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Abstract

We propose a novel approach to simulate the solution of the time-dependent
Schrödinger equation with a general variable potential. The key idea is to
approximate the Titchmarsh-Weyl m-function (exact Dirichlet-to-Neumann
operator) by a rational function with respect to an appropriate spectral pa-
rameter. By using this method, we overcome the usual high-frequency re-
striction associated with absorbing boundary conditions in general variable
potential problems. The resulting fast computational algorithm for absorbing
boundary conditions ensures accuracy over the entire frequency range.
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1. Introduction

In this paper we consider the linear Schrödinger problem of the form

iut + ∂2xu = V (x)u, (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(1)
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where T denotes the finite evolution time, and u0 is an initial wave packet
supported in a finite interval Ωint = [x−, x+] with x− < x+. It is well known
that under mild conditions the Cauchy problem (1) has a unique solution
u ∈ C(R+, L2(R)), cf. [33], e.g.:

Theorem 1. Let u0 ∈ L2(R) and real-valued potential V ∈ L∞(R). Then
the problem (1) has a unique solution u ∈ C(R+, L2(R)). Moreover, the
“energy” is preserved, i.e.

‖u(., t)‖L2(R) = ‖u0‖L2(R), ∀ t ≥ 0. (2)

The Schrödinger problem (1) is defined on an unbounded domain x ∈ R.
To numerically simulate its solution, it is common practice to truncate the
domain to a bounded one, for example, Ωint,T = Ωint × (0, T ]. Absorbing
boundary conditions (ABCs) are thus necessary for well-posedness at the
two artificially introduced boundaries, Σ±,T = {x±} × (0, T ].

Numerical simulation of the linear Schrödinger equation on unbounded
domains with an external potential has been a hot research area for nearly
thirty years, cf. the concise review article [7]. An ABC is called exact if
the solution of the truncated domain problem remains the same as that of
the original unbounded domain problem. The exact ABC is guaranteed to
exist due to the well-posedness of the linear Schrödinger problem (1), but it
can only be formulated analytically for some special potentials, such as con-
stant potential [18], linear potential [19], symmetric periodic potential [21],
isotropic free particle potential, Morse potential, harmonic potential, and
Bargeman potential, cf. e.g. [34]. In the more general case, i.e., for general
variable potential problems one is led to design approximate analytical ABCs
for a given frequency regime with respect to some a priori criterion. Meth-
ods in this category include the pseudo-differential calculus method [5, 6, 8],
the perfectly matched layer (PML) method [42], and the operator splitting
method [40]. To the authors’ knowledge, all of them are essentially based on
the high frequency approximations. For low-frequency problems, the ABCs
would be less accurate by these methods.

This paper proposes a new approach to the design of ABCs for the
Schrödinger problem. Inspired by the work of Alpert, Greengard, and Hag-
strom [2] on the fast evaluation of nonreflecting boundary kernels for time-
domain wave propagation, we approximate the Titchmarsh-Weyl m-function
(equivalently, the exact DtN operator) in the frequency domain by a ratio-
nal function with respect to an appropriate spectral parameter. In the time
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domain, the nonreflecting boundary kernels are thus approximated by a sum
of exponentials, which makes the approximate ABCs easy to implement.

The rationality of the above treatment is due to the analyticity property
and the asymptotic behavior of the m-function. Since our approximation
is performed in the whole frequency regime, the proposed ABCs are ex-
pected to be more versatile and accurate, especially in the low-frequency
regime, thus overcoming the typical high-frequency restriction. Note that
the Titchmarsh-Weyl m-function is nothing else but the so-called total sym-
bol in microdifferential calculus, which is treated by an asymptotic expansion
to obtain a hierarchy of ABCs, cf. [5, 6, 8]. Note also that Titchmarsh-Weyl
theory is used in the analysis of initial value problems for Schrödinger equa-
tions operator-valued potentials [25] or strongly singular potentials [30]. It
is also used in practical applications in quantum mechanics [15, 26] and in
option pricing in mathematical finance [31].

This paper is organized as follows. In Section 2 we review the basic facts
of the Titchmarsh-Weyl theory for Schrödinger operators in one dimension
for ease of later reference. Then, in Section 3 we discuss the Titchmarsh-Weyl
m-function (i.e. the exact Dirichlet-to-Neumann operator) and explain the
algorithm used to compute the m-function numerically. Thus, at least from
a numerical point of view, the exact ABC is explicitly known, see Section 3.
However, when simulating the Schrödinger equation (1), the difficulty does
not lie in the computation of the m-function in a frequency domain method,
which is presented in Section 4, but in its inverse Laplace transformation,
which is too expensive. For this reason, in Section 5 we introduce a ratio-
nal approximation of the m-function in the frequency domain to obtain an
approximate ABC that can be computed efficiently using a fast evaluation
technique [41] in the time domain. We discuss practical implementation is-
sues and finally in Section 6 we conclude with numerical results illustrating
that our new approach leads to an efficient and reliable algorithm for the
time-dependent Schrödinger equation with a general variable potential.

2. The Titchmarsh-Weyl theory

We will review here, for convenience of later work, the essentials of
Titchmarsh-Weyl (TW) theory for Schrödinger operators in one dimension.
The interested reader may consult [24, Section 2] or [12, Section 4.3] for a
more detailed presentation.
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First, consider the Schrödinger operator L on the real line given by

L = −∂2x + V (x), x ∈ R, (3)

with a real-valued, locally integrable potential V ∈ L1
loc(R). Let x0 ∈ R be

an arbitrarily chosen point, called reference point. In the following we will
study how the solutions depend on this parameter x0.

To do this, we consider θ(x;x0, λ) and φ(x;x0, λ) to be the fundamental
solutions of the Schrödinger eigenvalue problem.

−uxx + V (x)u = λu, x ∈ R, λ ∈ C, (4)

with the following initial conditions at the reference point x0:

θ(x0;x0, λ) = 1, θx(x0;x0, λ) = 0, (5a)

φ(x0;x0, λ) = 0, φx(x0;x0, λ) = 1. (5b)

It can be shown that under these assumptions θ(x;x0, λ) and φ(x;x0, λ) exist
on the whole real axis, and they are entire functions of λ and real for λ ∈ R.
Now, as a basic fact of TW theory, the equation (4) has at least one solution
ψ±, called Weyl’s solution with

ψ±(x0;x0, λ) = 1, (6a)

and
ψ±(x;x0, λ) ∈ L2(Rx0

± ) (6b)

for any λ ∈ C+. Here Rx0
± stands for the interval [x0,±∞) and C+ denotes

the upper half of the complex plane, i.e. C+ = {z ∈ C | Im z > 0}. A
potential V (x) is said to be in the limit-point case at ±∞ if and only if there
exists only one Weyl’s solution in the corresponding L2 space. The reader
will immediately realize that the assumption of V (x) in the limit-point case
is necessary for the well-posedness of the Schrödinger problem (1) in a more
general setting. At positive infinity, a standard sufficient condition for the
limit-point case is given by [35]:

Theorem 2 ([35, Theorem X.8]). Let V (x) be a continuous real-valued
function on (x0,∞) and suppose that there exists a positive differentiable
function M(x) such that

(i) V (x) ≥ −M(x) if x > x0;
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(ii)
∞∫
x1

(
M(x)

)−1/2
dx =∞ for any x1 > x0;

(iii) M ′(x)/
(
M(x)

)3/2
is bounded near ∞.

Then V (x) is in the limit-point case at ∞.

An analogous result can be given at negative infinity point.
According to this theorem, a potential V (x) is in the limit-point case

provided that V (x) ≥ −kx2 for some constant k and for all sufficiently large
x. This implies that the restriction on the potential for the limit-point case
is very weak: It only excludes some especially strange potentials, which may
not be physically relevant at all. Roughly speaking, the limit case does not
admit potentials that tend too fast (faster than quadratically) to −∞ for
x→ ±∞.

Due to the boundary conditions (6a) we can write

ψ±(x;x0, λ) = θ(x;x0, λ) +m±(x0, λ)φ(x;x0, λ), (7)

with some uniquely determined coefficient, the Titchmarsh-Weyl m-function
m±(x0, λ). This function plays a fundamental role in the spectral theory of
the Schrödinger operator (3) on the half-line Rx0

± .
We will now summarize some of the most important properties of the

Titchmarsh-Weyl m-function. First,

m±(x0, λ) is analytic with respect to λ to C\R and m± : C+ → C+ (8)

and is therefore called a Herglotz function (or Nevanlinna or Pick function),
cf. [24, Lemma 2.3]. It is easy to show that this Herglotz-property is directly
related to the positive type of the DtN-map in the sense of memory equations,
cf. [18] for the corresponding case of constant external potential. Thus it is
an essential ingredient of the stability w.r.t. the L2 norm.

We also have the symmetry property

m±(x0, λ) = m±(x0, λ̄) (9)

and the local singularities of m are real and and most of them are first order,
i.e.

lim
ε→0+

(−iε)m±(x0, λ+ iε) ≥ 0, λ ∈ R, (10)
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cf. [24, Theorem A.2].
Another important property is given by the Borg-Marchenko theorem [13,

32], which states that the Titchmarsh-Weyl m-function m±(x0, λ) uniquely
determines the potential V (x) at x > x0 (or x < x0). Moreover, since
ψ±(x;x0, λ) changes with a simple multiplication when the reference point
x0 changes, one has

m±(x, λ) =
∂xψ±(x;x0, λ)

ψ±(x;x0, λ)
. (11)

Thus, it is easy to verify that the m function satisfies the following Riccati
equation:

∂xm±(x, λ) = −m2
±(x, λ) + V (x)− λ. (12)

3. The exact ABC by Titchmarsh-Weyl theory

We apply the Laplace transform

û(x, s) = L
(
u(x, t)

)
(s) =

∫ +∞

0

u(x, t) e−st dt, Re s > 0, (13)

to the Schrödinger equation (1) on the right exterior domain Ω+ = {x ∈
R|x > x+} and on the left exterior domain Ω− = {x ∈ R|x < x−}. In the
frequency domain, the Schrödinger equation is a second order homogeneous
ODE

−ûxx + V (x)û = λû, x ∈ Ω±, (14)

with λ = is ∈ C+. The exact absorbing boundary condition of the DtN form
in the frequency domain is thus

ûx(x±, λ) = m±(x±, λ)û(x±, λ).

Only in some special cases, the m-function has a closed analytic form
[14, 23]. For example, in the case of a constant potential V ≡ V0 one gets

m+(x+, λ) = − +
√
−λ+ V0. (15)

If the potential represents a harmonic oscillator, i.e. V (x) = x2 on the interval
[0,∞), one obtains a meromorphic m-function given by the ratio of two
gamma functions:

m+(0, λ) = −
2Γ(3

4
− 1

4
λ)

Γ(1
4
− 1

4
λ)

. (16)
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Finally, for the Bargmann potential

V (x) = −8β2 β − γ
β + γ

e−2βx

(1 + β−γ
β+γ

e−2βx)2
, β > 0, γ ≥ 0, (17)

one obtains the m-function

m+(0, λ) = − +
√
−λ− γ2 − β2

+
√
−λ+ γ

. (18)

In the general case, however, numerical methods must be considered. This
problem has been studied in many papers, e.g. [14, 39, 27, 29]. In this paper
we simply compute the m-function by evolving the Riccati equation (12)
with the classical fourth-order Runge-Kutta scheme and setting an initial
data m±(x±,λ, λ) = ∓ +

√
−λ at a sufficiently distant point x±,λ = ±200. This

treatment is reasonable since the potentials in our numerical tests actually
decay to zero for x→∞.

4. The frequency-domain method

The solution of the time-dependent Schrödinger equation could then be
computed using the following frequency-domain method:

Step 1. Fix σ > 0. For each s = σ + iµ with µ ∈ R, solve the Laplace-
transformed Schrödinger equation in the bounded interval [x−, x+]:

−ûxx + V (x)û = is û− iu0(x), x ∈ [x−, x+],

ûx(x−) = m−(x−, is) û(x−),

ûx(x+) = m−(x+, is) û(x+).

Step 2. Perform the inverse Laplace transformation

u(x, t) = L−1
(
û(s, t)

)
(x)

=
1

2πi

∫ σ+i∞

σ−i∞
estû(s, t) ds =

eσt

2π

∫ ∞
−∞

eiftu(x, σ + if) df,
(19)

to derive the wave function u(x, t) for any t ∈ (0, T ].
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In the numerical implementation, some parameters have to be tuned. The
function û is smoother for larger damping factor σ, but the evolution time
span is then limited because an exponential term is involved in the inverse
Laplace transformation. As a common practice, we set σ = 1/T , where T is
a prescribed evolution time. The integration domain is unbounded in (19)
and must be truncated. We introduce a cut-off frequency fc and confine the
integration to the interval [−fc, fc]. In addition, to get rid of high frequency
oscillations in the inverse-transformed function, we should introduce another
filtering function χ, which remains 1 over a sufficiently large frequency band
with zero frequency as its center, and vanishes smoothly near the endpoints
of [−fc, fc]. A good candidate (empirically) is

χ = exp
(
−(1.2f/fc)

20
)
.

After these treatments, we then derive an approximate inverse transformation
as

eσt

2π

∫ ∞
−∞

eiftu(x, σ + if) df ≈ eσt

2π

∫ fc

−fc
χ(f) eiftu(x, σ + if) df. (20)

The right side is computed with an appropriate quadrature scheme.

5. The time-domain method

It follows from Section 2 that the exact ABC we are looking for is now
explicitly known, at least from a numerical point of view. But this is not the
whole story for simulating the solution of the time-dependent Schrödinger
equation. The difficulty lies not in computing the m-function itself, but in
computing its inverse Laplace transformation. Of course, a numerical inverse
transformation is possible, but it would be too expensive.

Therefore, in this section we design an approximate ABC based on the
rational approximation of the m-function. The kernel functions are of ex-
ponential type with respect to the half-order time derivative operator, so
the fast evaluation technique proposed in [41] (cf. Appendix) is applicable.
For some alternative fast evaluation methods, we refer the reader to [7] and
the references therein. The rational approximation is realized by solving a
least squares problem, an analogous technique to that used in [2] for fast
evaluation of the boundary kernel functions of the hyperbolic wave equation.
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In the time domain, the truncated Schrödinger problem reads

iut + ∂2xu = V (x)u, (x, t) ∈ [x−, x+]× (0, T ],

u(x, 0) = u0(x), x ∈ [x−, x+],

ux(x±, t) = L−1
(
m±(x±, is) û(x±, s)

)
(t), t ∈ (0, T ].

(21)

To simplify the notation, we will focus on the right boundary at x = x+. Let
us recall that the DtN map in the frequency domain is

ûx(x+, s) = m+(x+, is) û(x+, s).

Returning to the time domain we have to consider the convolution

ux(x+, t) = K(t) ∗ u(x+, t), with K(t) = L−1
(
m+(x+, is)

)
(t).

There are two major difficulties here. First, it is generally hard to compute
K(t) and second, the convolution involved naturally leads to a nonlocal-in-
time DtN map.

To get an idea, let us first consider two specific simple examples. In the
case of the free Schrödinger (V ≡ 0), cf. (15), we have

m+(is) = − +
√
−is and thus L−1

(
m+(is)

)
= −e−iπ/4 ∂

1
2
t , (22)

with the half-order time derivative defined as

∂
1
2
t v(t) =

1√
π

d

dt

∫ t

0

v(τ)√
t− τ

dτ, (23)

which can be efficiently evaluated with some existing methods, e.g. [9, 28, 41].
Second, we consider the Bargmann potential (17), and in this case the m-
function is

m+(0, is) = − +
√
−is− γ2 − β2

√
−is+ γ

,

thus we have

L−1
(
m+(0, is)

)
= −e−iπ/4 ∂

1
2
t − (γ2 − β2)(e−iπ/4 ∂

1
2
t + γ)−1.

This operator can then be evaluated efficiently by introducing an unknown

function and using the fast methods for ∂
1
2
t .
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Inspired by these two examples it naturally leads us to think about the
possibility of approximating the m-function with a rational function with
respect to a new spectral parameter k = +

√
−is (NOT s), i.e.,

m+(x+, is) ≈ m̃+(x+, is) = − +
√
−is+

d∑
n=1

αn√
−is+ βn

. (24)

Once this is done, we can then replace the exact m-function with the ap-
proximate alternative m̃, which leads to the approximate kernel function

L−1
(
m̃+(x+, is)

)
= −e−iπ/4 ∂

1
2
t +

d∑
n=1

αn(e−iπ/4 ∂
1
2
t + βn)−1.

The analogous idea for the Bargmann potential (17) can then be used to
handle this kernel function.

The answer for the possibility is affirmative considering that the asymp-
totic expansion has been given in [17] as

m+(x+, λ) = − +
√
−λ+ o(1/

√
r), r →∞, (25)

where λ = µr, r ∈ R and the convergence is uniform for µ in any compact
subset of C+, cf. [36, Theorem C.4].

Now putting
g+(λ) = m+(x+, λ) +

+
√
−λ, (26)

in view of (25) we know that g+(λ) is analytic in C+ with respect to λ and it
tends to zero for λ→∞. We then use the method of Alpert, Greengard and
Hagstrom [2] to approximate g+(λ) with a rational function with respect to
+
√
−λ (NOT λ). In terms of (25) we consider the following nonlinear least

squares problem

ε = min
P,Q

∫ ∞+iσ

−∞+iσ

∣∣∣∣P ( +
√
−λ)

Q( +
√
−λ)

− g+(λ)

∣∣∣∣2 |d +
√
−λ|, (27)

where P , Q are polynomials with deg(P ) + 1 = deg(Q) = d, and d is deter-
mined by making ε ≤ ε0, where ε0 is a prescribed tolerance number. This
nonlinear problem (27) is then solved using the technique of linearization
and orthogonalization [2]. Finally, by expressing P/Q as a sum of poles, we
arrive at

m+(x+, λ) ≈ m̃+(x+, λ) = − +
√
−λ+

d∑
n=1

αn
+
√
−λ+ βn

. (28)
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Note that the coefficients αn and βn should appear as conjugate pairs due to
the symmetry property (9). Unfortunately, it is not clear whether the rational
approximation m̃+(x+, λ) in (28) still has the important Herglotz-property
of the m-function. Moreover, the Herglotz-property cannot be checked by
some conditions on the poles due to the leading square root in (28).

s

A

B

k=\sqrt{−is}

A

B

Figure 1: s-plane and k-plane.

Applying the same idea to the m-function m−(x−, λ) and we get the
approximate boundary condition in the frequency domain

ûx(x±, s) =

(
∓ +
√
−is+

d±∑
n=1

αn,±
+
√
−is+ βn,±

)
û(x±, s). (29)

If we introduce new unknowns ŵn,± as

ŵn,± =
û(x±, s)

+
√
−is+ βn,±

, (30)

then we can rewrite (29) as

ûx(x±, s)± +
√
−is û =

d±∑
n=1

αn,±ŵn,±, (31a)

+
√
−is ŵn,± + βn,±ŵn,± = û(x±, s), n = 1, . . . , d±. (31b)

In the time domain, the approximate boundary condition is

ux(x±, t)± e−iπ/4 ∂
1
2
t u(x±, t) =

d±∑
n=1

αn,±wn,±(t), (32a)

e−iπ/4 ∂
1
2
t wn,±(t) + βn,±wn,±(t) = u(x±, t), n = 1, . . . , d±. (32b)
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The final approximate truncated time-domain problem is formulated as

iut + ∂2xu = V (x)u, (x, t) ∈ Ωint × (0, T ],

u(x, 0) = u0(x), x ∈ Ωint,

ux(x±, t)± e−iπ/4 ∂
1
2
t u(x±, t) =

d±∑
n=1

αn,±wn,±(t),

e−iπ/4 ∂
1
2
t wn,±(t) + βn,±wn,±(t) = u(x±, t), n = 1, . . . , d±.

(33)

6. Numerical results

In this section, we present some numerical results to test the accuracy
of the proposed methods. In each example, the standard Crank-Nicolson
scheme for time discretization is used. The fast evaluation of the half-order
time derivative operator (23) is performed with the method of Zheng [41].
The computational domain is chosen to be Ωint = [x−, x+] = [−5.5] and the
initial data is a Gaussian beam: u0(x) = e−x

2+4ix. We use an 8th-order FEM
method with 1024 elements for the spatial discretization and a uniform time
step of size ∆t = 10−4.

6.1. The Free Schrödinger Equation

The exact solution of the free Schrödinger equation (V (x) ≡ 0) is

uexa(x, t) =

√
i

−4t+ i
exp

(
−ix2 − 4x+ 16t

−4t+ i

)
.

We set the cut-off frequency fc in (20) to be fc = 256 and used a filtering
function χ(f) = exp

(
−(1.2f/fc)

20
)
. The following Table 1 shows the rela-

tive L2-errors to the exact solution at certain time points when using 8097
quadrature points with Simpson’s rule. Using this simple example, we can

Time points 0.5 0.6 0.7 0.8 0.9
Relative L2-errors 2.26e-7 3.46e-8 7.60e-9 5.60e-9 6.25e-9

Table 1: Relative L2-error at certain time points for the free Schrödinger equation.

see that the frequency method with truncation and filtering works quite well:
the magnitude of the relative L2-errors is at most on the order of 10−7.
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6.2. The Coulomb-like Potential

In the second example we test the time-domain method with a Coulomb-
like potential

V (x) =
1√

1 + x2
. (34)

We set σ for Step 1 to σ = 1 and the tolerance number for the nonlinear
least squares problem (27) to ε0 = 10−8. Here we get 4 poles. Figure 2
shows the time evolution in a colored contour plot. One can see how the
initial beam spreads out as time increases. Figure 3 shows how the relative

Figure 2: Time evolution of solution with Coulomb potential (34).

L2-error evolves in time. In this example with a varying external potential
the magnitude of the relative L2-errors remains below 10−5.

6.3. The Gaussian Barrier

Next, we change the potential to a Gaussian barrier

V (x) = 30e−36(x−8)
2

(35)
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Figure 3: Time evolution of the relative L2-error.

with a height of 30, located in the exterior domain x > 5 and centered at
x = 8. We set σ = 1 and ε0 = 10−4 and get 21 poles with the nonlinear least
squares algorithm. Figure 4 shows the time evolution of the solution. One
can clearly see how the initial beam propagates, spreads, and is (partially) re-
flected by the Gaussian barrier (35). The time evolution of the corresponding
relative L2-error is shown in Figure 5. The relative L2 errors remain below
5× 10−4.

Unfortunately, the nonlinear least squares algorithm used in this paper
failed to produce a rational approximation within an error tolerance much
smaller than ε0. A more efficient algorithm is still desired, and this problem
is currently under investigation.

Conclusion and Outlook

In this work we presented a new approach to simulate the solution to
the Schrödinger equation with a general space-dependent potential in un-
bounded domains. Both frequency-domain and time-domain methods have
been developed.
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Figure 4: Time evolution of solution with Gaussian barrier (35).

Future work will consist of implementing a more sophisticated algorithm
for computing the m-function. Instead of solving the Riccati equation (12),
we will consider computing the Weyl circles [14, 29] or the boundary control
approach of Avdonin, Mikhaylov and Rybkin [10]. We will also look for a
more stable algorithm for its rational approximation. It will also be clari-
fied how this rational approximation can be made to preserve the essential
Herglotz-property of the analytic m-function. This study will allow us to per-
form a rigorous stability analysis of this new approach. Finally, as a future
goal, we want to extend our approach to the multi-dimensional Schrödinger
problem, following the idea of Amrein and Pearson [3].
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Figure 5: Time evolution of the relative L2-error.

Appendix: Fast Evaluation Method

Here we present a short description of the method in [41] for evaluating

the half-order time derivative ∂
1
2
t . For any smooth function v = v(t) with

v(0) = v′(0) = 0, it is known that the semi-discrete half-order derivative

D
1
2
t v(tn) :=

√
2

∆t

n∑
m=0

αm v(tn−m) (36)

with

αm =

{
βk = (2k)!

22k(k!)2
, m = 2k,

−βk , m = 2k + 1,
(37)

gives a second-order approximation of ∂
1
2
t v(tn) (see [4, 41]). Suppose there

exists a sum of decaying exponentials satisfying

β̃k =
L∑
j=1

wj e
−sjk, sj > 0, |βk − β̃k| ≤ ε, k = 0, 1, . . . ,

[
N

2

]
. (38)
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Here N is the total number of time steps. If ε is small enough, it is reasonable
to approximate (36) with

D̃
1
2
t v(tn) :=

√
2

∆t

(
v(tn)− v(tn−1)

)
+

√
2

∆t

n∑
m=2

α̃mv(tn−m), (39)

where

α̃m =

{
β̃k , m = 2k,

−β̃k , m = 2k + 1.
(40)

Set vk = v(tk), v = (v0, v1, . . . ), and define

Fodd(w, s;v, k) :=
k∑

m=1

we−smv2k+1−2m

and

Feven(w, s;v, k) :=
k∑

m=1

we−smv2k−2m.

Thus, Fodd(w, s;v, 0) = Feven(w, s;v, 0) = 0. In addition, we have the fol-
lowing recursions

Fodd(w, s;v, k) = e−s
[
wv2k−1 + Fodd(w, s;v, k − 1)

]
,

Feven(w, s;v, k) = e−s
[
wv2k−2 + Feven(w, s;v, k − 1)

]
.

The summation (39) is then computed within O(L) operations as

n∑
m=2

α̃mvn−m =



L∑
j=1

Feven(wj, sj;v, k)−
L∑
j=1

Fodd(wj, sj;v, k − 1) , n = 2k,

L∑
j=1

Fodd(wj, sj;v, k)−
L∑
j=1

Feven(wj, sj;v, k) , n = 2k + 1.

In [41] for N = 1, 000, 000, the authors found a sum of 81 decaying exponen-
tials that approximates βk with an error of less than 5.0× 10−11.
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und die zugehörigen Entwicklungen willkürlicher Funktionen, Math.
Ann. 68 (1910), 220–269.

[39] M.R.M. Witwit, N. Gordon and J.P. Killingbeck, Numerical computa-
tion and analysis of the Titchmarsh-Weyl m(l) function for some simple
potentials, J. Comput. Appl. Math. 106 (1999), 131–143.

[40] J. Zhang, Z. Xu and X. Wu, Unified approach to split absorbing boundary
conditions for nonlinear Schrödinger equations, Phys. Rev. E 78 (2008),
026709.

[41] C. Zheng, Approximation, stability and fast evaluation of exact artificial
boundary condition for the one-dimensional heat equation, J. Comput.
Math. 25 (2007), 730–745.

[42] C. Zheng, A perfectly matched layer approach to the nonlinear
Schrödinger wave equations, J. Comput. Phys. 227 (2007), 537–556.

21


