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Abstract: This paper explores how intense internal waves affect the holographic reconstruction of
the sound field from a moving source in shallow water. It is assumed that these waves propagate
along the acoustic path between the source and receiver. This introduces inhomogeneities into the
waveguide, causing significant coupling between acoustic modes. The work analyzes the effect of these
traveling internal waves on the structure of the interferogram and resulting hologram of the moving
source. This study is based on numerical simulations that consider mode coupling induced by internal
wave activity. Within this framework, the interferogram (the received sound intensity distribution
in the frequency-time domain) and the hologram (the two-dimensional Fourier transform of the
interferogram) of a moving source are examined in the presence of space-time inhomogeneities caused
by intense internal waves. A key finding is that under the influence of internal waves, the hologram is
divided into two regions corresponding to the unperturbed and perturbed components of the sound
field. This structure allows for the extraction and reconstruction of the interferogram corresponding to
the unperturbed field as it would appear in a shallow water waveguide without internal waves. The
paper provides an estimate of the reconstruction error associated with this approach.

Keywords: internal waves; interferogram; hologram; horizontal refraction; shallow water

1. Introduction
In recent years, there has been a growing interest among scientists in applying interferometric signal

processing (ISP) techniques to the field of underwater acoustics. ISP relies on the stable characteristics
of interference patterns produced by broadband acoustic fields in shallow water waveguides [1,2]. For
a comprehensive overview of ISP methodologies, readers are directed to key foundational studies such
as [3–5]. Several studies have applied ISP to various practical tasks. For instance, in works [6,7], ISP
techniques are used to estimate waveguide-invariant parameters. The study [8] demonstrates how
ISP can be applied to weak signals, with signal enhancement achieved through array beamforming.
In [9], ISP is used for seabed classification based on acoustic signals generated by passing vessels.
A method for estimating the range to a source in shallow water using ISP is proposed in [10]. A
range-independent invariant estimation approach based on ISP is explored in [11]. Furthermore, [12]
applies ISP to interpret interference fringes in terms of eigenray (or eigenbeam) arrival times. Finally,
ISP has been adapted for deep-sea passive sonar applications in [13,14], demonstrating its versatility
across different underwater acoustic environments.

One of the most promising approaches in interferometric signal processing (ISP) is known as
holographic signal processing (HSP) [15,16]. The fundamental physical and mathematical principles
of hologram generation were first presented in [15]. Within the HSP framework, a quasi-coherent
integration of sound intensity in the frequency-time domain results in the formation of an interferogram
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I(ω, t) [16]. To analyze the accumulated intensity distribution, a two-dimensional Fourier transform
(2D-FT) is applied to I(ω, t). The resulting transform is referred to as the Fourier hologram, or simply the
hologram, and is denoted as F(τ, ν̃) = F2D{I(ω, t)}. The hologram F(τ, ν̃) concentrates the acoustic
energy represented in I(ω, t) into localized focal regions that arise due to the interference of different
modes.

During the initial development of HSP, it was assumed that waveguide parameters remained
constant in space and time. However, acoustic signal propagation in practical scenarios often occurs in
waveguides affected by hydrodynamic disturbances. The application of HSP to a stationary source
under real-world conditions was first explored experimentally in [17]. The study demonstrated that
hydrodynamic perturbations of the waveguide distort the interferogram I(ω, t) and enlarge the focal
regions in the resulting hologram F(τ, ν̃). In the presence of inhomogeneities, the hologram F(τ, ν̃)

can be represented as a superposition of two components: one corresponding to the unperturbed
waveguide, and one arising from the perturbations. This two-component structure was used in [17]
to interpret experimental data from the SWARM’95 experiment [18,19]. The observed waveguide
inhomogeneities during the SWARM’95 experiment were primarily caused by intense internal waves
(IIWs) [19–22], a widespread hydrodynamic phenomenon in the ocean [20–22]. In the SWARM’95
experiment, two acoustic paths were used, which were formed by a single source and two spatially
separated vertical receiving arrays. The first acoustic path was oriented at a small angle to the
wavefront of IIWs. The presence of IIWs structures induces a pronounced horizontal refraction of
the acoustic rays. In our previous paper [24], we analyzed the variations in the hologram structure
of a moving source in cases of significant horizontal refraction of sound rays due to IIWs. In the
SWARM’95 experiment, the second acoustic path was oriented across the wavefront of the IIWs. With
this orientation, the IIWs propagated along the acoustic path between the source and receiver. In this
case, the IIWs did not cause horizontal refraction, but rather led to significant scattering of sound
energy between acoustic modes. In other words, they induced mode coupling. This phenomenon was
not considered in our previous paper [25]. However, understanding the features of hologram structure
variations caused by significant mode coupling due to IIWs is crucial for developing HSP. Therefore,
the current paper is dedicated to analyzing this phenomenon.

This paper aims to study the influence of intense internal waves (IIWs) on holographic recon-
struction of a moving source sound field in shallow water in the presence of IIWs traveling along the
acoustic path between the source and receiver, which cause significant coupling between acoustic
modes. This study is based on numerical simulations that consider mode coupling induced by internal
wave activity. Within this framework, we examine the interferogram (the received sound intensity
distribution in the frequency-time domain) and the hologram (2D-FT of the interferogram) of moving
sources in the presence of space-time inhomogeneities caused by intense internal waves. One of the
paper’s key findings is that under the influence of internal waves, the hologram is divided into two
distinct regions corresponding to the unperturbed and perturbed components of the sound field,
respectively. This structure allows us to extract and reconstruct the interferogram corresponding to
the unperturbed field as it would appear in a shallow water waveguide without internal waves. The
paper also provides an estimate of the reconstruction error associated with this approach.

Our research relies on numerical simulations of sound field propagation in three-dimensional
(3D) inhomogeneous shallow water waveguides. The structure of the sound field can be significantly
affected by 3D inhomogeneities in the propagation medium due to sound scattering by IIWs. Modeling
broadband, low-frequency sound fields in these 3D environments requires significant computational
resources and often necessitates advanced numerical methods and high-performance computing plat-
forms to ensure physically realistic results. There are five principal groups of numerical approaches for
simulating sound field propagation in inhomogeneous shallow water waveguides [25]: 3D Helmholtz
Equation (3DHE) models [26–28]; 3D Parabolic Equation (3DPE) models [29–35]; 3D Ray-based (3DR)
models [36,37,52]; Vertical Modes and 2D Modal Parabolic Equation (VMMPE) models [23,24,38–40];
Vertical Coupled Modes with Horizontal Rays (VCMHR) models [41–50].
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Our research focuses on the low-frequency sound field within two frequency bands: 100–120 Hz
and 300–320 Hz. We assume that the spatial inhomogeneities of the shallow water waveguide are
generated by internal wave-induced (IIW) inhomogeneities propagating along the acoustic path
between the source and receiver. These inhomogeneities, induced by IIWs, lead to strong scattering
effects. Of the five modeling approaches mentioned, the VCMHR model is the most suitable for our
scenario. It is well-adapted to low-frequency sound propagation in a shallow water waveguide with
IIWs. The VCMHR model accurately incorporates boundary conditions and captures the essential
physics of vertical mode coupling due to environmental variability. In contrast, 3D models are
generally better suited to high-frequency scenarios and fail to adequately describe mode coupling
at low frequencies in shallow water. Although the 3DHE and 3DPE methods provide high-fidelity
solutions, they are computationally prohibitive in this context due to the complexity of the 3D problem.
VMMPE models, on the other hand, effectively handle horizontal refraction but lack sufficient capability
for mode coupling, a key process in our paper. Therefore, we selected the VCMHR framework as the
most appropriate numerical tool for simulating sound field propagation under the influence of IIWs.

This paper is organized into six sections. After the introduction in Section 1, Section 2 describes
the 3D model of a shallow water waveguide in the presence of IIWs traveling along an acoustic path.
Next, in Section 3, we derive the mathematical model of the interferogram I(ω, t) and, in Section 4, the
hologram F(τ, ν̃) of a moving source in a shallow water waveguide with significant mode coupling
caused by IIWs. We develop an algorithm for the numerical calculation of the interferogram and
hologram of a moving source. It is based on a set of differential equations for the mode amplitudes.
This algorithm takes into account the mode coupling caused by IIWs propagating along the acoustic
path between the source and receiver. In Section 5, we analyze the results of the numerical modeling
of the interferogram I(ω, t) and hologram F(τ, ν̃) of a broadband sound source in a shallow water
waveguide in the presence of IIWs causing significant mode coupling. The numerical modeling
considers the influence of IIWs on the interferogram I(ω, t) and hologram F(τ, ν̃) of the source sound
field for two cases of source parameters. The first case involves a stationary acoustic path between the
source and receiver (non-moving source). The second case involves a non-stationary acoustic path (i.e.,
a moving source). To compare the numerical modeling results for both cases in the presence of IIWs,
the initial data for the simulations are chosen to be the same. The influence of IIWs on holographic
reconstruction error is analyzed. The results are summarized in Section 6 of the paper.

2. Waveguide Model in the Presence of IIWs
The waveguide model in IIWs propagating along the acoustic path is presented in Section 2,

which consists of two parts. The first part, Section 2.1, describes the shallow water waveguide model
with inhomogeneities due to IIWs. Section 2.2 examines the model of IIWs and its parameters.

2.1. Waveguide Model with Inhomogeneities due to IIWs

In this section, we present the three-dimensional model of the shallow water waveguide used
in our study (see Figure 1). The waveguide is defined in a Cartesian coordinate system (X, Y, Z) and
modeled as a water layer with spatially and temporally varying sound speed c(r, z, t) and density
ρ(r, z, t). Here, r = (x, y) denotes the horizontal position vector. The water column is bounded above
by the free surface at z = 0 and below by the sea bottom at z = H.
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Figure 1. Model of shallow water in the presence of an IIWs traveling along an acoustic path between source and
receiver.

The density and refractive index of the seabed are given by ρb and nb(1 + iκ), respectively [51,52],
where κ is the attenuation factor, defined as κ = χcb/(54.6 f ). In this expression, χ represents the
bottom loss coefficient. cb is the acoustic velocity in the bottom layer, and f is the sound frequency.

The spatiotemporal variation of the sound speed within the water column can be expressed as

c(r, z, t) = c̄(z) + c̃(r, z, t), (1)

where c̄(z) is the background sound speed profile in the absence of internal wave activity, and c̃(r, z, t)
accounts for the perturbations induced by internal inertia waves (IIWs).

Based on Eq. (1), the squared refractive index in the water column is given by

n2(r, z, t) = n̄2(z) + ñ2(r, z, t), (2)

where n̄2(z) is the unperturbed refractive index profile, and ñ2(r, z, t) is the fluctuation component
caused by IIWs. Following the formulation in [22,23], the perturbation term can be described as

ñ2(r, z, t) = −2QN2(z) ζ(r, z, t), (3)

where Q ≈ 2.4 s2/m is a water-specific physical constant, N(z) =
(
− g

ρ

dρ

dz
)1/2 is the buoyancy

frequency, and ζ(r, z, t) denotes the vertical displacements within the water column induced by IIWs.

2.2. IIWs Parameters

In this section, we present a space-time model of IIWs ζ(r, z, t) and their parameters. According
to the predominance of the first gravity mode [20–22], vertical displacements within the water column
induced by IIWs can be expressed as follows:

ζ(r, z, t) = Φ1(z) ζ0(r, t), (4)

where Φ1(z) denotes the eigenfunction of the first gravity mode, normalized at depth z0: Φ1(z0) = 1.
According to [20–22], the gravity modes Φn(z) and their corresponding dispersion characteristics
Ωn(K) represent the eigenfunctions and eigenvalues of the following Sturm–Liouville problem:

d2Φn(z)
dz2 +

( N2(z)
Ω2

n(K)
− 1

)
K2Φn(z) = 0, Φn(0) = Φn(H) = 0. (5)
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The gravity modes Φn(z) satisfy the following normalization condition [20–22]:

∫ H

0
N2(z)Φn(z)Φm(z) dz = δnm, (6)

where δnm is the Kronecker delta. For typical stratifications on the continental shelf, the function Φ(z)
depends weakly on the frequency and the wave number. In the Eq. (4) ζ(r, z, t) = ζ0(x, y, t) are the
vertical displacements in the waveguide water layer due to IIWs at a depth z0 in the thermocline water
layer.

According to [20–22] we can represent IIWs as a sequence of internal solitons (IS), which are
soliton-like solutions of the Korteweg-de Vries (KdV) equation:

∂ζ0

∂t
+ u

∂ζ0

∂x
+ aζ0

∂ζ0

∂x
+ b

∂3ζ0

∂x3 = 0. (7)

 

receiver moving source 
X 

Y 
traveling of IIW crests 

vertical displacements due to IIWs 
Crests

Figure 2. Shallow water waveguide geometry in horizontal plane (x, y). Acoustic path between a moving source
and a nonmoving receiver. Traveling of IIWs direction.

The parameters of Eq. (7) are determined by the stratification of the water layer:

a =
3u
2

∫ H

0

(dΦ
dz

)3
dz

/∫ H

0

(dΦ
dz

)2
dz, (8)

b =
u
2

∫ H

0
Φ2dz

/∫ H

0

(dΦ
dz

)2
dz, u =

Ω(K)
K

(9)

Given the selected geometry of the problem (see Figure 2), the vertical displacement ζ0(r, t) in the
water layer of the waveguide can be represented as follows:

ζ0(r, t) =
N

∑
n=1

Bn sech2
[ x − Dn − unt

ηn

]
, (10)

where N denotes the number of internal solitons (IS) in the train, Bn is the amplitude of the n-th soliton,
un is the propagation speed, Dn is the initial horizontal displacement, and ηn is the width of the soliton.

IIWs are a widespread phenomenon in the ocean. They are trains of short-period vertical displace-
ments of water layers. They are described as trains of IS that propagate to the shelf coast. IIWs are
caused by internal tides [20–22]. The parameters of IIWs are presented in Table 1 in accordance with
the experimental data [18–22]. These parameters lead to specific acoustic phenomena due to IIWs. The
study in [23] demonstrates that IIWs traveling across the acoustic path between the source and receiver
significantly influence the horizontal refraction of acoustic rays propagating at small angles relative to
the IIW wavefronts. Consequently, the resulting dynamic waveguides in the horizontal plane align
nearly parallel to the IIW fronts. The impact of this acoustic phenomenon on the holographic structure
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generated by a moving source was examined in detail in our previous paper [51]. Conversely, IIWs
propagating along the acoustic path between the source and receiver induce strong coupling between
acoustic modes. This mode coupling results in a redistribution of sound energy across the modes,
altering the balance of modal amplitudes within the sound field structure. The following sections of
the paper analyze how these effects influence the process of source holographic reconstruction.

The "vertical modes and horizontal rays" approach shows that horizontal dynamic waveguides
are selective for sound modes. The structure of horizontal rays differs for different sound modes. The
structure of the horizontal rays of the sound modes also depends on frequency, as shown in [23]. The
resonance-like form of this frequency dependence is evident in the propagation of broadband sound
signals.

Table 1. Parameters of IIWs

Parameter Value

Train length L ∼ 3–5 km
Count of internal solitons N ∼ 4–7
Traveling velocity un ∼ 0.5–1 m/s
Internal soliton amplitude Bn ∼ 10–30 m
Internal soliton width ηn ∼ 100–200 m
Interval between solitons Dn ∼ 300–500 m
Curvature radius of wave front R ∼ 15–25 km

3. Structure of the Source Interferogram due to IIWs
This section presents the model of the source interferogram in the presence of IIWs propagating

along the acoustic path. It consists of three parts. The first part (Section 3.1) describes the sound
field model in a waveguide with IIWs, using the vertical modes and horizontal rays approximation
framework. Section 3.2 presents the mode coupling approach to account for the sound field due
to inhomogeneities caused by IIWs. Section 3.3 considers the structure of the interferogram of a
broadband source moving in a waveguide in the presence of IIWs.

3.1. Sound Field Model in a Waveguide with IIWs

Within the framework of the vertical modes and horizontal rays approximation, the complex
acoustic field in a shallow waveguide influenced by IIWs, which is described by Eqs. (1)–(10), can be
expressed as follows, cf. [23,38,51,52]:

p(r, z, ω, t) =
M

∑
m=0

Pm(r, ω, t)ϕm(z, ω), (11)

Here, r = (x, y) denotes the horizontal position vector of the source, Pm represents the amplitude of
the m-th mode, and ϕm(z, ω) denotes the vertical structure (mode shape) of the corresponding acoustic
mode in a waveguide unaffected by IIWs. The complex horizontal wavenumber of each mode is given
by ξ̄m(ω) = h̄m(r, ω, t) + iγ̄m(r, ω, t), where h̄m and γ̄m are its real and imaginary parts, respectively.
The summation extends to M, the total number of modes considered. As a result, the acoustic pressure
field p depends on the angular frequency ω = 2π f . The eigenfunctions ϕm(z, ω) and the complex
wavenumbers ξ̄m are obtained by solving the associated Sturm–Liouville eigenvalue problem with
boundary conditions corresponding to a free surface and a bottom, cf. [51,52]:

d2ϕm(ω, z)
dz2 + k2n̄2(z) ϕm(ω, z) = ξ̄2

mϕm(ω, z), (12)

ϕm(ω, z)
∣∣
z=0 = 0, ϕm(ω, z)

∣∣
z=H + g(ξ̄m)

dϕm(ω, z)
dz

∣∣∣
z=H

= 0, (13)
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where
g(ξm) = η

/√
ξ̄2

m − k2n2
b(1 + iκ). (14)

The functions ϕm(ω, z) are orthonormalized:

∫ H

0
ϕlϕm dz + η

∫ ∞

H
ϕlϕm dz = δml , (15)

where δml is the Kronecker delta symbol.

3.2. Coupling Modes due to IIWs

Let us consider the coupled-mode approach [41–46,52] to take into account the scattering of the
sound field Eq. (11) induced by the inhomogeneities of the water layer caused by IIWs. In the mode
amplitude Pm(r, ω, t), we isolate the factor corresponding to cylindrical spreading:

Pm(r, ω, t) =
Cm(r, ω, t)√

h̄mr
, (16)

where Cm(r, ω, t) denotes the mode amplitude without the cylindrical spreading factor, and h̄m is the
real part of the mode horizontal wavenumber. The horizontal range between source and receiver is r.
This representation explicitly factors out the geometric spreading term 1/

√
r, which dominates the

range dependence in the shallow water waveguide under consideration.
Under the forward scattering approximation, the Helmholtz equation for the sound field reduces

to a first-order system of ordinary differential equations that describes the evolution of coupled mode
amplitudes Cm(r, ω, t):

dCm(r, ω, t)
dr

= i
M

∑
l=1

(
ξ̄mδml + µml(r, ω, t)

)
Cl(r, ω, t). (17)

Here, the complex mode horizontal wavenumber is defined as ξ̄m(ω) = h̄m(r, ω, t) + iγ̄m(r, ω, t). The
mode coupling coefficients due to IIWs are µml(r, ω, t):

µml(r, ω, t) =
k2

2
√

h̄m h̄l

∫ H

0
ϕm(ω, z) ñ2(r, z, t), ϕl(ω, z) dz. (18)

Thus, the problem of simulating the sound field in an inhomogeneous, shallow water waveguide
with IIWs can be reduced to determining the waveguide modes without IIWs (see Eqs. (12)–(15)) and
solving the system of differential equations for the coupling mode amplitudes (see Eqs. (17)–(18)). This
system of differential equations must be supplemented with an initial source condition. For a point
omnidirectional source located at the coordinates r = r0 and z = z0, this condition takes the form:
Cm(0, ω, t) = ϕm(ω, z0), up to a constant factor.

The numerical solution of Eqs. (17)–(18) has the following matrix form:

C(r + ∆r, ω, t) = exp
{

i M(r, ω, t)∆r
}

C(r, ω, t). (19)

Here, C(r, ω, t) = {Cm(r, ω, t)} is the vector of the mode amplitudes, C(0) = {Cm(0, ω, t)} is the
vector of initial amplitude values, The matrix of mode coupling coefficients M(r, ω, t) has following
form:

M(r, ω, t) =
{

ξ̄m(r, ω) δnm + µnm(r, ω, t)
}

. (20)
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3.3. Interferogram Structure of a Moving Source in the Presence of IIWs

In the "vertical modes and horizontal rays approximation" framework, Eq. (11), the interferogram
I(ω, t) of the moving source in the frequency-time domain (ω, t) can be written as:

I(ω, t) = ∑
m

∑
n

Am(ω, t) A∗
n(ω, t) exp

[
ih̄mn(ω)(x0 − vt)

]
= ∑

m
∑
n

Imn(ω, t), m ̸= n,
(21)

where h̄mn(ω) = h̄m(ω)− h̄n(ω). Here, Imn(ω, t) - partial interferogram due to interference of m-th and
n-th modes, Am(ω, t) - amplitude of the m−th acoustic mode (Am(ω, t) = Pm(ω, t)ϕm(z, ω) exp(−ih̄mr)),
x0 - initial source coordinate at time t0 = 0, t - current time, v - velocity of the moving source. The
superscript "*" denotes the complex conjugate value. The condition m ̸= n means that the mean value
has been removed from the interferogram I(ω, t).

4. Structure of the Source Hologram due to IIWs
In this section, we examine the holographic representation of a moving acoustic source in the

presence of IIWs interactions. To extract holographic features, we apply a 2D-FT to the interferogram
I(ω, t) from Eq. (21) in the joint frequency–time domain (ω, t). This yields the hologram F(τ, ν̃) in the
following form:

F(τ, ν̃) = ∑
m

∑
n

∫ ∆t

0

∫ ω2

ω1

Imn(ω, t) exp
[
i(ν̃t − ωτ)

]
dt dω

= ∑
m

∑
n

Fmn(τ, ν̃),
(22)

where τ is the time lag and ν̃ = 2πν is the angular frequency in the hologram domain. The quantity
Fmn(τ, ν̃) corresponds to the modal interference between the m-th and n-th acoustic modes. The
frequency integration is performed over the range ω1 = ω0 − ∆ω/2 to ω2 = ω0 + ∆ω/2. Here, ∆ω

is the bandwidth of the signal, ω0 is the central (reference) frequency, and ∆t is the duration of the
observation. To further simplify the analysis, we use a linearized approximation of modal dispersion:

h̄m(ω) = h̄m(ω0) +
dh̄m

dω

∣∣∣
ω=ω0

(ω − ω0). (23)

Assuming that the frequency dependence of the modal amplitudes, Pm, and the spectral content of
the sound field vary slowly compared to the rapid phase oscillations of the term exp[i hm(ω)(x0 + vt)],
the expression for the partial hologram in Eq. (22) can be rewritten in a simplified form

Fmn(τ, ν̃) = Am(ω0)A∗
n(ω0)∆ω∆t exp[iΦmn(τ, ν̃)]×

×
sin

{[
x0

dh̄mn(ω0)

dω
− τ

]∆ω

2

}
sin

{[
vh̄mn(ω0) + ν̃

]∆t
2

}
[
x0

dh̄mn(ω0)

dω
− τ

]∆ω

2
[
vh̄mn(ω0) + ν̃

]∆t
2

, (24)

where Φmn(τ, ν̃) is the phase of the Fmn(τ, ν̃) - partial hologram

Φmn(τ, ν̃) =
( ν̃∆t

2
− τω0

)
+ h̄mn(ω0)

(∆t
2

v + x0

)
. (25)

It is important to note that Eq. (24) is derived under the assumption that x0 ≫ v∆t. In the (τ, ν̃)

domain, the hologram F(τ, ν̃) is concentrated within two compact regions that appear as focal spots.
These regions are positioned as follows:

1. I and III quadrants if the source moves toward the receiver (v < 0),
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2. II and IV quadrants if the source moves away from the receiver (v > 0).

The distribution F(τ, ν̃) contains M − 1 distinct focal spots, each of which is located at the
coordinates (τµ, ν̃µ) along a straight line defined by the equation ν̃ = ε̃τ. The index µ = 1, 2, . . . , M − 1
enumerates the focal spots. Each spot at (τµ, ν̃µ) represents a location where the maxima of M − µ

partial holograms constructively interfere. The slope ε̃ = 2πε of this line can also be expressed as
ε̃ = −δω/δt. Here, δω is the shift in frequency corresponding to the peak of the interference pattern
over the time interval δt.

The dimensions of each focal spot along the τ and ν̃ axes are identical for all spots and independent
of their total count. These dimensions are given by:

δτ =
4π

δω
, δν̃ =

4π

δt
. (26)

The initial distance and radial velocity of the source can be determined for the focal spot nearest to the
origin of the hologram plane using the following expressions from [16]:

v̇ = −kvν̃1, ẋ0 = kxτ1, (27)

where

kv = (M − 1)
(

h1M(ω0)
)−1

, kx = (M − 1)
(

dh1M(ω0)/dω
)−1

. (28)

Unlike the actual source parameters, the values estimated through processing are denoted with
an overdot. The holographic signal processing technique is implemented as follows. During the
total observation window ∆t, the interferogram I(ω, t) is constructed by quasi-coherently summing J
statistically independent realizations of the received signal. Each realization has a duration of t1 and
is separated from the others by a time gap of t2. This is done over the frequency range of ∆ω. The
number of realizations is given by:

J =
∆t

t1 + t2
. (29)

To ensure statistical independence between realizations, the condition t2 > 2π/∆ω must be satisfied.
Then, the constructed interferogram I(ω, t) is transformed using 2D-FT, resulting in the hologram
F(τ, ν̃) corresponding to the moving source in the waveguide environment.

In general, the spatial-spectral structure of the hologram F(τ, ν̃) differs significantly from that of
the original interferogram I(ω, t). Nevertheless, a one-to-one correspondence exists between them:
the hologram F(τ, ν̃) uniquely represents the content of the interferogram I(ω, t). Thus, applying an
inverse 2D-FT to F(τ, ν̃) allows for the complete reconstruction of the initial interferogram I(ω, t).

5. Numerical Simulation Results
This section discusses the outcomes of numerical simulations concerning the interferogram

I(ω, t) and the hologram F(τ, ν̃) for a broadband acoustic source in a shallow water waveguide. The
simulations account for intense internal waves (IIWs), which induce mode coupling. The simulation
examines the effects of IIWs on the interferogram and hologram of the source’s acoustic field under
two different source configurations. The first scenario uses a fixed source-receiver geometry (i.e., a
stationary source), and the second uses a dynamic configuration with a moving source. To enable
meaningful comparisons of the effects of IIWs in both scenarios, the simulations use identical initial
parameters.

Section 5 is divided into three subsections. Section 5.1 details the characteristics of the shallow
water waveguide and the parameters of the acoustic source. Section 5.2 presents the modeling results
for the stationary source case. Section 5.3 provides an analysis of the results for the moving source
configuration.
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5.1. Shallow Water Waveguide and Sound Field Parameters

The waveguide model used in the simulation is based on parameters representative of the
SWARM’95 experiment, conducted off the coast of New Jersey in 1995 [18,19]. In the numerical
calculations, the sound speed profile c(z) is adopted according to observational data collected in the
experimental area between 18:00–20:00 GMT on August 4, 1995 [18].

Numerical modeling is carried out for the acoustic parameters of a shallow water waveguide
(see Table 2). Two frequency bands are considered: ∆ f1 = 100 − 120 Hz and ∆ f2 = 300 − 320 Hz. For
the first frequency band ∆ f1, the bottom refractive index is: nb = 0.84 (1 + i 0.03), bottom density:
ρb = 1.8 g/cm3, and modes count: M = 4. For the second frequency band ∆ f2, the bottom refractive
index is nb = 0.84 (1 + i 0.05), the bottom density is ρb = 1.8 g/cm3, and the modes count is M = 10.
The initial range is x0 = 10 km between the source and the receiver. The depth of the source is
zs = 12.5 m. The depth of the receiver is zq = 35 m. The source spectrum is uniform. Sound pulses are
recorded periodically at an interval of 5 s. The sampling frequency is 0.25 Hz. The observation time is
T = 20 min.

Table 2. Acoustic parameters of shallow water waveguide

Parameter ∆ f1 = 100–120 Hz ∆ f2 = 300–320 Hz

Bottom refractive index nb = 0.84 (1 + i 0.03) nb = 0.84 (1 + i 0.05)
Bottom density ρb = 1.8 g/cm3 ρb = 1.8 g/cm3

Modes count M = 4 M = 10

In the first frequency band ∆ f1 = 100–120 Hz, the sound field consists of M = 4 propagating
modes. The parameters of the sound field mode, hm(ω0) and their frequency derivatives dhm(ω0)

dω , are

presented in Table 3. As can be seen, hm(ω0) ∼ 0.43 − 0.46 m −1 and dhm(ω0)
dω ∼ 6.7 · 104 − 7.1 · 104

(m/s) −1.

Table 3. Sound field mode parameters (∆ f1 = 100–120 Hz)

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 0.4635 6.762
2 0.4557 6.808
3 0.4450 6.901
4 0.4310 7.091

In the second frequency band, ∆ f2 = 300–320 Hz, the sound field consists of M = 10 propagating
modes. The parameters of the sound field mode, hm(ω0) and their frequency derivatives dhm(ω0)

dω , are

presented in Table 4. As can be seen in Table 4, hm(ω0) ∼ 1.2 − 1.3 m −1 and dhm(ω0)
dω ∼ 6.7 · 104 − 7.1 ·

104 (m/s) −1.

Table 4. Sound field mode parameters (∆ f2 = 300–320 Hz)

m-th mode hm, m−1 (dhm/dω) · 104, (m/s)−1

1 1.312 6.751
2 1.307 6.761
3 1.300 6.781
4 1.292 6.797
5 1.282 6.808
6 1.273 6.815
7 1.263 6.831
8 1.252 6.875
9 1.240 6.970
10 1.225 7.057
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The geometries of the numerical simulations are shown in Figures 1 and 2. IIWs travel along the
acoustic path connecting the source and receiver. The internal soliton parameters are presented in
Table 5. The amplitude is Bn = 15 m, the width is 150 m, velocity: un = 0.7 m/s. The wavefront is
plane (R = ∞).

Table 5. Internal soliton parameters

Parameter Value

Amplitude Bn = 15 m
Width ηn = 150 m
Velocity un = 0.7 m/s
Wavefront R = ∞

5.2. Results of Numerical Simulation. First Case: Non-Moving Source (v = 0 m/s)

Consider the results of the numerical model for the first case, which is a non-moving source
(v = 0 m/s). The source-receiver range is x0 = 10 km. The source depth is zs = 12.5 m. The receiver
depth is zq = 35 m. The source spectrum is uniform. The sound pulses are recorded periodically at an
interval of 5 s. The sampling frequency is 0.25 Hz. The observation time is T = 20 min. We consider
the two frequency bands ∆ f1 = 100 − 120 Hz (Table 1) and ∆ f2 = 300 − 320 Hz (Table 2).

 

 

 

receiver 

non-moving 
source 

Z 

X 

840 m 

X= 4160 m X= 5000 m X= 10000 m 

moving IIW 

bottom 

Figure 3. Numerical simulation model. IIWs is traveling along the acoustic path (u = 0.7 m/s).
First case: non-moving source (v = 0 m/s).

The numerical simulation model is shown in Figure 3. It is assumed that the intense internal
waves (IIW) are traveling along the acoustic path with a velocity of un = 0.7 m/s from the source to
the receiver. The IIWs are displaced by ∆x = 840 m during the T = 20 min observation period. The
initial position of the IIWs is x = 5000 m. The final position of the IIWs is x = 4160 m.

The outcomes of the numerical simulations are presented in Figures 4–10. Figures 4 and 5
illustrate the interferogram I( f , t) and the corresponding hologram F(τ, ν̃) in the absence of IIWs.
Figure 4 represents the frequency band ∆ f1 = 100–120 Hz, while Figure 5 refers to the frequency band
∆ f2 = 300–320 Hz. The interferogram I( f , t) is characterized by vertical, spatially localized fringes.
The holographic representation F(τ, ν̃) features focal points aligned along the horizontal axis, which is
typical for a stationary (non-moving) sound source. As the frequency increases, both the structural
complexity of I( f , t) and the number of focal points in F(τ, ν̃) grow. This effect is due to the greater
number of propagating acoustic modes at higher frequencies (see Tables 3 and 4).
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(a) (b)

Figure 4. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f1 = 100 − 120 Hz. Non-moving
source: v = 0 m/s. IIWs are absent.

(a) (b)

Figure 5. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f2 = 300 − 320 Hz. Non-moving
source: v = 0 m/s. IIWs are absent.

Figures 6 and 7 show the interferogram I( f , t) and the hologram F(τ, ν̃) in the presence of IIWs.
It is assumed that the IIWs travel along the acoustic path from the source to the receiver. Figure 6
corresponds to the frequency band ∆ f1 = 100–120 Hz, and Figure 7 to ∆ f2 = 300–320 Hz. In the
lower frequency range ∆ f1 = 100–120 Hz, where mode coupling due to IIWs is weak, the resulting
interferogram is dominated by vertically localized fringes (Figure 6(a)), which are characteristic of a
shallow water waveguide in the absence of IIWs. As the frequency increases to ∆ f2 = 300–320 Hz,
the effects of mode coupling caused by IIWs become more pronounced. The contribution of mode
coupling to the sound field intensifies, resulting in the formation of horizontally localized fringes
(Figure 7(a)). Consequently, the structure of the interferogram I( f , t) becomes more complex.

Two types of focal spots appear in the hologram domain (see Figures 6(b), 7(b)). The focal spots
that correspond to the vertical fringes of the interferogram I( f , t), i.e., the shallow water waveguide
without IIWs, are concentrated along the time axis τ. The focal spots that correspond to the horizontal
fringes, i.e., the result of mode coupling due to IIWs, are concentrated along the frequency axis ν̃.
Outside of these focal spots, the spectral density is almost completely suppressed. Under natural
conditions, an internal wave train (IIWT) consists of multiple internal solitons with varying parameters,
which leads to a blurring of the distinct structure in both the interferogram I( f , t) and the hologram
F(τ, ν̃). The arrangement of focal spots in the hologram F(τ, ν̃) makes it possible to separate the
component corresponding to the undisturbed waveguide from the component of the sound field that
is perturbed by IIWs.
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(a) (b)

Figure 6. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f1 = 100 − 120 Hz. Non-moving
source: v = 0 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 7. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f2 = 300 − 320 Hz. Non-moving
source: v = 0 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

Figures 8 and 9 present the results of applying a filter to the hologram to isolate the focal spots
aligned horizontally in Figures 6 and 7, followed by an inverse 2D Fourier transform (2D-FT) to obtain
the corresponding interferograms. These interferograms and holograms (Figures 8 and 9) closely
resemble those representing the undisturbed waveguide scenario (without IIWs), as shown in Figures 4
and 5. A comparison reveals that the positions and structures of the focal spots remain consistent
between the original and reconstructed holograms. Figure 10 provides further evidence by comparing
one-dimensional slices of the two-dimensional interferograms I( f , t) at a fixed time t0 = 0 min. The red
curve represents the case without IIWs, and the blue curve represents the case with IIWs, highlighting
the similarity and confirming the effectiveness of the separation method.
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(a) (b)

Figure 8. Filtered hologram F(τ, ν̃) (a). Filtered interferogram I( f , t) (b). Frequency band: ∆ f1 = 100 − 120 Hz.
Non-moving source: v = 0 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 9. Filtered hologram F(τ, ν̃) (a). Filtered interferogram I( f , t) (b). Frequency band: ∆ f2 = 300 − 320 Hz.
Non-moving source: v = 0 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).
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(b)

Figure 10. Interferogram I( f , t) slice (t0 = 0 min) reconstructed by holographic filtering: (a) frequency band -
∆ f1 = 100 − 120 Hz and (b) frequency band - ∆ f2 = 300 − 320 Hz. Non-moving source: v = 0 m/s. Red curve -
IIWs are absent. Blue curve - IIWs are present (Bn = 15 m, un = 0.7 m/s).

The interferogram reconstruction error is estimated using the dimensionless quantity:

d =
∑J

j=1

∣∣I1( f j)− I2( f j)
∣∣

∑J
j=1

∣∣I1( f j)
∣∣ , (30)
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where I1( f ) and I2( f ) are the initial and reconstructed 1D-interferograms, respectively. The interfero-
gram reconstruction error values for the frequency bands ∆ f1 = 100 − 120 Hz and ∆ f2 = 300 − 320 Hz
are presented in Table 6.

Table 6. Interferogram reconstruction error values

No. ∆ f1 = 100–120 Hz ∆ f2 = 300–320 Hz

1. d1 = 0.014 d2 = 0.074
2. J = 80 J = 80

The numerical modeling outcomes for the frequency band ∆ f2 = 300–320 Hz are consistent with
those obtained for the lower frequency range ∆ f1 = 100–120 Hz. These results demonstrate that
the proposed approach can separate the sound field into two components: one associated with the
undisturbed waveguide and one resulting from the influence of IIWs. Consequently, it is possible to
reconstruct the interferogram of the unperturbed waveguide even when the source is stationary and
IIWs are present.

5.3. Results of Numerical Simulation. Second Case: Moving Source (v = 1 m/s)

Consider the results of the numerical model for the second case, which involves a moving
source (v = 1 m/s). Initially, at t0 = 0 min, the distance between the source and the receiver is set
to x0 = 10 km. The source is positioned at a depth of zs = 12.5 m, and the receiver is located at
zq = 35 m. A uniform spectrum is assumed for the acoustic source. Each emitted sound pulse has a
duration of t1 = 4 s, with a sampling frequency of 0.25 Hz. The interval between consecutive pulses is
t∗ = 5 s, which includes a t2 = 1 s pause after each pulse (t∗ = t1 + t2). The total observation time is
∆T = 20 min. Two frequency ranges are analyzed: ∆ f1 = 100–120 Hz (Table 1) and ∆ f2 = 300–320 Hz
(Table 2).
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Figure 11. Numerical simulation model. IIW travels along the acoustic path (u = 0.7 m/s).
Second case: moving source (v = 1 m/s).

The numerical simulation model is illustrated in Figures 11. It is assumed that IIWs propagate
along the acoustic path from the source to the receiver at a velocity of un = 0.7 m/s. During the
observation period of T = 20 min, the IIWs travel a distance of ∆x = 840 m. Their initial position
is x = 5000 m, and by the end of the observation period, they reach x = 4160 m. During the same
20-minute interval, the acoustic source moves horizontally along the x-axis toward the receiver at
a constant speed of v = 1 m/s, covering a distance of ∆x = 1200 m. The source’s initial location is
x = 10000 m, and its final position is x = 8800 m.

Figures 12 and 13 present the interferogram I( f , t) and the corresponding hologram F(τ, ν̃) for
a moving source in the absence of intense internal waves (IIWs). Figure 12 illustrates the case for
the frequency band ∆ f1 = 100–120 Hz, Figure 13 refers to the frequency band ∆ f2 = 300–320 Hz.
The interferograms I( f , t) are characterized by localized, slanted fringes. In the hologram domain,
F(τ, ν̃), the energy is concentrated in a series of focal spots in the I and III quadrants. As the frequency
increases, both the complexity of the interferogram and the number of focal spots in the hologram
grow, similar to the behavior observed with a non-moving source.
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(a) (b)

Figure 12. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f1 = 100 − 120 Hz. Moving source:
v = 1 m/s. IIWs are absent.

(a) (b)

Figure 13. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f2 = 300 − 320 Hz. Moving source:
v = 1 m/s. IIWs are absent.

In the hologram domains in Figures 12 (b) and 13 (b) dashed lines are shown. These dashed
lines indicate the region where the focal spots of the sound field in shallow water without IIWs are
concentrated. The linear dimensions of this region are approximately: δτ ≈ 0.15 s, δν ≈ 0.002 Hz,
which agrees with the theoretical focal spot dimension estimates, Eq. (26): δτ = 0.1 s, δν = 0.0017 Hz.
The interferogram and hologram parameters for the case of a moving source and the absence of IIWs
are presented in Table 7 for the frequency bands: ∆ f1 = 100–120 Hz and ∆ f2 = 300–320 Hz.

Table 7. Interferogram and hologram structure parameters. Estimation of source parameters.

No. ∆ f1 = 100–120 Hz ∆ f2 = 300–320 Hz

1. δ f /δt ≈ −0.016 s−2 δ f /δt ≈ −0.035 s−2

2. τ1 = 1.0 · 10−1 s τ1 = 3.8 · 10−1 s
3. ν1 = 1.71 · 10−3 Hz ν1 = 2.0 · 10−3 Hz
4. v̇ = 0.99 m/s v̇ = 1.3 m/s
5. ẋ0 = 9.1 km ẋ0 = 11.1 km

Figures 14 and 15 show the interferogram I( f , t) and the hologram F(τ, ν̃) of the moving source
in the case of IIWs traveling along the acoustic path between the source and the receiver. Figure 14
corresponds to ∆ f1 = 100 − 120 Hz and Figure 15 corresponds to ∆ f2 = 300 − 320 Hz. Significant
mode coupling due to IIWs leads to distortions of interferograms fringes I( f , t) and the appearance
of additional intense focal spots in the holograms F(τ, ν̃) compared to the shallow water waveguide
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without IIWs. The sound intensity along the interferogram fringes becomes highly nonuniform, taking
the form of focal spots, as shown in Figures 14(a) and 15(a). This effect becomes more pronounced
with an increasing frequency band. This is explained by the strengthening of the mode coupling effects
due to the IIWs as the frequency increases. In the hologram domain, Figures 14(b) and 15(b), the
concentration of focal spots along the frequency axis ν increases with the increase in the frequency
band. This indicates the dominant influence of IIWs on the hologram structure.

(a) (b)

Figure 14. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f1 = 100 − 120 Hz. Moving source:
v = 1 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 15. Interferogram I( f , t) (a). Hologram F(τ, ν̃) (b). Frequency band: ∆ f2 = 300 − 320 Hz. Moving source:
v = 1 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

The spatial distribution of focal spots in the hologram F(τ, ν̃) for a moving source allows one to
distinguish between the component of the acoustic field component associated with an undisturbed
waveguide and the component influenced by IIWs. Figures 14 and 15 display the results of applying a
filter to the focal spots located along the dotted lines in the holograms. The corresponding interfero-
grams, obtained via inverse 2D-FT, are shown in Figures 16 and 17. The reconstructed interferograms
and holograms in these figures closely resemble those in Figuress 12 and 13, which show the case
without IIWs. A comparison reveals that the positions of the focal spots in both the original and
reconstructed holograms are nearly identical. The interferogram and hologram parameters for the
case of a moving source and the presence of IIWs are presented in Table 8 for the frequency bands
∆ f1 = 100–120 Hz and ∆ f2 = 300–320 Hz.
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Table 8. Interferogram and hologram structure parameters. Estimation of source parameters.

No. ∆ f1 = 100–120 Hz ∆ f2 = 300–320 Hz

1. δ f /δt ≈ −0.016 s−2 δ f /δt ≈ −0.035 s−2

2. τ1 = 1.19 · 10−1 s τ1 = 4.08 · 10−1 s
3. ν1 = 2.00 · 10−3 Hz ν1 = 1.63 · 10−3 Hz
4. v̇ = 1.1 m/s v̇ = 1.1 m/s
5. ẋ0 = 10.8 km ẋ0 = 12.0 km

(a) (b)

Figure 16. Filtered hologram F(τ, ν̃) (b). Filtered interferogram I( f , t) (a). Frequency band: ∆ f1 = 100 − 120 Hz.
Moving source: v = 1 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 17. Filtered hologram F(τ, ν̃) (b). Filtered interferogram I( f , t) (a). Frequency band: ∆ f2 = 300 − 320 Hz.
Moving source: v = 1 m/s. IIWs are present (Bn = 15 m, un = 0.7 m/s).

As can be seen, the focal spots on the reconstructed and initial holograms of the moving source
are the same. Figure 18 shows the proximity of the initial and reconstructed interferograms of the
moving source. Figure 18 shows the 1D interferograms for t0 = 0 min. The red curve shows that IIWs
are not present. The blue curve shows that IIWs are present. The interferogram reconstruction error
values (Eq. (30)) for the frequency bands ∆ f1 = 100 − 120 Hz and ∆ f2 = 300 − 320 Hz are presented in
Table 9.

Table 9. Interferogram reconstruction error values

No. ∆ f1 = 100–120 Hz ∆ f2 = 300–320 Hz

1. d1 = 0.635 d2 = 0.821
2. J = 80 J = 80



19 of 22

  

       
     

  

 

 

 

(a)

  

         
     

  

 

 

 

 

(b)

Figure 18. Reconstructed 1D-interferogram I( f ) (a) ∆ f1 = 100 − 120 Hz and (b) ∆ f2 = 300 − 320 Hz. Moving
source: v = 1 m/s. Red curve - IIWs are absent. Blue curve - IIWs are present.

Compared to the stationary source scenario, the reconstruction error for the frequency bands
∆ f1 = 100–120 Hz and ∆ f2 = 300–320 Hz increases by factors of 45.4 and 11.1, respectively. This
suggests that reconstructing the interferogram of a waveguide without IIWs is less accurate when
the source is in motion. The observed difference in error magnitudes arises from the varying nature
of propagation conditions. While a stationary source is solely affected by variability introduced by
IIWs, a moving source experiences additional variability due to its own motion, which compounds the
effects of IIW-induced mode coupling.

6. Conclusions
We examined the robustness of the holographic signal processing (HSP) method in the presence

of intense internal waves (IIWs) for a moving broadband acoustic source. It is assumed that the IIWs
travel along the acoustic path between the source and the receiver. Under these conditions, the IIWs
cause significant scattering of sound intensity and mode coupling. The stability of the HSP method
depends on the structural characteristics of the hologram produced by the moving source in the
presence of IIWs. This hologram consists of two components. The first corresponds to the sound field
propagating through an unperturbed shallow water waveguide (i.e., without IIWs), and the second
represents the waveguide perturbation caused by IIW-induced mode coupling.

This separation of the hologram’s structure allows for the isolation of individual components
of the acoustic field. The component associated with the unperturbed waveguide can be extracted
with minimal distortion. This isolated component of the hologram is then used to reconstruct the
interferogram of the moving source in a shallow water waveguide without IIWs.

Although the reconstructed interferograms differ from the original ones mainly in terms of
contrast when IIWs are present, the angular slopes of the interference fringes remain unchanged.
Therefore, it is still feasible to estimate key source parameters, such as range, velocity, and direction,
based on the reconstructed unperturbed component of the sound field, even in the presence of IIWs.
Furthermore, the accuracy of these estimations increases with operating frequency.
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The following abbreviations are used in this manuscript:

HSP holographic signal processing;
ISP interferometric signal processing;
3DHE 3D Helmholtz Equation models;
3DPE 3D Parabolic Equation models;
3DR 3D Ray-based models;
VMMPE Vertical Modes and 2D Modal Parabolic Equation models;
VCMHR Vertical Coupled Modes with Horizontal Rays models;
IIW intense internal wave;
IS internal soliton;
KdV Korteweg-de Vries;
2D two-dimensional;
3D three-dimensional;
1D-FT one-dimensional Fourier transform;
2D-FT two-dimensional Fourier transform.
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