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Abstract4

Pseudodifferential parabolic equations with an operator square root arise in wave prop-
agation problems as a one-way counterpart of the Helmholtz equation. The expression
under the square root usually involves a differential operator and a known function. We
discuss a rigorous definition of such operator square roots and show well-posedness of the
pseudodifferential parabolic equation by using the theory of strongly continuous semi-
groups. This provides a justification for a family of widely-used numerical methods for
wavefield simulations in various areas of physics.
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1. Introduction8

A large family of one-way propagation equations used in the numerical modeling of9

wave phenomena is known as the parabolic wave equations (PWEs). They have their10

origin in the work of Leontovich and Fock [1], in which a model for the simulation of11

radio waves was proposed. Since then, a wide variety of PWEs have been developed to12

solve practical problems in seismics, acoustics, optics, and electrical engineering [2, 3, 4, 5]13

(sometimes referred to as beam propagation methods). In this approach, boundary value14

problems for the Helmholtz equation in a waveguide are replaced by Cauchy problems15

for PWEs, which are more convenient to handle numerically using marching solution16

techniques. Another reason for the success of this approach is the ability to cancel out17

certain oscillatory terms, thus removing a wavelength resolution limitation associated18

with the step size.19
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Currently, the standard approach to deriving PWEs is based on a formal factorization20

of the Helmholtz operator. Such factorization leads to evolutionary equations involving21

the square root of a differential operator [6], sometimes called pseudodifferential parabolic22

equations (PDPEs) (they also appear in the literature under a variety of names, e.g.,23

very-wide-angle parabolic equations). Many modern wave propagation techniques are24

designed to solve PDPEs directly [4, 7, 8] (rather than first rewriting them, e.g., using25

some approximation of the square root operator). An important example is a powerful26

method called Split-Step Padé (SSP) [9, 10], which was a breakthrough in both accuracy27

and performance in underwater acoustics.28

Despite the existence of a large number of works on PDPEs and their practical im-29

portance, to the best of our knowledge the questions of uniqueness, existence and well-30

posedness for such equations have not been addressed in the literature. In fact, most31

of the research on this topic does not even rigorously define the square root operator32

[5, 8, 7]. This letter aims to fill this gap. We provide a derivation of the most common33

PDPE form and rigorously define the square root operator in this equation. We then34

prove the uniqueness and existence of the PDPE solution using the semigroup property35

of the latter operator. Our discussion includes the piecewise constant dependence of the36

propagation medium on the range (i.e., on the evolutionary variable).37

2. The Pseudo-Differential Parabolic Equation38

Consider the two-dimensional Helmholtz equation in Cartesian coordinates (x, y),39

∂2u

∂x2
+

∂2u

∂y2
+ k2(x, y)u = 0 , (1)

where u = u(x, y) is the unknown function and k = k(x, y) is a coefficient called medium40

wavenumber. In practice, k(x, y) is usually a complex quantity with both real and imag-41

inary parts being positive and bounded both from above and from below (the imaginary42

part represents wave absorption, and it is usually much smaller than the real part).43

Assuming that the coefficient dose not depend on x (this is a preferred direction44

of propagation called waveguide axis along which the medium parameters change very45

slowly [1, 3, 7]), we can factorize the operator in Eq. (1) to get46 (
∂

∂x
+ i

√
∂2

∂y2
+ k2(y)

)(
∂

∂x
− i

√
∂2

∂y2
+ k2(y)

)
u = 0 , (2)

where the factors on the left-hand side correspond to leftward and rightward one-way47

propagation of the wave, respectively. Without loss of generality, hereafter we consider48

the latter case and rewrite the one-way counterpart of Eq. (2) as the PDPE49

∂u

∂x
= i

√
Au (3)

for x > 0, −∞ < y < ∞, where A = ∂2

∂y2 + k2 is a differential operator acting on the50

functions of the coordinate y representing a direction transverse to the waveguide axis.51

Eq. (1) arises in various physical settings. For example, in underwater acoustics, u(x, y)52
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can describe the acoustic pressure field in a vertical plane [9, 3], where x denotes the range53

and y the depth (in this case, Eq. (1) is usually supplemented by boundary conditions,54

representing the sea surface and the bottom, e.g., u(x, 0) = 0 and u(x,H) = 0). Eq. (1) on55

the entire half-space x ≥ 0 can be considered as a one-way counterpart of the horizontal56

refraction equation for one mode amplitude in the adiabatic approximation [3, 7].57

The derivation of Eq. (1) is somewhat heuristic. However, once it is obtained it is58

desirable to establish that, for an initial condition u(0, y) = u0(y) at x = 0, the Cauchy59

problem in Eq. (3) is well-posed in an appropriate function space. Well-posedness means60

existence and uniqueness of the solution together with continuous dependence on the61

initial value (see e.g. [11, Section II.6] for a more thorough discussion). For Eq. (3)62

well-posedness is equivalent to the property that i
√
A generates a strongly continuous63

semigroup (Tx)x≥0 [11, Theorem II.6.7]. In this case, for each initial value u0 = u0(y)64

the unique solution of Eq. (3) is given by u(x, y) = Txu0(y).65

3. Definition and generator properties of i
√
A66

In this section we discuss criteria for the existence and uniqueness of square roots67

of unbounded operators on a Hilbert space. This will give a precise meaning to the68

expression
√
A in the PDPE (3). Let H be a complex Hilbert space. We use the69

convention that the inner product is anti-linear in the first argument and linear in the70

second. Let A : H ⊇ D(A) → A be a closed linear operator. We denote the spectrum of71

A by σ(A); its complement ρ(A) := C\σ(A) is called the resolvent set of A. We will first72

discuss uniqueness and then existence. Even for complex numbers (rather than operators)73

the complex square root is only unique if one imposes an additional assumption on the74

argument of the root. Similarly, the spectral conditions in the following proposition75

ensure the uniqueness of a square root operator, provided that it exists.76

Proposition 3.1 (Uniqueness of square roots). Let H be a complex Hilbert space and let77

A : H ⊇ D(A) → H be a closed linear operator such that (−∞, 0] ⊆ ρ(A). There exists78

at most one closed linear operator B : H ⊇ D(B) → H with the following properties:79

(a) B2 = A.80

(b) The spectrum σ(B) is contained in the right half plane {λ ∈ C | Reλ ≥ 0}.81

Proof. Consider two closed linear operators B : H ⊇ D(B) → H and B̃ : H ⊇ D(B̃) → H
which satisfy the properties (a) and (b). It follows from the spectral mapping theorem
for polynomials [12, Proposition A.6.2] that the imaginary axis does not intersect σ(B)
nor σ(B̃). In particular, B−1 and B̃−1 are bounded linear operators on H whose square
is equal to A−1 and whose spectra are also contained in the open right half plane C+ :=
{z ∈ C | Re(z) > 0}. Now consider the holomorphic functions

f : C+ → C \ (−∞, 0], z 7→ z2,

g : C \ (−∞, 0] → C+, z 7→ z1/2,

i.e., g is the principal branch of the complex square root. Note that the composition g ◦f82

is the identity function on the domain C+.83
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Since B−1 and A−1 are bounded operators whose spectra are contained in C+ and
C\(−∞, 0], respectively, one can use the Dunford functional calculus to compute f(B−1)
and g(A−1) (see e.g. [13, Section V.8] or [14, Section VIII.7] for details on this functional

calculus). One has f(B−1) =
(
B−1

)2
=
(
B2
)−1

= A−1 (here we used the multiplicativity
of the functional calculus, see e.g. [13, Theorem V.8.1] or [14, Theorem in Section VIII.7])
and

B−1 = (g ◦ f)(B−1) = g
(
f(B−1)

)
= g(A−1);

the first equality uses that the functional calculus is compatible with compositions of84

functions, see [14, Corollary 2 in Section VIII.7, p. 227]. The same reasoning can be85

applied to B̃ instead of B, giving B−1 = g(A−1) = B̃−1. Hence, B = B̃, as claimed.86

Proposition 3.1 justifies the following definition.87

Definition 3.2 (The square root of an operator). Let H be a complex Hilbert space88

and let A : H ⊇ D(A) → H be a closed linear operator such that (−∞, 0] ⊆ ρ(A). We89

say that A has a square root if there exists a closed linear operator B : H ⊇ D(B) → H90

which satisfies B2 = A and σ(B) ⊆ {λ ∈ C | Reλ ≥ 0}. In this case we call B the square91

root of A and denote it by B =: A1/2.92

The existence of such a square root is not guaranteed in general. In the following we
discuss an operator theoretic result which ensures the existence of a square root under
assumptions that are well-suited to the PDPE (3). We need the following concept: For a
closed linear operator A : H ⊇ D(A) → H on a complex Hilbert space H, the numerical
range of A is defined to be the set

W (A) :=
{
(f |Af) | f ∈ D(A) and ∥f∥ = 1

}
.

The set W (A) is always convex [15, Theorem V.3.1, p. 267]. The complement of its93

closure W (A) has either one or two connected components, and if one of them intersects94

ρ(A), then this entire connected component is contained in ρ(A) [15, Theorem V.3.2].95

Proposition 3.3 (Existence of square roots). Let H be a complex Hilbert space and let
A : H ⊇ D(A) → H be a closed linear operator. Assume that there is a δ > 0 such that

σ(A) ∪W (A) ⊆ CIm≥δ := {λ ∈ C | Imλ ≥ δ}.

Then A has a square root and the spectrum and numerical range of A1/2 are located in96

the first quadrant of C and satisfy σ(A1/2) ⊆ W (A1/2).97

Proof. By assumption, the numerical range of the operator −iA is contained in the closed98

right half plane of C, which means in the terminology of [15, Section V.3.10, p. 279] that99

−iA is accretive. It also follows from the assumption that the closed left half plane (and100

thus, in particular, the open left half plane) is in the resolvent set of −iA which means,101

again in the terminology of [15, Section V.3.10, p. 279], that −iA is even m-accretive.102

Hence, one can apply [15, Theorem V.3.35, p. 281] which says that there is a closed103

linear operator C on H that satisfies C2 = −iA and whose numerical range satisfies104

W (C) ⊆
{
z ∈ C | |arg(z)| ≤ π

4

}
. (4)
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Moreover, by the same theorem the operator C is m-sectorial (see [15, Section V.3.10,105

p. 280] for the definition of this notion), so in particular all λ ∈ C with sufficiently106

negative real part are in the resolvent set of C. So the complement of W (C) intersects107

the resolvent set of C; moreover, it follows from (4) and the convexity of W (C) [15,108

Theorem V.3.1, p. 267] that the complement of W (C) is connected. The facts mentioned109

before Proposition 3.3 thus imply σ(C) ⊆ W (C). We conclude that the operator B :=110

ei
π
4 C has all the required properties.111

Note that the reference [15, Theorem V.3.35, p. 281], which we used in the proof,112

does not only give existence but also uniqueness of square roots – but only among all113

accretive operators. As a consequence of Proposition 3.3 one gets the following well-114

posedness result for differential equations.115

Corollary 3.4 (Generation theorem for i times a square root). Under the assumptions116

of Proposition 3.3 the operator iA1/2 generates a contractive C0-semigroup on H.117

Proof. According to Proposition 3.3 the square root A1/2 exists, and the spectrum and118

numerical range of iA1/2 are located in the second quadrant of C. This means that iA1/2
119

ism-dissipative (which is another term for saying that minus the operator ism-accretive),120

so it generates a contractive C0-semigroup according to the Lumer–Phillips generation121

theorem [11, Corollary II.3.20].122

The following example shows why the operator A = ∂2

∂y2 +k2 in the PDPE (3) satisfies123

the assumptions of Proposition 3.3 and Corollary 3.4 if the real and imaginary parts of124

k are positive and bounded away from 0. In this case one can choose L = ∂2/∂y2 and125

m = k2.126

Example 3.5. Let H = L2(Ω) for a domain Ω ⊆ Rn, let L : H ⊇ D(L) → H be a127

self-adjoint linear operator and let m : Ω → C be a bounded and continuous (or, more128

generally, bounded and measurable) function that satisfies Im(m(ω)) ≥ δ for a δ > 0129

and all ω ∈ Ω. Then the operator A := L + m with domain D(A) := D(L) satisfies130

σ(A) ∪W (A) ⊆ CIm≥δ, so Proposition 3.3 and Corollary 3.4 are applicable to A.131

Proof. Since L is self-adjoint one has W (L) ⊆ R, and it is easy to check that W (m) is
contained in the closure of the range of m. Hence,

W (A) ⊆ W (L) +W (m) ⊆ R+ CIm≥δ ⊆ CIm≥δ.

Since m is a bounded perturbation, all numbers with sufficiently negative imaginary part132

are contained in ρ(L+m). To see this, first note that
∥∥(λ− L)−1

∥∥ ≤ 1
|Imλ| for all λ ∈ C\R133

since L is self-adjoint and then conclude that λ− (L+m) =
(
1−m(λ−L)−1

)
(λ−L) is134

invertible for ∥m∥∞ < |Imλ| by using the Neumann series. So the connected component135

of C \ W (A) that contains C \ CIm≥δ intersects the resolvent set ρ(A) and hence is136

contained in ρ(A), as pointed out before Proposition 3.3. So σ(A) ⊆ CIm≥δ.137

Remark 3.6. Example 3.5 gives the well-posedness of the PDPE (3) under the assump-138

tions discussed before the example. The argument assumed that k2(x, y) does not depend139

on x, but it can be directly generalized to the case where k2(x, y) is piecewise-constant140

in x. More precisely, assume that the interval x ∈ [0, L] is divided into a set of N subin-141

tervals [xj−1, xj ], j = 1, . . . , N , where x0 = 0, xN = L, and k2(x, y) = k2j (y) for all142
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x ∈ [xj−1, xj ]. Then the Cauchy problem (3) can be solved piecewise on the subintervals143

[xj−1, xj ].144

4. Conclusion145

We provided a theoretical foundation for the PDPEs theory, which is widely used146

in the numerical simulation of wave dynamics [3, 4, 5, 8, 9]. First, we gave a rigorous147

definition of the square root operator appearing in such equations. Second, we established148

the well-posedness of the corresponding Cauchy problem. Due to the abstract nature of149

the proofs, they cover most typical Cauchy problem setups that arise in practice (e.g., it150

is sufficient that the initial data u0 is square integrable), although the dependence of the151

problem parameters on the range (i.e., on x) is restricted to piecewise constant functions.152

In many physics and engineering problems, this is exactly the way the information about153

the medium is usually given [3]. On the other hand, it is desirable to establish the same154

results as above for more general types of range-dependent media (we plan to address155

this in future work).156
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case of coupled acoustic modes equation in a 3d waveguide, J. Sound Vibr. 577 (2024) 118304.180

[11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Vol. 194 of181

Graduate Texts in Mathematics, Springer, 2000.182

[12] M. Haase, The Functional Calculus for Sectorial Operators, Vol. 169 of Operator Theory: Advances183

and Applications, Springer, 2006.184

[13] A. Taylor, D. Lay, Introduction to Functional Analysis, 2nd Edition, John Wiley & Sons, 1980.185

[14] K. Yosida, Functional Analysis, 6th Edition, Vol. 123 of Grundlehren Math. Wiss., Springer, Cham,186

1980.187

[15] T. Kato, Perturbation Theory for Linear Operators., Vol. 132 of Class. Math., Springer, 1995.188

6


