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Abstract

We develop and analyze an SIRSD epidemic model, which extends the classical SIR framework
by incorporating waning immunity and disease-induced mortality. A rigorous well-posedness
analysis ensures the existence, uniqueness, positivity, and boundedness of solutions, guaran-
teeing the model’s epidemiological feasibility. To facilitate theoretical investigations and data-
driven modeling, we reformulated the system in normalized variables. To capture and predict
complex nonlinear epidemic dynamics, we use the Koopman operator framework with extended
dynamic mode decomposition (EDMD) and an epidemiologically informed dictionary of ob-
servables. We compare two Koopman approximations: one based on a minimal epidemiological
dictionary and another enriched with nonlinear and cross terms. We generate synthetic data
using a nonstandard finite difference (NSFD) scheme for four representative epidemics: SARS-
CoV-2, seasonal influenza, Ebola, and measles. Numerical experiments demonstrate that the
Koopman-based approach effectively identifies dominant epidemic modes and accurately pre-
dicts key outbreak characteristics, including peak infection dynamics.

Keywords: Epidemic modeling, SIRSD model, Koopman operator, NSFD scheme, Numerical
simulations.
2020 Mathematics Subject Classification: 92C60, 34A34, 33F05.

1. Introduction

Mathematical epidemiology has long provided essential tools for understanding and predict-
ing the spread of infectious diseases through compartmental models. Classical frameworks such
as the (Susceptible–Infected–Recovered) SIR system, and its numerous extensions, describe
population-level disease dynamics using ordinary, delay, or partial differential equations [1–6].
These models have been successfully applied to diverse epidemiological settings, ranging from
forecasting the spread of the SARS-CoV-2 virus [7–9] to analyzing spatiotemporal outbreak
patterns [10–12].

Recent advances have substantially broadened the scope of epidemic modeling. These novel
approaches include fractional-order formulations with generalized operators and kernels [13],
nonlinear SEIR extensions capturing psychological effects and discretization schemes [14], bi-
furcation analyses of discrete-time SIR models [15], and actuarial frameworks linking epidemic
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dynamics with insurance mathematics [16]. Together, these studies demonstrate the versatility
and cross-disciplinary impact of epidemic models. However, the nonlinearity remains a sig-
nificant challenge for analytical tractability, real-time forecasting, and the design of effective
intervention strategies.

The Koopman operator framework offers a promising solution to these challenges. It re-
casts nonlinear dynamics as linear evolutions in a higher-dimensional space of observables
[17, 18]. This lifting approach allows for the direct application of linear system theory for
prediction, estimation, and control while remaining inherently data-driven [19, 20]. In epidemi-
ology, Koopman-based methods, particularly Dynamic Mode Decomposition (DMD) and its
variants, have already demonstrated their ability to extract spatiotemporal patterns, forecast
infection trajectories, and evaluate the effects of exogenous factors such as human mobility
[21, 22]. Extensions that incorporate control inputs, such as DMD with control (DMDc),
further provide a principled framework for modeling vaccination, treatment, and behavioral in-
terventions [23, 24]. Recent computational advances, including tensorized and neural Koopman
architectures [25, 26], have mitigated the curse of dimensionality. These advances enable richer
observable sets and improved fidelity in large-scale epidemic systems.

These developments are particularly well-suited to extended models such as the (Susceptible-
Infected-Recovered-Susceptible (again)-Deceased) SIRSD system [27], which must simultane-
ously capture nonlinear reinfection dynamics and intervention effects. Integrating SIRSD dy-
namics into a lifted Koopman space allows for accurate real-time forecasting, facilitates robust
control under practical constraints. It also allows for natural accommodation of regime shifts
such as the emergence of new variants or policy interventions.

In this work, we develop a Koopman operator framework tailored specifically to model-
ing nonlinear epidemic dynamics, with a focus on the SIRSD model. Our main contributions
are threefold: First, we construct finite-dimensional Koopman approximations that faithfully
capture the essential features of epidemic dynamics. Second, we incorporate control inputs to
enable the design and evaluation of potential intervention strategies. Third, we demonstrate
the predictive power and robustness of the proposed framework across diverse epidemiologi-
cal scenarios. Bridging nonlinear epidemic modeling with operator-theoretic and data-driven
techniques, our framework provides a mathematically rigorous, computationally efficient, and
practically relevant approach to epidemic analysis and management.

The remainder of this paper is structured as follows. Section 2 introduces the SIRSD epi-
demic model, including its formulation, well-posedness analysis, and normalization. Section 3
reviews the Koopman operator framework and its finite-dimensional approximation via ex-
tended dynamic mode decomposition (EDMD). Section 4 reformulates the normalized SIRSD
model into a Koopman-ready form and analyzes its Jacobian structure. Section 5 presents the
nonstandard finite difference (NSFD) scheme used to generate synthetic data. Section 6 reports
numerical experiments for four representative epidemics: COVID-19, seasonal influenza, Ebola,
and measles. These experiments illustrate the effectiveness of the Koopman-based approxima-
tion. Finally, Section 7 summarizes the main findings and discusses potential directions for
future research.

2. Proposed SIRSD Model

In this section, we will introduce the mathematical framework that we use to model the
transmission dynamics of infectious diseases. Specifically, we use an SIRSD compartmental
model, which divides the population into four distinct health states.
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2.1. SIRSD Model Description

We consider an extended deterministic SIR-type model that includes both loss of immu-
nity and disease-induced mortality, with frequency-dependent transmission. The population is
divided into four mutually exclusive compartments: susceptible S(t), infected I(t), recovered
R(t), and deceased D(t). Let

NL(t) = S(t) + I(t) +R(t),

denote the total living population. The proposed SIRSD model is governed by the nonlinear
system 

Ṡ(t) = −β S(t) I(t)
NL(t)

+ ωR(t),

İ(t) = β
S(t) I(t)

NL(t)
− (γ + µ) I(t),

Ṙ(t) = γ I(t)− ωR(t),

Ḋ(t) = µ I(t),

(1)

supplied with the initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0, D(0) = D0 ≥ 0, (2)

where β > 0 is the transmission rate, γ > 0 the recovery rate, µ > 0 the disease-induced mor-
tality rate, and ω ≥ 0 the rate of immunity loss (transition from recovered back to susceptible).
For simplicity, we neglected the birth and natural mortality rates, as they have much slower
dynamics than the epidemic.

In this case, the epidemic dynamics evolve as follows: susceptible individuals become in-
fected through effective contact with infected individuals at a rate β S(t) I(t)

NL(t)
. Thus, the force

of infection depends on the fraction of infected individuals in the living population, causing
a transition from the susceptible to the infected compartment. Infected individuals either re-
cover at rate γ, moving into R, or die from the disease at rate µ, moving into D. Recovered
individuals have temporary immunity and return to the susceptible pool at a rate ω; they are
assumed to have permanent immunity when ω = 0. The deceased compartment accumulates
disease-induced deaths and does not contribute to transmission.

The model (1) is nonlinear due to the frequency-dependent bilinear term β S(t) I(t)
NL(t)

, and

it also contains state-dependent feedback through the living population NL (which typically
decreases as D grows). These features generate more complex dynamics than the classical SIR
model, prompting both analytical and numerical studies.

2.2. Well-posedness Analysis

This section analyzes the existence, uniqueness, positivity, and boundedness of solutions to
the system (1)–(2). First, to verify the invariance and boundedness of the proposed model,
consider the total population N(t) = NL(t) +D(t) = S(t) + I(t) +R(t) +D(t). Differentiating
and summing the system (1) yields

Ṅ(t) = Ṡ(t) + İ(t) + Ṙ(t) + Ḋ(t)
(1)
= 0.

This implies that the total population N remains constant over time, i.e. N = N0 = S0 + I0 +
R0 + D0. Therefore, all solutions to (1)–(2) are bounded. On the other hand, summing only
the first three equations in (1) gives

ṄL(t) = Ṅ(t)− Ḋ(t) = −µI(t).
3



When I(t) ≥ 0, it follows that ṄL(t) ≤ 0, meaning the living population NL decreases over
time due to disease-induced mortality. Since NL(0) = S0 + I0 +R0 > 0, and that deaths occur
continuously rather than instantaneously, NL(t) remains strictly positive for all finite t ≥ 0. If,
hypothetically, ṄL(t) ≥ 0 (which is mathematically possible but not realistic in this context),
then NL would increase over time, but would remain strictly positive for all finite t due to the
positivity of the initial condition.

Let us now prove the positivity of the system solutions. We start with the infected class I.
Multiply both sides of its differential equation by the negative part I− = max(0,−I), and we
get

1

2

d

dt
(I−)2 =

(
γ + µ− β

S(t)

NL(t)

)
(I−)2.

Afterwords, (
I−(t)

)2
= (I−0 )

2 exp

[∫ t

0

(
γ + µ− β

S(y)

NL(y)

)
dy

]
,

Since I0 > 0, it follows that I−0 = 0. Therefore, I−(t) = 0 for all t ≥ 0, implying that I(t) ≥ 0.
Since Ḋ(t) = µI(t) ≥ 0 and the initial condition satisfies D0 ≥ 0, it follows that D(t) ≥ 0 for
all finite t ≥ 0. To demonstrate the nonnegativity of R and S individually, we use the following
methodology outlined in [16, Page 7] and consider

Ṙ
∣∣
R=0

= γI ≥ 0, and Ṡ
∣∣
S=0

= ωR ≥ 0.

Therefore, the vector field on the boundaries of the positive orthant R2
+ points inward or is

tangent to the boundary. This ensures that solutions remain in R2
+.

We use standard results from the theory of ordinary differential equations (ODE) to prove
the existence and uniqueness of solutions to the system of equations (1)–(2). This is supported
by the boundedness and positivity of the solutions. The right-hand side of the system is con-
tinuously differentiable and thus locally Lipschitz continuous in the positive orthant (excluding
division by zero since NL(t) > 0 for all finite t). According to the Picard–Lindelöf theorem,
this guarantees the local existence and uniqueness of solutions with given nonnegative initial
conditions. Furthermore, the positivity of the state variables S, I, R, and D, together with the
invariance of a bounded region, ensures that the solutions will remain positive and bounded for
all t ≥ 0. This precludes finite-time blow-up and allows us to extend local solutions to global
ones. Therefore, the following corollary summarizes this section

Corollary 1. Given any initial data satisfying (2) and positive parameters β, γ, µ, ω, the sys-
tem (1) admits a unique, global, positive, and bounded solution for all finite t ≥ 0.

2.3. Model Normalization

Our proposed model reveals that the variables S, I, and R evolve independently of D.
Therefore, it is sufficient to focus on the reduced system

Ṡ(t) = −β S(t) I(t)
NL(t)

+ ωR(t),

İ(t) = β
S(t) I(t)

NL(t)
− (γ + µ) I(t),

Ṙ(t) = γ I(t)− ωR(t),

where D(t) = N −NL(t).

4



To simplify the analysis and prepare the model for the Koopman operator-theoretic frame-
work, we introduce dimensionless variables representing proportions of the total population

s(t) =
S(t)

N
, i(t) =

I(t)

N
, r(t) =

R(t)

N
, d(t) =

D(t)

N
.

The current living population is then

NL(t) = S(t) + I(t) +R(t) = N −D(t) = N
(
1− d(t)

)
,

which decreases over time due to disease-induced mortality. Dividing each equation by the
constant N yields the normalized system

ṡ(t) = −β s(t)i(t)
1− d(t)

+ ωr(t),

i̇(t) = β
s(t)i(t)

1− d(t)
− (γ + µ)i(t),

ṙ(t) = γi(t)− ωr(t),

(3)

with initial conditions

s(0) = s0 =
S0

N
, i(0) = i0 =

I0
N
, r(0) = r0 =

R0

N
, d(0) = d0 =

D0

N
, (4)

where
d(t) = 1− s(t)− i(t)− r(t). (5)

For the following reasons, we will focus our Koopman analysis on (3)–(4): (i) Dimension-
less variables make parameters easier to interpret and compare across different populations or
datasets. (ii) The state variables s(t), i(t), r(t), d(t) are naturally bounded in [0, 1], which
facilitates both theoretical analysis and numerical simulations. (iii) For Koopman operator
analysis, normalized variables avoid scaling issues in observable functions and yield a more uni-
form representation of the dynamics across initial conditions. (iv) The factor 1

1−d(t)
explicitly

captures the effect of a shrinking living population on the transmission term, preserving the
model’s accuracy under mortality.

3. Koopman Operator Theory

The Koopman operator framework provides a powerful alternative to traditional nonlinear
analysis. It accomplishes this by shifting the dynamics from the original state space to a
higher-dimensional (possibly infinite-dimensional) space of observables. In this new space, the
evolution becomes linear. This property allows us to use linear operator theory to predict,
control, and perform spectral analysis on nonlinear systems, including epidemiological models
such as the SIRSD system.

Let the state be x = (s, i, r, d)⊤ and F t : R4 → R4 be the flow map associated with the
system (3), so that

x(t) = F t(x0), t ≥ 0.

For a scalar-valued observable g : R4 → R, the Koopman operator Kt is defined as

(Ktg)(x) = g(F t(x)). (6)

By definition, the Koopman operator Kt is linear in g even though F t is generally nonlinear in
the state variable x. This linearity allows us to analyze nonlinear epidemic dynamics via the
spectral properties of Kt. However, since the Koopman operator acts on an infinite-dimensional
space of observables, finite-dimensional approximations are necessary for computational pur-
poses.
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3.1. Dictionary of Observables

To numerically approximate Kt, we define a finite dictionary of observables

D = {ψ1, ψ2, . . . , ψN},

where each ψj : R4 → R is a scalar function of the state variables. A minimal choice for the
SIRSD model (3) includes the linear observables

ψ1(s, i, r, d) = s, ψ2(s, i, r, d) = i, ψ3(s, i, r, d) = r, ψ4(s, i, r, d) = d.

To capture nonlinear epidemiological interactions such as the infection term si
1−d

, the dictionary
is enriched with polynomial and rational terms

ψ5(s, i, r, d) = s i, ψ6(s, i, r, d) = s r, ψ7(s, i, r, d) = i r, ψ8(s, i, r, d) =
s i

1− d
.

Depending on the desired approximation accuracy, additional higher-order terms can be in-
cluded

ψ9(s, i, r, d) = s2, ψ10(s, i, r, d) = i2, ψ11(s, i, r, d) = r2, ψ12(s, i, r, d) = d2, . . .

In the Koopman operator framework, the choice of D plays a central role in capturing
the nonlinear dynamics of epidemic models. In our SIRSD model (3), in addition to the
epidemiologically meaningful bilinear incidence term si, we enrich the lifted observable space
with additional quadratic and cross terms such as ψ5, ψ6, ψ7, ψ9, ψ10, ψ11, and ψ12. While most
of these terms do not correspond to direct epidemiological processes, except for for instance,
the term modeling new infections (ψ5), they are mathematically valuable because they expand
the basis functions used in the numerical approximation. Quadratic self-terms such as ψ9, ψ10

are also employed in the modeling literature, where they are used to capture nonlinear feedback
or density-dependent effects (see, e.g., [28]).

To assess the numerical impact of the dictionary D, we will compare two dictionaries in
our simulations: (D1) a dictionary containing only the basic compartments and ψ8; (D2) an
extended dictionary including the additional quadratic and cross terms. This comparison illus-
trates how adding nonlinear observables to the dictionary affects the Koopman-based approxi-
mation of epidemic dynamics. It is important to note that the presented terms are illustrative,
and that the choice of observables in the Koopman framework is not limited to these terms.

3.2. Data Collection

The Koopman framework requires state trajectory data. This data can be obtained either
from: (1) Numerical simulations (synthetic data) of the SIRSD model (3) under given parame-
ters (β, γ, µ, ω) and initial conditions (s0, i0, r0, d0), or (2) Empirical epidemiological time series,
after appropriate normalization.

We discretize the trajectory at uniform sampling times tk = k∆t, with k = 0, 1, . . . ,M ,
producing snapshot vectors

xk =
(
s(tk), i(tk), r(tk), d(tk)

)⊤
.

Each snapshot is lifted to the observable space via

yk =
(
ψ1(xk), ψ2(xk), . . . , ψN(xk)

)⊤
.

The resulting datasets

Y = (y0, . . . ,yM−1) ∈ RN×M and Y ′ = (y1, . . . ,yM) ∈ RN×M ,

serve as the input for extended dynamic mode decomposition (EDMD) [29, 30].
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3.3. Koopman Matrix Estimation

In the finite-dimensional observable space, the Koopman dynamics are approximated by

yk+1 ≈ Kyk,

where K ∈ RN×N is the Koopman matrix. Thus, we approximate the action of the operator
K∆t by

Y ′ ≈ KY.

Moreover, the least-squares problem

K = arg min
K̃∈RN×N

∥Y ′ − K̃Y ∥F ,

has the closed-form solution
K = Y ′Y ⋆, (7)

where Y ⋆ denotes the Moore–Penrose pseudoinverse of Y and ∥·∥F denotes the Frobenius norm.
The spectrum of K provides Koopman eigenvalues and modes, revealing growth and decay

rates and oscillatory patterns in the epidemic dynamics. Furthermore, once K is computed,
future state prediction is performed by iterating the linear system in the observable space.

3.4. Finite-Dimensional Approximation via EDMD

The EDMD is a data-driven algorithm that creates the aforementioned finite-dimensional
Koopman approximation. The main steps are as follows:

(i) Choose a dictionary D = {ψ1, . . . , ψN} containing both linear and nonlinear epidemiolog-
ically relevant observables.

(ii) Collect snapshots {xk}Mk=0 from simulation or real epidemic data.

(iii) Lift the data into the observable space to form Y and Y ′.

(iv) Compute K using the closed-form solution (7).

(v) Analyze the spectral properties (i.e. eigenvalues and eigenvectors) to extract coherent
patterns and predict dynamics.

This approach yields a linear, reduced-order surrogate of the original nonlinear SIRSD
model. This surrogate is suitable for forecasting the spread of epidemics, performing stability
analyses in observable spaces, and designing optimal control strategies within the framework
of linear systems theory.

4. Application to the SIRSD Model

We now apply the Koopman operator and its finite-dimensional approximation via EDMD
to the normalized SIRSD epidemic model (3). In this section, we reformulate the system
in a Koopman-ready form, discuss its Jacobian structure, and demonstrate how the EDMD
methodology can be tailored to capture the epidemiological dynamics.
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4.1. Koopman-ready Form of the Normalized SIRSD Model

Let the state be x = (s, i, r, d)⊤ and

f
(
x(t)

)
=


−β s i

1−d
+ ω r

β s i
1−d

− (γ + µ) i

γ i− ω r
µ i

 .

Then, the normalized SIRSD dynamics take the form

ẋ(t) = f
(
x(t)

)
, (8)

where the initial state is given by

x(0) = (s0, i0, r0, d0)
⊤.

The admissible state space is the epidemic simplex:

S =
{
(s, i, r, d) ∈ R4

+ : s+ i+ r + d = 1, d < 1
}
,

ensuring (1− d)−1 is well-defined for all finite t.

Remark 1. This formulation is Koopman-ready: the state variables (s, i, r, d) evolve accord-
ing to smooth, well-defined functions on S, which allows for lifting into a finite-dimensional
observable space.

Following the EDMD procedure in Section 3, we examine two dictionaries of observables to
evaluate the effect of dictionary design on the Koopman approximation of the SIRSD dynamics.
The first, minimal dictionary,

D1 =
{
s, i, r, d,

s i

1− d

}
,

contains only the basic compartments together with the nonlinear infection term sı
1−d

. The
second, extended dictionary,

D2 =
{
s, i, r, d, s i, s r, i r,

s i

1− d
, s2, i2, r2, d2

}
,

enriches the first dictionary D1 by including cross terms and quadratic self-terms. This compar-
ison allows us to evaluate the influence of extending the dictionary with nonlinear observables
on the numerical representation of epidemic dynamics.

4.2. Jacobian Structure

The Jacobian J of system (8) at x is given by

J (x) =


−β i

1−d
−β s

1−d
ω −β s i

(1−d)2

β i
1−d

β s
1−d

− (γ + µ) 0 β s i
(1−d)2

0 γ −ω 0
0 µ 0 0

 .

Terms involving (1−d)−1 and (1−d)−2 naturally arise from the standard incidence scaling with
a decreasing living population size. The resulting Jacobian plays an important role in several
contexts: it is used for local linearization near equilibria, for constructing the Koopman gener-
ator as the continuous-time analogue of the Koopman operator, and for performing sensitivity
analysis with respect to the parameters β, γ, µ, and ω.
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5. Numerical Scheme

We employ a nonstandard finite difference (NSFD) approach to discretize the normalized
SIRSD system (3)–(4). Originally proposed by Mickens [31], this scheme is particularly effective
for biological and epidemiological models since it preserves essential qualitative features of the
underlying continuous dynamics, such as positivity, boundedness, and dynamic consistency.

Standard numerical schemes, such as Runge-Kutta methods or the explicit/implicit Euler
method, often fail to maintain these properties and may generate nonphysical artifacts, includ-
ing negative compartment sizes or spurious equilibria [10, 32–34]. For example, as demonstrated
in [10, 34], the traditional finite difference method may yield numerically negative exposed
populations under specific circumstances. In contrast, the NSFD scheme consistently preserves
positivity and ensures qualitative realism.

In the present framework, two fundamental requirements are maintaining the positivity of
the state variables and ensuring that the compartmental proportions remain bounded within
[0, 1] (as established in Section 2). Furhermore, the NSFD construction guarantees dynamic
consistency, meaning that key thresholds and long-term behaviors of the discrete model replicate
those of the continuous formulation. These properties make the method especially suitable for
the SIRSD dynamics, in which mortality and immunity loss jointly shape epidemic trajectories.
Finally, the resulting NSFD discretization provides synthetic data that can be directly used
within the proposed Koopman framework.

In the NSFD framework, the time derivative u̇(t) of a generic state variable u is approxi-
mated using a nontrivial denominator function φ(k), where k = ∆t is the time step

u̇

∣∣∣∣
t=tn

≈ un+1 − un

φ(k)
,

with φ(k) > 0 and φ(k) = k+O(k2). One common choice that guarantees positivity preserva-

tion is φ(k) = eηk−1
η

, where η is the natural mortality rate, as discussed in [10]. Let k be the

time step size, and denote sn ≈ s(tn), i
n ≈ i(tn), and r

n ≈ r(tn). The NSFD discretization of
the SIRSD model (3) becomes

sn+1 − sn

φ(k)
= −β s

n+1in

1− dn
+ ω rn,

in+1 − in

φ(k)
= β

sn+1in

1− dn
− (γ + µ) in+1,

rn+1 − rn

φ(k)
= γ in+1 − ω rn+1,

(9)

where the mortality proportion dn ≈ d(tn), defined in (5), is updated as

dn+1 − dn

φ(k)
= µ in+1 + ω

rn+1 − rn

φ(k)
, n = 0, 1, 2 . . . .

This scheme follows Mickens’s rules [31];

• Nonlinear terms such as the quadratic infection term β s i
1−d

are discretized non-locally, i.e.,
using a mix of time levels (e.g., sn+1 in) to maintain positivity;

• The discrete derivative uses a nonlinear denominator function φ(k) that reflects the
asymptotic behavior of the system;
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• The scheme is explicitly solvable in a sequential manner, with each variable updated in a
given order.

The proposed NSFD scheme (9) can be rewritten and solved sequentially as follows

sn+1 =
sn + ω rn+1φ(k)

1 + β in

1−dn
φ(k)

,

in+1 =
in + β sn+1 in

1−dn
φ(k)

1 + (γ + µ)φ(k)
,

rn+1 =
rn + γ in+1 φ(k)

1 + ω φ(k)
,

dn+1 = 1− sn+1 − in+1 − rn+1.

(10)

We will briefly discuss the discretization of the nonlinear incidence term β si
1−d

. Specifically,

in the first two equations of (10), the infection term is discretized as β sn+1 in

1−dn
, rather than β sn in

1−dn

or β sn+1 in+1

1−dn+1 . The guiding principle here is to evaluate exactly one factor at the new time level,
specifically, the variable whose time derivative appears in the equation (in this case, s or i). This
semi-implicit treatment ensures the positivity of the numerical solution while maintaining the
explicit solvability of the scheme. This strategy aligns with the general rules of NSFD methods
and has been successfully applied in similar epidemiological contexts (see e.g., [10, 16, 31, 32]).

The NSFD scheme (10) is designed so that all compartments sn, in, rn, dn remain non-
negative and the discrete total normalized population sn + in + rn + dn remains constant at 1,
provided that the initial data satisfy this normalization condition. In what follows, the time
step k used in the NSFD scheme (10) is set to k = 0.1, and the denominator function is chosen

as φ(k) = eηk−1
η

, with η → 0 (i.e., no natural mortality), simplifying to φ(k) = k.

6. Numerical Experiments

For the simulations, we is discretized the SIRSD model (3)–(4) using the NSFD scheme (10)
to generate synthetic data suitable for Koopman operator-based approximation. The model pa-
rameters are chosen based on published epidemiological data for four representative epidemics:
COVID-19, seasonal influenza, Ebola, and measles [35–42]. These parameter values are sum-
marized in Table 1 and are used to analyze the system’s dynamics under four distinct scenarios.
This approach allows for a systematic evaluation of how the model responds to variations in
transmission, recovery, and mortality rates and demonstrates the effectiveness of the proposed
Koopman framework across various synthetic data cases.

Table 1: Epidemiological parameters for the SIRSD model applied to selected epidemics

Epidemic β γ µ ω References

COVID-19
0.3 – 0.6 0.07 – 0.1 0.005 – 0.01 0 – 0.02 [35, 36]

(Wuhan 2020)
Seasonal Influenza 0.4 – 0.8 0.2 – 0.33 0.0001 – 0.001 0.1 – 0.3 [37, 38]

Ebola
0.18 – 0.25 0.086 – 0.1 0.35 – 0.5 0 [39, 40]

(West Africa 2014)
Measles

1.5 – 3.5 0.1 – 0.14 0.0001 – 0.002 0 [41, 42]
(Pre-vaccine era)

We initialize the system with normalized compartments (proportions) that sum to one:

s(0) + i(0) + r(0) + d(0) = 1, with s(0) = 1− i(0), r(0) = 0, d(0) = 0,
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with a small infectious seed i(0) = 10−1 (one per 10 individuals), representing the early stage
of the outbreak.

Figure 1 presents numerical simulations of the SIRSD model (3)–(4) for the four represen-
tative infectious diseases. Each subplot shows how the proportion of susceptible s(t), infected
i(t), recovered r(t), and deceased d(t) individuals in the population changes over time.
For example, for the case of the top-left subplot representing the spread of the SARS-CoV-2
virus (COVID-19)with parameters set to β = 0.5, ω = 0.005, γ = 0.08, and µ = 0.01, infec-
tions rise rapidly before declining as recoveries peak, while mortality gradually increases. The
susceptible population decreases markedly before reaching a stable level.
For seasonal influenza (top-right), with β = 0.4, ω = 0.15, γ = 0.2, and µ = 0.001, infections
exhibit a moderate peak and faster recovery, leading to oscillatory dynamics between suscepti-
ble and recovered individuals due to reinfection.
For measles (bottom-right), with β = 1.5, ω = 0, γ = 0.12, and µ = 0.001, the model predicts a
sharp outbreak with a high infection peak, followed by substantial recovery. At the same time,
the proportion of susceptible individuals declines steeply and stabilizes.
In contrast, Ebola (bottom-left), with β = 0.25, ω = 0, γ = 0.1, and µ = 0.35, the model pre-
dicts relatively low infection levels, but a sharp increase in deaths, while most of the population
remains susceptible.

These simulations demonstrate how disease-specific transmission rates, waning immunity,
recovery rates, and mortality rates influence epidemic dynamics. They also generate synthetic
ground-truth data for the subsequent Koopman operator learning framework.
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Figure 1: Dynamics of the SIRSD epidemic model (3)–(4) generated via the NSFD scheme (10).

Figure 2 presents the Koopman-based reconstructions of the SIRSD epidemic dynamics us-
ing EDMD with two different dictionaries of observables, D1 and D2, as mentioned in Section 4.
The same epidemiological parameters as in Figure 1 are used for the four case studies.

Subfigure 2a: Koopman validation with the minimal dictionary D1. While the main epi-
demic trends are reproduced, the approximations display certain deficiencies, such as negative
values in some compartments (notably s(t) for COVID-19, i(t) for seasonal influenza, and both
s(t) and i(t) for measles). These artifacts highlight the limited representational power of the
minimal dictionary.

Subfigure 2b: Koopman validation with the enriched dictionary D2. The reconstructions
more closely match the synthetic trajectories of Figure 1, successfully capturing infection peaks,
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oscillatory dynamics, and mortality accumulation without introducing unphysical negative so-
lutions.

Overall, the enriched dictionary D2 demonstrates superior predictive capability compared
to the minimal dictionary D1. Figure 3 provides a direct comparison by overlaying the original
synthetic data (Figure 1) with the two Koopman reconstructions, which further illustrate this
improvement.
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(a) Koopman validation with minimal dictionary D1.
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(b) Koopman validation with enriched dictionary D2.

Figure 2: Koopman-based reconstruction of SIRSD dynamics from synthetic data.

Figure 3 combines the synthetic SIRSD simulations from Figure 1 with the Koopman-based
reconstructions from Figure 2, enabling a direct visual comparison between the ground-truth
NSFD trajectories (solid lines) and the Koopman approximations (dashed lines).

Subfigure 3a shows the results obtained using the minimal dictionary D1. While the main
epidemic patterns are recovered, significant discrepancies appear, including mismatched oscil-
lations and unphysical negative values in certain compartments that are physically impossible.
These discrepancies highlight the limited representational capacity of D1.
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Subfigure 3b depicts the enriched dictionary D2 and shows that the main epidemic pat-
terns are recovered with fewer discrepancies. The Koopman reconstructions exhibit excellent
agreement with the synthetic trajectories across the three diseases COVID-19, influenza, and
Ebola, successfully reproducing infection peaks, oscillatory dynamics, and mortality accumu-
lation. For measles, however, a small deviation emerges near the final simulation time t = 200
in the susceptible and recovered populations, indicating slower convergence of the Koopman
approximation in this highly infectious regime. This deviation motivates further investigation
over extended time horizons, as shown in Figure 4.

Figure 3 demonstrates that the enriched dictionary D2 provides a more robust and accurate
Koopman approximation of the nonlinear SIRSD dynamics than the minimal dictionary D1.
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(a) Koopman validation with minimal dictionary D1.
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(b) Koopman validation with enriched dictionary D2.

Figure 3: Overlay comparison between synthetic SIRSD trajectories and Koopman reconstructions.

Figure 4 examines the long-term Koopman approximation of the measles case using the
enriched dictionary D2. The left panel shows the entire time window t ∈ [0, 500], while the
right panel focuses on the interval t ∈ [350, 500] to illustrate late-time behavior.
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Overall, the Koopman trajectories closely align with the synthetic NSFD data, successfully
capturing the sharp initial outbreak, subsequent oscillations, and long-term stabilization of
the system. The zoomed-in view confirms that the small discrepancies observed near t = 200
in Figure 3 dissipate over longer time horizons, with the Koopman approximation converging
toward the synthetic epidemic dynamics.

This indicates robust the Koopman approach’s robust long-term forecasting capability when
sufficient temporal data are available for training. Although the enriched dictionary D2 includes
bilinear, quadratic, and cross terms that may not correspond directly to epidemiological mech-
anisms, it provides mathematically and numerically meaningful observables that enhance the
representational power of the Koopman operator. This ensures improved predictive accuracy.
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Figure 4: Extended-time validation of Koopman convergence for the Measles outbreak using D2.

7. Conclusion and Perspectives

In this work, we introduced and examined an SIRSD epidemic model that considers re-
infection and disease-induced mortality. This makes the model suitable for pathogens where
partial immunity and fatality rates play a central role. We proved the model’s well-posedness,
reformulated it in normalized variables, and developed an NSFD scheme to generate high-
quality synthetic data. Based on these findings, we applied the Koopman operator framework
with EDMD to obtain a finite-dimensional linear approximation of the epidemic dynamics.
To evaluate the impact of dictionary design, we compared two sets of observables: a mini-
mal epidemiological set D1, and an extended set D2 enriched with nonlinear and cross terms.
Numerical experiments conducted on four case studies (Covid-19, seasonal influenza, Ebola,
and measles) show that, while the minimal dictionary D1 captures the essential dynamics, the
enriched dictionary D2 yields more accurate Koopman simulations of the SIRSD system. This
is particularly evident in its ability to reproduce nonlinear effects and forecast epidemic peaks.
These results confirm the Koopman-SIRSD approach’s capacity to capture dominant modes
and provide operator-theoretic insights into disease spread.

In summary, Figure 5 illustrates the overall workflow of the proposed Koopman–SIRSD
framework. Starting from the SIRSD model, we define observables and approximate the Koop-
man operator via EDMD. The resulting finite-dimensional representation enables spectral anal-
ysis and numerical simulations across different epidemic scenarios.
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SIRSD MODEL

ṡ(t) = −β
s(t) i(t)

1− d(t)
+ ω r(t),

i̇(t) = β
s(t) i(t)

1− d(t)
− (γ + µ) i(t),

ṙ(t) = γ i(t)− ω r(t),

ḋ(t) = µ i(t),

where

s(0) = s0, i(0) = i0,

r(0) = r0, d(0) = d0.

OBSERVABLES (D)

yk =
(
ϕ1(xk), . . . , ϕN (xk)

)⊤
,

with

xk =
(
s(tk), i(tk), r(tk), d(tk)

)⊤
.

KOOPMAN OPERATOR
FRAMEWORK

yk+1 ≈ K yk.

KOOPMAN
MATRIX ESTIMATION

K = arg min
K̃∈RN×N

∥Y ′ − K̃Y ∥F ,

i.e. K = Y ′Y ⋆.

NUMERICAL
SIMULATIONS
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Figure 5: Workflow of the SIRSD epidemic model within the Koopman operator framework.

Beyond its immediate findings, this study reveals several promising perspectives beyond its
immediate findings. The Koopman-based analysis can be extended in multiple ways:

• Control inputs: Vaccination or treatment controls u(t) can be incorporated using DMD
with control (DMDc), leading to models of the form

Y ′ ≈ AY +BU,

which naturally support intervention design.

• Augmented models: Compartmental extensions such as SEIR or SIQR dynamics can
be treated within the same Koopman-EDMD framework.

• Spatial models: Once discretized into ODE systems, PDE-based epidemic formulations
can be lifted into Koopman space, enabling the analysis of spatiotemporal dynamics and
traveling waves.

• Adaptive models: Local Koopman operators may be employed to capture sudden
regime changes or non-stationary behaviors in epidemic data [20].

This methodology is also well-suited for data-driven forecasting when applied to real epidemio-
logical time series subject to noise and underreporting. Finally, future research could investigate
hybrid Koopman-machine learning approaches, that combine operator-theoretic structure with
deep learning for robust epidemic prediction and adaptive control.

In addition to Koopman-based methodologies, there are several other research directions
that can be explored. One such avenue is developing stochastic epidemic models, which are
well-suited to capturing random effects and uncertainties arising from demographic variability
or incomplete data. Another promising direction is fractional-order epidemic models, which
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use derivatives of non-integer order to capture memory effects and hereditary properties in dis-
ease dynamics. Furthermore, PDE models with linear, nonlinear, standard, and/or fractional
diffusion operators can describe spatial heterogeneity and mobility-driven dynamics. Delayed
epidemic models that incorporate incubation or reporting lags are a natural extension because
time delays are known to induce richer dynamical behaviors, such as oscillations and stability
switches. Modern physics-informed neural networks (PINNs) are flexible frameworks that can
be applied to stochastic, fractional, partial differential equation (PDE)-based, and delayed mod-
els. PINNs offer a unified, data-driven approach to simulating and inferring complex epidemic
dynamics.
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[17] S. L. Brunton, M. Budǐsić, E. Kaiser, and J. N. Kutz. Modern Koopman theory for dynamical systems.
SIAM Review, 64(2):229–340, 2022.

[18] T. Berry and S. Das. Limits of learning dynamical systems. SIAM Review, 67(1):107–137, 2025.
[19] W. A. Manzoor, S. Rawashdeh, and A. Mohammadi. Vehicular applications of Koopman operator theory

– A survey. IEEE Access, 11:25917–25931, 2023.
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