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Abstract: This paper examines the effect of irregular bathymetry on the holographic reconstruction 1

of the sound field generated by a moving source in shallow water. In this scenario, acoustic waves 2

propagate along the path between the source and receiver. Spatial inhomogeneities in the waveguide, 3

resulting from complex bottom topography, cause notable horizontal refraction of acoustic modes. 4

The study focuses on how this horizontal refraction affects the structure of the interferogram and the 5

hologram corresponding to the moving source. This investigation is carried out through numerical 6

simulations that incorporate ray refraction due to irregularities in the waveguide. The interferogram, 7

representing the received sound intensity in the frequency-time domain, and the hologram, obtained 8

via a two-dimensional Fourier transform of the interferogram, are analyzed in the presence of spatial 9

variability caused by non-uniform bathymetry. A key finding is that despite these irregularities, the 10

hologram retains sufficient structural information to extract and reconstruct source parameters (e.g., 11

range, velocity). The paper also provides a quantitative estimate of the reconstruction error associated 12

with this approach. 13

Keywords: shallow water;irregular bathymetry;interferogram; hologram; horizontal refraction, mov- 14

ing source, source parameters estimation 15

1. Introduction 16

In recent years, interferometric signal processing (ISP) has attracted increasing scientific attention 17

within the field of underwater acoustics. ISP exploits stable features of interference patterns generated 18

by broadband acoustic fields in shallow water waveguides [1,2]. Comprehensive discussions of 19

the theoretical foundations and methodological aspects of ISP can be found in seminal works [3–5]. 20

Numerous studies have demonstrated the practical applications of ISP. For instance, in [6,7], ISP 21

algorithms are used to determine waveguide-invariant parameters. The approach in [8] illustrates the 22

use of ISP for processing weak signals, achieving performance improvements via array beamforming 23

techniques. In [9], ISP is applied to classify seabed types using acoustic emissions from passing 24

ships. The authors of [10] introduce a method for estimating the range to a source in shallow water 25

conditions based on ISP analysis. A range-independent invariant estimation framework utilizing ISP 26

principles is described in [11]. Additionally, the work in [12] interprets interference fringe structures 27

in terms of eigenray or eigenbeam arrival times. Finally, adaptations of ISP for deep-water passive 28

sonar applications are reported in [13,14], highlighting the method’s flexibility for diverse underwater 29

acoustic scenarios. 30

Among the various techniques in interferometric signal processing (ISP), holographic signal pro- 31

cessing (HSP) is a particularly promising direction, as discussed in [15–17]. The essential physical 32
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concepts and mathematical framework for creating holograms were first formulated in [15]. In the HSP 33

methodology, a quasi-coherent summation of sound intensity in the joint frequency-time domain yields 34

an interferogram I(ω, t), cf. [16,17]. To investigate the spatial distribution of the accumulated intensity, a 35

two-dimensional Fourier transform (2D-FT) is then performed on I(ω, t). The outcome of this transfor- 36

mation, known as the Fourier hologram (or simply the hologram), is expressed as F(τ, ν̃) = F2D{I(ω, t)}. 37

Here, F(τ, ν̃) represents a redistribution of the acoustic energy from I(ω, t) into distinct, localized 38

focal regions that emerge as a consequence of modal interference patterns. In essence, a hologram is a 39

variant of sound field focusing [18], which is implemented in the Fourier- Space using a single receiver. 40

In the early stages of developing the HSP method [15–17] and its verification [19], it was generally 41

assumed that the properties of the acoustic waveguide remained unchanged in space and time. How- 42

ever, in reality, acoustic signals often propagate through waveguides with significant inhomogeneities. 43

In shallow water environments, this variability often results from hydrodynamic disturbances gen- 44

erated by internal waves. The first experimental study of HSP applied to a stationary source under 45

realistic environmental conditions was reported in [20,21]. The study showed that hydrodynamic per- 46

turbations distort the interferogram I(ω, t) and expand the focal regions observed in the reconstructed 47

hologram F(τ, ν̃). When inhomogeneities are present, the hologram can be presented as the sum of 48

two components: One is produced by the unperturbed waveguide, and the other is associated with 49

the perturbations. 50

This decomposition was used in [20,21] to interpret the measurements obtained during the 51

SWARM’95 experiment [22,23]. During SWARM’95, the dominant source of waveguide variability 52

was intense internal waves (IIWs) [23–26], a common hydrodynamic phenomenon in the ocean [24–26]. 53

The experiment utilized two distinct acoustic propagation paths, both of which were generated by 54

the same source and received by two vertically oriented arrays located in different positions. The 55

first path was aligned at a small angle to the IIW wavefront; in this geometry, IIWs produce strong 56

horizontal refraction of acoustic rays. The second path was perpendicular to the IIW wavefront so 57

that the internal waves traveled along the propagation path from the source to the receiver. Under 58

these conditions, horizontal refraction was absent, but substantial redistribution of acoustic energy 59

occurred between modes, i.e., mode coupling. The effects of IIWs have been discussed in our prior 60

works [27–29]. 61

In addition to internal waves, an important factor contributing to the spatial inhomogeneity of 62

a shallow water waveguide is the bottom relief, or irregularities in the bathymetry. The properties 63

of these irregularities vary depending on the region being studied. Nevertheless, general patterns 64

characteristic of many shallow-water areas across the world ocean exist. Experimental observations 65

[30–37] indicate that the seabed on the continental shelf is generally smooth, with deviations from the 66

average depth not exceeding tens of meters vertically. At the same time, the range of bottom relief 67

variations is extensive [32–35], with horizontal scales spanning from a few centimeters to hundreds of 68

kilometers. This structure of bathymetric irregularities, similar to internal waves, leads to significant 69

acoustic effects associated with horizontal refraction and mode coupling. Therefore, the effect of 70

irregular bathymetry on hologram formation from a moving source in shallow water is an important 71

factor in the robustness of the HSP method that should be researched. 72

The aim of this paper is to study the effect of irregular bathymetry on holographic sound field 73

reconstruction generated by a moving source in a shallow water environment. Spatial inhomogeneities 74

introduced by complex bottom topography along the acoustic propagation path between the source 75

and receiver cause pronounced horizontal refraction of acoustic modes. This refraction alters the 76

spatial-temporal structure of the received field, which can degrade the performance of holographic 77

processing techniques. We conduct our analysis through high-fidelity numerical simulations that 78

explicitly model the refraction of acoustic modes induced by the non-uniform bathymetric features 79

of the waveguide. Within this framework, we examine the interferogram, which is defined as the 80

distribution of received sound intensity in the joint frequency-time domain, and its corresponding 81

hologram. The hologram is obtained via the two-dimensional Fourier transform of the interferogram. 82
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The study focuses on how spatial variability from the irregular seabed modifies the fine- and large-scale 83

features of these representations. A key finding is that despite the significant distortions introduced by 84

horizontal refraction, the hologram retains a coherent and interpretable structure containing sufficient 85

information for the reliable extraction and reconstruction of key source parameters, including range 86

and velocity. This finding demonstrates that the holographic method is resilient to the effects of 87

complex bathymetry and remains a viable approach for characterizing sources in realistic shallow 88

water conditions. The paper also provides a quantitative evaluation of reconstruction error, offering 89

practical insights into accuracy limits under varying degrees of bottom irregularity. 90

The paper consists of five sections. Section 1, the introduction, describes the current state of 91

the problem under consideration. Section 2 presents a three-dimensional model of a shallow water 92

waveguide in the presence of bottom irregularities. Three cases of spatial dependence of H(r) are 93

considered. These cases are: a waveguide with regular bathymetry (Section 2.1); a littoral wedge 94

waveguide (Section 2.2); and a canyon waveguide (Section 2.3). Section 3 describes the mathematical 95

models of the interferogram I(ω, t) and the hologram F(τ, ν̃) of a moving source in a shallow water 96

waveguide with an irregular bottom. Section 3 is organized into six distinct subsections, each ad- 97

dressing a specific aspect of the sound field in a shallow water waveguide with irregular bathymetry. 98

Subsection 3.1 introduces the theoretical framework for modeling the sound field in such a waveguide, 99

employing the combined approach of vertical modes and horizontal ray approximations. This sub- 100

section outlines how these two methods interact to describe three-dimensional sound propagation 101

in a complex underwater environment. Subsection 3.2 develops the Sturm-Liouville eigenvalue and 102

eigenfunction problem, incorporating boundary conditions that model a free surface at the top and 103

a solid or lossy bottom at the base of the waveguide. The solution to this problem yields a set of 104

vertical modes that form the basis for subsequent acoustic field calculations. Subsection 3.3 shifts 105

the focus to the mode ray description in the horizontal plane. Here, we derive the eikonal equation 106

(which governs phase evolution) and the transport equation (which describes amplitude variation) 107

for mode rays traveling through a waveguide whose bottom topography varies spatially. These 108

equations form the foundation for predicting how sound energy is refracted, focused, or dispersed by 109

bathymetric irregularities. Subsection 3.4 addresses an alternative, yet complementary, representation: 110

the parabolic mode equations in the horizontal plane. This formulation efficiently simulates horizontal 111

sound propagation over large distances, especially in environments where the slope and curvature of 112

the bathymetry are significant. Subsection 3.5 presents the methodology for constructing a sound field 113

interferogram in a waveguide with irregular bathymetry. The interferogram is a visualization tool that 114

reveals patterns of constructive and destructive interference between modes, offering insight into the 115

spatial structure of the acoustic field. Finally, Subsection 3.6 examines the formation and analysis of 116

the sound field hologram for the same complex waveguide environment. This technique enables the 117

reconstruction of the three-dimensional structure of the acoustic field, offering a deeper understanding 118

of how bathymetric features impact wave propagation. 119

Section 4 considers the numerical modeling results for different cases of waveguide bathymetry. 120

This section is divided into six subsections, each of which focuses on a particular scenario of acoustic 121

wave propagation involving stationary or moving sound sources in various waveguide environments. 122

Subsection 4.1 examines the sound field generated by a stationary source in a waveguide with regular 123

bathymetry, where the seabed topography is uniform and does not vary significantly with horizontal 124

position. This subsection outlines the theoretical formulation and provides representative results 125

illustrating how sound propagates in this idealized environment. Subsection 4.2 extends the analysis 126

to the sound field of a moving source in the same regular-bathymetry waveguide. Here, the influence 127

of source motion on the spatial and temporal characteristics of the acoustic field is examined, including 128

effects such as frequency shifts, beam pattern distortion, and the evolution of the interference structure. 129

Subsection 4.3 turns to a littoral wedge waveguide configuration and investigates the sound field 130

produced by a stationary source. In this environment, the seabed rises toward the shoreline, creating a 131

wedge-shaped bathymetry that introduces complex modal coupling, refraction, and energy redistri- 132
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bution effects. Subsection 4.4 considers the case of a moving source in a littoral wedge waveguide, 133

emphasizing how the combination of source motion and sloping bathymetry modifies acoustic propa- 134

gation. It places special focus on changes in mode excitation, shifting interference fringes, and potential 135

shadow zones that may form due to the wedge geometry. Subsection 4.5 explores the sound field of a 136

stationary source in a canyon-shaped waveguide where the seabed features a deep, narrow depression. 137

The analysis examines how such a topographic feature traps, channels, or scatters sound energy, 138

resulting in different spatial field patterns than those of regular bathymetry. Finally, Subsection 4.6 139

investigates the sound field generated by a moving source in a canyon waveguide. This scenario 140

combines the effects of the source’s motion with the canyon’s strong topographic influence, revealing 141

unique propagation behaviors, such as enhanced mode conversion, directional energy focusing, and 142

localized acoustic hotspots. The main findings of the paper are summarized in Section 5. 143

2. Waveguide Model with Irregular Bathymetry 144

In this section, we present the three-dimensional model of the shallow water waveguide with 145

irregular bathymetry that was used in our study (see Figure 1). 146

Y 

Z 

X
receiver 

source 

Figure 1. Model of a shallow water waveguide with irregular bathymetry.

The shallow water waveguide is defined in a Cartesian coordinate system (x, y, z) where the x and 147

y axes lie in the horizontal plane and the z-axis points downward from the free surface at z = 0. The 148

waveguide is modeled as a water layer with spatially and temporally varying sound speed c(r, z) and 149

density ρ(r, z). Here, r = (x, y) denotes the horizontal position vector. The water column is bounded 150

above by the free surface at z = 0 and below by the sea bottom at z = zb(r). 151

The seabed’s density and refractive index are given by ρb and nb(1 + iκ), respectively [38,39], 152

where κ is the attenuation factor, defined as κ = χcb/(54.6 f ). In this expression, χ represents the 153

bottom loss coefficient. cb is the acoustic velocity in the bottom layer, and f is the sound frequency. 154

The spatial variation of the bathymetry can be expressed as follows: 155

zb(r) = H(r) + H̃(r), (1)

where H(r) describes general relief , and H̃(r) accounts for meso- and microrelief of irregular 156

bathymetry. The characteristics of bottom irregularities depend on the specific study area. How- 157

ever, some general features are typical of many shallow water regions of the world’s oceans. According 158

to the results of experimental studies [30–37], the seabed surface on the continental shelf is relatively 159

smooth, with deviations from the mean seabed level not exceeding several tens of meters. 160

At the same time, the spectrum of bottom irregularities is very broad [33–37] – the linear dimen- 161

sions range from centimeters to hundreds of kilometers. The entire spectrum can be divided into three 162

parts: general relief , mesorelief , and microrelief . The general relief , which characterizes the main 163

geomorphological features (ridges, plains, depressions, etc.) has dimensions of approximately 104 to 164

105 meters. The mesorelief includes relief features stretching approximately 102 to 103 meters. The 165
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microrelief (formed by ripples, stones, hummocks, etc.) has spatial scales of approximately 10−2 to 101
166

meters. According to this classification, the first large-scale component of the seabed relief corresponds 167

to regular changes in waveguide parameters depending on the frequency. The other two components, 168

mesorelief and microrelief, correspond to random changes. 169

In our paper, we will analyze the influence of the source hologram structure on the spatial 170

variation of the bathymetry associated with the general relief H(r). We will assume that the mesorelief 171

and the microrelief are absent: H̃(r) = 0. Thus, we will suppose that: 172

zb(r) = H(r) = H(x, y), (2)

Let us perform a comparative analysis of the spatial dependence of H(r) in three cases (see 173

Figure 2). The cases are a waveguide with regular bathymetry (Figure 2(a)), a littoral wedge waveguide 174

(Figure 2(b)), and a canyon waveguide (Figure 2(c)). 175
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Figure 2. Models of shallow water waveguides: (a) regular waveguide; (b) littoral wedge waveguide; (c) canyon
waveguide.

2.1. The Regular Waveguide 176

Consider the regular waveguide model (Figure 2(a)). In this model, the waveguide is shallow and 177

uniform in depth across its entire horizontal extent, with no variation in the seabed elevation. This 178

highly idealized representation is a standard benchmark in underwater acoustics because it provides a 179

controlled environment in which the influence of environmental parameters, such as spatial variations 180

in the sound speed profile of the water column, can be examined independently of changes in seabed 181

topography. By eliminating bottom relief as a factor, one can focus on fundamental propagation 182

mechanisms, validate analytical models, and compare numerical methods under consistent conditions. 183

According to the general model (Figure 2(a)) of a shallow water waveguide, we use the Cartesian 184

coordinate system (x, y, z), where the x and y axes lie in the horizontal plane, and the z-axis points 185

downward from the free surface at z = 0. The seabed is described by the depth function zb(r) = 186

H(r) = H(x, y). In the case of a regular waveguide model, the depth is assumed to be constant in both 187

the x and y directions: 188

H(r) = H(x, y) = H0. (3)

Regular waveguide parameters: 189

• H0 is the reference depth of the waveguide (in meters). 190

This configuration creates a waveguide through which acoustic modes can propagate without experi- 191

encing horizontal refraction or mode coupling due to bottom relief. The uniform bathymetry ensures 192

translational isotropy in all horizontal directions. 193

2.2. The Littoral Wedge Waveguide 194

Consider the littoral wedge waveguide (see Figure 2(b)). The littoral wedge model describes a 195

waveguide in shallow water in which the water depth changes linearly in one horizontal direction. 196

This simplified yet representative configuration is a useful approximation of real-world nearshore 197
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environments, including continental shelves, gently sloping seabeds, tidal flats, and coastal approaches. 198

In these settings, the seafloor gradually inclines, either descending toward deeper offshore waters 199

or rising toward the shoreline. The model provides a convenient framework for investigating sound 200

propagation in coastal zones, where depth variations strongly influence acoustic properties, alter 201

underwater wave paths and speeds, and affect their interaction with the seabed and free surface. 202

The littoral wedge model captures the essential geometric features of sloping-bottom environments, 203

enabling researchers to analyze complex shallow-water acoustics in a more tractable and controlled 204

manner. 205

We use the same Cartesian coordinate system (x, y, z) (Figure 2(b)), where the x and y axes lie 206

in the horizontal plane and the z-axis points downward from the free surface at z = 0. The seabed is 207

described by the depth function zb(r) = H(r) = H(x, y). In this case, the littoral wedge is assumed to 208

vary only in the y-direction: 209

H(r) = H(x, y) = H(y) = H0 − k0 y. (4)

Littoral wedge waveguide parameters: 210

• H0 is the reference depth of the waveguide at x = 0 (in meters); 211

• k0 is the slope coefficient (meters in the vertical direction per meter in the horizontal direction). 212

For k0 > 0, the depth decreases as y increases; for k0 < 0, the depth increases as y increases; for 213

k0 = 0, the depth remains constant as y changes; 214

• α is the slope angle of the seabed plane (k0 = tan α) relative to the horizontal plane (radians). 215

In the case of a littoral wedge waveguide, the geometry supports the development of a guided acoustic 216

environment. In this environment, modal propagation is subject to either pronounced horizontal 217

refraction or mode coupling arising from bottom relief. The gradual seabed slope characteristic of the 218

wedge profile induces horizontal refraction of acoustic modes when they propagate at small angles 219

relative to the x-axis. Conversely, when propagation occurs at small angles relative to the y-axis, 220

mode coupling within the acoustic field becomes the dominant effect. These bathymetric irregularities 221

give rise to substantial anisotropy in the acoustic propagation environment with distinct directional 222

dependencies in sound energy transport. 223

2.3. The Canyon Waveguide 224

Consider the canyon waveguide model (see Figure 2(c)). This model describes a shallow wa- 225

ter acoustic environment featuring a pronounced, localized seabed depression, such as a trench or 226

submarine canyon. This distinctive yet representative configuration is a useful approximation of the 227

bathymetric conditions commonly found in the real world along continental margins, fjord entrances, 228

and near underwater escarpments. In these settings, the seafloor includes steeply sloping sidewalls 229

and a narrow, elongated axis that together create a confined acoustic channel. 230

These features can significantly impact the propagation of underwater sound by modifying 231

the modal structure, trapping acoustic energy within the canyon boundaries, guiding sound waves 232

along the canyon axis, and focusing beams through refractive effects. The model provides a practical 233

framework for studying acoustic processes in complex coastal and shelf-edge environments where 234

abrupt depth changes greatly impact wave speeds, transmission loss, and mode coupling. By capturing 235

the essential geometric characteristics of submarine canyons, the canyon waveguide model allows 236

researchers to study the interaction between topography and sound in a more manageable and 237

controlled environment. 238

As before, we consider a Cartesian coordinate system (x, y, z) (Figure 2(c)), where the x and y axes 239

define the horizontal plane and the z-axis points downward from the free surface at z = 0. The seabed 240

profile is represented by the depth function zb(r) = H(r) = H(x, y). For the canyon waveguide model, 241
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the bathymetry includes a localized depression in the y-direction. The canyon axis is oriented along 242

the x-direction. The mathematical model of the canyon waveguide bathymetry has the following form: 243

H(r) = H(x, y) = H0 + A0sech2(y/L0), (5)

Canyon waveguide parameters: 244

• H0 is the reference depth of waveguide (in meters); 245

• A0 is the canyon depth (in meters); 246

• L0 is the canyon’s half-width (in meters). 247

In the case of a canyon waveguide, the seabed features a pronounced depression with steep 248

sidewalls that form a natural acoustic channel. This configuration creates a complex shallow-water 249

acoustic environment in which modal propagation is influenced by horizontal refraction and inter- 250

modal coupling driven by abrupt bathymetric variations. When acoustic waves propagate along the 251

canyon’s axis — typically oriented in the x-direction, the steep lateral gradients in depth can refract 252

energy toward the canyon’s centerline, effectively trapping and guiding it over long distances. Con- 253

versely, when propagation is oriented across the canyon (i.e., in the y-direction), the strong transverse 254

bathymetric variation promotes significant mode coupling and energy redistribution between modes. 255

This highly non-uniform bathymetry induces pronounced anisotropy in acoustic propagation charac- 256

teristics, resulting in direction-dependent transmission loss, altered modal dispersion properties, and 257

the spatial focusing or defocusing of acoustic beams. Capturing these effects, the canyon waveguide 258

model provides a powerful framework for investigating the interplay between complex topography 259

and underwater sound in continental shelf environments. 260

A summary of the three cases of the shallow water waveguide models – regular waveguide, 261

littoral wedge, and canyon – is presented in Table 1. 262

Table 1. Models of shallow water waveguides

Model Depth Function H(r) Model Parameters

1. Regular Waveguide H(r) = H0 H0 – reference depth

2. Littoral Wedge H(r) = H0 − k0 y H0 – reference depth,
k – slope coefficient.

3. Canyon H(r) = H0 + A0 sech2(y/L0) H0 – reference depth,
A0 – canyon depth,
L0 – canyon’s half-width.

3. Interferogram and Hologram in the Presence of Irregular Bathymetry 263

This section presents a model of the source interferogram and hologram within a shallow-water 264

waveguide featuring irregular bathymetry. It is divided into six parts. Subsection 3.1 describes the 265

sound field model in a waveguide with irregular bathymetry using the framework of vertical modes 266

and the approximation of horizontal rays. Subsection 3.2 formulates the Sturm-Liouville eigenvalue 267

and eigenfunction problem with boundary conditions representing a free surface and a bottom in 268

a shallow-water waveguide. This problem is used to determine the vertical modes. Subsection 3.3 269

derives the eikonal and transport equations for mode rays in the horizontal plane for a waveguide 270

with irregular bathymetry. Subsection 3.4 considers the mode parabolic equations in the horizontal 271

plane for the same waveguide environment. Subsection 3.5 presents the sound field interferogram in a 272

waveguide with irregular bathymetry. Finally, Subsection 3.6 analyzes the sound field hologram in a 273

waveguide with irregular bathymetry. 274
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Our work is based on computational modeling of acoustic wave propagation in three-dimensional 275

(3D) shallow-water waveguides with spatially varying properties. Variations in the medium, partic- 276

ularly those caused by irregularities in the seabed topography, can substantially modify the sound 277

field through mechanisms such as refraction and scattering. Accurate broadband simulations at low 278

frequencies in such complex 3D settings require considerable computational resources, often making 279

it necessary to apply advanced numerical algorithms together with high-performance computing 280

systems to achieve physically realistic predictions. There are five main categories of numerical tech- 281

niques for modeling sound propagation in inhomogeneous shallow-water environments [40] : (1) 282

Three-Dimensional Helmholtz Equation (3DHE) Methods[41–43]; (2) Three-Dimensional Parabolic 283

Equation (3DPE) Methods [44–50]; (3) Three-Dimensional Ray-Based (3DR) Methods [51,52]; (4) Verti- 284

cal Mode Combined with Two-Dimensional Modal Parabolic Equation (VMMPE) Methods [53–55]; (5) 285

Vertical Mode Combined with Horizontal Ray (VMHR) Methods [56,57]. 286

In the present study, we examine low-frequency acoustic fields within two narrow frequency 287

bands (100–140 Hz) in a shallow-water environment. Spatial inhomogeneities in this environment 288

are attributed to bathymetric irregularities aligned along the propagation path from the source to 289

the receiver. These variations in the seabed cause pronounced horizontal refraction effects. Of the 290

five categories of numerical approaches described, the VMHR and VMMPE frameworks are the 291

most appropriate for our problem. These methods are well-suited for simulating the propagation of 292

low-frequency waves in shallow water settings affected by seabed topography because they rigor- 293

ously account for boundary conditions and effectively capture the physical processes associated with 294

horizontal refraction. 295

In contrast, 3DR models are optimized for high-frequency applications and cannot adequately re- 296

solve modal behavior in shallow-water, low-frequency conditions. While 3DHE and 3DPE models can 297

yield highly accurate solutions, they are too computationally expensive for the fully three-dimensional 298

problem considered here. The VMHR and VMMPE approaches, on the other hand, strike an effi- 299

cient balance between physical realism and numerical feasibility, enabling the accurate modeling of 300

horizontal refraction phenomena. Consequently, these methods are adopted as the primary computa- 301

tional tools for simulating sound propagation under the influence of along-acoustic-path bathymetric 302

irregularities in this work. 303

It should be noted that the influence of ocean waveguide bathymetric irregularities on acoustic 304

field propagation has been investigated for several decades by numerous authors (see, e.g., [58–69]). 305

However, in all of these studies, the primary focus has been on the characteristics of the acoustic field 306

structure in shallow water waveguides with irregular bathymetry. The objective of the present work, 307

by contrast, is to analyze the effect of bathymetric irregularities on the structure of the acoustic source 308

hologram. 309

3.1. Sound Field 310

Within the framework of the VMHR and VMMPE approaches, the complex acoustic field in a 311

shallow waveguide, influenced by bathymetric irregularities and described by equations (1)–(5), can 312

be expressed as follows, cf. [38,39]: 313

p(r, z, ω) =
M

∑
m=0

Pm(r, ω)ϕm(z, ω), (6)

Here, r = (x, y) denotes the horizontal position vector of the source, Pm represents the amplitude of 314

the m-th mode, and ϕm(z, ω) denotes the vertical structure (mode shape) of the corresponding acoustic 315

mode in a waveguide unaffected by bathymetric irregularities. 316
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3.2. Vertical Modes 317

For each mode, the complex horizontal wavenumber is expressed as 318

ξm(r, ω) = hm(r, ω) + i γm(r, ω), (7)

where hm and γm denote its real and imaginary components, respectively. The summation is carried 319

out over M, the total number of propagating modes included in the model. Consequently, the acoustic 320

pressure field p is a function of the angular frequency ω = 2π f . The modal eigenfunctions ϕm(z, ω) 321

and their corresponding complex wavenumbers ξ̄m are determined by solving a Sturm–Liouville 322

boundary-value problem with a free-surface condition at the top and a bottom boundary condition at 323

z = H, as described in [38,39]: 324

d2ϕm(ω, z)
dz2 + k2n̄2(z) ϕm(ω, z) = ξ̄2

m ϕm(ω, z), (8)

325

ϕm(ω, 0) = 0, ϕm(ω, H) + g(ξ̄m)
dϕm(ω, z)

dz

∣∣∣∣
z=H

= 0, (9)

with 326

g(ξ̄m) =
η√

ξ̄2
m − k2n2

b(1 + iκ)
. (10)

The set of eigenfunctions ϕm(ω, z) is normalized according to 327

∫ H

0
ϕl ϕm dz + η

∫ ∞

H
ϕl ϕm dz = δml , (11)

where δml denotes the Kronecker delta. 328

3.3. Mode Rays in the Horizontal Plane 329

The dependence Pm(r, ω) determines the distribution of the modal amplitude in the horizontal 330

plane [56,57]: 331

∆rPm + h2
m(r, ω)Pm = 0. (12)

Within the ray approximation, Pm(r, ω) can be represented as follows: 332

Pm(r, ω) = ∑
k

Amk(r, ω)eiθmk(r,ω). (13)

Here, Amk(r, ω) and θmk(r, ω) are determined by the eikonal and transport equations: 333

(∇rθmk)
2 = h2

mn2
m(r, ω), 2∇r Amk∇rθmk + Amk∇2

r θmk = 0, (14)

where nm(r, ω) = hm(r, ω)/h0
m. Here h0

m(ω) is the horizontal wavenumber of the mode for the 334

reference depth H0. As seen from Eq. (13), a significant drawback of the ray approach is the problem 335

of accounting for multiple rays arriving at the observation point. 336

3.4. Mode Parabolic Equations in Horizontal Plane 337

The distribution of the modal amplitude Pm(r, t) is better suited for numerical calculations of the 338

sound field, and is represented within the framework of the parabolic approximation as [44,45]: 339

Pm(r, ω) = Fm(r, ω) exp(ihmr), (15)
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where Fm(r, ω), under the assumption ∂Fm/∂x ≪ hmFm, satisfies the equation: 340

∂Fm

∂x
=

i
2hm

∂2Fm

∂y2 +
ihm

2
(
n2

m(r, ω)− 1
)

Fm. (16)

The mode amplitude Pm(r, ω, t) is determined as the solution of the parabolic equation: 341

∂Pm

∂x
=

i
2h̄m

∂2Pm

∂y2 +
ih̄m

2
(
n2

m(r, ω, t)− 1
)

Pm, (17)

where nm(r, ω) denotes the horizontal refractive index of the m-th acoustic mode in the waveguide in 342

presence of the bathymetric irregularities: 343

nm(r, ω, t) = hm(r, ω, t)/h0
m. (18)

Here, h0
m(ω) is the horizontal wavenumber of the mode for the reference depth H0. The numerical 344

solution of Eq. (17) is performed using the "Split Step Fourier" (SSF) algorithm [44,45]: 345

Pm(x + ∆x, y, ω, t)

= exp
[
−ih̄m∆xUm(x, y, ω, t)

]
×F−1

{
exp

[
ih̄m∆xTm(h)

]
×F

[
P∗

m(x, y, ω, t)
]∗}. (19)

Here F is the Fast Fourier Transformation, F−1 denotes the inverse Fast Fourier Transformation, 346

Tm(h) = 0.5(h/h̄m)2 is the operator in the Fourier Space of wavenumbers h̄m, Um(x, y, ω, t) = 347

−0.5
(
n2

m(x, y, ω, t) − 1
)

is the operator in the space of coordinates (x, y) in the horizontal plane. 348

To specify the initial conditions in the calculations using the scheme Eq. (19), it was assumed that the 349

source, located at the point with coordinates (x0, y = 0), emits a field in the Fourier space described by 350

the expression: 351

Am exp
{
− h2

2∆2
m

}
. (20)

The parameter Am defines the modal amplitude and depends on the mode value at the source depth. 352

The parameter ∆m = hm sin φmax characterizes the range of initial beam angles φ taken into account in 353

the calculation. The angle φ is measured from the x-axis. 354

3.5. Interferogram 355

Within the VMHR and VMMPE framework, see Eq. (6), the interferogram I(ω, t) for a moving 356

source in the frequency-time domain (ω, t) can be expressed as 357

I(ω, t) = ∑
m

∑
n

Am(ω, t) A∗
n(ω, t) exp

[
i hmn(ω) (x0 − vt)

]
= ∑

m
∑
n

Imn(ω, t), m ̸= n,
(21)

where hmn(ω) = hm(ω)− hn(ω). The term Imn(ω, t) represents the partial interferogram resulting 358

from the interaction between the m-th and n-th modes. The quantity Am(ω, t) denotes the amplitude 359

of the m-th mode, 360

Am(ω, t) = Pm(ω, t) ϕm(z, ω) exp(−i hmr), (22)

With x0 as the initial position of the source at t0 = 0, t as the current time, and v as the source velocity, 361

The superscript "∗" indicates complex conjugation. The restriction m ̸= n ensures that the mean 362

(auto-term) component is excluded from I(ω, t). 363
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3.6. Hologram 364

In this part of the study, we analyze the holographic representation of an acoustic source in 365

motion and take into account the effects of horizontal refraction due to bathymetric irregularities. A 366

two-dimensional Fourier transform (2D-FT) is applied to the interferogram I(ω, t) given by Eq. (18) in 367

joint frequency-time space (ω, t) to extract the holographic information. The result is the hologram 368

F(τ, ν̃) in the form 369

F(τ, ν̃) = ∑
m

∑
n

∫ ∆t

0

∫ ω2

ω1

Imn(ω, t) exp
[
i (ν̃t − ωτ)

]
dt dω

= ∑
m

∑
n

Fmn(τ, ν̃),
(23)

where τ denotes the time delay, and ν̃ = 2πν is the angular frequency variable in the hologram domain. 370

The function Fmn(τ, ν̃) represents the contribution from the interference between modes m and n. 371

Frequency integration is performed over the interval ω1 = ω0 − ∆ω/2 to ω2 = ω0 + ∆ω/2. Here, 372

∆ω is the signal bandwidth, ω0 is the reference (central) frequency, and ∆t corresponds to the total 373

observation time. 374

For subsequent derivations, a first-order (linear) approximation for the modal dispersion is 375

employed: 376

hm(ω) ≈ hm(ω0) +
dh̄m

dω

∣∣∣∣
ω=ω0

(ω − ω0). (24)

If the modal amplitudes Pm and the source spectrum vary slowly with frequency compared to the 377

rapid oscillations of exp[i hm(ω)(x0 + vt)], the partial hologram in Eq. (15) can be recast in the compact 378

form 379

Fmn(τ, ν̃) = Am(ω0) A∗
n(ω0)∆ω ∆t exp

[
i Φmn(τ, ν̃)

]
×

×
sin

{[
x0

dhmn(ω0)
dω − τ

]
∆ω
2

}
sin

{[
v hmn(ω0) + ν̃

]∆t
2

}
[

x0
dhmn(ω0)

dω − τ
]

∆ω
2

[
v hmn(ω0) + ν̃

]∆t
2

, (25)

where Φmn(τ, ν̃) denotes the phase of the partial hologram Fmn(τ, ν̃): 380

Φmn(τ, ν̃) =
( ν̃ ∆t

2
− τ ω0

)
+ hmn(ω0)

(∆t
2

v + x0

)
. (26)
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Figure 3. The structure of the partial hologram Fmn(τ, ν̃) for three different source motion scenarios: (a) the source
approaches the receiver; (b) the source–receiver distance remains fixed; (c) the source recedes from the receiver.

As Eq. (25) shows, the hologram is concentrated in two regions of the (ν̃, τ) plane that are 381

symmetric with respect to the origin (see Fig. 3). This symmetry stems from the relation Fmn(ν̃, τ) = 382

Fnm(−ν̃,−τ). When the radial velocity is negative (v < 0), corresponding to a trajectory angle 383

π/2 < φ ≤ π, the hologram appears in quadrants I and III of the (ν̃, τ) plane (Fig. 3a). When the 384
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radial velocity is zero (v = 0), meaning the source-receiver distance remains unchanged, the hologram 385

lies along the τ-axis (Fig. 3b). A positive radial velocity (v > 0), associated with a trajectory angle 386

0 ≤ φ < π/2, places the hologram in quadrants II and IV (Fig. 3c). 387

These spatial patterns allow us to determine from the hologram whether the source is approaching 388

or receding from the receiver. For the focal spot, the expressions for radial velocity and initial source 389

range are given by the following equations: 390

v̇ = −kvν̃µ, ẋ0 = kxτµ, (27)

where 391

kv = (m − n)
(

hmn(ω0)
)−1

, kx = (m − n)
(

dhmn(ω0)/dω
)−1

. (28)

Consider the angular distribution of the spectral density of the hologram F(τ, ν̃): 392

G(χ) =
∫ ∆τ

0

∣∣F(τ, χτ)
∣∣ dτ (29)

The function G(χ) has maximum value at χ = χmax if the source is present. The direction of the 393

maximum value is defined by ε. The maximum value of G(χmax) is two or more times higher than the 394

values in the other directions (χ ̸= χmax): 395

G(χmax) ≥ 2G(χ). (30)

The Eq. (30) is the criterion for source detection. 396

4. Numerical Simulation Results 397

This section presents the results of the numerical modeling of the interferogram I(ω, t) and 398

the hologram F(τ, ν̃) for a broadband acoustic source in a shallow-water waveguide with irregular 399

bathymetry. In the simulated scenarios, the irregularities on the bottom are aligned along the acoustic 400

propagation path from the source to the receiver. This results in pronounced horizontal refraction. The 401

analysis considers how such bathymetric features influence the interferogram and hologram of the 402

acoustic field for two different source configurations. The first configuration corresponds to a fixed 403

source-receiver geometry (i.e., a stationary source), while the second involves a moving source that 404

propagates over irregular bathymetry. For the latter, three types of waveguide geometry are examined: 405

regular bathymetry, a littoral wedge, and a submarine canyon. To enable direct comparison of the 406

effects of bathymetry across all scenarios, the initial simulation parameters are identical in each case. 407

Section 4 is divided into six subsections, each of which addresses a specific combination of 408

waveguide geometry and source motion. Section 4.1 presents the numerical simulation results for a 409

regular waveguide with a stationary source, and Section 4.2 analyzes the corresponding case with 410

a moving source. Section 4.3 reports the modeling outcomes for a littoral wedge waveguide with a 411

stationary source. Section 4.4 examines the effects of source motion in the same bathymetric environ- 412

ment. Section 4.5 provides the results obtained for a canyon-type waveguide with a stationary source. 413

Section 4.6 discusses the modifications to the acoustic field and hologram structure observed for a 414

moving source within the canyon geometry. This organization allows for a systematic comparison of 415

stationary and moving source scenarios across three distinct bathymetric conditions and enables the 416

consistent assessment of the influence of bottom topography on the interferogram and hologram. 417

4.1. Regular Waveguide. First Case: Non-Moving Source (v = 0 m/s). 418

Consider the regular waveguide model (Figure 2(a)). In this configuration, the waveguide 419

is characterized by a shallow, horizontally uniform water column with a constant depth and an 420

invariant seabed elevation. This idealized setting has long been used as a benchmark in underwater 421
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acoustics because it provides a simplified yet rigorous framework for isolating the effects of specific 422

environmental parameters. 423

The regular waveguide removes bathymetric variability as a factor, allowing researchers to inves- 424

tigate fundamental propagation mechanisms, assess the influence of water-column properties (e.g., 425

sound-speed profiles), and conduct systematic sensitivity studies. Its controlled geometry also facili- 426

tates the validation of theoretical formulations and serves as a reference case for the intercomparison 427

of numerical models, enabling consistency checks across different computational approaches. Thus, 428

the regular waveguide plays a critical role in establishing a baseline understanding and ensuring the 429

reliability of more complex simulations in realistic ocean environments. Furthermore, it is often used 430

to study broadband propagation and dispersion effects, offering a baseline scenario to evaluate the 431

temporal and frequency-dependent behavior of acoustic signals in shallow water. 432

Y 

Z 

X 

source 

receiver 

Figure 4. Model of a shallow water waveguide. Regular bathymetry.

For this geometry we have 433

zb(r) = H(r) = H(x, y) = H0, (31)

where H0 is the reference depth of the regular waveguide. The parameters of the regular waveguide 434

used in the numerical simulation are presented in Table 2. 435

Table 2. Shallow water waveguide parameters. Regular waveguide

Parameter ∆ f = 100–140 Hz

1. Waveguide depth H0 50 m
2. Water sound speed 1500 m/s
3. Bottom refractive index nb = 0.84 (1 + i 0.03)
4. Bottom density ρb = 1.8 g/cm3

5. Modes count M = 3
6. Receiver coordinates xq = 0, yq = 0, zq = 45 m
7. Source coordinates xs = 10 km, ys = 0, zs = 23 m
8. Source bearing θ = 0◦

Source coordinates: xs = 10 km, ys = 0 m, zs = 23 m. Receiver coordinates: xq = yq = 0, 436

zq = 45 m. The source is stationary (velocity v = 0 m/s) and approaching the receiver along the line 437

y = 0. The initial horizontal distance between the source and the receiver is x0 = 10 km. Bearing 438

θ = 0◦. Frequency range f = 100 − 140 Hz. Observation time ∆t = 300 s, realization duration T = 5 s, 439

time interval δT = 4 s. Number of modes M = 3. Values of the propagation constants hm(ω0) and 440

group velocities um(ω0) = 1/
( dhm(ω0)

dω

)
, ω = 2π f , for a regular waveguide with depth H0 = 50 m are 441

given in Table 3. As can be seen, hm(ω0) ∼ 0.49 − 0.52 m −1 and dhm(ω0)
dω ∼ 6.7 · 104 − 7.0 · 104 (m/s) 442

−1. 443
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Table 3. Sound field mode parameters (∆ f = 100–140 Hz). Waveguide depth H0 = 50 m.

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.5164 6.6971
2 0.5071 6.7998
3 0.4908 7.0000

Figure 5 illustrates the horizontal structure of the acoustic field modes in a regular shallow-water 444

waveguide for a stationary source (v = 0 m/s). Figure 5(a)–(c) show the horizontal ray trajectories for 445

the first, second, and third modes, respectively. Figure 5(d)–(f) present the corresponding normalized 446

horizontal amplitude distributions, where the color scale (0 to 1) indicates relative amplitude. Red dots 447

mark the positions of the source (left) and receiver (right), which are separated by 10 km along the 448

x-axis. A regular waveguide for sound propagation represents an isotropic propagation medium in 449

the horizontal plane. Therefore, as illustrated in Figure 5, the ray structure and amplitude distribution 450

correspond to the rectilinear propagation of sound waves from the source to the receiver. 451
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Figure 5. Horizontal structure of sound field modes: (a) horizontal rays of first mode; (b) horizontal rays of second
mode; (a) horizontal rays of third mode; (d) amplitude distribution of first mode; (e) amplitude distribution
of second mode; (f) amplitude distribution of third mode. Red dots indicate the source and receiver. Regular
waveguide. Non-moving source (v = 0 m/s). Source at 10 km.

Figure 6 presents the results of the HSP method for a stationary acoustic source in a regular 452

waveguide. Figure 6(a) shows the interferogram I( f , t), where the spectral content in the 100−140 Hz 453

band remains stable throughout the observation interval, reflecting the absence of variations due 454

to source motion. Figure 6(b) displays the hologram F(τ, ν̃). As can be seen, the focal spots in the 455
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Figure 6. Results of holographic signal processing: (a) I( f , t), (b) F(τ, ν̃), (c) G(χ). Regular waveguide. Non-
moving source (v = 0 m/s). Frequency band: ∆ f = 100 − 140 Hz.

hologram domain for a stationary source are located along the τ-axis. Figure 6(c) illustrates the function 456

G(χ), which exhibits a sharp, well-defined peak at χ = 0, indicating the stationary of the source. 457

Table 4. Numerical results of holographic signal processing. Source parameters.

No. ∆ f = 100–140 Hz

1. δ f /δt ≈ 0.0 s−2

2. τ1 = 1.07 · 10−1 s
3. ν1 = 0.0 · 10−3 Hz
4. χ = 0.0 s−2

5. v̇ = 0.0 m/s
6. ẋ0 = 10.4 km

Table 4 summarizes the numerical results of holographic signal processing for the frequency band 458

∆ f = 100−140 Hz. Analysis of the HSP results (see Figure 5) indicates that the rate of frequency 459

variation of the interferogram is approximately δ f /δt ≈ 0.0 s−2 The focal point coordinates in hologram 460

are τ1 = 1.07 · 10−1 s and ν1 = 0.0 · 10−3 Hz. The extremum point of G(χ) is found to be χ = 0.0 s−2, 461

which is consistent with the case of a stationary source. The reconstructed source characteristics 462

obtained from the holographic processing parameters are: velocity v̇ = 0.0 m/s and range ẋ0 = 10.4 km. 463

The error in the reconstructed source values amounts to 0 % for the velocity and 4 % for the range. 464

4.2. Regular Waveguide. Second Case: Moving Source (v = −3 m/s). 465

In this section, we present the results of holographic processing obtained through numerical mod- 466

eling when the source moves within a regular waveguide. The parameters of the regular waveguide 467

used in the numerical simulation are presented in Table 2. The numerical experiment was conducted 468

under the following conditions. The source was located at the coordinates xs = 10 km, ys = 0 m, 469

zs = 23 m, and the receiver was positioned at xq = yq = 0, zq = 45 m. The source propagated 470

toward the receiver along the line y = 0, moving from 10 km to 9.1 km with a constant velocity of 471

v = −3 m/s. The initial horizontal separation between the source and receiver was x0 = 10 km, with 472

a bearing of θ = 0◦. The acoustic signal was analyzed within the frequency band f = 100−140 Hz. 473

The observation interval was ∆t = 300 s, with a realization length of T = 5 s and a temporal shift 474

between realizations of δT = 4 s. The field was represented using M = 3 modes. For a regular 475

waveguide with a depth H0 = 50 m, the corresponding propagation constants hm(ω0) and group 476

velocities um(ω0) = 1/
( dhm(ω0)

dω

)
, are summarized in Table 3. 477

Figure 7 illustrates the horizontal structure of the acoustic field modes in a regular shallow-water 478

waveguide for a moving source (v = −3 m/s). Figure 7(a)–(c) show the horizontal ray trajectories for 479

the first, second, and third modes, respectively, as the source moves toward the receiver. Figure 7(d)–(f) 480

present the corresponding normalized horizontal amplitude distributions, where the color scale (0 to 481

1) indicates relative amplitude. The red dots indicate the source’s (left, initially at x = 9.1 km) and 482
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receiver’s (right, at x = 0) instantaneous positions, with the source approaching along the x-axis. 483

In the case of a moving source, the regular waveguide represents an isotropic propagation medium 484

in the horizontal plane. The overall structure of rays and amplitudes continues to reflect rectilinear 485

propagation from the source to the receiver. 486
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Figure 7. Horizontal structure of sound field modes: (a) horizontal rays of first mode; (b) horizontal rays of second
mode; (c) horizontal rays of third mode; (d) amplitude distribution of first mode; (e) amplitude distribution
of second mode; (f) amplitude distribution of third mode. Red dots indicate the source and receiver. Regular
waveguide. Moving source (v = −3 m/s). Source moved from 10 km to 9.1 km.
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Figure 8. Results of the holographic signal processing: (a) I( f , t), (b) F(τ, ν̃), (c) G(χ). Regular waveguide.
Moving source (v = −3 m/s). Frequency band: ∆ f = 100 − 140 Hz.

Figure 8 presents the HSP results for a moving acoustic source in a regular waveguide (v = 487

−3 m/s). Figure 8(a) shows the interferogram I( f , t), where the spectral content in the band 100 − 488
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140 Hz exhibits slanted interference fringes. These tilted structures reflect the temporal frequency 489

variations caused by the motion of the source. Figure 8(b) displays the hologram F(τ, ν̃). Unlike the 490

stationary case, the focal spots are shifted from the τ-axis and aligned along a non-zero frequency ν, 491

corresponding to the source’s motion toward the receiver. Figure 8(c) illustrates the function G(χ), 492

which has a pronounced maximum at χ ̸= 0, thereby confirming the nonstationary character of the 493

source. 494

Table 5. Interferogram and hologram structure parameters. Estimation of the source parameters.

No. ∆ f1 = 100–140 Hz

1. δ f /δt ≈ −0.036 s−2

2. τ1 = 1.01 · 10−1 s
3. ν1 = 3.1 · 10−3 Hz
4. χ = 0.0375 s−2

5. v̇ = −3.2 m/s
6. ẋ0 = 9.8 km

Table 5 presents the interferogram and hologram structure parameters used to estimate source 495

characteristics in the frequency band ∆ f = 100 − 140 Hz. Analysis of the HSP results (see Figure 8) 496

shows that the rate of frequency variation in the interferogram is approximately δ f /δt ≈ −0.036 s−2, 497

reflecting the effect of source motion. The focal point coordinates in the hologram are determined as 498

τ1 = 1.01 · 10−1 s and ν1 = 3.1 · 10−3 Hz. The extremum of the function G(χ) is obtained at χ = 0.0375 499

s−2, which corresponds to a nonstationary source. The reconstructed source parameters derived from 500

these values are: velocity v̇ = −3.2 m/s and range ẋ0 = 9.8 km. The error of the reconstructed source 501

values amounts to 7 % for the velocity and 2 % for the range. 502

4.3. Littoral Wedge Waveguide. 503

Consider the littoral wedge waveguide (see Figure 9). The littoral wedge model represents a 504

shallow-water acoustic environment in which the depth changes linearly along one horizontal axis. 505

Despite its simplified formulation, this configuration is a useful and widely adopted model of realistic 506

nearshore conditions, including continental shelves, gently sloping seabeds, tidal flats, and coastal 507

approaches. In these environments, the bathymetry gradually inclines, either deepening toward the 508

open ocean or shoaling toward the coastline. 509

This representation offers a mathematically tractable and physically meaningful framework for 510

analyzing sound propagation in coastal waters, where variations in the seafloor exert a dominant 511

influence on acoustic field characteristics. Specifically, gradual depth changes modify propagation 512

paths, affect group and phase velocities, and alter reflection and refraction processes at the seabed 513

and free surface. The littoral wedge model retains the essential geometric features of sloping-bottom 514

topographies while avoiding the complexity of fully irregular bathymetries. This enables systematic 515

investigations of shallow-water acoustic phenomena under controlled and reproducible conditions. 516

Thus, it offers valuable insights into real-world applications of underwater acoustics. 517

In this case we have 518

zb(r) = H(r) = H(x, y) = H0 − k0 y. (32)

where H0 is the reference depth, k0 is slope coefficient. The parameters of the littoral wedge used in 519

the numerical simulation are presented in Table 6. 520
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Figure 9. Model of a shallow water waveguide. Littoral wedge.

Table 6. Shallow water waveguide parameters. Littoral wedge waveguide.

Parameter ∆ f = 100 − 140 Hz

1. Waveguide depth H0 50 m
2. Slope coefficient k0 = 0.01
3. Water sound speed 1500 m/s
4. Bottom refractive index nb = 0.84 (1 + i 0.03)
5. Bottom density ρb = 1.8 g/cm3

6. Modes count M = 3
7. Receiver coordinates xq = 0, yq = 0, zq = 45 m
8. Source coordinates xs = 10 km, ys = 0, zs = 23 m
9. Source bearing θ = 0◦

Source coordinates: xs = 10 km, ys = 0 m, zs = 23 m. Receiver coordinates: xq = yq = 0, 521

zq = 45 m. The source is stationary (velocity v = 0 m/s) and approaching the receiver along the line 522

y = 0. The initial horizontal distance between the source and the receiver is x0 = 10 km. Bearing 523

θ = 0◦. Frequency range f = 100 − 140 Hz. Observation time ∆t = 300 s, realization duration 524

T = 5 s, time interval δT = 4 s. Number of modes M = 3. Values of the propagation constants 525

hm(ω0) and group velocities um(ω0) = 1/
( dhm(ω0)

dω

)
, ω = 2π f , for a littoral wedge waveguide are 526

given in Table 7, Table 8, Table 9. Table 7 corresponds to depth H0 = 50 m, hm(ω0) ∼ 0.49 − 0.52 m 527

−1 and dhm(ω0)
dω ∼ 6.7 · 104 − 7.0 · 104 (m/s) −1. Table 8 corresponds to depth H = H0 − 10 = 40 m, 528

hm(ω0) ∼ 0.47 − 0.51 m −1 and dhm(ω0)
dω ∼ 6.7 · 104 − 7.2 · 104 (m/s) −1. Table 9 corresponds to depth 529

H = H0 + 10 = 60 m, hm(ω0) ∼ 0.50 − 0.52 m −1 and dhm(ω0)
dω ∼ 6.7 · 104 − 6.9 · 104 (m/s) −1. 530

Table 7. Sound field mode parameters (∆ f = 100–140 Hz). Waveguide depth H0 = 50 m.

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.5164 6.6971
2 0.5071 6.7998
3 0.4908 7.0000

Table 8. Sound field mode parameters (∆ f = 100–140 Hz). Waveguide depth H = H0 − 10 = 40 m.

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.5149 6.710
2 0.5009 6.864
3 0.4757 7.182
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Table 9. Sound field mode parameters (∆ f = 100–140 Hz). Waveguide depth H = H0 + 10 = 60 m.

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.5172 6.689
2 0.5106 6.763
3 0.4992 6.901

0 2 4 6 8 10
X, km

-1

-0.5

0

0.5

1

Y
, k

m

(a) (d)

0 2 4 6 8 10
X, km

-1

-0.5

0

0.5

1

Y
, k

m

(b) (e)

0 2 4 6 8 10
X, km

-1

-0.5

0

0.5

1

Y
, k

m

(c) (f)

Figure 10. Horizontal structure of the sound field modes: (a) horizontal rays of first mode; (b) horizontal rays of
second mode; (c) horizontal rays of third mode; (d) amplitude distribution of first mode; (e) amplitude distribution
of second mode; (f) amplitude distribution of third mode. Red dots indicate the source and receiver. Littoral
wedge waveguide. Non-moving source (v = 0 m/s). Source at 10 km.

Figure 10 illustrates the horizontal structure of the acoustic field modes in a littoral wedge waveg- 531

uide for a stationary source (v = 0 m/s) located at x = 10 km. Figures 10(a)–(c) show the horizontal 532

ray trajectories corresponding to the first, second, and third modes, respectively. Figures 10(d)–(f) 533

present the associated normalized horizontal amplitude distributions, where the color scale (0 to 1) 534

indicates relative amplitude. The red dots mark the positions of the source (right) and the receiver 535

(left) along the x-axis. Unlike in a regular waveguide, the presence of sloping bathymetry in a wedge 536

environment leads to the horizontal refraction of acoustic modes. This is evident in the curvature of 537

the ray paths and the asymmetry of the amplitude distributions. 538

Figure 11 presents the results of the HSP method for a stationary acoustic source in a littoral 539

wedge waveguide. Figure 11(a) shows the interferogram I( f , t), where the spectral content in the 540

100−140 Hz band remains stable throughout the observation interval, consistent with the absence of 541

source motion. Figure 11(b) displays the hologram F(τ, ν). The focal spots in the hologram domain 542
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Figure 11. Results of holographic signal processing: (a) I( f , t), (b) F(τ, ν̃), (c) G(χ). Littoral wedge waveguide.
Non-moving source (v = 0 m/s). Frequency band: ∆ f = 100 − 140 Hz.

are aligned along the τ-axis, indicating the stationary nature of the source. Figure 11(c) illustrates 543

the function G(χ), which has a sharp, well-defined maximum at χ = 0. This confirms the absence of 544

motion and validates the stability of the reconstructed parameters in the wedge environment. 545

Table 10. Interferogram and hologram structure parameters. Estimation of the source parameters.

No. ∆ f = 100–140 Hz

1. δ f /δt ≈ 0.0 s−2

2. τ1 = 1.12 · 10−1 s
3. ν1 = 0.0 · 10−3 Hz
4. χ = 0.0 s−2

5. v̇ = 0.0 m/s
6. ẋ0 = 10.7 km

Table 10 summarizes the interferogram and hologram structure parameters obtained from HSP in 546

the frequency band ∆ f = 100−140 Hz. Analysis of the results (see Figure 11) shows that the rate of 547

frequency variation in the interferogram is approximately δ f /δt ≈ 0.0 s−2, indicating the absence of 548

frequency modulation. The focal point coordinates in the hologram are determined as τ1 = 1.12 · 10−1 s 549

and ν1 = 0.0 · 10−3 Hz. The extremum of the function G(χ) is found at χ = 0.0 s−2, which is consistent 550

with the case of a stationary source. The reconstructed source parameters derived from these values 551

are: velocity v̇ = 0.0 m/s and range ẋ0 = 10.7 km. The error of the reconstructed estimates is 0 % 552

for the velocity and approximately 7 % for the range, confirming the accuracy and robustness of 553

holographic processing in the littoral wedge waveguide for a stationary source. 554

4.4. Littoral Wedge Waveguide. Second Case: Moving Source (v = −3 m/s). 555

In this section, we present the results of holographic processing obtained through numerical 556

modeling for the case of a source moving in a littoral wedge waveguide. The parameters of the wedge- 557

shaped environment used in the simulations are summarized in Table 2. The numerical experiment was 558

carried out under the following conditions. The source was initially located at coordinates xs = 10 km, 559

ys = 0 m, zs = 23 m, while the receiver was positioned at xq = yq = 0, zq = 45 m. The source 560

propagated toward the receiver along the line y = 0, moving from x = 10 km to x = 9.1 km with a 561

constant velocity of v = −3 m/s. The initial horizontal separation between the source and the receiver 562

was x0 = 10 km, with a bearing of θ = 0◦. The acoustic signal was analyzed within the frequency 563

band f = 100−140 Hz. The observation interval was ∆t = 300 s, with a realization length of T = 5 s 564

and a temporal shift between realizations of δT = 4 s. The field was represented using M = 3 modes. 565

The corresponding propagation constants hm(ω0) and group velocities um(ω0) = 1/
( dhm(ω0)

dω

)
are 566

provided in Table 7, Table 8, Table 9. 567
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Figure 12. Horizontal structure of sound field modes: (a) horizontal rays of first mode; (b) horizontal rays of
second mode; (c) horizontal rays of third mode; (d) amplitude distribution of first mode; (e) amplitude distribution
of second mode; (f) amplitude distribution of third mode. Red dots indicate the source and the receiver. Littoral
wedge waveguide. Moving source (v = −3 m/s). Source moved from 10 km to 9.1 km.

Figure 12 illustrates the horizontal structure of the acoustic field modes in a littoral wedge waveg- 568

uide for a moving source (v = −3 m/s). Figures 12(a)–(c) display the horizontal ray trajectories for the 569

first, second, and third modes, respectively, as the source moves toward the receiver. Figures 12(d)–(f) 570

show the corresponding normalized horizontal amplitude distributions, with the color scale (0 to 1) 571

indicating relative amplitude. The red dots indicate the instantaneous positions of the source (left, at 572

x = 9.1,km) and the receiver (right, at x = 0), with the source moving along the x-axis. In the case of a 573

moving source in a wedge-shaped environment, horizontal propagation becomes range-dependent 574

due to varying depths. The structure of the rays and amplitudes reflects the influence of sloping 575

bathymetry on the distribution of modal energy and the source’s approach to the receiver. 576

Figure 13 presents the results of holographic signal processing for a moving source in a littoral 577

wedge waveguide (v = −3 m/s). Figure 13(a) shows the interferogram I( f , t) within the frequency 578

band 100−140 Hz, where inclined interference fringes are observed. These oblique patterns indicate 579

frequency-time modulation induced by the source motion. Figure 13(b) depicts the hologram F(τ, ν̃), 580

where the focal regions are displaced from the τ-axis and distributed along a non-zero frequency ν, 581

consistent with a source approaching the receiver. Finally, Figure 13(c) illustrates the function G(χ), 582

which exhibits a distinct peak at χ ̸= 0, thereby confirming the nonstationary dynamics of the source. 583
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Figure 13. Results of holographic signal processing: (a) I( f , t), (b) F(τ, ν̃), (c) G(χ). Littoral wedge waveguide.
Moving source (v = −3 m/s). Frequency band: ∆ f = 100 − 140 Hz.

Table 11. Interferogram and hologram structure parameters. Estimation of the source parameters.

No. ∆ f = 100–140 Hz

1. δ f /δt ≈ −0.038 s−2

2. τ1 = 1.01 · 10−1 s
3. ν1 = 3.2 · 10−3 Hz
4. χ = 0.039 s−2

5. v̇ = −3.4 m/s
6. ẋ0 = 9.8 km

Table 11 summarizes the interferogram and hologram structure parameters derived from holo- 584

graphic signal processing in the frequency band ∆ f = 100−140 Hz. As shown in Figure 13, the 585

frequency variation rate in the interferogram is estimated to be approximately δ f /δt ≈ −0.038 s−2, 586

indicating noticeable frequency modulation caused by the moving source. The focal spot coordinates 587

in the hologram are determined to be τ1 = 1.01 · 10−1 s and ν1 = 3.2 · 10−3 Hz. The function G(χ) 588

exhibits a pronounced maximum at χ = 0.039 s−2, further confirming the nonstationary nature of the 589

source. Based on these results, the reconstructed source parameters are velocity v̇ = −3.4 m/s and 590

range ẋ0 = 9.8 km. The error in the reconstructed estimates is 13 % for velocity and approximately 591

2 % for range, confirming the accuracy and robustness of holographic processing in the littoral wedge 592

waveguide for a moving source. 593

4.5. Canyon Waveguide. First Case: Non-Moving Source (v = 0 m/s) 594

Consider the canyon waveguide (see Figure 14). This model represents an oceanic environment 595

characterized by a sharp depression with steeply sloping sides and a relatively narrow cross-section. 596

Though idealized, this configuration captures the essential features of submarine canyons, which are 597

prominent topographic features that connect shallow continental shelves to deeper ocean basins. These 598

environments are of particular interest in underwater acoustics because of their strong influence on 599

sound propagation, scattering, and trapping mechanisms. 600

The canyon’s geometry significantly modifies acoustic field characteristics. Steep bathymetric 601

gradients, in particular, induce mode coupling, generate shadowing effects, and enhance multipath 602

propagation. The canyon walls can also act as acoustic waveguides, channeling energy along the axis 603

of the depression while altering reflection and refraction conditions compared to flat-bottomed or 604

wedge-like topographies. These effects make the canyon waveguide a useful model for analyzing the 605

complex interactions between bathymetric structure and acoustic propagation. 606
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Figure 14. Model of shallow water waveguide. Canyon.

The mathematical model of the canyon waveguide bathymetry has the following form: 607

H(r) = H(x, y) = H0 + A0sech2(y/L0), (33)

where H0 is the reference depth, A0 is canyon depth, L0 is canyon half-width. The parameters of the 608

littoral wedge used in the numerical simulation are presented in Table 12. 609

Table 12. Shallow water waveguide parameters. Littoral wedge waveguide.

Parameter ∆ f = 100–140 Hz

1. Waveguide depth H0 50 m
2. Canyon depth A0 = 10 m
3. Canyon half-width L0 = 300 m
4. Water sound speed 1500 m/s
5. Bottom refractive index nb = 0.84 (1 + i 0.03)
6. Bottom density ρb = 1.8 g/cm3

7. Modes count M = 3
8. Receiver coordinates xq = 0, yq = 0, zq = 45 m
9. Source coordinates xs = 10 km, ys = 0, zs = 23 m
10. Source bearing θ = 0◦

Source coordinates: xs = 10 km, ys = 0 m, zs = 23 m. Receiver coordinates: xq = yq = 0, 610

zq = 45 m. The source is stationary (velocity v = 0 m/s) and approaching the receiver along the line 611

y = 0. The initial horizontal distance between the source and the receiver is x0 = 10 km. Bearing 612

θ = 0◦. Frequency range f = 100 − 140 Hz. Observation time ∆t = 300 s, realization duration T = 5 613

s, time interval δT = 4 s. Number of modes M = 3. Values of the propagation constants hm(ω0) 614

and group velocities um(ω0) = 1/
( dhm(ω0)

dω

)
, ω = 2π f , for a littoral wedge waveguide are given in 615

Table 13, Table 14. Table 13 is corresponding to depth H0 = 50 m, hm(ω0) ∼ 0.49 − 0.52 m −1 and 616

dhm(ω0)
dω ∼ 6.7 · 104 − 7.0 · 104 (m/s) −1. Table 14 is corresponding to depth H = H0 + A0 = 60 m, 617

hm(ω0) ∼ 0.50 − 0.52 m −1 and dhm(ω0)
dω ∼ 6.7 · 104 − 6.9 · 104 (m/s) −1. 618

Table 13. Sound field mode parameters (∆ f = 100–140 Hz). Waveguide depth H0 = 50 m.

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.5164 6.6971
2 0.5071 6.7998
3 0.4908 7.0000

Figure 15 shows the horizontal structure of acoustic field modes in a canyon waveguide for 619

a stationary source (v = 0 m/s) positioned at x = 10 km. Figures 15(a)–(c) display the horizontal 620
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Table 14. Sound field mode parameters (∆ f = 100–140 Hz). Waveguide depth H = H0 + A0 = 60 m.

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.5172 6.689
2 0.5106 6.763
3 0.4992 6.901

ray trajectories for the first, second, and third modes, respectively. Figures 15(d)–(f) present the 621

corresponding normalized horizontal amplitude distributions, with the color scale ranging from 0 to 1 622

indicating relative amplitude. The source and receiver positions are marked by red dots on the x-axis. 623

Unlike the wedge geometry, the canyon topography produces strong horizontal refraction and mode 624

confinement. This is evident in the bending of ray paths and the localized concentration of acoustic 625

energy within the canyon region. 626
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Figure 15. Horizontal structure of sound field modes: (a) horizontal rays of first mode; (b) horizontal rays of
second mode; (c) horizontal rays of third mode; (d) amplitude distribution of first mode; (e) amplitude distribution
of second mode; (f) amplitude distribution of third mode. Red dots indicate the source and the receiver. Canyon
waveguide. Non-moving source (v = 0 m/s). Source at 10 km.

Figure 16 presents the results of holographic signal processing for a stationary acoustic source in a 627

canyon waveguide. Figure 16(a) shows the interferogram I( f , t), in which the spectral content within 628

the 100−140 Hz frequency band remains constant over time. This indicates an absence of frequency 629

modulation due to source motion. Figure 16(b) depicts the hologram F(τ, ν), in which the focal spots 630

are concentrated along the τ-axis, consistent with a stationary source. Figure 16(c) shows the function 631
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G(χ), which has a clear peak at χ = 0. This confirms that the source is not moving and validates the 632

stability of the reconstructed parameters in the canyon environment. 633
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Figure 16. Results of holographic signal processing: (a) I( f , t), (b) F(τ, ν̃), (c) G(χ). Canyon waveguide. Non-
moving source (v = 0 m/s). Frequency band: ∆ f = 100 − 140 Hz.

Table 15. Interferogram and hologram structure parameters. Estimation of source parameters.

No. ∆ f = 100–140 Hz

1. δ f /δt ≈ −0.0 s−2

2. τ1 = 0.78 · 10−1 s
3. ν1 = 0.0 · 10−3 Hz
4. χ = 0.0 s−2

5. v̇ = 0.0 m/s
6. ẋ0 = 10.5 km

Table 15 summarizes the interferogram and hologram structure parameters obtained from holo- 634

graphic signal processing in the frequency band ∆ f = 100−140 Hz. The analysis of the results (see 635

Figure 16) shows that the frequency variation rate in the interferogram is δ f /δt ≈ 0.0 s−2, confirming 636

the absence of modulation effects associated with source motion. The focal spot coordinates in the 637

hologram are found to be τ1 = 0.78 · 10−1 s and ν1 = 0.0 · 10−3 Hz. The function G(χ) reaches its max- 638

imum at χ = 0.0 s−2, which is consistent with the stationary nature of the source. The reconstructed 639

parameters derived from these values are: velocity v̇ = 0.0 m/s and range ẋ0 = 10.5 km. The error of 640

the reconstructed estimates is 0 % for the velocity and approximately 5 % for the range, confirming the 641

accuracy and robustness of holographic processing in the canyon waveguide for a stationary source. 642

4.6. Canyon Waveguide. Second Case: Moving Source (v = −3 m/s) 643

In this section, we present the results of holographic processing obtained through numerical 644

modeling for the case of a source located in a canyon waveguide. The parameters of the canyon 645

environment used in the simulations are summarized in Table 2. The numerical experiment was 646

conducted under the following conditions. The source was positioned at coordinates xs = 10 km, 647

ys = 0 m, zs = 23 m, while the receiver was positioned at xq = yq = 0, zq = 45 m. The source remained 648

stationary (v = 0 m/s) at a horizontal distance of x0 = 10 km from the receiver, with a bearing angle of 649

θ = 0◦. The acoustic signal was analyzed in the frequency band f = 100−140 Hz. The observation 650

interval was ∆t = 300 s, with a realization length of T = 5 s and a temporal shift between realizations 651

of δT = 4 s. The acoustic field was represented using M = 3 modes. The corresponding propagation 652

constants hm(ω0) and group velocities um(ω0) = 1/
( dhm(ω0)

dω

)
are provided in Tables 13 and 14. 653
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Figure 17. Horizontal structure of sound field modes: (a) horizontal rays of first mode; (b) horizontal rays of
second mode; (c) horizontal rays of third mode; (d) amplitude distribution of first mode; (e) amplitude distribution
of second mode; (f) amplitude distribution of third mode. Red dots indicate the source and receiver. Canyon
waveguide. Moving source (v = −3 m/s). Source moved from 10 km to 9.1 km.

Figuree 17 illustrates the horizontal structure of the acoustic field modes in a canyon waveguide 654

for a moving source (v = -3 m/s). Figurese 17(a)–(c) show the horizontal ray trajectories of the first, 655

second, and third modes, respectively, as the source moves toward the receiver. Figurese 17(d)–(f) 656

display the corresponding normalized horizontal amplitude distributions, with the color scale (0 to 1) 657

representing relative amplitude. Red dots mark the source’s (left, at x = 9.1 km) and receiver’s (right, 658

at x = 0) instantaneous positions as the source moves along the x-axis. In the canyon environment, 659

horizontal propagation exhibits pronounced range dependence due to steep bathymetric gradients. 660

Both the ray structures and amplitude patterns reveal strong refraction and confinement effects that 661

influence modal energy distribution as the source approaches the receiver. 662

Figure 18 presents the results of holographic signal processing for a moving source in a canyon 663

waveguide (v = −3 m/s). Figure 18(a) shows the interferogram I( f , t) in the frequency band 664

100−140 Hz, where the slanted interference fringes clearly reflect the frequency-time modulation 665

produced by the source motion. Figure 18(b) displays the hologram F(τ, ν̃), in which the focal spots 666

are shifted away from the τ-axis and aligned along a non-zero frequency ν, consistent with the source 667

approaching the receiver. Figure 18(c) illustrates the function G(χ), which has a pronounced maximum 668

at χ ̸= 0, thereby confirming the nonstationary character of the source in the canyon environment. 669
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Figure 18. Results of holographic signal processing: (a) I( f , t), (b) F(τ, ν̃), (c) G(χ). Canyon waveguide. Moving
source (v = −3 m/s). Frequency band: ∆ f = 100 − 140 Hz.

Table 16. Interferogram and hologram structure parameters. Estimation of source parameters.

No. ∆ f = 100–140 Hz

1. δ f /δt ≈ −0.038 s−2

2. τ1 = 0.8 · 10−1 s
3. ν1 = 3.3 · 10−3 Hz
4. χ = 0.04 s−2

5. v̇ = −3.5 m/s
6. ẋ0 = 10.8 km

Table 16 summarizes the interferogram and hologram structure parameters obtained from holo- 670

graphic signal processing in the frequency band ∆ f = 100−140 Hz. Figure 18 shows that the frequency 671

variation rate in the interferogram is δ f /δt ≈ −0.038 s−2, reflecting the modulation induced by the 672

source motion. The focal spot coordinates in the hologram are identified as τ1 = 0.8 · 10−1 s and 673

ν1 = 3.3 · 10−3 Hz. The function G(χ) reaches its maximum at χ = 0.04 s−2, thereby confirming the 674

nonstationary character of the source. Based on these results, the reconstructed source parameters are: 675

velocity v̇ = −3.5 m/s and range ẋ0 = 10.8 km. The error of the reconstructed estimates is 17 % for the 676

velocity and approximately 8 % for the range, confirming the accuracy and robustness of holographic 677

processing in the canyon waveguide for a stationary source. 678

5. Conclusions 679

This study examined the impact of irregular bathymetry on the HSP of a moving acoustic source 680

in a shallow-water waveguide. Using the VMHR and VMMPE approaches, we developed a source 681

hologram model that accounts for horizontal refraction caused by irregular bathymetry. A comparative 682

analysis of holographic processing results was carried out based on this approach for three types of 683

waveguides: regular, littoral wedge, and canyon. This analysis enables a systematic comparison of 684

their influence on interferograms, holograms, and reconstructed source parameters. 685

The results lead to the following key conclusions: 686

Robustness of Interferogram and Hologram Structure Under Irregular Bathymetry. Despite the 687

significant distortion of the acoustic field’s structure in the horizontal plane caused by horizontal 688

refraction due to bathymetric variability, the interferogram and hologram retain the structural features 689

observed in a regular waveguide. This stability ensures the preservation of the key information 690

necessary for reconstructing source parameters, including range and velocity. 691

Accuracy of Source Parameter Reconstruction. Quantitative estimates show that the range of 692

the acoustic source can be reconstructed with an error of about 10 %. For a regular waveguide, the 693

error in velocity and range is 0 % and 4 % for a stationary source and 7 % and 2 % for a moving source, 694

respectively. For a littoral wedge waveguide, reconstruction errors are 0 % in velocity and 7 % in range 695

for a stationary source and 13 % and 2 %, respectively, for a moving source. In a canyon waveguide, 696

estimation errors amount to 0 % and 5 % for velocity and range in the stationary case and 8 % and 697
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17 % in the moving case. These levels of accuracy are sufficient for practical underwater monitoring 698

applications. 699

Effectiveness of the HSP method. Comparing different waveguide types (regular, littoral wedge, 700

and canyon) shows that bathymetric irregularities lead to only a minor increase in reconstruction 701

errors relative to a regular waveguide. These results confirm the robustness of the holographic signal 702

processing method and its ability to provide reliable results in realistic, shallow-water conditions with 703

irregular bottom topography. 704

These findings substantially extend the applicability of holographic methods in underwater 705

acoustics, demonstrating their potential for practical use in real-world scenarios with irregular and 706

complex bathymetry. Furthermore, the approach’s ability to provide stable parameter estimates closely 707

aligned with actual physical values underscores its relevance for theoretical studies and operational 708

tasks in ocean monitoring and surveillance. 709

6. Future Works 710

In previous studies, we examined sound field interferograms and holograms of a moving source in 711

the presence of internal waves inducing horizontal refraction and mode coupling [28,29]. The primary 712

focus of the present study was the influence of bottom relief, which causes significant horizontal 713

refraction. It is important to note that other environmental factors also contribute to variability in 714

the acoustic field under shallow-water conditions. Future research will extend the analysis in several 715

directions. 716

Surface wave influence. We will investigate how surface gravity waves influence interfero- 717

gram and hologram stability, as well as the accuracy of reconstructed source parameters. Surface 718

wave–induced fluctuations are expected to introduce additional distortions in the interferogram, which 719

may affect hologram focusing. 720

Combined variability scenarios. Future simulations will consider environments in which internal 721

waves, bathymetric irregularities, and surface waves act simultaneously. This will provide a more 722

realistic assessment of the robustness of holographic processing under operational conditions. 723

Addressing these aspects will enable subsequent studies to provide a comprehensive understand- 724

ing of the stability limits of holographic signal processing in complex ocean environments, advancing 725

its potential for operational applications in ocean acoustics. 726
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The following abbreviations are used in this manuscript: 736
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HSP holographic signal processing;
ISP interferometric signal processing;
3DHE 3D Helmholtz Equation models;
3DPE 3D Parabolic Equation models;
3DR 3D Ray-based models;
VMMPE Vertical Modes and 2D Modal Parabolic Equation models;
VCMHR Vertical Coupled Modes with Horizontal Rays models;
IIW intense internal wave;
2D two-dimensional;
3D three-dimensional;
1D-FT one-dimensional Fourier transform;
2D-FT two-dimensional Fourier transform.
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