transform to form a noise-free source hologram. The resulting source hologram’s structure is 554

similar to that of a source hologram in the absence of noise. The focal spots of the source hologram 555

align along a straight line passing through the origin. The coordinates of the hologram’s focal spot 556

are determined by the source parameters (range and radial velocity). Thus, the proposed FrFT-based 557

holographic processing method can estimate the parameters of an LFM source even under strong noise 558

conditions: SNR ≤ −30 dB. 559

Key findings of paper. 560

• Noise robustness and denoising. Holographic signal processing based on the short-time fractional 561

Fourier transform for the LFM signal of a stationary or moving source concentrates the energy 562

into a nearly horizontal ridge. This enables effective denoising at input SNRs down to −30 dB and 563

restores a clear holographic structure where conventional short-time Fourier transform processing 564

fails. 565

• Accuracy of parameter estimation (stationary source). Quantitative analysis shows that the 566

range of a stationary source can be recovered with an error of at most 10 %. In the noise-free 567

case, the velocity and range errors are 0 % and 4 %; at SNR = −30 dB, the errors are 0 % and 6 %, 568

respectively. 569

• Accuracy of parameters estimation (moving source). A quantitative analysis indicates that the 570

range of a moving source can be recovered with an error of up to 5 %, whereas its velocity may 571

incur errors of up to 30 %. In the noise-free case, the velocity and range errors are 15 % and 1 %, 572

respectively; at SNR = −30 dB, these errors increase to 27 % and 4 %. 573

• Effectiveness of the FrFT-based HSP method. Comparing stationary and moving source types 574

reveals that high noise levels cause only a minor increase in estimation errors relative to the noise- 575

free case. These results confirm the robustness of the FrFT-based holographic signal processing 576

method and its ability to deliver reliable results in realistic shallow-water conditions with high- 577

noise levels. 578

FrFT-based holographic signal processing preserves the interpretability of holographic features 579

while substantially improving the detectability of low-SNR LFM signal sources. Practical applications 580

include estimating the range and velocity of a source in shallow water with a single receiver and easily 581

integrating with existing holographic signal processing. 582

These findings expand the application of holographic techniques in underwater acoustics, demon- 583

strating their effectiveness in noisy real-world settings. In particular, FrFT-based holographic process- 584

ing of LFM signals yields stable, near-truth estimates of source parameters. This underscores the value 585

of FrFT-based holographic processing for fundamental studies and operational ocean monitoring and 586

surveillance in high-noise environments. 587

5. Future Works 588

The next phase of our research will focus on empirically validating the proposed FrFT-based 589

holographic signal processing framework using legacy, well-instrumented, shallow-water experi- 590

ments spanning diverse environments and source-receiver geometries – SWARM’95, Shallow Water 591

2006 (SW06), and ASIAEX 2001 ([61–65]). These campaigns encompass intense internal-wave fields, 592

continental-shelf propagation, variable bathymetry and bottom types, and high noise levels — making 593

them an ideal testing ground for noise-robust, single-receiver ranging and velocity estimation under 594

complex conditions. 595
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Abbreviations 606

The following abbreviations are used in this manuscript: 607

608

ISP interferometric signal processing;
HSP holographic signal processing;
FT Fourier transform;
STFT short-time Fourier transform;
FrFT fractional Fourier transform;
STFrFT short-time fractional Fourier transform;
LFM linear frequency modulation;
2D two-dimensional;
1D-FT one-dimensional Fourier transform;
2D-FT two-dimensional Fourier transform.
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