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Abstract

The growing number of infectious disease outbreaks, like the one caused by the SARS-CoV-2
virus, underscores the necessity of actuarial models that can adapt to epidemic-driven risks.
Traditional life insurance frameworks often rely on static mortality assumptions that fail to
capture the temporal and behavioral complexity of disease transmission. In this paper, we
propose an integrated actuarial framework based on the SEIARD epidemiological model. This
framework enables the explicit modeling of incubation periods and disease-induced mortality.
We derive key actuarial quantities, including the present value of annuity benefits, payment
streams, and net premiums, based on SEIARD dynamics. We formulate a prospective reserve
function and analyze its evolution throughout the course of an epidemic. Additionally, we
examine the forces of infection, mortality, and removal to assess their impact on epidemic-
adjusted survival probabilities. Numerical simulations implemented via a nonstandard finite
difference (NSFD) scheme illustrate the model’s applicability under various parameter settings
and insurance policy assumptions.

Keywords: Epidemic modeling, Epidemic insurance, SEIARD model, NSFD scheme,
Numerical simulations.
2020 Mathematics Subject Classification: 92C60, 91G05, 33F05.

1. Introduction

Mathematical modeling has become an essential tool for studying infectious disease dynam-
ics. It offers a quantitative framework for understanding how epidemics spread, how they can
be controlled, and how they behave in the long term. One of the most widely used approaches
is the compartmental model, which divides the population into epidemiological states, such as
susceptible, exposed, infected, and recovered [1–6]. First formalized in 1927 by Kermack and
McKendrick [7], these models have since become the foundation of modern epidemiological the-
ory. These models are typically expressed as systems of ordinary differential equations (ODEs)
and are used to estimate key epidemiological quantities such as the basic reproduction number
R0 and the herd immunity threshold [8–10]. The SEIRD model extends the classical SIR frame-
work by incorporating a latency period through the exposed compartment and distinguishing
between recovery and disease-induced mortality. This makes it especially suitable for modeling
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diseases with delayed symptom onset and measurable fatality, such as SARS, Ebola, and, most
recently, SARS-CoV-2 [11, 12].

Meanwhile, actuarial science offers a rigorous mathematical basis for assessing and man-
aging uncertain future events related to life insurance, pensions, and financial risk. Classical
actuarial models rely heavily on life tables and survival models, in which constant mortality
rates and independence between lives are standard assumptions [13]. These frameworks enable
the pricing of life insurance products, the estimation of reserves, and the assessment of solvency
using probability theory and financial mathematics techniques [14]. However, large-scale health
crises such as the pandemic caused by the SARS-CoV-2 virus have exposed significant limita-
tions in these traditional models, especially when mortality rates fluctuate rapidly and systemic
risk affects large populations simultaneously. In such contexts, researchers have proposed inte-
grating epidemic-aware compartmental models into actuarial analysis to enable more responsive
premium structures, dynamic reserve adjustments, and real-time solvency management [15, 16].

In a related study, Nkeki and Iroh [17] developed an epidemiological model for designing
communicable disease insurance policies. The model divided the population into five groups:
susceptible individuals, exposed individuals, individuals who were infective and under treat-
ment, deceased individuals, and recovered individuals who could rejoin the susceptible group
and continue paying premiums. The infective group included active cases and deceased policy-
holders. The study focused on deriving the probability and cumulative distribution functions
for policyholders’ risk statuses. Using actuarial techniques, the authors computed various
insurance-related quantities, including the financial obligations of the insurer and the insured.
In another study, [16] proposed a pandemic risk model designed for the actuarial valuation of
insurance products offering healthcare and death benefits. This model relied on a deterministic
framework, which was presented as an efficient alternative to the classical SIR model. It was
used to describe the early dynamics of the SARS-CoV-2 virus in several European countries,
including Belgium, Germany, Italy, and Spain. The model permitted analytical tractability in
calculating fair pure premiums. Two stochastic extensions were introduced: the first replaced
calendar time with a gamma stochastic clock to capture uncertainty in the epidemic peak; the
second incorporated Brownian motion and jump processes to account for erratic fluctuations
and local resurgences in infection counts. Similarly, [18] extended traditional multi-state mod-
els in life insurance to incorporate the effects of epidemic contagion. By modifying transition
intensities within a Markov framework, the study captured infectious disease transmission at
the individual level in a manner analogous to compartmental epidemiological models. This en-
abled a consistent actuarial evaluation of personal risk and insurance reserves under epidemic
conditions.

[19] constructed a stochastic Markov model to simulate an individual’s progression through
health risk factors, such as obesity, diabetes, and hypertension, which can lead to ischemic heart
disease or stroke. [20] extended this modeling approach to incorporate multiple critical illnesses
and examined its implications for underwriting and premium rating in critical illness insurance.
This included the effects of genetic predispositions and behavioral factors. [21] proposed a
compartmental model that explicitly captures infection, recovery, and reinfection. They applied
actuarial techniques to evaluate insurance premiums, reserves, and financial obligations. [22]
provided a broader review of classical epidemiological models and their actuarial applications,
including product design, epidemic reserving, and healthcare resource planning. [23] studied
premium pricing in SEIR models with migration and vaccination, highlighting how disease
dynamics and public health interventions affect insurance costs. [18] extended multi-state
Markov models to incorporate contagion effects at the individual level, enabling a more accurate
valuation of reserves under epidemic conditions. These studies represent only a subset of the
growing body of literature at the intersection of epidemiological modeling and actuarial science.
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Interested readers may refer to the references therein and broader surveys such as [13, 15–18, 20–
23].

In this study, we examine a SEIARD compartmental model [24], which is an extension
of the classical SIR framework that incorporates asymptomatic infections and disease-induced
mortality. The population is divided into six compartments: susceptible (S), exposed (E),
symptomatic infected (I), asymptomatic infected (A), recovered (R), and deceased (D). This
structure provides a more realistic representation of infectious disease dynamics, particularly in
insurance modeling contexts where mortality and varying infection outcomes directly impact
policyholder status and claims. Including asymptomatic carriers and a separate mortality
class enhances the model’s relevance for actuarial applications. This enables the study of
how epidemic progression impacts life insurance liabilities, premium calculations, and reserve
dynamics.

By modeling the transitions that policyholders make between health states over time, we can
quantify the likelihood that they will become infected, recover, or die due to the disease. We can
also link these transitions to financial outcomes, such as claim payments, reserve accumulation,
and premium adjustments. This modeling approach is particularly relevant for health and life
insurance products because the occurrence of an epidemic introduces significant uncertainty
in mortality rates and policyholder behavior. In this paper, we use the SEIARD model to
derive net premium expressions, compute prospective reserves, and evaluate the sensitivity of
actuarial quantities to key epidemiological parameters. Through this analysis, we aim to build
on our previous work.

The remainder of this paper is organized as follows. Section 2 introduces the SEIARD
compartmental model, which is used to describe epidemic dynamics. This section also includes
a well-posedness analysis to ensure the mathematical validity of the system. Section 3 focuses
on the model’s actuarial applications, including deriving formulas for premiums and benefits,
computing insurance reserves, and examining the effects of epidemic parameters, such as the
force of infection, mortality and removal, on financial outcomes. A nonstandard finite difference
(NSFD) scheme is introduced to discretize the proposed SEIARD model in Section 4. Section 5
presents numerical simulations that illustrate the actuarial implications of the model under
various epidemic scenarios. Finally, Section 6 concludes the paper with a summary of the
findings and potential directions for future research.

2. SEIARD Model Description

In this section, we present the mathematical framework used to model the transmission
dynamics of an infectious disease, as well as its actuarial implications. We use a SEIARD
compartmental model, in which the population is divided into six health states.

2.1. Mathematical Model with Vital Dynamics

We consider an SEIARD epidemiological model with vital dynamics to describe the evolution
of an infectious disease in a structured population. The model incorporates constant birth (or
recruitment) at rate Λ, and natural death at rate µ across all living compartments. The force of
infection is driven by both symptomatic and asymptomatic individuals. The latter contribute at
a reduced transmission rate controlled by the parameter κ ∈ [0, 1]. Upon exposure, individuals
progress to the infectious phase at rate α, with a proportion p becoming symptomatic, while
the remaining 1 − p remain asymptomatic. Both symptomatic and asymptomatic individuals
may recover or die from the disease at respective rates. The deceased class, D(t), accumulates
disease-related deaths and is not included in the total living population NL(t).

The transmission parameters employed in the SEIARD model are summarized in Table 1.
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Table 1: Transmission parameters for the proposed SEIARD model.

Symbol Description

Λ Recruitment rate (e.g. birth or immigration)
β Transmission rate
µ Natural death rate
κ Relative infectivity of asymptomatic individuals
α Rate of progression from exposed to infected
p Proportion developing symptomatic infection

γI , γA Recovery rates for I and A
δI , δA Disease-induced death rates from I and A

Figure 1 illustrates the compartmental structure of the SEIARD model, highlighting key
transitions between health states, such as infection, recovery, and disease-induced death.

S E I

A

R D
Λ

βS
(

I+κA
NL

)
αpE γII

α(1− p)E
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Figure 1: Transmission pathways in the proposed SEIARD model with vital dynamics.

Let NL(t) = S(t) + E(t) + I(t) + A(t) + R(t) denote the total living population. Then, the
SEIARD model is given by the following system:

dS

dt
= Λ− βS

(I + κA

NL

)
− µS,

dE

dt
= βS

(I + κA

NL

)
− (α + µ)E,

dI

dt
= pαE − (γI + δI + µ)I,

dA

dt
= (1− p)αE − (γA + δA + µ)A,

dR

dt
= γII + γAA− µR,

dD

dt
= δII + δAA,

(1)

where

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = R0, D(0) = D0. (2)

From an actuarial perspective, these six compartments in (1) play significantly different roles
in an insurance model. First, people susceptible or exposed to infection during an epidemic
(S, E) form a market share that could contribute premiums to an insurance fund in exchange
for coverage of medical expenses if they become infected. Next, during an epidemic outbreak,
infected policyholders (I, A) benefit from claim payments to cover medical expenses provided
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by the insurance fund. In our model, recovered persons (R) become immune and do not
return to the susceptible class S. However, they continue to pay premiums to the insurance
company. After an insured person dies, i.e. transits to the compartment D, the beneficiaries
they designated may receive a death benefit to cover funeral and burial expenses. Note that
once the insurance fund has been established, interest will accrue on the unpaid reserves at a
fixed interest rate [15]. Figure 2 summarizes the actuarial roles of the different compartments
described above.

I

A

Insurance E

S

R

D

Premium

Payment

Investment

Death
Benefit

Hospitalization

Benefit

Figure 2: Insurance dynamics among compartments S, E, I, A, R, and D.

2.2. Simplified Model without Vital Dynamics

Although the model (1) accounts for vital dynamics, many actuarial and epidemiological
applications focus on short-term epidemic scenarios where demographic processes, such as birth
and natural death, have a negligible influence compared to disease-induced effects. This as-
sumption is particularly useful for analyzing insurance products affected by sudden epidemic
shocks over short time periods.

In actuarial modeling, the main focus is often on quantifying the short-term impact of
epidemic-driven mortality on life insurance reserves and capital requirements. During these
short periods, background demographic changes occur slowly and have minimal influence on key
financial indicators. Including vital dynamics requires additional parameters, such as birth and
natural mortality rates, which are either unavailable or unnecessary for pricing and reserving
during acute outbreaks. For these reasons, the actuarial-epidemiological literature typically
removes vital dynamics and focuses solely on the transmission and progression of the disease.
This simplification enhances mathematical tractability and allows for clearer interpretation of
results relevant to insurance and risk management.

Therefore, we consider a simplified SEIARD model in which the recruitment (’birth’) rate
Λ and the natural death rate µ are both set to zero. In this case, the total population

N(t) = S(t) + E(t) + I(t) + A(t) +R(t) +D(t),

remains constant because there are no births or non-disease-related deaths. However, the total
living population

NL(t) = S(t) + E(t) + I(t) + A(t) +R(t),

is not constant, since it decreases over time due to disease-induced mortality. Therefore, under
the assumptions described in Table 1 and the compartmental structure illustrated in Figures 1
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and 2, the simplified model is given by

dS

dt
= −βS

(I + κA

NL

)
,

dE

dt
= βS

(I + κA

NL

)
− αE,

dI

dt
= pαE − (γI + δI)I,

dA

dt
= (1− p)αE − (γA + δA)A,

dR

dt
= γII + γAA,

dD

dt
= δII + δAA,

(3)

supplied with the initial data

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = R0, D(0) = D0. (4)

This formulation remains well-suited for capturing epidemic-induced mortality, the primary
concern in actuarial analysis during outbreaks. We are now ready to proceed with the well-
posedness analysis of the simplified model in the next section.

2.3. Well-posedness Analysis

This section focuses on analyzing the existence and uniqueness of a positive solution to the
system (3)–(4). To verify the invariance and boundedness of the proposed model, we consider
the total population

dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dA

dt
+

dR

dt
+

dD

dt

(3)
= 0.

This implies that the total population N remains constant over time. Therefore, all solutions
to (3)–(4) are bounded. Similarly, summing the equations associated with the total living
population NL, yields

dNL

dt
= −δII − δAA.

When I, A ≥ 0, this implies dNL

dt
≤ 0, meaning that NL decreases over time due to disease-

induced mortality. Since NL0 = S0+E0+I0+A0+R0 > 0, and deaths occur continuously rather
than instantaneously, it follows that NL > 0 for all finite t ≥ 0. If, however dNL

dt
≥ 0, which

mathematically possible but realistic, NL would still increase over time. However, it would still
remain strictly positive for all finite times due to the positivity of the initial condition.

Proposition 1. For any nonnegative initial conditions and strictly positive model parameters,
the solutions to the system (3)–(4) remain nonnegative for all t ≥ 0.

Proof. First, we prove the positivity of the solution for each compartment to ensure the epi-
demiological relevance of the model. Consider the susceptible class S, which is governed by the
following equation

dS

dt
= −βS

(I + κA

NL

)
.
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We define the negative part of S as S− = max(0,−S). Multiplying both sides of the equation
by S− and analyzing the resulting expression leads to

1

2

d(S−)2

dt
= β

(I(t) + κA(t)

NL(t)

)
(S−(t))2.

Integrating this relation yields

(S−(t))2 = (S−
0 )

2 exp

(∫ t

0

2β
I(s) + κA(s)

NL(s)
ds

)
.

Since the initial condition satisfies S0 ≥ 0, we have S−
0 = 0, implying S− = 0 for all t ≥ 0.

Therefore, S ≥ 0 for all t ≥ 0.
To prove that E remains positive, we multiply its differential equation by its negative part,

E−. Using the facts that S ≥ 0, NL > 0, and that S, E, I, and A are bounded, we obtain

1

2

d

dt
(E−)2 ≤ −C(E−)2,

for some C > 0. Afterwards,
(E−)2 ≤ (E−

0 )
2 exp(−2Ct).

Since E0 ≥ 0, it follows that E−
0 = 0. Therefore, E ≥ 0 for all t ≥ 0.

To demonstrate the nonnegativity of I, A, and R, D two by two, consider the following

dI

dt

∣∣∣
I=0

= αpE ≥ 0,
dA

dt

∣∣∣
A=0

= α(1− p)E ≥ 0,

and
dR

dt

∣∣∣
R=0

= γII + γAA ≥ 0,
dD

dt

∣∣∣
D=0

= δII + δAA ≥ 0.

These derivatives indicate that the vector field on the boundaries of the positive orthant R4
+

points inward or is tangent to the boundary, i.e. the rates are nonnegative on the coordinate
hyperplanes. Therefore, any trajectory that starts in the interior of the positive orthant R4

+

remains in it for all future time. This ensures the positivity of the system’s solutions.

To prove the existence and uniqueness of solutions to the system of equations (3)–(4), we use
standard results from the theory of ODEs, as supported by Proposition 1. First, note that the
right-hand side of the system is continuously differentiable and thus locally Lipschitz continuous
in the positive orthant. According to the Picard–Lindelöf theorem, this guarantees the local
existence and uniqueness of solutions for given nonnegative initial conditions. Furthermore,
the positivity of the state variables S, E, I, A, R, and D, together with the invariance of a
bounded region, ensures that the solutions remain positive and bounded for all t ≥ 0. This
precludes finite-time blow-up and allows us to extend local solutions to global ones. Therefore,
the following corollary summarizes this subsection

Corollary 1. Given any positive initial data and strictly positive model parameters, system (3)–
(4) has a unique, global, positive, bounded solution for all t ≥ 0.

7



3. Actuarial Applications

The concept of insurance coverage for infectious diseases is similar to coverage for other risks,
such as accidental death or property damage. However, it differs fundamentally from traditional
property and casualty insurance because the number of policyholders paying premiums and the
number of policyholders eligible for claims can fluctuate throughout an epidemic.

Since mortality analysis typically relies on ratios rather than absolute numbers, we define
six deterministic functions s(t), e(t), i(t), a(t), r(t), and d(t), that are obtained by dividing
equations (3) by the constant total population size N :

ds

dt
= −β

N

NL

s(i+ κa),

de

dt
= β

N

NL

s(i+ κa)− αe,

di

dt
= pαe− (γI + δI)i,

da

dt
= (1− p)αe− (γA + δA)a,

dr

dt
= γIi+ γAa,

dd

dt
= δIi+ δAa,

(5)

supplied with the initial data

s(0) = s0, e(0) = e0, i(0) = i0, a(0) = a0, r(0) = r0, d(0) = d0 (6)

satisfying s0+e0+ i0+a0+r0+d0 = 1. The components can be interpreted as the probabilities
that a randomly selected individual belongs to one of the defined compartments at time t.
However, the coupling terms introduce interdependence among the risks in the SEIARD model,
which differs from the independent risk assumption typically found in multiple-decrement life
insurance models. With these probability functions defined, we can apply actuarial techniques
to derive key quantities relevant to insurance coverage for infectious diseases. In the sequel we
compute actuarial quantities as proposed by Feng and Garrido [15] for the SEIARD model (5).

3.1. Premiums and Benefits

We consider an infectious disease insurance plan in which premiums are continuously col-
lected from individuals as long as they are susceptible. In other words, policyholders pay
premiums in the form of continuous annuities for as long as they remain healthy and sus-
ceptible. Conversely, the insurer continuously reimburses medical expenses for each infected
individual throughout their treatment period. If an individual dies from the disease, coverage
under the plan ends immediately.

Using International Actuarial Notation, we denote the actuarial present value (APV) of
premium payments over t years by ās+e

t| , where the superscript s indicates that payments are

made by susceptible and exposed individuals. Accordingly, the APV of benefit payments to
infected individuals at a rate of one monetary unit per unit of time is denoted by ās+e

t| .

To evaluate these annuities, we use the current payment approach. This method involves
determining the present value of a payment due at time t, calculated as the discounted value of
one monetary unit multiplied by the probability that the payment occurs. We then integrate
these present values over all possible times t. A comprehensive discussion of annuity evaluation
techniques can be found in [13, 25].
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Accordingly, the insurer’s liability, the total discounted value of benefit payments over a
t-year period, is expressed by the two infected classes as follows:

āi+a
t| =

∫ t

0

e−δτ
(
i(τ) + a(τ)

)
dτ,

where δ ≥ 0 represents the discounting interest rate. On the revenue side, the total discounted
value of premium payments over the same t-year period is:

ās+e
t| =

∫ t

0

e−δτ
(
s(τ) + e(τ)

)
dτ.

Our analysis is grounded in the fundamental principle of equivalence for determining level
premiums. According to this principle we have

E
[
Present value of benefit outgo

]
= E

[
Present value of premium income

]
.

Based on this, the level premium for a unit annuity claim payment plan is given by:

P̄ (āi+a
t| ) =

āi+a
t|

ās+e
t|

,

where āi+a
t| is the APV of benefit payments to the two infected classes i(t) and a(t) and ās+e

t| is

the APV of premium payments from the susceptible and exposed classes.
For analytical tractability, we start with an insurance policy that has an infinite time hori-

zon. When the policy duration is long, premiums computed under the assumption of an infinite
term can reasonably approximate the true insurance cost.

Proposition 2. Under the SEIARD model specified in equations (5), assuming γI = γA, δI =
δA, the following relation holds:

ās+e
∞| +

(
1 +

γI + δI
δ

)
āi+a
∞| =

1

δ
. (7)

Proof. Adding the first four equations in (5) and integrating yields (with s0 + e0 = 1)

s(t) + e(t)− 1 + i(t) + a(t) = −(γI + δI)

∫ t

0

i(τ) dτ − (γA + δA)

∫ t

0

a(τ) dτ.

Next, we assume γI = γA, δI = δA, we multiply by e−δt and integrate from 0 to ∞:∫ ∞

0

e−δt(s(t) + e(t)) dt+

∫ ∞

0

e−δt(i(t) + a(t) dt− 1

δ

= −(γI + δI)

∫ ∞

0

e−δt

∫ t

0

(i(τ) + a(τ)) dτ dt,

Interchanging the order of integrals yields,

ās+e
∞| + āi+a

∞| − 1

δ
= −(γI + δI)

∫ ∞

0

e−δt

∫ t

0

(i(τ) + a(τ)) dτ dt

= −γI + δI
δ

∫ ∞

0

e−δτ (i(τ) + a(τ)) dτ = −γI + δI
δ

āi+a
∞| ,

which proves (7).
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Note that the right-hand side of (7) represents the present value of a unit perpetual annuity
at a constant interest rate δ. The left-hand side captures the distribution of payments across
compartments, namely (i) the APV of continuous premium payments by susceptibles or exposed
is given by ās+e

∞| , (ii) the APV of continuous benefit payments to infected individuals is āi+a
∞| ,

(iii) the APV of the perpetuities granted to individuals transitioning from class i or a to class
r or d is ((γI + δI)/δ)ā

s+e
∞| , where each individual in class r is entitled to a perpetuity worth

1/δ at the time of transition. Thus, the total APV of all six components equals that of a unit
perpetuity, ensuring fairness and consistency under the equivalence principle.

Using equation (7), we can derive the net level premium for an infinite-term policy, where
premiums and claims are structured as continuous annuity payments. The formula is given by

P̄ (āi+a
∞| ) =

āi+a
∞|

ās+e
∞|

=
δāi+a

∞|

1− (δ + γI + δI)ā
s+e
∞|

.

3.2. Reserve Calculation

In the context of epidemic-linked insurance products, a key actuarial quantity is the prospec-
tive reserve. This is defined as the insurer’s net liability at time t, taking into account the
expected present value of future benefits and premiums. The SEIARD model structure natu-
rally supports this formulation by identifying subpopulations that are either responsible for
generating claims (infectious classes i and a, as well as deaths in d) or contributing premiums
(susceptible s, exposed e, and recovered r). Let π be the premium rate per person per unit
time, bI and bA be the per-unit-time benefits paid to symptomatic and asymptomatic infectives,
respectively, LD be the lump-sum death benefit paid upon death, and δ be the discount rate.
We define the prospective reserve at time t, denoted V , as

V (t) = APV of future benefits to i, a, d− APV of future premiums from s, e, r.

Thus, the reserve at time t, is given by

V (t) =

∫ T

t

e−δ(x−t)
[
bIi(x) + bAa(x) + LD(δIi(x) + δAa(x))

]
dx

− π

∫ T

t

e−δ(x−t)
[
s(x) + e(x) + r(x)

]
dx.

(8)

This expression (8) captures the evolving nature of the epidemic, enabling a dynamic assess-
ment of insurer liabilities. For example, a sharp increase in i(t) or δI leads to an increase in
expected claims and, consequently, a higher reserve requirement. Conversely, including r(t) as
a premium-paying class stabilizes income since recovered individuals are assumed to maintain
coverage. By analyzing V under various epidemic scenarios, insurers can evaluate solvency
margins, assess the robustness of pricing strategies, and design more resilient products.

In actuarial models of epidemic insurance, the premium rate π plays a central role in deter-
mining the financial soundness of the insurance scheme. It represents the continuous income
collected from insured individuals to finance future claim payments. From a modeling per-
spective, π is a free parameter. However, for the reserve function V to remain meaningful in
actuarial terms, π must be strictly positive. A negative or zero premium rate implies that
the insurer is offering coverage for free or subsidizing the insured, which is unrealistic. Fur-
thermore, the premium rate must be carefully calibrated to ensure that the reserve function
remains nonnegative throughout the insurance horizon [0, T ], reflecting the requirement that
the insurer remains solvent at all times.
If π is set too low, the reserve V may become negative during the simulation period. This
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indicates that the scheme is underfunded and incapable of covering its expected liabilities.
Conversely, if π is set too high, the reserve may exceed the expected claims by a large margin,
reflecting overpricing or inefficiency.
To determine an admissible value of π for a T -day insurance policy, the rate should be chosen
such that V (t) ≥ 0 for all t ∈ [0, T ]. This leads to the actuarial constraint

0 < π ≤ π∗ := min
t∈[0,T ]

∫ T

t
e−δ(x−t)

[
bIi(x) + bAa(x) + LD(δIi(x) + δAa(x))

]
dx∫ T

t
e−δ(x−t)

[
s(x) + e(x) + r(x)

]
dx

.

This inequality ensures that the present value of future premium income never falls below the
present value of future liabilities. It also establishes a practical upper bound for π, which can
be approximated numerically based on model trajectories.

3.3. Force of Infection, Mortality, and Removal

The concept of the force of infection plays a pivotal role in linking epidemic dynamics
with actuarial modeling. Within the SEIARD framework, we consider two formulations of this
quantity that offer complementary perspectives. The first is the mechanistic force of infection,
denoted λ(t), which captures the transmission rate from infectious individuals to susceptibles
based on model parameters and compartment sizes. It is defined by

λ(t) = β
i(t) + κa(t)

NL(t)
, (9)

and represents the instantaneous hazard rate at which susceptibles acquire infection. In con-
trast, we also define an empirical force of infection, denoted µs+e

t , which describes the observed
rate of depletion of the combined susceptible and exposed classes

µs+e
t = −s′(t) + e′(t)

s(t) + e(t)
, t ≥ 0. (10)

While λ(t) arises from the model’s transmission mechanisms, µs+e
t can be seen as an effective or

realized force of infection, incorporating all processes contributing to the decline of s(t) + e(t),
including new infections and progression to infectious states. Comparing both expressions al-
lows us to validate the model’s internal consistency and examine differences between theoretical
assumptions and actual epidemic dynamics.

From an actuarial standpoint, the mechanistic force λ(t) governs the flow of individuals from
s(t) to e(t), which in turn influences future claims and premium base dynamics. For instance,
higher values of λ(t) lead to increased exposure and eventually higher numbers in the i(t) and
a(t) compartments, thus amplifying benefit payouts. Moreover, λ(t) allows the computation of
epidemic-adjusted survival probabilities for individuals initially in the susceptible class. The
probability that an individual avoids infection up to time t is given by

ps(t) = exp
(
−
∫ t

0

λ(x) dx
)
, (11)

which can be used in pricing life or health insurance contracts under epidemic conditions.
The behavior of λ(t) over time can also inform public health-linked underwriting policies,
such as temporary exclusions or adjusted premiums during high-transmission periods. Thus,
incorporating the force of infection provides a rigorous basis for modeling the impact of disease
transmission on claim frequency and insurance fund volatility.

In parallel with the force of infection, we distinguish between two complementary notions
capturing the impact of disease-related mortality in the SEIARD system (5). The first is the
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force of mortality, denoted µd(t), which quantifies the instantaneous death rate from both
symptomatic and asymptomatic infections. It is given by the mechanistic expression

µd(t) =
δIi(t) + δAa(t)

NL(t)
, (12)

and governs the flow of individuals from the living population to the deceased class d(t). This
mortality force directly influences the severity of insurance claims and acts as a dynamic hazard
function that adjusts classical survival models to epidemic conditions. The epidemic-adjusted
survival probability is then defined as

pl(t) = exp
(
−
∫ t

0

µd(x) dx
)
, (13)

representing the likelihood that an individual survives the epidemic up to time t. This formu-
lation is essential for pricing annuities, valuing contingent liabilities, and computing reserves
under mortality shocks.

Complementing this, we introduce the empirical force of removal, denoted µi+a
t , which

captures the effective rate at which individuals exit the infectious classes due to recovery or
death

µi+a
t = −i′(t) + a′(t)

i(t) + a(t)
, t ≥ 0. (14)

From the system dynamics, this expression expands to

µi+a
t =

(γI + δI)i(t) + (γA + δA)a(t)− αe(t)

i(t) + a(t)
,

showing how removals result from both mortality and recovery processes, as well as the pro-
gression from the exposed state. While µd(t) isolates disease-induced mortality, µi+a

t accounts
for the total outflow from the infectious compartments, thus providing an empirical benchmark
against which mechanistic assumptions can be compared.

More generally, these force-based formulations yield integral representations of compartment
sizes. For instance, the susceptible class satisfies

s(t) = s0 exp
{
−
∫ t

0

µs
τ dτ

}
= s0 exp

{
−β

∫ t

0

N

NL(τ)
(i(τ) + κa(τ)) dτ

}
,

and analogous relations hold for the other classes. This highlights the structural role played by
these hazard rates in shaping population trajectories, and offers a natural bridge to actuarial
measures such as survival probabilities and expected times to death or recovery.

4. Numerical Scheme

We employ the nonstandard finite difference (NSFD) method introduced by Mickens [26]
to approximate the SEIARD model (5) numerically. This method is particularly suitable for
epidemic models because it is designed to preserve the continuous system’s key qualitative
properties, such as positivity, boundedness, and dynamic consistency. These properties are
often violated by standard numerical schemes, such as the explicit Euler method or the classical
Runge-Kutta methods [27–30].

Although standard schemes are widely used, they can produce nonphysical artifacts, such as
negative compartment sizes or spurious equilibria, especially when applied to nonlinear systems
with stiff dynamics or conservation constraints. These issues are particularly problematic in
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epidemiological and actuarial settings where state variables (e.g., infection ratios and mortality
proportions) must be interpreted in a biologically and financially meaningful way. For instance,
as illustrated in [27], even in reaction-diffusion settings, the traditional finite difference method
may result in negative population sizes for exposed individuals under specific conditions. In
contrast, the NSFD method consistently maintains positivity and qualitative realism.

In the NSFD framework, the time derivative u̇(t) of a generic state variable u is approxi-
mated using a nontrivial denominator function φ(k), where k = ∆t is the time step

du

dt

∣∣∣∣
t=tn

≈ un+1 − un

φ(k)
,

with φ(k) > 0 and φ(k) = k+O(k2). One common choice that guarantees positivity preserva-

tion is φ(k) = eµk−1
µ

, where µ is the natural mortality rate, as discussed in [27].

Let k be the time step size, and denote sn ≈ s(tn), e
n ≈ e(tn), and so on. The NSFD

discretization of the SEIARD model (5) becomes

sn+1 − sn

φ(k)
= −β

N

Nn
L

sn+1(in + κan),

en+1 − en

φ(k)
= β

N

Nn
L

sn+1(in + κan)− αen+1,

in+1 − in

φ(k)
= pαen+1 − (γI + δI)i

n+1,

an+1 − an

φ(k)
= (1− p)αen+1 − (γA + δA)a

n+1,

rn+1 − rn

φ(k)
= γIi

n+1 + γAa
n+1,

dn+1 − dn

φ(k)
= δIi

n+1 + δAa
n+1.

(15)

This scheme follows Mickens’s rules [26];

• Nonlinear terms such as s(i + κa) are discretized non-locally, i.e., using a mix of time
levels (e.g., sn+1(in + κan)) to maintain positivity;

• The discrete derivative uses a nonlinear denominator function φ(k) that reflects the
asymptotic behavior of the system;

• The scheme is explicitly solvable in a sequential manner, with each variable updated in
order.

Afterwords, 

sn+1 =
sn

1 + β N
Nn

L
(in + κan)φ(k)

,

en+1 =
en + β N

Nn
L
sn+1(in + κan)φ(k)

1 + αφ(k)
,

in+1 =
in + pαen+1φ(k)

1 + (γI + δI)φ(k)
,

an+1 =
an + α(1− p)en+1φ(k)

1 + (γA + δA)φ(k)
,

rn+1 = rn + φ(k)(γIi
n+1 + γAa

n+1),

dn+1 = dn + φ(k)(δIi
n+1 + δAa

n+1).

(16)
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Let us briefly comment on the discretization of the nonlinear incidence terms, which are
bilinear in nature. In particular, the infection term β N

NL(t)
s(t)(i(t) + κa(t)) is discretized

in the first two equations of (16) as β N
Nn

L
sn+1(in + κan), rather than β N

Nn
L
sn(in + κan) or

β N
Nn+1

L

sn+1(in+1 + κan+1). The guiding principle here is to evaluate exactly one factor at the

new time level, specifically, the variable whose time derivative appears in the equation (in this
case, s or e). This semi-implicit treatment ensures the positivity of the numerical solution while
maintaining the explicit solvability of the scheme. This strategy aligns with the general rules of
NSFD methods and has been successfully applied in similar epidemiological contexts (see e.g.,
[26–28]).

By construction, this NSFD scheme ensures that all compartments sn, en, in, an, rn, and dn

remain non-negative and the discrete total normalized population sn + en + in + an + rn + dn

remains constant at 1 (simply add all equations in (15)), provided that the initial data satisfy
this normalization condition. These qualitative properties of the NSFD scheme (16) also ensure
its stability. In summary, the NSFD method provides a structure-preserving and dynamically
consistent approach to numerically solving epidemiological models such as (5). Its robustness,
especially in maintaining positivity and avoiding nonphysical behaviors, makes it a compelling
choice for actuarial analyses and public health policy modeling.

5. Numerical Results

In this section, we present numerical results that illustrate the dynamic behavior of the
SEIARD model (5)–(6) using the NSFD scheme (16). Our goal is to simulate the tempo-
ral evolution of the epidemiological compartments under realistic conditions and evaluate the
model’s capacity to generate plausible outbreak scenarios. The analysis is divided into two
parts. First, we describe the parameter values and initial conditions used in the simulations
based on empirical data from a real-world SARS-CoV-2 outbreak. Second, we apply the pro-
posed NSFD scheme to explore population dynamics. Additionally, we examine the evolution
of the force of infection, mortality, and the actuarial reserve, which are key components of
the model’s financial interpretation. The simulations confirm the consistency, positivity, and
stability of the numerical scheme and demonstrate its relevance to epidemiological modeling
and actuarial risk assessment.

5.1. Parameter Estimate and Initial Conditions

We calibrate the model parameters and initial conditions of the SEIARD model (5)–(6)
based on data from the early phase of the 2020 Mexican SARS-CoV-2 epidemic [31, 32] to
perform realistic numerical simulations. Specifically, we refer to the study [33], which fitted an
SEIARD-type model to real case counts from March to July 2020. These estimates capture
essential epidemiological characteristics of the disease dynamics during the initial wave and are
consistent with values reported in the literature across several settings. The following Table 2
summarizes the parameter values used in the numerical scheme (16).

Table 2: Estimated parameter values based on COVID-19 data from Mexico [31, 32].

Parameter Value Parameter Value

β 0.3 γI 0.2
κ 0.7 δI 0.007
α 0.192 γA 0.1
p 0.14 δA 0.001
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These values reflect a disease with a relatively high transmission rate, a moderate incubation
period, and a progression that differs between symptomatic and asymptomatic cases. Notably,
only a small fraction of exposed individuals become symptomatic (p = 0.14), while the rest
remain asymptomatic, which is consistent with early clinical findings from the surveillance of
the SARS-CoV-2 virus.

For the initial conditions, we assume the following normalized values representing the early
stage of an outbreak in a population of size N , where each compartment is expressed as a
proportion of the total population

s(0) = 0.9999, e(0) = 0.00005, i(0) = 0.00003, a(0) = 0.00002, r(0) = 0, d(0) = 0.

These values correspond to a scenario in which nearly the entire population is susceptible
and there are only a few initial cases that are either exposed, symptomatic, or asymptomatic.
This setup is ideal for analyzing the initial spread and early intervention strategies, particularly
in the context of epidemic insurance planning or actuarial risk evaluation.

Unless stated otherwise, we assume that the total living population NL is approximately
equal to N , and that there is negligible demographic turnover during the short-to-medium
simulation horizon (e.g., 200 days in [33]). The time step k used in the NSFD scheme (16) is

set to k = 1 day, and the denominator function is chosen as φ(k) = eµk−1
µ

, with µ → 0 (i.e., no

natural mortality), simplifying to φ(k) = k.

5.2. Simulations
Figure 3 shows the evolution of each compartment in the SEIARD epidemiological model,

capturing the progression of the outbreak. The proportion of susceptible individuals, s(t),
declines sharply once the epidemic begins and eventually stabilizes at a lower level, reflecting
significant population-level exposure to the disease. The exposed class e(t) displays a typical
rise-and-fall profile, peaking around day 150 as individuals transition to the infectious stages.
The symptomatic infected class i(t) exhibits a relatively low peak, suggesting either reduced
transmission from symptomatic individuals or more rapid recovery or mortality. In contrast, the
asymptomatic infected class a(t) reaches a much higher peak and dominates the transmission
dynamics. The recovered population r(t) increases steadily and ultimately becomes the largest
compartment, indicating broad population recovery or immunity. Meanwhile, the deceased
class d(t) grows gradually and levels off, representing the cumulative impact of mortality.
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Figure 3: Individual dynamics of the SEIARD compartments (5)–(6).
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Figure 4 illustrates the compartmental dynamics relevant to the financial aspects of epi-
demic insurance modeling. The left panel displays the time evolution of the premium-paying
compartments s(t), e(t), and r(t), and are therefore assumed to contribute regular insurance
premiums. The right panel presents the dynamics of the benefit-related compartments i(t),
a(t), and d(t). These compartments are crucial for estimating insurance liabilities arising from
hospitalization costs and death benefits. Together, this figure complements the epidemiological
view by highlighting the population groups involved in premium inflows and benefit outflows,
i.e. Figure 2.
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Figure 4: Dynamics of premium-paying (s(t), e(t), r(t)) and benefit-receiving (i(t), a(t), d(t)) compartments.

Figure 5 presents the temporal dynamics of the force of infection µs+e
t and the force of

removal µi+a
t , which are key elements in modeling epidemic-induced insurance transitions. The

left panel shows the evolution of the infection force µs+e
t , which peaks sharply around day 160

before rapidly declining, indicating the period of highest transmission intensity. The middle
panel shows the force of removal µi+a

t , starting from a negative value and gradually increas-
ing towards a plateau, reflecting the accumulation of recovery and mortality effects over time.
The right panel combines both curves for direct comparison, emphasizing the temporal lag be-
tween peak infection pressure and the stabilization of removal effects. This figure highlights the
dynamic interplay between infection spread and population outflow from the infectious com-
partments, essential for assessing risk exposure and estimating insurance liabilities throughout
the epidemic lifecycle.

Figure 6 presents a comprehensive view of the infection and mortality risks during the epi-
demic, as well as their consequences on survival probabilities. The top row shows the evolution
of the force of infection λ(t) (left panel), the force of mortality µd(t) (middle panel), and their
direct comparison (right panel). The force of infection peaks around day 160, corresponding
to the period of maximum transmission intensity. Its bell-shaped curve reflects the typical
trajectory of an epidemic wave. In contrast, the force of mortality remains several orders of
magnitude smaller but follows a similar temporal pattern, indicating that death occurrences
are closely linked to the infectious burden, albeit with much lower magnitude. The bottom row
displays the evolution of the probabilities ps(t) (left) and pl(t) (middle), and their combined
view (right). The infection-free probability ps(t) decreases rapidly from 1 to approximately
0.23, highlighting the high cumulative exposure of the population to the infection. On the
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Figure 5: Temporal evolution of the force of infection (10) and force of removal (14).

other hand, the epidemic-adjusted survival probability pl(t) remains close to 1, with a modest
decline due to the relatively low mortality force. This gap between ps(t) and pl(t) illustrates
the fact that while a large proportion of the population may be infected, only a small fraction
succumb to the disease under the assumed parameter regime. These quantities are essential for
quantifying the individual-level risks and for evaluating insurance models that account for both
infection and mortality events. In particular, the joint dynamics of λ(t), ps(t), µ

d(t), and pl(t)
inform the temporal evolution of insurance exposure and help calibrate risk-adjusted actuarial
strategies.
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Figure 6: Temporal dynamics of the force of infection (9), the force of mortality (12), the infection-free proba-
bility (11), and the epidemic-adjusted survival probability (13).

Figure 7 illustrates the comparison between two expressions of the force of infection: the
empirical formulation µs+e

t , and the mechanistic expression λ(t). Both curves display a similar
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bell-shaped profile, peaking near day 170, which corresponds to the period of highest epidemic
intensity. The empirical force µs+e

t , shown in dark red, captures the relative rate of depletion
in the non-infected population (susceptible and exposed), while the mechanistic force λ(t),
shown in dark blue, quantifies the instantaneous risk of infection based on the infectious and
asymptomatic classes. Although both curves are closely aligned in shape and amplitude, a
slight phase shift is observed, with µs+e

t peaking marginally earlier. This distinction reflects the
dynamic lag between exposure and infectiousness. Overall, the consistency between the two
formulations validates the model’s internal coherence and provides complementary perspectives:
λ(t) is appropriate for modeling transmission processes, whereas µs+e

t offers an aggregate view
of epidemic pressure from the perspective of the non-infected population.
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Figure 7: Comparison of the two forces of infection (9) and (10).

Figure 8 illustrates the time-dependent behavior of the reserve function V (t), defined by the
net present value of the future expected benefits minus the expected liabilities, over the time
horizon [t, T ]. The reserve accounts for the insured benefits paid in the event of infection or
disease-related death and subtracts the collected premiums from the susceptible, exposed, and
recovered populations.
Numerically, the optimal admissible premium rate is π∗ = 2.9861 e−06. The figure illustrates the
evolution of the reserve function V (t) under three different premium rates: π = π∗−ε (top left),
π = π∗ (top right), and π = π∗+ε (bottom left), where ε is a small positive perturbation. These
simulations allow us to assess the sensitivity of the reserve to variations in the premium rate
and validate the actuarial balance at π = π∗. In each scenario, the reserve increases initially
as the epidemic unfolds and reaches a peak near day 150, which coincides with the peak in
infection prevalence. Then, it declines as the epidemic wanes and the liabilities diminish. The
comparison plot (bottom right) shows how the premium rate affects the reserve trajectory:

• For π = π∗− ε, the reserve reaches the highest value but eventually declines significantly,
even becoming negative near the end of the period, indicating a potential deficit.

• For π = π∗, the reserve stays strictly positive and tends to zero as t → T , confirming that
the premium exactly covers the expected liabilities.
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• For π = π∗ + ε, the reserve is lower overall, with an early peak followed by a gradual
decay and a positive terminal value, reflecting a surplus due to excess premium.

This analysis confirms the sensitivity of the reserve function to small deviations in the premium
rate. It highlights the importance of carefully calibrating π to avoid underfunding or unneces-
sary surplus accumulation. In particular, π∗ ensures that the insurer remains solvent with zero
expected surplus or deficit at the terminal time T .
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Figure 8: Temporal evolution of the reserve function (8) for three different premium rates.

5.3. Actuarial Interpretation of the Reserve Function

In actuarial terms, the reserve function V (t) quantifies the net liability of the insurer at
time t. It serves as a key indicator of the insurer’s financial balance throughout the coverage
period;

• If V (t) > 0: The insurer holds a positive reserve at time t, implying that the expected
liabilities outweigh the incoming premiums. This situation requires additional capital to
ensure solvency and reflects a conservative pricing strategy.

• If V (t) < 0: The insurer has a negative reserve, indicating that the present value of pre-
mium income exceeds expected future costs. While this may suggest a surplus, it typically
signals an overpriced premium, raising concerns about fairness, regulatory compliance,
and long-term sustainability. Persistent negative reserves are generally unacceptable in
actuarial practice.

• If V (t) ≈ 0: This is the ideal actuarial equilibrium, where the premium has been calibrated
precisely to match the expected future obligations. It satisfies the principle of equivalence,
which states that the present value of benefits and costs should equal the present value
of premiums in a fairly priced insurance scheme.

In our simulations, this actuarial balance is achieved when the premium is set to its optimal
value π = π∗. Deviating from this optimal rate, either by underpricing (π∗ − ε) or overpricing
(π∗ + ε), results in non-zero terminal reserves, corresponding to either a funding gap or an
actuarial surplus. These deviations highlight the importance of precise premium calibration to
ensure fairness, solvency, and consistency with actuarial principles.
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6. Conclusion

In this paper, we developed an actuarial framework that incorporates epidemic dynamics
into life insurance modeling using the SEIARD compartmental model. By explicitly account-
ing for incubation periods, asymptomatic transmission, and disease-induced mortality, our ap-
proach extends traditional actuarial models to better reflect the temporal nature of infectious
disease outbreaks. We derived closed-form expressions for key actuarial quantities such as pre-
miums, annuity benefits, and reserve functions, all dynamically adjusted to reflect the evolving
epidemiological environment.

Numerical simulations, carried out through an NSFD scheme, demonstrated the interplay
between epidemiological parameters and financial outcomes. The SEIARD model (5) revealed
a high prevalence of asymptomatic transmission, contributing significantly to the infection pres-
sure. The forces of infection, mortality, and removal exhibited dynamic trajectories with notable
phase lags, highlighting the timing mismatch between exposure and outcome. Furthermore, our
analysis of infection-free and epidemic-adjusted survival probabilities showed that while a large
fraction of the population may contract the disease, mortality remains comparatively low under
the chosen parameters.

From an actuarial perspective, the reserve function V (t) provided a time-resolved view of
the insurer’s liability throughout the epidemic. Simulations showed that the reserve is highly
sensitive to small deviations in the premium rate. In particular, the optimal premium π∗

achieved actuarial balance by ensuring that the reserve converges to zero at the end of the
coverage period. Deviations from this rate resulted in either surplus accumulation or potential
solvency deficits, emphasizing the importance of dynamic premium calibration under epidemic
risk.

Declarations

Data availability

All information analyzed or generated, which would support the results of this work are
available in this article. No data was used for the research described in the article.

Conflict of interest

The authors declare that there are no problems or conflicts of interest between them that
may affect the study in this paper.

References

[1] J. Yang, X. Duan, and G. Sun. An immuno-epidemiological model with non-exponentially distributed
disease stage on complex networks. Journal of Theoretical Biology, 595:111964, 2024.

[2] O. Simeonov and C. D. Eaton. Modeling the drivers of oscillations in COVID-19 data on college campuses.
Annals of Epidemiology, 82:40–44, 2023.

[3] A. Zinihi, M. Ehrhardt, and M. R. Sidi Ammi. Spatiotemporal SEIQR epidemic mdeling with optimal
control for vaccination, treatment, and social measures, 2025. arXiv preprint 2507.09328.

[4] L. Chang, S. Gao, and Z. Wang. Optimal control of pattern formations for an SIR reaction–diffusion
epidemic model. Journal of Theoretical Biology, 536:111003, 2022.

[5] A. Zinihi, M. R. Sidi Ammi, and D. F. M. Torres. Fractional differential equations of a reaction-diffusion
SIR model involving the Caputo-fractional time-derivative and a nonlinear diffusion operator. Evolution
Equations and Control Theory, 14(5):944–967, 2025.

[6] A. Lucia-Sanz, A. Magalie, R. Rodriguez-Gonzalez, C. Y. Leung, and J. S. Weitz. Modeling shield immunity
to reduce COVID-19 transmission in long-term care facilities. Annals of Epidemiology, 77:44–52, 2023.

[7] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proceed-
ings of the Royal Society of London. Series A, 115(772):700–721, 1927.

20



[8] N. Azimaqin, X. Liu, Y. Wei, and Y. Li. Explicit formula of the basic reproduction number for
heterogeneous age-structured SIR epidemic model. Mathematical Methods in the Applied Sciences,
48(12):11798–11812, 2025.

[9] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599–653, 2000.
[10] F. Brauer, C. Castillo-Chavez, and Z. Feng. Mathematical models in epidemiology. Texts in Applied

Mathematics. Springer New York, 2019.
[11] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri. Modelling

the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine,
26(6):855–860, 2020.

[12] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, Y. Lou, D. Gao, L. Yang, D. He, and M. H. Wang.
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from
2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious
Diseases, 92:214–217, 2020.

[13] D. C. M. Dickson, M. R. Hardy, and H. R. Waters. Actuarial Mathematics for Life Contingent Risks.
Cambridge University Press, 2019.

[14] R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit. Modern Actuarial Risk Theory. Springer Berlin
Heidelberg, 2008.

[15] R. Feng and J. Garrido. Actuarial applications of epidemiological models. North American Actuarial
Journal, 15(1):112–136, 2011.

[16] D. Hainaut. An actuarial approach for modeling pandemic risk. Risks, 9(1):3, 2020.
[17] C. I. Nkeki and E. H. Iroh. On epidemiological and actuarial analyses of health insurance models for

communicable diseases. North American Actuarial Journal, 29(2):422–451, 2024.
[18] L. Francis and M. Steffensen. Individual life insurance during epidemics. Annals of Actuarial Science,

18(1):152–175, 2023.
[19] T. Chatterjee, A. S. Macdonald, and H. R. Waters. A model for ischaemic heart disease and stroke I: The

model. Annals of Actuarial Science, 3(1–2):45–81, 2008.
[20] A. S. Macdonald, H. R. Waters, and C. T. Wekwete. A model for coronary heart disease and stroke with

applications to critical illness insurance underwriting II: Applications. North American Actuarial Journal,
9(1):41–56, 2005.

[21] C. I. Nkeki and E. H. Iroh. Epidemiological and health insurance models for a communicable disease.
Annals of Financial Economics, 19(02):2450007, 2024.

[22] R. Feng, J. Garrido, L. Jin, S.-H. Loke, and L. Zhang. Epidemic compartmental models and their insurance
applications, page 13–40. Springer International Publishing, 2021.

[23] A. A. Chernov, A. A. Shemendyuk, and M. Y. Kelbert. Fair insurance premium rate in connected SEIR
model under epidemic outbreak. Mathematical Modelling of Natural Phenomena, 16:34, 2021.

[24] U. A.-P. de León, Á. G. C. Pérez, and E. Avila-Vales. An SEIARD epidemic model for COVID-19 in
Mexico: mathematical analysis and state-level forecast. Chaos, Solitons & Fractals, 140:110165, 2020.

[25] N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, and C. J. Nesbitt. Actuarial mathematics. 1997.
[26] R. E. Mickens. Nonstandard finite difference models of differential equations. WORLD SCIENTIFIC,

December 1993.
[27] A. Zinihi, M. Ehrhardt, and M. R. Sidi Ammi. A nonstandard finite difference scheme for an SEIQR

epidemiological PDE model, 2025. arXiv preprint 2508.02928.
[28] M. Ehrhardt and R. E. Mickens. A nonstandard finite difference scheme for convection–diffusion equations

having constant coefficients. Applied Mathematics and Computation, 219(12):6591–6604, February 2013.
[29] G. Costa, M. Lobosco, M. Ehrhardt, and R. Reis. Mathematical analysis and a nonstandard scheme for a

model of the immune response against COVID-19, 2024.
[30] M. H. Maamar, M. Ehrhardt, and L. Tabharit. A nonstandard finite difference scheme for a time-fractional

model of zika virus transmission. Mathematical Biosciences and Engineering, 21(1):924–962, 2023.
[31] GitHub. COVID-19 in Mexico and state-level forecast; https://github.com/UgoAvila/

COVD-19-in-Mexico-and-State-Level-Forecast, Accessed on: August 10, 2024 (2020).
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