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Abstract

This paper deals with a new epidemiological model of SIRS with stochastic perturbations. The
primary objective is to establish the existence of a unique non-negative nonlocal solution. Using the
basic reproduction number R0 derived from the associated deterministic model, we demonstrate the
existence of a stationary distribution in the stochastic model. In addition, we study the fluctuation
of the unique solution of the deterministic problem around the disease-free equilibrium under certain
conditions. In particular, we reveal scenarios where random effects induce disease extinction,
contrary to the persistence predicted by the deterministic model. The theoretical insights are
complemented by numerical simulations, which provide further validation of our findings.

Keywords: epidemiological model, stochastic model, Itô formula, Lyapunov function, numerical
approximations
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1. Introduction

Stochastic models in epidemiology are mathematical tools that incorporate randomness and
uncertainty into the dynamics of infectious diseases. Unlike deterministic models, which assume
fixed parameters and initial conditions, stochastic models account for the variability and unpre-
dictability of real-world epidemics. Stochastic models can capture the effects of random events
such as individual contacts, transmission events, recovery times, and environmental fluctuations
that can affect the spread and control of disease. Moreover, these models are powerful and versatile
tools that can help us understand and predict the behavior of infectious diseases in a stochastic
world [7, 9, 13, 16].

The SIRS model is a compartmental model commonly used to understand and describe the
dynamics of infectious diseases. The population in this model is divided into three distinct com-
partments based on their disease status:

i. Susceptible (X ): Individuals in this compartment are susceptible to the infectious agent, but
have not yet been infected.

ii. Infectious (Y): Individuals in this compartment are currently infected and can transmit the
disease to susceptible individuals.

iii. Recovered (Z): Individuals who have recovered from infection and developed immunity.
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Unlike the SIR models (where recovered individuals are assumed to have lifelong immunity), the
SIRS models assume that individuals who recover from infection do not acquire permanent immu-
nity. Instead, after a period of time, they return to the X compartment and become susceptible
to the disease again. The dynamics of the SIRS model is often described by a system of ordinary
differential equations (ODEs), expressed as follows

dX (t)
dt = Λ+ ηZ(t)− βX (t)Y(t)− µX (t),

dY(t)
dt = βX (t)Y(t)− (α+ µ+ γ)Y(t),

dZ(t)
dt = γY(t)− (η + µ)Z(t),

(1)

where

α > 0: Disease-related death rate.

β > 0: Effective contact rate.

η > 0: Immunity loss rate.

µ > 0: Natural death rate.

γ > 0: Recovery rate of Y.

Λ > 0: Recruitment rate of the population.

To identify equilibria, we set the right side of (1) to zero. This results in the identification of
two equilibria in the coordinate space (S, I,R). Specifically, the disease-free equilibrium (DFE)
Ef (Λµ , 0, 0) and the endemic equilibrium (EE) E∗(X ∗,Y∗,Z∗), with

X ∗ =
Λ

µR0
, Y∗ =

µ+ η

γ
Z∗, and Z∗ =

µγ(α+ µ+ γ)

βΛ
(
µγ + (µ+ η)(µ+ α)

)(R0 − 1), (2)

where R0 = βΛ
µ(α+µ+γ) is the basic reproduction number of (1). More details and information on

SIRS models can be found in [1, 4, 14, 17].
In contrast, stochastic SIRS models introduce a probabilistic framework that recognizes that

infectious disease dynamics are subject to random events and unpredictability in the spread of in-
fectious diseases. In the stochastic SIRS model, the transitions between the three compartments are
modeled as stochastic processes using stochastic differential equations (SDEs). The randomness in
the model accounts for variability in individual-level interactions, transmission events, and recovery
processes. The study [13] investigated a stochastic epidemiological model of SIRS characterized by
an incidence rate. The investigation included the introduction of a real-valued threshold, denoted
R, to classify the conditions of extinction and persistence. The results showed that if R < 0, the
disease is expected to eventually disappear. Conversely, when R > 0, the epidemic exhibits strong
stochastic permanence. In line with these results, modifications were applied to the system (1),
leading to the following expression

dX (t) =
(
Λ + ηZ(t)− βX (t)Y(t)− µX (t)

)
dt+ σ1X (t) dB1(t),

dY(t) =
(
βX (t)Y(t)− (α+ µ+ γ)Y(t)

)
dt+ σ2Y(t) dB2(t),

dZ(t) =
(
γY(t)− (η + µ)Z(t)

)
dt+ σ3Z(t) dB3(t).

(3)

Here, B1, B2, and B3 denote three correlated Brownian motions, where σ1, σ2, and σ3 represent
the intensities of fluctuations due to the random environment of X , Y, and Z, respectively.

The authors in [9] introduced and studied a stochastic SIRS model with a non-monotone inci-
dence rate under regime switching. First, the authors established the existence of a unique positive
solution, a prerequisite for the subsequent analysis of the long-term behavior of the stochastic
model. They then developed a threshold dynamics determined by the basic reproduction number
Rs

0. The results showed that if Rs
0 < 1 and under mild additional conditions, the disease could be

almost certainly eradicated. Conversely, if Rs
0 > 1, the density distributions of the solution in L1
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could converge to an invariant density, according to the theory of Markov semigroups. Following
these results, the system (1) underwent a transformation into the following Itô SDE

dX (t) =
(
Λ + ηZ(t)− βX (t)Y(t)− µX (t)

)
dt− σ4X (t)Y(t) dB4(t),

dY(t) =
(
βX (t)Y(t)− (α+ µ+ γ)Y(t)

)
dt+ σ4X (t)Y(t) dB4(t),

dZ(t) =
(
γY(t)− (η + µ)Z(t)

)
dt,

(4)

where σ4 denotes the environmental white noise density and B4 is a standard Brownian motion.
Exploration of the stochastic SIRS mathematical epidemiological model provides a compelling

and nuanced way to understand infectious disease dynamics. By introducing stochastic elements,
this modeling approach reflects the inherent uncertainty and indiscriminacy observed in real-world
epidemiological scenarios. Furthermore, this model contributes to our understanding of emerging
and re-emerging diseases, where unpredictability plays an important role in the development of
mathematical epidemiology, especially in stochastic modeling. Moreover, researchers not only gain
valuable insights into the dynamics of infectious diseases, but also contribute to the development of
methodologies essential for public health planning and response in a constantly evolving landscape.
Motivated and inspired by the investigations in [9] and [13], this study explores the implications of
stochastic variation arising from environmental white noise. The stochastic counterpart, derived
from the deterministic system (1), is elucidated in the following section.

The structure of this manuscript is as follows. In Section 2, the stochastic SIRS model is
introduced and explained. Section 3 investigates the global existence and positivity of a unique
solution. Building on this, Section 4 establishes the existence of a stationary distribution under
certain parametric constraints. The dynamics of the solution around the DFE of (1) is studied in
Section 5. This investigation leads to the derivation of sufficient conditions for disease extinction
in Section 6. To illustrate the theoretical results, insightful numerical simulations are presented in
Section 7. Finally, a comprehensive conclusion of the study is presented in Section 8.

2. The proposed Model

Research using the stochastic SIRS model can provide insights into the role of randomness in
shaping the course of infectious diseases, the impact of random events on epidemic outcomes, and
the effectiveness of interventions in uncertain environments. This modeling approach is valuable for
understanding the nuanced and probabilistic nature of disease dynamics in real-world populations.

We account for variations in the population environment to study the dynamics of the SIRS
model, focusing on its long-term behavior. The total population at any time t is denoted by N (t),
and it is categorized into three exclusive compartments, as detailed in the previous section.
According to (1), we can express the stochastic version of the SIRS model. Here, σ1, σ2, σ3, and
σ4 represent the intensities of the standard Gaussian white noise associated with the independent
standard Brownian motion B1(t), B2(t), B3(t), and B4(t), respectively. The proposed model then
has the following form

dX (t) =
(
Λ + ηZ(t)− βX (t)Y(t)− µX (t)

)
dt− σ4X (t)Y(t) dB4(t) + σ1X (t) dB1(t),

dY(t) =
(
βX (t)Y(t)− (α+ µ+ γ)Y(t)

)
dt+ σ4X (t)Y(t) dB4(t) + σ2Y(t) dB2(t),

dZ(t) =
(
γY(t)− (η + µ)Z(t)

)
dt+ σ3Z(t) dB3(t),

(5)

with the initial conditions (ICs)

X (0) = X0 > 0, Y(0) = I0 > 0, and Z(0) = R0 > 0. (6)

In the following, unless explicitly stated otherwise, we consider a complete probability space de-
noted by (B,F , {Ft}t≥0,P). In addition, we use the notation

W = R∗
+ × R∗

+ × R∗
+ =

{
(x, y, z) ∈ R3 | x > 0, y > 0, and z > 0

}
.
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3. Existence, Uniqueness, and Positivity of the Solution

The main result of this section can be expressed as follows

Theorem 1. For any (X0,Y0,Z0) ∈ W, problem (5) has a unique solution in W almost surely
(a.s.) with unit probability for all t ≥ 0.

Proof. For arbitrary ICs (X0,Y0,Z0), all coefficients in (5) are continuous and locally Lipschitz.
Therefore, the system (5) has a local solution and only one (X (t),Y(t),Z(t)) for all t ∈ [0, ℓe),
where ℓe denotes the blow-up time, i.e. the time when the solution diverges to infinity.

Next, in order to establish that the solution is global, it is necessary to show that ℓe = ∞ a.s.
To achieve this, let n0 > 0 be sufficiently large so that all ICs lie within [ 1

n0
, n0]. For each integer

n ≥ n0 we define the stopping time as follows

ℓn = inf
{
t ∈ [0, ℓe) | min

(
X (t),Y(t),Z(t)

)
≤ 1

n
or max

(
X (t),Y(t),Z(t)

)
≥ n

}
. (7)

Throughout this paper, let inf(ϕ) = 0, where ϕ is the empty set. As n approaches infinity, the
sequence (ℓn) increases according to the definition of ℓn. Set lim

n→∞
ℓn = ℓ∞, with ℓn ≥ ℓ∞ etc. If

ℓ∞ = ∞ a.s., then ℓn = ∞ and X (t) > 0, Y(t) > 0 and Z(t) > 0 a.s. for t ≥ 0.
If the above statement is not true, then there exist constants T > 0 and ε ∈ (0, 1) such that

P(ℓ∞ ≤ T ) ≥ ε. (8)

So there exists an integer n1 ≥ n0 such that

P(ℓn ≤ T ) ≥ ε, ∀n ≥ n1.

Let V : W → R+ be a C2 function defined by

V(t) := V
(
X (t),Y(t),Z(t)

)
= X (t) + Y(t) + Z(t)− (2 + δ)− δ

(
log

X (t)

δ
+

1

δ
logY(t) +

1

δ
logZ(t)

)
,

(9)

where δ = µ+α
β . From the fact that x − 1 − log(x) ≥ 0 for x > 0 we have the positivity of the

function V. Applying the Itô formula to (9), we get

dV(t) = LV(t) dt+
(
X (t)− δ

)(
σ1 dB1(t)− σ4Y(t) dB4(t)

)
+
(
Y(t)− 1

)(
σ2 dB2(t) + σ4X (t) dB4(t)

)
+
(
Z(t)− 1

)
σ3 dB3(t),

with LV : W → R+ defined by

LV(t) := LV
(
X (t),Y(t),Z(t)

)
=

(
1− δ

X (t)

)(
Λ + ηZ(t)− βX (t)Y(t)− µX (t)

)
+

δσ2
1 + σ2

4Y2(t)

2

+
(
1− 1

Y(t)

)(
βX (t)Y(t)− (α+ µ+ γ)Y(t)

)
+

σ2
2 + σ2

4X 2(t)

2

+
(
1− 1

Z(t)

)(
γY(t)− (µ+ η)Z(t)

)
+

σ2
3

2

= Λ + (δ + 2)µ+ α+ γ + η +
δσ2

1 + σ2
4Y2(t) + σ2

2 + σ2
4X 2(t) + σ2

3

2

− δΛ + δηZ(t)

X (t)
− γY(t)

Z(t)
− (µ+ β)X (t) +

(
βδ − (µ+ α)

)
Y(t)− µZ(t)

≤ Λ + (δ + 2)µ+ α+ γ + η +
δσ2

1 + σ2
4Y2(t) + σ2

2 + σ2
4X 2(t) + σ2

3

2
=: ξ.
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Therefore,

dV(t) = ξ dt+
(
X (t)− δ

)(
σ1 dB1(t)− σ4Y(t) dB4(t)

)
+
(
Y(t)− 1

)(
σ2 dB2(t) + σ4X (t) dB4(t)

)
+
(
Z(t)− 1

)
σ3 dB3(t).

Thus,

E
(
V(ℓn ∧ T )

)
≤ V(0) + E

(∫ ℓn∧T

0
ξ dt

)
≤ V(0) + ξT .

(10)

Let Bn = {ℓn ≤ T } for n ≥ n1. According to (8), we have P(Bn) ≥ ε. For ω ∈ Bn there is at least
one of X (ℓn∧T ), Y(ℓn∧T ) and Z(ℓn∧T ) such that one of them is equal to n or 1

n . Consequently,
V(ℓn∧T ) := V

(
X (ℓn, ω),Y(ℓn, ω),Z(ℓn, ω)

)
is not less than n−1− log(n) or 1

n −1− log(n). Then,

V(ℓn ∧ T ) ≥
( 1

n
− 1− log(n)

)
∧
(
n− 1− log(n)

)
. (11)

Using (8), (10) and (11), we get

V(0) + ξT ≥ E
(
1Bn(ω)V(ℓn ∧ T )

)
≥ ε

( 1

n
− 1− log(n)

)
∧
(
n− 1− log(n)

)
,

where 1Bn is the indicator function of Bn. Taking the limit as n approaches ∞ leads to the
following contradiction

∞ > V(0) + ξT = ∞.

Then ℓ∞ = ∞ a.s.

4. The Stationary Distribution

In this section, we demonstrate the existence of a stationary distribution (SD) when the white
noise is small. Before presenting the main results of this section, we refer to a well-established
result of [8] that will help us in this regard. First, we consider the homogeneous Markov process
X(t) in the Euclidean ℓ-space Eℓ, which is governed by the following SDE

dX(t) = Ξ(X) dt+
k∑

n=1

σn(X) dBn(t). (12)

The diffusion matrix is

A(x) =
(
aij(x)

)
, with aij(x) =

k∑
n=1

σi
n(x)σ

j
n(x).

Assumption 1. There exists a bounded domain U ⊂ Eℓ with a smooth boundary ∂U , such that
it satisfies the conditions

(H1) Within U and its neighborhood, the smallest eigenvalue of A is bounded away from zero.

(H2) If x ∈ Eℓ\U , the mean time τ for a path emerging from x to reach the set U is finite, and
sup
x∈K

Exτ < ∞ holds for every compact subset K ⊂ Eℓ.

Lemma 1 ([10, page 2]). Under the conditions (H1) and (H2), the Markov process X(t) has a SD
π(·). Let f be an integrable function with respect to π, then

Px

(
lim

T →∞

1

T

∫ T

0
f
(
X(s)

)
ds =

∫
Eℓ

f(x)π(dx)

)
= 1.
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Remark 1. i. To establish the validity of (H1), it suffices to show that V is uniformly elliptic in
U , where

Vu = Ξ(x)ux +
1

2
trace

(
A(x)ux

)
.

This means that there exists a positive number κ such that

k∑
i,j=1

aij(x)ϖiϖj ⩾ κ|ϖ|2, x ∈ U , ϖ ∈ Rk,

(See [5, page 103] and [15, page 349]).
ii. To check (H2), it suffices to show the existence of a neighborhood U and a non-negative

C2-function such that for any x ∈ Eℓ\U , LV is negative (see [18, page 1163]).

Theorem 2. Let (X ∗,Y∗,Z∗) be the EE of (1). Then, the problem (5) has a SD π(·) if R0 > 1
and 0 < C < min(D1X ∗2,D2Y∗2,D3Z∗2). With

D1 =
µ

2
− σ2

1 −
(2µ+ α)Y∗σ2

4

β
,

D2 = µ+ α− σ2
2,

D3 =
µ(γ + 2µ+ α) + η(2µ+ α)

γ
− γ + 2µ+ α

γ
σ2
3,

C = σ2
1X ∗2 +

(
Y∗2 +

2µ+ α

2β
Y∗

)
σ2
2 +

γ + 2µ+ α

γ
Z∗2σ2

3 +
2µ+ α

β
X ∗2Y∗σ2

4.

(13)

Proof. The system (5) can be written as (12) in the form

d

X (t)
Y(t)
Z(t)

 =

Λ− βX (t)Y(t) + ηZ(t)− µX (t)
βX (t)Y(t)− (α+ µ+ γ)Y(t)

γY(t)− (µ+ η)Z(t)

 dt+

σ1X (t)
0
0

 dB1(t)

+

 0
σ2Y(t)

0

 dB2(t) +

 0
0

σ3Z(t)

 dB3(t) +

−σ4X (t)Y(t)
σ4X (t)Y(t)

0

 dB4(t).

In this case, the diffusion matrix is

A =

σ2
1X ∗2 + σ2

4X ∗2Y∗2 −σ2
4X ∗2Y∗2 0

−σ2
4X ∗2Y∗2 σ2

2Y∗2 + σ2
4X ∗2Y∗2 0

0 0 σ2
3Z∗2

 .

Let ϖ ∈ R3, then

3∑
i,j=1

aijϖiϖj = (σ2
1X ∗2 + σ2

4X ∗2Y∗2)ϖ2
1 + (σ2

2Y∗2 + σ2
4X ∗2Y∗2)ϖ2

2 + σ2
3Z∗2ϖ2

3 − 2σ2
4X ∗2Y∗2ϖ1ϖ2

= σ2
1X ∗2ϖ2

1 + σ2
2Y∗2ϖ2

2 + σ2
3Z∗2ϖ2

3 + σ2
4X ∗2Y∗2(ϖ1 −ϖ2)

2

≥ σ2
1X ∗2ϖ2

1 + σ2
2Y∗2ϖ2

2 + σ2
3Z∗2ϖ2

3 ≥ min(σ2
1X ∗2, σ2

2Y∗2, σ2
3Z∗2)|ϖ|2

= κ|ϖ|2,

which shows that the condition (H1) is satisfied.
Since R0 > 1, then the EE of (1) is positive, and we have

Λ = −ηZ∗ + βX ∗Y∗ + µX ∗, βX ∗Y∗ = (α+ µ+ γ)Y∗ and γY∗ = (µ+ η)Z∗. (14)
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Recall that
(x+ y)2 ≤ 2x2 + 2y2. (15)

Let

V(t) = V1(t) +
2µ+ α

β
V2(t) +

2µ+ α

γ
V3(t), (16)

with

V1(t) =
1

2

(
X (t)−X ∗ + Y(t)− Y∗ + Z(t)−Z∗)2,

V2(t) = Y∗
(Y(t)

Y∗ − 1− ln
Y(t)

Y∗

)
,

V3(t) =
1

2

(
Z(t)−Z∗)2.

According to the Itô formula, we get

dV(t) = dV1(t) +
2µ+ α

β
dV2(t) +

2µ+ α

γ
dV3(t),

where

dV1(t) =
(
X (t)−X ∗ + Y(t)− Y∗ + Z(t)−Z∗)(dX + dY + dZ) +

1

2
(dX + dY + dZ)2

= LV1(t) dt+
(
X (t)−X ∗ + Y(t)− Y∗ + Z(t)−Z∗)(σ1X (t) dB1(t) + σ2Y(t) dB2(t)

+ σ3Z(t) dB3(t)
)
,

dV2(t) =
(
1− Y∗

Y(t)

)
dY(t) +

Y∗

2Y2(t)

(
dY(t)

)2
= LV2 dt+

(
Y(t)− Y∗)(σ2 dB2(t) + σ4X (t) dB4(t)

)
,

dV3(t) =
(
Z(t)−Z∗)dZ(t) +

1

2

(
dZ(t)

)2
= LV3(t) dt+

(
Z(t)−Z∗)σ3Z(t) dB3(t),

with

LV1(t) =
(
X (t)−X ∗ + Y(t)− Y∗ + Z(t)−Z∗)[Λ− µ(X (t) + Z(t))− (µ+ α)Y(t)

]
+

σ2
1X 2(t) + σ2

2Y2(t) + σ2
3Z2(t)

2
(14)

≤ −µ(X (t)−X ∗)2 − (µ+ α)(Y(t)− Y∗)2 − µ(Z(t)−Z∗)2 − (2µ+ α)(X (t)−X ∗)(Y(t)− Y∗)

+ 2µ(X (t)−X ∗)(Z(t)−Z∗)− (2µ+ α)(Y(t)− Y∗)(Z(t)−Z∗)

+
1

2

(
σ2
1(X (t)−X ∗ + X ∗)2 + σ2

2(Y(t)− Y∗ + Y∗)2 + σ2
3(Z(t)−Z∗ + Z∗)2

)
(15)

≤ −(µ− σ2
1)(X (t)−X ∗)2 − (µ+ α− σ2

2)(Y(t)− Y∗)2 − (µ− σ2
3)(Z(t)−Z∗)2

− (2µ+ α)(X (t)−X ∗)(Y(t)− Y∗) + 2µ(X (t)−X ∗)(Z(t)−Z∗)

− (2µ+ α)(Y(t)− Y∗)(Z(t)−Z∗) + σ2
1X ∗2 + σ2

2Y∗2 + σ2
3Z∗2,

LV2(t) =
(
Y(t)− Y∗)[βX (t)− (α+ µ+ γ)

]
+

Y∗

2

(
σ2
2 + σ2

4X 2(t)
)

(14)

≤ β(X (t)−X ∗)(Y(t)− Y∗) +
Y∗

2

(
σ2
2 + σ2

4(X (t)−X ∗ + X ∗)2
)

(15)

≤ σ2
4Y∗(X (t)−X ∗)2 + β(X (t)−X ∗)(Y(t)− Y∗) +

Y∗

2
σ2
2 + σ2

4Y∗X ∗2,

LV3(t) = (Z(t)−Z∗)
(
γY(t)− (µ+ η)Z(t)

)
+

1

2
σ2
3Z2(t)
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(14)

≤ γ(Y(t)− Y∗)(Z(t)−Z∗)− (µ+ η)(Z(t)−Z∗)2 +
1

2
σ2
3(Z(t)−Z∗ + Z∗)2,

(15)

≤ γ(Y(t)− Y∗)(Z(t)−Z∗)− (µ+ η − σ2
3)(Z(t)−Z∗)2 + σ2

3Z∗2.

Thus,

LV(t) =LV1(t) +
2µ+ α

β
LV2(t) +

2µ+ α

γ
LV3(t)

≤− D1(X (t)−X ∗)2 − D2(Y(t)− Y∗)2 − D3(Z(t)−Z∗)2 + C ,

where D1,D2,D3 and C are defined in (13). Note that if 0 < C < min(D1X ∗2,D2Y∗2,D3Z∗2),
then the ellipsoid

U : D1(X (t)−X ∗)2 + D2(Y(t)− Y∗)2 + D3(Z(t)−Z∗)2 = C

is entirely in W. Choosing U ⊂ U so that Ū ⊆ Eℓ = W, so for x ∈ Eℓ\U , we have LV(t) ≤ 0.
This implies that (H2) is satisfied. Thus, by Lemma 1 and remark 1, it follows that (5) has a SD
π(·).

Remark 2. Under the conditions outlined in Theorem 2, the model (5) has the ergodic property,
which means that the positive solution converges to the EE of (1).

Theorem 3. Let N (t) be the total population of (5). For (X0,Y0,Z0) ∈ W, the solution of (5)
gives

0 < lim inf
t→∞

N (t) ≤ lim sup
t→∞

N (t) < ∞. (17)

Proof. First, we will show that 0 < lim inf
t→∞

N (t). From (5), we get

dN (t) =
(
Λ− µN (t)− αY(t)

)
dt+ σ1X (t) dB1(t) + σ2Y(t) dB2(t) + σ3Z(t) dB3(t). (18)

Let V(t) = 1
N (t) . According to the Itô formula, we have

dV(t) = − 1

N 2(t)
dN +

1

N 3(t)
(dN )2

=
(σ2

1X 2(t) + σ2
2Y2(t) + σ2

3Z2(t)

N 3(t)
− Λ− µN (t)− αY(t)

N 2(t)

)
dt

− 1

N 2(t)

(
σ1X (t) dB1(t) + σ2Y(t) dB2(t) + σ3Z(t) dB3(t)

)
.

Since X (t)
N (t) ,

Y(t)
N (t) ,

Z(t)
N (t) ≤ 1, then

dV(t)et ≤
(σ2

1 + σ2
2 + σ2

3

N (t)
+

µ+ α

N (t)
− Λ

N 2(t)
+ 1

)
et dt

− et

N 2(t)

(
σ1X (t) dB1(t) + σ2Y(t) dB2(t) + σ3Z(t) dB3(t)

)
.

Next, an integration by parts gives

1

N (t)
≤ e−t

N0
+ e−t

∫ t

0
F

(
N (s)

)
es ds

− e−t

∫ t

0

σ1X (s) dB1(s) + σ2Y(s) dB2(s) + σ3Z(s) dB3(s)

N 2(s)
es ds,

(19)

where F (N (t)) =
σ2
1+σ2

2+σ2
3

N (t) + µ+α+et

N (t) − Λ
N 2(t)

+ 1, and for all X(t) > 0, F (X(t)) ≤ ξ.
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Set B =
{
ω | lim inf

t→∞
N (t, ω) = 0

}
. We need to prove that P(B) = 0. Assume there exists

ε ∈ (0, 1) such that P(B) > ε. Define the stopping time

ℓn = inf
{
t ≥ 0 | N (t, ω) ≤ 1

n
, ω ∈ B

}
, n ∈ N∗.

With the definition of ℓn, it is increasing and lim
n→∞

ℓn = ∞. By (19), we get

E
( 1

N (ℓn)
1B

)
= E

(e−ℓn

N0
+ e−ℓn

∫ ℓn

0
F

(
N (s)

)
es ds

)
≤ 1

N0
+ ξ. (20)

However,

E
( 1

N (ℓn)
1B

)
≥ nE(1B) ≤ nε → ∞ as n → ∞.

This contradicts (20). Thus, P(B) = 0. That is to say 0 < lim inf
t→∞

N (t) a.s.

We now concentrate on showing that lim sup
t→∞

N (t) < ∞. From (18) we have

N (t) = N0e
−µt + e−µt

∫ t

0

(
Λ− αY(s)

)
eµs ds

+ e−µt

∫ t

0

(
σ1X (s) dB1(s) + σ2Y(s) dB2(s) + σ3Z(s) dB3(s)

)
eµs ds.

Using the same method, we find that P(B̃) = 0, where B̃ =
{
ω | lim sup

t→∞
N (t, ω) = ∞

}
. Finally,

lim sup
t→∞

N (t) < ∞ a.s.

5. Asymptotic behavior around Ef

In this section, we want to illustrate how the solution spirals around the DFE of (1). The
central result of this section is outlined below.

Theorem 4. Let (X (t),Y(t),Z(t)) be the solution of (1) with ICs in W. If R0 < 1, σ2
1 < µ

2 ,

σ2
2 < 2(µ+ α) and σ2

3 < (2µ+α)(µ+η)+γµ
γ then

lim sup
t→∞

1

t
E
∫ t

0

((
X (s)− Λ

µ

)2
+ Y2(s) + Z2(s)

)
ds ≤ σ2

1

C

Λ2

µ2
,

where C = min
(
µ
2 − σ2

1, µ+ α− σ2
2
2 , (2µ+α)(µ+η)+γµ

γ − σ2
3

)
.

Proof. Let

V(t) = 1

2

(
X (t) + Y(t) + Z(t)− Λ

µ

)2
+

2µ+ α

β
Y(t) +

2µ+ α

2γ
Z2(t).

Using the same approach outlined in the demonstration of Theorem 2, we obtain the following
result

dV(t) = LV(t)dt+
(
X (t) + Y(t) + Z(t)− Λ

µ

)(
σ1X (t) dB1(t) + σ2Y(t) dB2(t) + σ3Z(t) dB3(t)

)
+

2µ+ α

β

(
σ2Y(t) dB2(t) + σ4X (t)Y(t) dB4(t)

)
+

2µ+ α

γ
σ3Z2(t) dB3(t),

where

LV(t) ≤ σ2
1

(Λ
µ

)2
−
(µ
2
− σ2

1

)(
X (t)− Λ

µ

)2
−
(
µ+ α− σ2

2

2

)
Y2(t)

−
((2µ+ α)(µ+ η) + γµ

γ
− σ2

3

)
Z2(t).

9



Thus,

EV(t) ≤ V(0) + σ2
1

(Λ
µ

)2
t− CE

∫ t

0

((
X (s)− Λ

µ

)2
+ Y2(s) + Z2(s)

)
ds,

C = min
(
µ
2 − σ2

1, µ+ α− σ2
2
2 , (2µ+α)(µ+η)+γµ

γ − σ2
3

)
. Afterwards, we obtain

lim sup
t→∞

1

t
E
∫ t

0

((
X (s)− Λ

µ

)2
+ Y2(s) + Z2(s)

)
ds ≤ σ2

1

C

Λ2

µ2
.

Finally, the proof is complete.

Remark 3. Suppose that R0 < 1 and σ1 = 0. In this case, the DFE of (5) is stochastically

asymptotically stable if σ2
2 < 2(µ+ α) and σ2

3 < (2µ+α)(µ+η)+γµ
γ .

6. Extinction of the Disease

In deterministic models, the basic reproduction number R0 determines the persistence or ex-
tinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists
in the population. However, in this section we will show that if the noise is sufficiently large,
the disease will become extinct for the stochastic problem (5), even though it may persist for its
deterministic version (1).

Lemma 2 (See [11, Page 5]). Let
(
M(t)

)
t≥0

be a continuous local martingale with the value

M(0) = M0 = 0. Let G > 1, (ℓm) and (ϑm) are two sequences of R+ with ℓm → ∞. Then, for
almost all ω ∈ B, there exists a random integer m0(ω) such that, for all m ≥ m0,

M(t) ≤ ϑm

2

〈
M(t),M(t)

〉
+ G

ln(m)

ϑm
, 0 ≤ t ≤ ℓm.

Theorem 5 provides a criterion for disease eradication based on the interplay between noise
intensities and system parameters.

Theorem 5. Let
(
X (t),Y(t),Z(t)

)
be the solution of (5) with (X0,Y0,Z0) ∈ W. Then,

lim sup
t→∞

lnY(t)

t
<

β2

2σ2
4

− (α+ µ+ γ)− σ2
2

2
a.s.

If (α+ µ+ γ) +
σ2
2
2 > β2

2σ2
4
, then Y(t) will exponentially go to zero with probability one.

Proof. Put V(t) = lnY(t). According to the Itô formula, we get

dV(t) = 1

Y(t)
dY − 1

2Y2(t)
(dY)2

=
(
βX (t)− (α+ µ+ γ)− σ2

4X 2(t)

2
− σ2

2

2

)
dt+ σ4X (t) dB4(t) + σ2 dB2(t).

Next,

lnY(t) = lnY0 +

∫ t

0

(
βX (s)− (α+ µ+ γ)− σ2

4X 2(s)

2
− σ2

2

2

)
dt+M(t) + σ2 B2(t), (21)

where M(t) = σ4
∫ t
0 X (s)dB4(s) is a continuous local martingale with

〈
M(t),M(t)

〉
= σ2

4

∫ t

0
X 2(s) ds.

10



Choosing G = 2 > 1, ϑm = ϑ > 0 and ℓm = m, by Lemma 2 we have

M(t) ≤ ϑσ2
4

2

∫ t

0
X 2(s)ds+

2 ln(m)

ϑ
, 0 ≤ t ≤ m. (22)

Using (21) and (22), we get

lnY(t) < lnY0 +

∫ t

0

(
βX (s)− (1− ϑ)σ2

4

2
X 2(s)− (α+ µ+ γ)− σ2

2

2

)
dt+

2 ln(m)

ϑ
+ σ2 B2(t). (23)

We have

−
((1− ϑ)σ2

4

2
X 2(s)− βX (s)

)
= −(1− ϑ)σ2

4

2

(
X 2(s)− 2β

(1− ϑ)σ2
4

X (s)
)

= −(1− ϑ)σ2
4

2

(
X 2(s)− β

(1− ϑ)σ2
4

)2
+

β2

2(1− ϑ)σ2
4

≤ β2

2(1− ϑ)σ2
4

.

Then the inequality (23) becomes

lnY(t) < lnY0 +
( β2

2(1− ϑ)σ2
4

− (α+ µ+ γ)− σ2
2

2

)
t+

2 ln(m)

ϑ
+ σ2B2(t).

For m− 1 ≤ t ≤ m, we get

lnY(t)

t
<

lnY0

t
+

β2

2(1− ϑ)σ2
4

− (α+ µ+ γ)− σ2
2

2
+

2 ln(m)

ϑ(m− 1)
+ σ2

B2(t)

t
.

By the strong law of large numbers (see [12, page 12]) we get lim
t→∞

B2(t)
t = 0. So if m → ∞, then

t → ∞. Thus,

lim sup
t→∞

lnY(t)

t
≤ β2

2(1− ϑ)σ2
4

− (α+ µ+ γ)− σ2
2

2
<

β2

2σ2
4

− (α+ µ+ γ)− σ2
2

2
.

When R0 > 1, the solution of (5) tends to the EE of (1), as discussed in Remark 2. We have
the following corollary

Corollary 1. The disease will die out exponentially regardless of the value of R0 as long as σ2

and σ4 are sufficiently large ensuring that (α + µ + γ) +
σ2
2
2 > β2

2σ2
4
. This means that large noises

can lead to disease extinction.

7. Numerical Simulations

In this section, we present numerical simulations in Python to illustrate how noise affects the
dynamics of the proposed SIRS model. We use the Milstein method [6] to perform these simulations.
Consequently, for t = 0,∆t, 2∆t, . . . , n∆t, the SDE model (5) can be discretized as follows

Xk+1 = Xk + (Λ− βXkYk + ηZk − µXk)∆t+ Xk

[
σ1ξ1,k

√
∆t+

1

2
σ2
1(ξ

2
1,k − 1)∆t

]
+ XkYk

[
σ4ξ4,k

√
∆t+

1

2
σ2
4(ξ

2
4,k − 1)∆t

]
,

Yk+1 = Yk +
[
βXkYk − (γ + µ+ α)Yk

]
∆t+ Yk

[
σ2ξ2,k

√
∆t+

1

2
σ2
2(ξ

2
2,k − 1)∆t

]
+ XkYk

[
σ4ξ4,k

√
∆t+

1

2
σ2
4(ξ

2
4,k − 1)∆t

]
,

Zk+1 = Zk +
(
γYk − (µ+ η)Zk

)
∆t+ Zk

[
σ3ξ3,k

√
∆t+

1

2
σ2
3(ξ

2
3,k − 1)∆t

]
.

(24)
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Here, ∆t represents the time increment, ξ1,k, ξ2,k, ξ3,k, and ξ4,k are N(0, 1)-distributed independent
random variables with k = 1, 2, . . . , n. Based on [2, 3, 9, 19], the Table 1 presents the values of all
parameters used in this section.

Table 1: Parameter values and initial conditions in numerical simulations for (5).

Symbol Description Value

α Disease-induced death rate 0.006

β Effective contact rate 0.013

η Immunity loss rate 0.023

µ Natural death rate 0.05 (For R0 < 1)
0.006 (For R0 > 1)

γ Recovery rate of Y 0.04

Λ Recruitment rate of population 0.33

X0 Initial susceptible individuals 10

Y0 Initial infected individuals 5

Z0 Initial removed individuals 2

T Final time 400

In Figures 1 and 2, when all parameters σ1 = σ2 = σ3 = σ4 = 0, systems (1) and (5) are
the same. Under these conditions, Figure 1 illustrates that when R0 < 1, the DFE is globally
asymptotically stable. Conversely, Figure 2 shows that when R0 > 1, the EE becomes globally
asymptotically stable.
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Figure 1: Transmission dynamics of the disease for R0 < 1, with σ1 = σ2 = σ3 = σ4 = 0.

Figures 3–8 support the theoretical results described in the previous sections, in particular
Theorem 2, Theorem 3, Remark 3, Theorem 5, and Corollary 1, about scenarios where R0 is both
less than and greater than 1, with different values of σ1, σ2, σ3 and σ4. It is worth noting that the
introduction of randomness in shaping the course of infectious diseases has significant implications
for both the theoretical and practical aspects of this study. The magnitudes of σ1, σ2, σ3, σ4, along
with their corresponding Brownian motions, play a pivotal role in either propagating the epidemic
or leading to its extinction.
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Figure 2: Transmission dynamics of the disease for R0 > 1, with σ1 = σ2 = σ3 = σ4 = 0.
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Figure 3: Transmission dynamics of the disease for R0 < 1. Group (a): σ1 = σ2 = σ3 = 0 and σ4 = 0.01. Group (b):
σ1 = σ2 = σ3 = 0 and σ4 = 0.03.
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Figure 4: Transmission dynamics of the disease for R0 > 1. Group (a): σ1 = σ2 = σ3 = 0 and σ4 = 0.01. Group (b):
σ1 = σ2 = σ3 = 0 and σ4 = 0.03.
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Figure 5: Transmission dynamics of the disease for R0 < 1. Group (a): σ1 = 0.01, σ2 = 0.02, σ3 = 0.03 and σ4 = 0.
Group (b): σ1 = 0.03, σ2 = 0.02, σ3 = 0.01 and σ4 = 0.
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Figure 6: Transmission dynamics of the disease for R0 > 1. Group (a): σ1 = 0.01, σ2 = 0.02, σ3 = 0.03 and σ4 = 0.
Group (b): σ1 = 0.03, σ2 = 0.02, σ3 = 0.01 and σ4 = 0.
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Figure 7: Transmission dynamics of the disease for R0 < 1. Group (a): σ1 = 0.01, σ2 = 0.02, σ3 = 0.03 and
σ4 = 0.01. Group (b): σ1 = 0.03, σ2 = 0.02, σ3 = 0.01 and σ4 = 0.03.
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Figure 8: Transmission dynamics of the disease for R0 > 1. Group (a): σ1 = 0.01, σ2 = 0.02, σ3 = 0.03 and
σ4 = 0.01. Group (b): σ1 = 0.03, σ2 = 0.02, σ3 = 0.01 and σ4 = 0.03.

8. Conclusion

The SIRS model is a valuable tool for studying the long-term dynamics of infectious diseases
in populations where immunity is not durable. Given the profound impact of such diseases on
economies and social structures worldwide, accurate modeling is critical. Deterministic equations
often fail to capture the complexity of real-world phenomena, especially when stochasticity is
involved. Therefore, the use of stochastic models is a more appropriate approach.

In this study, we introduced a stochastic SIRS model tailored to capture the inherent variability
in transmission dynamics with changing population environments. Using the theory of stochastic
Lyapunov functions, we demonstrated the existence of a unique positive solution. In addition,
we explored conditions conducive to disease extinction and analyzed the stationary distribution
to identify factors influencing virus extinction. Our simulations shed light on the influence of
noise intensity on disease transmission and provide valuable insights into the interplay between
stochasticity and epidemic dynamics. Through numerical validation using the first-order stochastic
Milstein scheme, we confirmed the robustness of our theoretical findings.

In conclusion, our investigation underscores the importance of using stochastic analysis to gain
a comprehensive understanding of infectious disease dynamics. By incorporating stochasticity, we
enhance our ability to capture the inherent variability and uncertainties of real-world epidemiolog-
ical systems.
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