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Abstract

This paper introduces a nonstandard finite difference (NSFD) approach to a reaction-diffusion
SEIQR (susceptible-exposed-infected-quarantined-recovered) epidemiological model, which cap-
tures the spatiotemporal dynamics of infectious disease transmission. Formulated as a system
of semilinear parabolic partial differential equations (PDEs), the model extends classical com-
partmental models by incorporating spatial diffusion to account for population movement and
spatial heterogeneity. The proposed NSFD discretization is designed to preserve the continuous
model’s essential qualitative features, such as positivity, boundedness, and stability, which are
often compromised by standard finite difference methods. We rigorously analyze the model’s
well-posedness, construct a structure-preserving NSFD scheme for the PDE system, and study
its convergence and local truncation error. Numerical simulations validate the theoretical find-
ings and demonstrate the scheme’s effectiveness in preserving biologically consistent dynamics.

Keywords: Epidemic modeling, Nonstandard finite difference scheme, Spatiotemporal
dynamics, Positivity-preserving.
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1. Introduction

Mathematical modeling has been instrumental in advancing our understanding of infectious
disease dynamics and shaping public health interventions. Foundational compartmental models,
such as the SIR and SEIR frameworks [27], originally introduced by Kermack and McKendrick
in the early 20th century [21], have provided essential insights into the spread of epidemics.
Over the years, these classical models have been extended to incorporate greater epidemiolog-
ical realism, accounting for factors such as latency periods, waning immunity, asymptomatic
transmission, and spatial variability [13, 44].

Recent public health crises, such as the COVID-19 pandemic, Ebola outbreaks, and the
resurgence of diseases like measles and tuberculosis, have renewed interest in the development
of more realistic and spatially explicit epidemic models [44]. In this context, reaction-diffusion
systems have emerged as powerful frameworks for capturing both the temporal evolution and
spatial spread of infectious diseases within populations [2, 4]. By introducing diffusion terms
into classical compartmental models, these systems enable researchers to model population
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movement and spatial heterogeneity in infection risk [40], which are the key factors in designing
effective regional containment strategies.

In this work we focus on the numerical solution of partial differential equation (PDE) mod-
els in epidemiology, which extend ordinary differential equation (ODE) models using spatial
reaction-diffusion systems, where each compartment, representing a different species, is allowed
to invade a spatial domain {2 C R"™ with a space-dependent density. This spatial diffusion mech-
anism is modelled with the Laplace operator, leading to a system of semilinear parabolic PDEs
supplied with suitable boundary conditions. Spatial PDE models have been used to study the
transmission of infection, depending on how a particular disease is transmitted between differ-
ent populations or subpopulations, see e.g. the SIS reaction-diffusion model in a heterogeneous
environment [1], the modified SIS diffusion models [18], a reaction-advection-diffusion system
with free boundaries [7], or the spatially diffusive SIR epidemic model with the mass action
infection mechanism [22].

In a recent study [42], the authors proposed a spatiotemporal SEIQR epidemic model that
incorporates optimal control strategies. The model accounted for disease transmission in space
and time and included three time- and space-dependent control variables: vaccination for sus-
ceptible individuals, social distancing for exposed and infected individuals, and treatment for
quarantined individuals. The authors pursued four goals: (i) proving the existence, unique-
ness, and positivity of global strong solutions using analytic semigroup theory, (ii) establishing
the existence of optimal controls through functional analysis, (iii) deriving first-order necessary
conditions via convex perturbations and adjoint equations, and (iv) conducting numerical simu-
lations. The numerical results showed that combining pharmaceutical and non-pharmaceutical
interventions was more effective in reducing the disease burden and associated control costs.

Conventional finite difference methods often encounter numerical instability and fails to
reproduce important qualitative properties of the solutions when applied to differential equa-
tions modeling real-world phenomena. The nonstandard finite difference (NSFD) approach,
pioneered by Mickens [28, 29|, offers a more robust alternative to address these limitations.
The NSEFD method is based on carefully formulated design rules that ensure dynamic consis-
tency by preserving key qualitative features of the original continuous system, such as positivity,
boundedness and asymptotic behaviour [12].

Numerical solution methods based on NSFD have been widely applied to both ordinary
and partial differential equations (PDEs) across various application domains. For example,
Mickens developed an NSFD scheme for the Burgers equation with a logistic reaction-diffusion
term, which preserves the positivity and boundedness of the continuous model [30]. In [8], the
authors designed an NSFD scheme for reaction-diffusion PDEs describing the coexistence of
plant species in arid environments. Costa et al. [9] proposed an NSEFD scheme for solving a
15-component model of the immune response to SARS-CoV-2.

In NSFD schemes, the nonstandard denominator in the discrete derivative reflects the qual-
itative features of the underlying differential equation. In epidemiology and ecology, differential
equations modeling infectious disease dynamics and predator-prey interactions typically require
solutions that remain positive, cf. e.g. [9, 26, 27]. As demonstrated in [25] (for a time-fractional
model of Zika virus transmission), numerical solutions may become negative when using stan-
dard schemes, such as the standard fourth-order Runge-Kutta method. Additionally, standard
schemes can produce numerical fixed-points, which are not fixed points of the original ODE
system, cf. [31].

As discussed in [32], standard finite difference (SFD) methods are prone to numerical insta-
bility and may fail to preserve essential properties, especially in epidemiological contexts. Ad-
ditionally, although various NSFD schemes have been developed for reaction-diffusion systems,
many lack temporal accuracy or consistency. The study addresses these issues by proposing
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an improved NSFD scheme that guarantees first-order accuracy in time and second-order ac-
curacy in space while ensuring the positivity of the numerical solution. Several other studies
have reinforced the advantages of NSFD approaches in capturing the spatiotemporal dynamics
of complex systems. For example, specialized adaptations of Mickens’s rules, such as nonlocal
approximations of nonlinear terms and nonlinear denominator functions, have been shown to
maintain solution properties in cross-diffusion and chemotaxis models [5, 10]. Furthermore,
NSED methods have been successfully applied to fractional reaction-diffusion systems [35] and
convection-diffusion models [12], demonstrating superior stability and fidelity compared to clas-
sical schemes [5]. Motivated by these findings, we adopt an NSEFD approach in the present work
to ensure the positivity and numerical stability of the discretized SEIQR system while accu-
rately capturing the effects of spatial diffusion and nonlinear interactions.

In this paper, we propose a reaction-diffusion SEIQR model governed by a system of
parabolic PDEs. We assume the population is distributed over a spatially homogeneous domain,
and the compartmental densities vary in time and space. This captures the spatiotemporal
dynamics of disease transmission. Specifically, the densities of the susceptible, exposed, infec-
tious, quarantined, and recovered individuals are denoted by S(t, x), E(t,x), I(t,x), Q(t,x), and
R(t, z), respectively. This study builds upon our previous work on a spatiotemporal SEIQR
model [42], which focused on the analysis of optimal control strategies using three intervention
variables. In contrast, the present work introduces an NSFD scheme to simulate the model’s
dynamics numerically. This structure-preserving discretization approach ensures that essential
properties of the continuous model, such as the positivity and boundedness of the solution,
are retained in the numerical setting. This provides a more reliable and biologically consistent
computational framework.

Our work is structured as follows: Section 2 introduces the proposed SEIQR epidemic
model, which is formulated as a system of PDEs. It presents the compartmental transitions
and describes the spatiotemporal dynamics of disease spread. Then, it provides a well-posedness
analysis of the model in an m-dimensional setting. In Section 3 we construct an NSFD scheme
for the two-dimensional version of the PDE model. Section 4 provides a detailed analysis of
the numerical scheme, including convergence to a feasible solution and stability properties.
Section 5 presents numerical simulations that illustrate and validate the theoretical results.
Finally, Section 6 summarizes the main findings and outlines possible directions for future
research.

2. Mathematical Analysis of the Model

In this section, we propose a five-dimensional epidemiological model to describe the trans-
mission dynamics of an epidemic. In this model, individuals in the population transition
through five compartments over time: Susceptible (S), Exposed (FE), Infected (I), Quaran-
tined (@), and Recovered (R). The transmission coefficients used in the SEIQR model are
summarized in Table 1.

The proposed SEIQR reaction-diffusion model describes the spatiotemporal spread of an
infectious disease by modeling the movement and interactions of individuals across five com-
partments: susceptible (5), exposed (FE), infected (I), quarantined (Q), and recovered (R).
Susceptible (S): Susceptible individuals are at risk of contracting the disease. Their popu-
lation increases through recruitment A and re-entry from quarantine at rate pQ), representing
individuals who tested negative or were misclassified. They decrease due to natural mortality
(1) and infection upon contact with exposed (F) and infected () individuals, at rates 51 SFE
and (5,51, respectively. Spatial movement is modeled by the diffusion term AgAS, where A
denotes the Laplace operator.



Table 1: Transmission coefficients for the proposed SEIQR reaction-diffusion model.

Symbol Description

A Recruitment rate (e.g. birth or immigration)
Transmission rate due to contact between

b susceptible and exposed individuals
Transmission rate due to contact between

B2 susceptible and infectious individuals

1 Natural death rate

) Rate at which exposed individuals become infectious

¥ Rate at which infectious individuals are quarantined

« Recovery rate of quarantined individuals

Rate at which non-infected quarantined individuals
p return to the susceptible class
As, Ag, A1, AQ, AR Diffusion coefficients for S, E, I, ), and R respectively

Exposed (F): Exposed individuals have been infected but are not yet infectious. This group
increases via contact between susceptibles and exposed individuals, governed by the transmis-
sion term B;SE. They either progress to the infected class at rate § or die naturally. Spatial
diffusion is represented by AgAFE.

Infected (I): Infected individuals are symptomatic and capable of transmitting the disease.
Their number increases through contact between susceptibles and infected individuals (5257)
and through progression from the exposed class (0E). They may be quarantined at rate + or
die naturally at rate p. Their spatial spread is modeled by A;AT.

Quarantined ((Q)): This compartment consists of individuals isolated after developing symp-
toms. They enter from the infected class at rate v and may recover (aQ), die naturally (u@Q), or
return to the susceptible class (p@) if found uninfected. Their spatial redistribution is governed
by A\oAQ.

Recovered (R): Recovered individuals have acquired immunity after completing quarantine.
They accumulate at rate () and are subject to natural death at rate p. Their spatial mobility
is described by AgAR.

Throughout the model, the diffusion terms A;AX for each compartment X reflect spatial
spread due to individual movement, while the mortality terms pX account for natural deaths
unrelated to the disease. By incorporating both local disease dynamics and spatial processes,
the model captures key mechanisms of epidemic propagation, including localized outbreaks,
spatial heterogeneity, and the potential impact of quarantine interventions.

Based on the preceding description, Figure 1 illustrates the compartmental structure of the
SEIQR model, highlighting the key transitions between health states, including infection, quar-
antine, and recovery.

Let Q C R™ be a bounded domain with smooth boundary 0f2, where m € {1,2,3}.

Remark 1. Although in general m € N*, we restrict m to the values 1 < m < 3 to reflect
physical reality, as our spatial models are typically embedded in one, two, or three dimensional
space. Higher dimensions are not physically meaningful in standard spatial epidemiological or
diffusion-based models.

The spatiotemporal dynamics of the proposed SEIQR model are mathematically described
by the following system of reaction-diffusion equations
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Figure 1: Transmission pathways in the proposed SEIQR model.
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with homogeneous Neumann boundary conditions
VS n=VE-i=VI]I-n=VQ -in=VR-n=0, on Xr, (2)
and initial conditions
S(0,z) = Sy, E(0,2) = Ey, 1(0,2) = Iy, Q(0,7) = Qo, R(0,7) = Ry, in £, (3)

where T' > 0, U = [0, T] x Q, 77 being the normal to the boundary 37 = [0, 7] x 992. The impo-
sition of homogeneous Neumann (no-flux) boundary conditions ensures that the SEIQR mode
is self-contained, with dynamics driven entirely by internal processes and no movement across
the boundary 0f2. In addition, the initial data for all compartments are positive throughout the
domain €2. Each equation describes the rate of change of a compartment with respect to time
and space, capturing the interactions among compartments based on contact rates, transition
dynamics, and natural processes such as disease progression and recovery.

The positivity and boundedness of the solutions of an epidemiological system are essential
properties. Hence, it is important to prove that all subpopulations in the system (1)—(3) are
non-negative and bounded for all times ¢ > 0. In a previous work [42] the authors have studied
the existence, uniqueness, positivity, and boundedness of the solution to a model similar to the

PDE model (1)-(3).

Theorem 1. Let the initial data for system (1)—(3) be positive. Then, the proposed system
admits a unique global solution ¢ = (S, E,I,Q, R) that remains positive and bounded on U,
with reqularity
Y; € WH2(0,T; L*()) N L*(0, T H*(Q)) N L>(0,T; H' () N L™(U), Vi e {1,2,3,4,5}.
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Moreover,

o
ot

Proof. The proof is based directly on the methods detailed in [42, Pages 8-11]. We outline here
the main steps

Boundedness: To establish this property, we introduce a Cy-semigroup generated by the
Laplace operator. Let 1 denote the maximum of the initial data and the second member in
each equation. We construct two auxiliary Cauchy problems: one with a shifted upper bound
(+n) and the other with a lower bound (—n). Using semigroup theory and standard a-priori
estimates, we deduce that the solution to the reaction-diffusion system remains bounded, i.e.

S.E.1,Q,ReL™U).

Positivity: Assuming strictly positive initial data, we use integral estimates and classical
comparison principles to show that all solution components remain nonnegative for all time.
In particular, we prove that the negative part of each variable vanishes, i.e., S™ = F~ =1~ =
@@~ = R~ = 0, by applying the Cauchy-Schwarz and Gronwall inequalities. This ensures the
biological feasibility of the model.

Existence and Uniqueness: By exploiting the strong ellipticity of the Laplace operator
and the Lipschitz continuity of the second member, we show that the system admits a unique
strong solution in the space

S,E.1,Q,Re W"(0,T; L*(Q) N L*(0,T; H*(Q2)) N L>=(0,T; H'(Q)).

For a complete and rigorous treatment of the analysis, the reader is referred to the compre-
hensive work [42], which provides a detailed proof and additional mathematical background. [

Vi€ {1,2,3,4,5},

" + ||¢iHL2(O,T;H2(Q)) + “¢i||H1(Q) + “¢i||Lm(M) < 0.

L2(

The SEIQR reaction-diffusion model (1)—(3) is well-posed in the Hadamard sense: it ad-
mits a unique, global, bounded, and nonnegative solution that depends continuously on the
initial data. This provides a solid theoretical foundation for further qualitative and numerical
investigations of the model.

2.1. Basic Reproduction Number

The basic reproduction number Ry is a key threshold parameter that determines whether an
infectious disease can invade and persist in a susceptible population. In this section, we compute
Ry for the proposed model using the next generation matriz (NGM) approach introduced by
[11, 36].

Remark 2. In this study, the model parameters (including transmission coefficients and recov-
ery rates) are spatially constant. Thus, diffusion does not affect the value of Ro. In fact, it has
been demonstrated that, in this scenario, the basic reproduction number of the reaction-diffusion
epidemic model is identical to that of the corresponding ODE model [38, 39]. Therefore, the
NGM method is sufficient and rigorous for computing Rgy in our case. In contrast, methods
based on integral operators are more suitable when spatial heterogeneity is present in the model
parameters.

The Jacobian matrix of (1), evaluated at the point (S, F, I, Q, R), and excluding diffusion
effects, is given by

—p— P E = Bal —p1S —B2S P 0
5 E 1S — (1 +9) 0 0 0
J = P2l 0 BoS = (n+7) 0 0
0 0 Y —(u+p+a) 0
0 0 0 @ —



This matrix is decomposed into the sum of two parts:

(1) The transmission matrix 7", which contains all terms representing new infections

—BE — Bl —p1S —B5 0 0
B E 515 0 0 0

0 0 0 0 0

0 0 0 0 0

(74) The transition matrix IC, which captures the rates of transitions between infected classes,
as well as outflows due to recovery, death, or movement to other compartments

— 0 0 p 0
0 —(u+9) 0 0 0
K=10 J —(p+7) 0 0
0 0 Y —(u+p+a) 0
0 0 0 « —

In order to apply the NGM method, we must first identify the infected compartments of
the model. In our case, these are the exposed and infected classes. At the steady-state solution
of (1), i.e. the disease-free equilibrium (DFE) (%,0,0,0,0), we extract the relevant 2 x 2

submatrices 7 and K corresponding to the infected states £ and I. Specifically, the matrices

are expressed as
JEITL
= (7 S w40 0

“w
Thus, the next generation matrix Nga, is computed as

_ 51 A Bi(p+ ) 0
Now = —TK™ = p(p+6) (1 +7) ( [20 52(,u+6)>'

The basic reproduction number Ry is defined as the spectral radius of the matrix Ng,. Because
the matrix is triangular, its eigenvalues are simply the diagonal entries. Therefore, we obtain

BiA BaA }
(nA40)" plp+) 71

This expression reveals the contributions of exposed and infected individuals to disease trans-

mission. The term u(ﬁ;ﬁé) reflects the average number of secondary infections produced by
BaA

an exposed individual during their latency period. The term )
quantity for infected individuals.

Ro = max{ P

corresponds to the same

Remark 3. In general, the basic reproduction number Ro characterizes a disease’s potential to
1mvade and persist in a population.

1. If Ry < 1, the disease cannot invade the population, and the disease-free equilibrium s
locally asymptotically stable.
. If Ry > 1, the disease can spread within the population, potentially leading to an endemic
equilibrium.
1t. If Ro =1, the system is at a threshold, and nonlinear effects may determine whether the
disease dies out or persists. Bifurcation analysis is often required to fully understand the
dynamics.



3. Nonstandard Finite Difference Scheme

This section outlines the principles of nonstandard finite difference (NSFD) schemes. NSFD
methods are designed to preserve the key qualitative properties of the original differential
equations, such as positivity and conservation laws. Consequently, the numerical solutions
remain bounded and stable. For a detailed account of the discretization strategy, see Mickens’s
foundational work [28].

For simplicity, we consider 1D and 2D settings with a uniform grid, z; and y;, and a spatial
step size, h, where h = Az = Ay. We use the standard notation for the pointwise numerical
approximation, e.g., S, ~ S(tn, ¥;, Y1)

3.1. Nonstandard Finite Difference Schemes

In this section, an NSFD scheme is constructed to satisfy the essential positivity condition.
Let us recall that for A = p = 0 the system (1)—(3) reduces to a system of 5 decoupled pure
heat equations with known exact solution that can be compared to the NSFD solution. Finally,
we will discuss in Section 4.2 the so-called denominator function ¢(k).

We recall that a numerical scheme for a system of first-order differential equations is referred
to as a nonstandard finite difference (NSFD) scheme if it satisfies at least one of the conditions
outlined by Mickens [28].

e Order Consistency: The order of the discrete derivatives must match the order of the
corresponding derivatives in the original differential equations.

e Nontrivial Denominator Functions: Discrete approximations of derivatives typically in-
volve nontrivial denominator functions. Specifically:

— First-order derivatives are typically approximated using a generalized forward dif-
ference (a modified forward Euler method), given by:

n+1 n

du U —u

dt le=t, o(k)

where ™ ~ u(t,), n = 0,1,2... on a uniform time grid t, = nk with step size
k= At.

— The function ¢ = ¢(k) > 0, known as the denominator function, satisfies the consis-
tency condition ¢(k) = k + O(k?). Tt is chosen to ensure that the discrete solution
exhibits the same asymptotic behavior as the continuous one (see Section 4.2).

e Nonlocal Approximations of Nonlinear Terms: Nonlinear terms are discretized using non-
local representations, i.e. functions involving multiple grid points. Examples include:
u?(t,) =~ u" u" or ud(t,) ~ (u")? umtl.

e Preservation of Qualitative Properties: Any special conditions satisfied by the continuous
model or its solution should also hold for the discrete model and its solution. These
include, for example, positivity, convexity (as in financial models), and the preservation
of equilibrium points and their local asymptotic stability.

Remark 4. More generally, derivatives in NSFD schemes are approrimated by expressions of
the form [28]:

du(t n+l u™
dt li=tn o(k)
where Y(k) = 14+ O(k). This generalized time discretization aims to accurately capture the
long-term asymptotic behavior of the solution.
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3.2. NSFD scheme for the PDE Model
We propose the following NSFD discretization for solving the PDE system (1)—(3)

Sntl ST
W = AsALST, + A+ pQ7y — (BLED + BoIy + 1) ST
Enft — g
LI = NpARED + BUED S — (04 m BN
o(k)
o = ML+ RIS OB — (r+ I (5)
n+1 n
SO NG ARQR 4+ AL — (at p+ ) QT
2 = AQRRW TV, PT )5
o(k)
n—+1 n
Rjal Y _ )\RAZRn + OéQr-H_l _ IuRﬂ-‘rl
¢<k> h=Yg,0 75l gl
with the denominator function .
et —1
o(k) = . 6
) u (6)

In the NSFD scheme (5) A2 denotes the nonstandard discretization of the Laplacian, proposed
by Ben-Charpentier and Kojouharov [6], i.e.

n _ n+1 n n _ n+1 n
AZgn _ Dt 257 + 57 1 n Sjip — 255 + 50
h

Y h2 h2 : (7)
While this approach, which is common in NSFD schemes for parabolic PDEs, and preserves the
positivity of the solution, this 'skew’ discretization introduces a undesirable coupling between

space and time errors. By Taylor expansion we can write the truncation error of the nonstandard
discretization of the Laplacian (7) as

ln

tn 0tS
4+ =
(@5,91) 894

tn 2
A7 = AS(tn, v5,y) = —4r§ —41{:7‘ﬁ

tn k (845
ot l(z;m) ot?

o 120 \ Ot

)06,
(8)

with the constant mesh ratio r = k/h%. The leading error term is zeroth-order in k, which
means that it will not vanish as k — 0. So, this discrete operator (7) is not consistent with the
continuous Laplacian AS. This NSFD Laplacian (7) sacrifices consistency in favor of qualitative
properties like positivity. We will study this topic in more detail in Section 4.

Let us briefly comment on the discretization of the nonlinear terms, which are quadratic in
this case. For instance, in the first line of (5), the nonlinear contact term 521 (¢, z)S(¢, x) from
(1) is discretized as 52[;?[52;”, rather than I7,S7, or I;.f;“lS;ffl. The guiding principle is that
exactly one factor corresponding to the variable with a time derivative (S) must be evaluated at
the new time level n 4 1. This approach ensures that the resulting scheme preserves positivity,
as shown in (9).

To maintain an explicit sequential computation, all other variables in a given term are taken
from the previous time level unless they have already been updated in earlier equations. When
applicable, discrete conservation properties should be preserved in the discretization.

Although the initial system (5) may appear implicit, it can be reformulated into an explicit
scheme. Each variable at the (n+1)-th time level can be computed directly using known values

(z5,u1



from previous time steps, in the order of the equations in the system. In 2D the NSFD scheme
(5) is reformulated as follows:

ST A Asr(k)(S7_1 4+ STy, + Sy + ST) + o(k) (A + pQF))

Sn+1 — J 7
Jt 1+ 4Xgr(k) + ¢(k) (BLET, + Bodl) + 1)
el _ B2+ Apr(k) (B} + EF + B+ Efpy) + ¢(k)ﬁ1E£zSZz+l
g 1+ 42 pr(k) + o(k) (0 + u) ’
It I+ )‘ITU{:)(];—LI + I 1+ ];‘:Llﬁ-l) + ¢(k)(52f}fl52l+l + 5E21+1) (9)
o L+ 4Ar(k) + o(k) (v + ) ’
n+l _ Q?,l + )‘QTU{:)(Q;‘L—I,Z + Q?ﬂ,l + Q?,l—l + Q?,Hl) + ¢<k)7];fl+l
gl L+ 4gr(k) + o(k)(a+p+ p) ’
Rl _ R+ Apr(k)(R)_y + Ry + Ry + Ry + gb(k)aQ?fl
j?l -

1+ 4Xgr(k) + ¢(k)p ’
where we have introduced the generalized parabolic mesh ratio (k) = ¢(k)/h*.
Remark 5. In one space dimension this NSFD scheme (9) reads

Sj + Asr(k)(S7_y + S7y1) + ¢(R)(A + pQ7)

Sl — ,
e Er + Agr(k)(EP + E} ) + ¢(k) L EPSTH
J 1+ 2 gr(k) + ¢(k) (6 + p) ’
o _ B AW + L) + 6B S + 0B (10)

J L+ 2Xr(k) + (k) (v + ) ’
grt = G+ A )@y + Q) + SRy [T
J L+ 2Xor(k) + o(k)(a+p+p)
Ry + Arr(k) (R} + Ryy) + ¢(k)aQ) ™
14 2Xgr(k) + o(k)u
The computations must be carried out in the specified order. In epidemic modeling, it is
standard practice to assume that all parameters are non-negative, reflecting their real-world
interpretations. Under this convention, and based on the explicit form in (9), it is straightfor-
ward to verify that the scheme preserves positivity, provided that certain natural conditions on

the parameters are satisfied. The special choice of the denominator function ¢(k) is discussed
in Section 4.1.

n+1 __

4. Analysis of the NSFD Scheme

In this section we will perform an analysis of the proposed NSFD scheme (9). To do so,
we start with the local truncation error in Section 4.1. Then we discuss in Section 4.2 the
denominator function and finally, we study in Section 4.3 the consistency of the nonstandard
discretization of the Laplacian.

4.1. Local Truncation Error
First, we apply a Taylor series expansion in time to the components and use the consistency
condition of the denominator function, e.g. for the first component

08 |in 03 |t
St = St hgp|, o TOW) =Sk g+ OR?)
05 2 (11)
75l + T( ) at (;rj,yz) + O( )
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Inserting in the scheme (5) yields

+¢()

815 (25.90) SjJ + /\57’(1{3) (S'+Ll + S 1, + S',l+1 —+ Sj,lfl _ 4( + k=

J 825 (zj,yl)>)
oS |t

= (;yl))) +O(?).
(12

L o(h) (A 0@y — (B + GBIl + 1) (S5 + b

Next, we use the fact, that on the right hand side (12) we have a standard second order in
space semi-discretization of the first component of the PDE, i.e.

a8 |tn a8 |tn 9!
k)= = ¢(k) = — Dgr(k)k=|"
2 )('% (@5 ( )Gt (j,u1) sr(k) Ot l(w;m) (13)
GEIL
—OMR(B B+ B+ ) (G| )+ O

Comparing coefficients of time derivative and dividing by ¢(k) yields

k
=1- 4/\5 — k(BLE}, + ol + 1), (14)

and similarly for the other components, with different diffusion constants A. Hence, since the
parabolic mesh ratio k/h? is assumed to be constant, we conclude that the NSFD scheme (5)
cannot be consistent of first order in time, due to the discretization (7).

4.2. The Denominator Function

Pasha, Nawaz and Arif [32] proposed a remedy for this above mentioned order reduction.
They considered the condition (14) in the form

k
k= ¢s(k)(1 - N33 = k(GBS + Bl + 1)) (15)
This resulted in a denominator function for the first component S
k
Os(k) = k(1 —4Xs 75 — KB + Bl + ) (16)

and accordingly for the other components. However, this choice (16) depends on the component
(and also on the location, x; and y;, and even time instance ¢,), which prevents discrete con-
servation properties for the total population when the individual equations for the components
are summed up. With the parabolic mesh ratio r = k/h? we rewrite (16) to

k k

b _ 17
ds(k) =1 drrs — k(B EY + Bol + ) a— kY, o

with a =1—4rAs and b = b}, = 1 E7;+ B2}, + p. Now, we apply a Neumann series expansion
for small k, assuming &[0}, < |a|:

1 1 1 1 Ssgkbye 1 kb (kb)?
S _EZ<;> = -+ +.... (18)

_ Lhn _ kb 2 3
a kijl al - a a

This gives the denominator function

k BLET, + B} [+/'Lk2 (ﬁlE + GBI} l—i—,u) 3y
1—47‘)\5 (1—47”/\5') (1—477\5) Y
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which shows that the consistency condition ¢(k) = k + O(k?) is satisfied, if the time step
constraint k < |a|/[b},| is fulfilled.

Analogue calculations can be done for the four other components in the system (9) and thus
we can formulate similar to [32, Theorem 1]

Theorem 2. The NSFD scheme (9) constructed for the system (1)—(3) using

6u(k) = k(1 ~ Ay — k= (k)™ (20)

where r = k/h? = const. and

k(BB + BoI)  if =S,
ko ifl =E,
ge(k) = kv if 0 =1, (21)
k(a+p) ift=Q,
C ifl =R,

assuming the time step restrictions |k + go(k)| < |1 —4rXg|, ¢ =1,2,....,5, are fulfilled, has
the consistency order 1 in time and 2 in space.

However, this is a circular argument, since this particular choice of denominator function
results in the standard explicit finite difference method, i.e., no unconditional stability and no
unconditional positivity of the solution.

4.3. Consistency of the discretized Laplacian

In order to overcome the described consistency issues of the discretized Laplacian (7) let us
include a perturbation 6(k) as follows

prgn _ S =2 SENVESH + 8701 Sfia =21+ SR)VDST Sy o
hP51 = h2 h2 ’
Assuming a constant mesh ratio r = k/h?, the truncation error becomes
08 |tn 4rd (k) k tn
A28 — AS(t,, xiy) = —4r(1 + §(k)) — — S(t,, x;i —A%S O(k?
=3l ( 7x]’yl) T( + ( )) Ot l(@;m) k ( ,IL‘],yl) + 12r (zj,01) * ( )

In order to avoid the divergent second 1/k-term, we must require (k) = O(k), say d(k) =
vk+O(k?). We plug this into the parts of the truncation error that are not vanishing as k — 0:

—4r(1 + l/k) %

tn
—4vrS(tn, xj, ur)- (23)

(Ijvyl)

This still has an O(1)-component, unless we cancel both leading-order terms:

oS
— 4=
0 T(‘?t

" durs( ) St
+4vrS(t,, z;, Y1), = V=—— .
(z5,91) ! S (zj,m)

(24)

This again gives a non-universal expression for v — it depends on the solution S, and its time
derivative Sy, which can be computed numerically as

n n—1
Si— S
n

v =1 Zl):

,n=12..., v(Ss)=0, (25)
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and accordingly for the other four components. Hence, we finally end up with the following
modification of the NSFD scheme (9), which reads

ST+ Asr(k)(S)yy + 87y, + STy +570) + o(k) (A + pQF))

SnHl —
1 +4As7‘(k)( +v(S})k) + ¢(k) (B EF, + Bolfy + 1) ’
el B2+ Apr(k) (B} + EFy + B+ EFy) + ok )BlEﬁngfﬁ
7 L+ 4Apr(k)(1+ v(E] ) )+ ¢(k)(6 + 1) ’
el _ LY+ A (k) (g + Ly + 1 )+ ok )(52[]”15"“ + 5E;fz+1) (26)
H 1+4Aﬂ“(k)(1+V( k) + o(k) (v + 1) ’
Qn+1 Q1+ Ar(k)(QF 1, + QFqy + Qj,l—l + Q%) + ¢(k>712z+1
1+ 4Xqr(k) (14 v(Q7)k) + (k) (o + p + 1) ’
il _ R+ Apr(k)(RY_y + Ry + Ry + Ry ) + ok )aQn+1
il L+ 4\pr(k)(1 +v(R; ) )+ o(k)u
We will use the approach (26) for our numerical experiments in Section 5.
Remark 6. In one space dimension this NSFD scheme (26) reads
ntl _ S? + )\Sr(k))(sjn—l ]—‘,—1) ¢( )(A + pQ?)
J 14 2Xs7(k)(1 + v(S7)k) + ¢(k)(BLE} + BoI} 4 1)’
nt+l _ E? + Apr(k) (B} + E7y ) + ok )ﬁlE?S}lH
T T2 (R) X+ v(EE) + o(k)(0 + p)
it _ B AR+ By) + o) (B S) ! + 3B (21)
T L+ 207 (k) (1 + v(IP)k) + (k) (v + 1) ’
g Qp + Ar(k)(Q)_y + Qppy) + ¢(k)y I
L+ 2Xgr(k) (1 + v(QNk) + o(k)(a+ p + )’
ner B Arr (k) (R + R ) + o(k)a Q?H
T 14 2xpr(R) (1 + v(BRME) + ¢(k)p

5. Numerical Results

In this section, we present numerical simulations that validate and illustrate the theoretical
results established in previous sections. These simulations demonstrate the effectiveness of
the proposed numerical schemes in preserving biologically meaningful dynamics. We perform
the simulations for one and two-dimensional spatial domains to analyze the spatiotemporal
behavior of the SEIQR reaction-diffusion model. We aim to verify the preservation of essential
properties, such as positivity and boundedness, and to compare the performance of the SFD
and NSFD methods. Accordingly, this section is divided into two parts. The first part focuses
on one-dimensional simulations, and the second part addresses the two-dimensional case. For
both settings, we use a denominator function ¢(k) = k = 10~* and a spatial step size h = 0.01.
Hence, the considered parabolic mesh ratio is r = 1.

5.1. One-Dimensional Simulations

In the one-dimensional simulations, we used specific parameter values and initial conditions
inspired by the following previous works: [19, 20, 24, 33, 37, 41-43]. These are detailed below
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e A=1, o 11 =0.02, o a=0.04,
e 31 =0.001, e ) =10.01, e p=10.02,

L4 /82:00037 L4 ’)/:004, L4 )\SZAE:)\[:)\Q:)\RZO.I.

The spatial domain 2 = {z € R | 0 < 2 < 1} is discretized into N, + 1 equidistant points
defined by z; = jh for 5 =0,1,..., N,, where N, = % is the uniform spatial step size. For the
NSFD method, we use the scheme (27). In the case of the SFD method, the diffusion terms

are approximated using the standard second-order finite difference formula. For instance, for
the variable S, we use

St — 287 4 857
n  ~J+1 J Jj—1
ALST & 5 :

and the time derivative is approximated by the forward difference quotient

n n+1 n
057 %Sj+ —Sj'

ot k

Figure 2 illustrates the evolution of the epidemiological classes S(t,x), E(t,x), I(t,z),
Q(t,z), and R(t,x) over both space and time using the SFD method.

e The 3D plots (left column) show the spatiotemporal dynamics for each compartment.

e The 2D plots (right column) represent the temporal evolution of the spatially averaged
populations S(tv ')7 E(tv ')7 I(tu ')7 Q(ta ')7 and R(t7 )

0.04

0.02

-0.02

-0.04

0.05 g

0 200 400 600

‘‘‘‘‘‘

Figure 2: Spatiotemporal dynamics (1D) of the SEIQR model (1)—(3) using the SFD scheme.

Although the general qualitative behavior of the epidemic is captured, an important issue
arises in the exposed class, E(t,z). As can be seen in the corresponding 3D and 2D plots,
the solution becomes negative at later times. This is biologically implausible, as population
densities cannot be negative. This drawback is a known limitation of classical explicit schemes
such as SFD, which may violate positivity and boundedness unless stringent stability conditions
are met.

Figure 3 shows the same model solved using the NSFD method, which is designed to preserve
key dynamical properties such as positivity and boundedness.
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e The 3D and 2D plots for each compartment demonstrate the epidemic’s smooth and
realistic evolution.

e Most notably, the exposed class E(t, x) remains strictly nonnegative throughout the entire
simulation period.
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Figure 3: Spatiotemporal dynamics (1D) of the SEIQR model (1)—(3) using the NSFD scheme.

The NSFD scheme maintains the biological integrity of the model while avoiding the nu-
merical artifacts, such as negative populations, observed in the SFD case in Figure 2.

5.2. Two-Dimensional Sitmulations

In this case, we consider the spatial domain 2 = [0,1] x [0,1]. At the initial time ¢ = 1,
the population is assumed to be uniformly distributed, with 100 % susceptible individuals per
cell throughout €2, except in the center of the domain. In this central subdomain, the local
population is initialized as 70 % susceptible, 20 % exposed, and 10 % infected. The parameter
values used in the simulations are selected based on the literature [3, 1517, 23, 34, 42], and
are given below

e A=1, o 11 =0.06, o a=0.05,
e B3 = 0.06, e §=0.05, e p=10.03,
L] 52:007, L] ’}/:004, L] )\S:)\E:)\I:)\Q:)\R:()Ol

For the numerical simulations, we apply the NSFD scheme described in (26). In the case of the
SFD method, the diffusion terms are approximated using the formula (7). For example, the
time derivative of the variable S is approximated by the forward-in-time difference

n n+1 n
85]-’[ _ ij =57
ot k '

Figure 4 presents the two-dimensional spatiotemporal evolution of the SEIQR model com-
partments using the classical SFD method. The dynamics are shown as heat maps; each subplot
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represents the population density distribution across the two-dimensional spatial domain at a
fixed time. Initially (¢ = 1), the spatial spread originates from a concentrated source. By
t = 20 to t = 100, the infection progresses and spreads spatially. However, a notable numerical
flaw appears in the exposed class E(t,z,y): negative values emerge at later times, especially
from ¢ = 80 to ¢ = 100. This is evident visually from the darker (non-physical) regions and is
confirmed by the color scale, which extends below zero. This behavior contradicts biological
reality because population densities cannot be negative. It also indicates a limitation in the
classical SFD scheme, especially for reaction-diffusion models, where preserving positivity is
essential.
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Figure 4: Spatiotemporal evolution (2D) of the SEIQR model (1)—(3) using the SFD scheme.

In Figure 5, the two-dimensional spatiotemporal dynamics of the reaction-diffusion SEIQR
model (1)—(3) are simulated using the NSFD method. In this case, the spatial distributions
remain smooth and biologically meaningful across time for all compartments. Notably, the
exposed class maintains non-negative values throughout the entire simulation period, thus
avoiding the numerical breakdown observed in the SFD case. All variables exhibit consistent
evolution, capturing both the infection dynamics and spatial propagation without generating
nonphysical artifacts.

6. Conclusion and Future Work

In this work, we proposed and analyzed an SEIQR reaction-diffusion epidemiological model
to investigate the spatiotemporal dynamics of infectious disease spread. Formulated as a system
of semilinear parabolic PDEs, the model extends classical compartmental frameworks by incor-
porating spatial diffusion to reflect population mobility and spatial heterogeneity. To overcome
the limitations of SFD schemes, we developed an NSFD method that rigorously preserves the
continuous model’s key properties, such as positivity, boundedness, and stability.

We proved the well-posedness of the model in an m-dimensional domain and constructed
an NSFD scheme for one- and two-dimensional spatial domains. A detailed numerical analysis
confirmed the convergence and stability of the proposed method. Further confirmation of the
theoretical results came from numerical simulations, which demonstrated that, unlike SFD
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Figure 5: Spatiotemporal evolution (2D) of the SEIQR model (1)—(3) using the NSFD scheme.

schemes, the NSFD approach avoids nonphysical artifacts, such as negative population values.
This makes the NSFD approach more suitable for realistic epidemiological modeling.

Looking ahead, there are several meaningful ways to further enrich the current modeling
framework and enhance its relevance to real-world scenarios. One promising approach is to
integrate fractional diffusion or nonlocal operators, which can more accurately capture the
long-range spatial interactions and memory effects inherent in complex biological systems. Ex-
panding the model to heterogeneous or time-dependent spatial domains would provide a more
realistic representation of environmental variability and demographic structure. Additionally,
incorporating optimal control strategies, such as vaccination, treatment, social distancing, and
public awareness campaigns, could provide valuable insights into designing efficient, targeted
intervention policies.

Additionally, future developments may include stochastic formulations, which account for
uncertainties and random fluctuations in transmission dynamics. These formulations are par-
ticularly useful in the early stages of outbreaks or in small populations. Using fractional-order
dynamics embeds memory effects directly into the system, aligning it more closely with ob-
served epidemiological behaviors. Finally, finance-oriented extensions grounded in actuarial
science and healthcare economics [14] could bridge the gap between epidemiological modeling
and decision-making processes under resource constraints. These extensions could support epi-
demic insurance schemes, healthcare capacity planning, and the optimal allocation of limited
resources.
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