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Abstract

This article presents an innovative approach to integrating port-Hamiltonian systems with
neural network architectures, transitioning from deterministic to stochastic models. The study
presents novel mathematical formulations and computational models that extend the under-
standing of dynamical systems under uncertainty and complex interactions. It emphasizes the
significant progress in learning and predicting the dynamics of non-autonomous systems using
port-Hamiltonian neural networks (pHNNs). It also explores the implications of stochastic neural
networks in various dynamical systems.
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1 Introduction

This work presents an innovative integration of port-Hamiltonian systems (PHS) with neural net-
work architectures, focusing in particular on the transition from deterministic models to those that
incorporate stochastic elements. We first explore the advanced mathematical formulations and com-
putational models to deepen the understanding of dynamical systems under uncertainty, including
complex interactions and measurement errors. We first recall the definition of port-Hamiltonian sys-
tems as a synthesis of port modeling and geometric Hamiltonian dynamics, highlighting the use of the
Dirac structure, which generalizes the concept of Poisson and pre-symplectic structures, to represent
the energetic topology of a system. We then consider the stochastic extension of port-Hamiltonian
systems to analyze uncertainties such as measurement errors and unknown environmental effects,
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making noise an intrinsic aspect of each port. For completeness, we also provide a detailed expla-
nation of deterministic port-Hamiltonian systems using a coordinate-free geometric formulation.

The systems are described by generalized Poisson brackets and Hamiltonian functions, which are
translated into equations involving Jacobian matrices and vector fields associated with Hamiltonian
functions in local coordinates. We then consider the associated extension to implicit systems, which
includes systems with algebraic constraints. These take into account the state space representing
stored energy, vector spaces of flow and effort variables representing power ports, and the Dirac
structure outlining the power-saving connections within the system, emphasizing a significant prop-
erty of these systems: passivity. Special emphasis is placed on its relationship to the properties of
the Dirac structure and its importance in ensuring stability in control systems. The transition from
deterministic to stochastic port-Hamiltonian neural networks (pHNNs) is derived by incorporating
noise directly into the structure via ports. This initiative represents a critical conceptual innovation
and is motivated by real applications where uncertainties and the need to accommodate errors affect
systems.

A port-Hamiltonian system combines aspects of port modeling with a coordinate-free geometric
Hamiltonian dynamics, which describes the dynamics of the physical system and the interconnection
structure through the equations of motion. The main feature of these systems lies in the geometric
structure defining them, the so-called Dirac structure, which generalizes the concept of (pseudo) Pois-
son and pre-symplectic structures and represents the energetic topology of the system. This feature
allows the framework to gain importance in modeling complex engineering systems with multiple en-
ergy exchange domains. The main focus of this paper is to explore an extension of port-Hamiltonian
systems that incorporates random perturbations to account for uncertainties, measurement errors,
and environmental interactions in dynamic systems. In particular, we will explore the innovation
presented by Cordoni, Di Persio, and Muradore [2], where the uniqueness lies in considering noise as
an intrinsic aspect of each port. This is motivated by the need to account for measurement errors,
parameter estimation uncertainties, and the unknown effects of the environment on the system.

The paper is organized a s follows. Section 1 establishes the basic concepts and explores dif-
ferent types of port-Hamiltonian systems, including discrete ones, and their application in neural
networks. Section 1.1 lays the foundation by introducing essential concepts such as explicit input-
state-output port-Hamiltonian systems, local coordinates, and implicit port-Hamiltonian systems.
Next, Section 1.2 delves into a special type of port-Hamiltonian systems: discrete ones. It covers the
generalized Dirac structure, a mathematical construct that underlies these systems, and how two
such structures can be connected. Section 2 focuses on extending the concept of port-Hamiltonian
systems to include random elements, making them suitable for modeling systems with uncertainties
or randomness. We generalize the concept of Dirac structure to stochastic ones, to account for the
stochastic nature introduced in this section. We also introduce the concept of a noise port, a special
type of port through which random fluctuations or uncertainties enter the system. Section 3 extends
the concept of passivity developed for deterministic systems to include the presence of randomness.
Hereby, we explain strong and weak passivity and show how to determine whether a given stochastic
port-Hamiltonian systems (SPHS) exhibits passivity. Section 4 focuses on applying and extending
the concepts of stochastic PHS to various scenarios. First, Section 4.1 explores how to connect
and analyze multiple SPHS systems. Section 4.2 adapts the continuous-time framework of SPHS to
represent systems that evolve in discrete time steps. Section 4.3 discusses the application of SPHS
to model the stochastic motion of agents, e.g. cars.

In Section 5 show successful applications of pHNNs in tasks such as simulating a damped mass-
spring system and a chaotic Duffing system. These examples show that pHNNs can not only learn
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system dynamics, but also recover complex behaviors such as chaotic trajectories with minimal
data. Overall, pHNNs hold promise for several areas involving complex physical systems, including
chemical interactions, robot motion control, and understanding general system dynamics without
requiring precise details of the forces involved.

In the conclusions in Section 6, we summarize our work, which is based on the method of
Colonius and Grüne [14], which used neural networks for controller design. Our focus is on adapt-
ing this method to handle stochastic port-Hamiltonian systems with random fluctuations with the
two key steps: 1) Modeling the system with noise: Introducing stochastic differential equations
(SDEs) that include a term representing random noise (dW ) to describe the system dynamics.
2) Design a Robust Controller: Modify the control law to account for the noise. This involves adding
a new term (µ(x)) to the original control law (K(x)) to counteract the stochastic disturbances and
ensure that the system remains stable and performs well.

Finally, in A we provide a discussion of stochastic neural networks (SNNs), which are inspired
by the biological brain. Unlike traditional deterministic networks, SNNs incorporate randomness to
improve training and avoid overfitting.

1.1 Basic Concepts

The description given by Cordoni, Di Persio and Muradore [2] of an input-state-output deterministic
port-Hamiltonian system can be done by considering a geometric coordinate-free formulation in
terms of Poisson brackets, i.e. the following system{

ẋ = XH(x) +
∑m

i=1 uiXHgi
(x),

yi = {H,Hgi},
(1)

is called a (explicit) input-state-output port-Hamiltonian system (PHS) on a Poisson manifold (X, {·, ·})
with a Hamiltonian function H ∈ C∞(X ), x ∈ Rn, the i-th input ui ∈ U , the i-th output yi ∈ U∗

and the Hamiltonian vector field XHgi
associated with the Hamiltonian Hgi . In local coordinates,

the previous system reads {
ẋ = J(x)∂xH +

∑m
i=1 uigi(x),

yi = g⊤i (x)∂xH.
(2)

Moreover, considering XL
H(·) := [·, H]L, we can define the (explicit) input-state-output port-Hamiltonian

system with dissipation as {
ẋ = XL

H(x) +
∑m

i=1 uiHgi(x),

yi = [H,Hgi ],
(3)

and in local coordinates this reads{
ẋ =

(
J(x)−R(x)

)
∂xH(x) +

∑m
i=1 uigi(x),

yi = g⊤i (x)∂xH(x),
(4)

where R(x) := (gR(x))⊤R̃(x)gR(x).
Let’s consider a physical system consisting of elements that store energy, a set of elements

that dissipate energy, and a set of power ports interconnected by power-preserving links that can
only transfer energy, not produce it. We can describe such a system by extending the framework of
port-Hamiltonian systems to the context of implicit systems, i.e., systems with algebraic constraints.
Given a state space X (a smooth manifold whose elements represent the energy stored in the system),
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a vector space of flow variables V and its dual space of effort variables V∗ (representing the power
ports), a geometric Dirac structure D and a Hamiltonian function H representing the total energy
of the system in a given state, we can define an implicit port-Hamiltonian system corresponding to
(X ,V,D,H) as

v = −ẋ and v∗ =
∂H
∂x

(x), (5)

which means that the system is defined by(
−ẋ,

∂H

∂x
(x), f, e

)
∈ D(x). (6)

Note that the above Dirac structure outlines the behavior of the internal connection, and its main
property is that the power-conserving combination of Dirac structures remains a Dirac structure.
This implies that any power-conserving connection of port-Hamiltonian systems is also a port-
Hamiltonian system, where the Dirac structure is the composition of the Dirac structures of its
elementary parts, and the Hamiltonian is the sum of the Hamiltonians.

Another important property of a system is passivity, which means that the energy input to the
system is always greater than or equal to (lossless case) the energy output from the system. It is
crucial for ensuring stability in control systems. Passivity is a consequence of the properties of the
Dirac structure and the energy-dissipation relation for port-Hamiltonian systems.

1.2 Discrete Systems

So far, we have described port-Hamiltonian systems in continuous time. However, it is essential to
investigate whether these properties persist when we discretize time. As suggested by Viswanath,
Clemente-Gallardo and van der Schaft [4], the discretization of a Hamiltonian system can be done
while preserving energy conservation. Discrete systems can be obtained by discretizing a continuous
system or by modelling systems directly at the discrete level. To obtain the latter, we can use Poisson
brackets, since they satisfy the properties of skew symmetry, bilinearity, and a modified Leibniz rule,
which are necessary to preserve the structure of the Hamiltonian dynamics in the discrete setting.
First, we need to define the discrete Dirac structure. For this purpose we denote with X(A) a space
of discrete vector fields, with Λ1(A) the space of discrete 1-forms. Then a generalized Dirac structure
on an n-dimensional discrete manifold is an n-dimensional linear subspace D ⊂ X(A)× Λ1(A) such
that D = D⊤ with

D⊤ =
{
(Y, β) ∈ X(A)× Λ1(A) where ⟨α,X⟩+ ⟨β, Y ⟩ = 0, ∀ (X,α) ∈ D

}
,

where ⟨·, ·⟩ is the pairing between Fn and Fn∗. Then, assume to have the situation illustrated in
Figure 1, denoting with Fi the space of flow and with F∗

i the space of effort of the Dirac structure
Di with i = A,B, we can define the interconnection between the two Dirac structures DA and DB as

DA ◦ DB :=
{
(f1, e1, f2, e2) ∈ F1 ×F∗

1 ×F2 ×F∗
2 such that

∃(f, e) ∈ F × F∗ with (f1, e1, f, e) ∈ DA and (−f, e, f2, e2) ∈ DB

}
.

(7)

Then DA ◦ DB is a Dirac structure.

Definition 1 (Implicit discrete port-Hamiltonian system [4]). Let H : Z → F be a discrete Hamil-
tonian, FP be the space of external flows f , EP = F∗

P the space of external effort e, D be the Dirac
structure which depends only on the coordinate z, then the implicit discrete port-Hamiltonian system
is defined as (

−∆z

∆t
, f,⅁zH(z), e

)
∈ D(z). (8)
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Figure 1: Interconnection of two port-Hamiltonian systems.

There are also some cases where the system consists of an interconnection of smooth and discrete
port-Hamiltonian systems, which can be achieved (as proposed by Viswanath, Clemente-Gallardo
and van der Schaft [6]) by transforming the problem of energy-conserving connection on sampling
instances, into an energy-conserving interconnection with an external flow source. In this way, we
ensure energy conservation over sampling intervals. Moreover, the resulting interconnected system
is again passive and port-Hamiltonian. Thus, the integration of discrete computational models
with physical systems does not compromise the stability and performance characteristics of passive
systems. However, energy conservation does not hold, so the idea of Kotyczka and Lefevre [5] is
to introduce a discrete-time Dirac structure and a discrete-time port-Hamiltonian system. This
method approximates the continuous-time structural energy balance and uses symplectic numerical
time integration by collocation methods.

2 Stochastic port-Hamiltonian systems

Consider a complete probability space
(
Ω,F , (Ft)t∈R+ ,P

)
and denote by δZ the Stratonovich in-

tegration and by dZ the Itô integration along the semimartingale Z. As mentioned above, the
stochastic port-Hamiltonian formulation allows for a more extensive source of randomness by treat-
ing each element of the system as a semimartingale. The adoption of the Stratonovich calculus is
due to the geometric nature of the Dirac structure, but we can translate it into the corresponding
Itô formulation to exploit its probabilistic properties. Consider the following system{

δXt =
(
J(Xt)−R(Xt)

)
∂xH(Xt)δZt + g(Xt)uδZ

g
t + ξ(Xt)δZ

N
t ,

yt = g⊤(Xt)∂xH(Xt),
(9)

where R(x) := (gR(x))⊤R̃(x)gR(x), W is a Brownian motion, and Z, Zg, and ZN are semimartin-
gales. Then (9) describes the stochastic port-Hamiltonian system in local coordinates.

By generalizing the notion of Dirac structure, it is possible to extend the previously described
framework by incorporating scenarios where noise is introduced into the system as a stochastic
external random field and as a random perturbation of any port connected to the system.

Definition 2 (Orthogonal complement [2]). Given a manifold X , I ⊂ R+, a bundle D ⊂ TX⊕T ∗X ,
a differential 1-form σ on X and an integral curve X : I → X of a Stratonovich vector field δXt,
the orthogonal complement of D is

D⊥ =
{
(δXt, σ) ⊂ TX ⊕ T ∗X :

∫ t

0
⟨σ, δX̄s⟩+

∫ t

0
⟨σ̄, δXs⟩ = 0, ∀ (δX̄t, σ̄) ∈ D, t ∈ I

}
(10)
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Definition 3 (Generalized Dirac structure [2]). With the same notation as above, we call generalized
stochastic Dirac structure a smooth vector subbundle D ⊂ TX ⊕ T ∗X such that D = D⊥.

Definition 4 (Implicit generalized stochastic PHS [2]). Let H : X → R be a Hamiltonian function,
Z a semimartingale perturbing the system, then an implicit generalized stochastic port-Hamiltonian
system on X is a 4-tuple (X , Z,D, H) such that(

δXt,dH(Xt)
)
∈ D(Xt) ∀ t ∈ I. (11)

Including a resistive element and an external element control then an implicit generalized port-
Hamiltonian system with resistive structure R is a 5-tuple (X ,Z,F ,D, H) such that

(−δXt,dH, δfR
t , eRt , δf

C
t , eCt ) ∈ D(X )⊔ with (δfR

t , eRt ) ∈ R(X )t.

Proposition 1. [2] Implicit port-Hamiltonian systems satisfy energy conservation property that is

H(Xt)−H(X0) =

∫ t

0
⟨dH, δXs⟩ (12)

which can be written in short notation as

δH(Xt) = ⟨dH, δXt⟩. (13)

The energy balance is

H(Xt)−H(X0) =

∫ t

0
⟨eRs , δfR

s ⟩+
∫ t

0
⟨eCs , δfC

s ⟩ ≤
∫ t

0
⟨eCs , δfC

s ⟩. (14)

However, the condition
∫ t
0 ⟨e

R
s , δf

R
s ⟩ ≤ 0 imposed on the resistive port is too strong since it is difficult

for it to happen in practice, so the idea is to introduce the following weaker definition of the resistive
relation RW ⊂ FZR

× ER:

E
∫ t

0
⟨eRs , δfR

s ⟩ ≤ 0. (15)

Consequently, the mean power balance requires that the energy be conserved and dissipated in mean
value, i.e. it reads

E
(
H(Xt)−H(X0)

)
= E

∫ t

0
⟨eRs , δfR

s ⟩+ E
∫ t

0
⟨eCs , δfC

s ⟩ ≤ E
∫ t

0
⟨eCs , δfC

s ⟩. (16)

It is possible to further generalize the Hamiltonian by introducing an external perturbation of the
system, i.e. a new type of port called noise port perturbed by the semimartingale ZN (see Figure 2).
Thus, in this case the implicit generalized stochastic port-Hamiltonian system with resistive structure
is a 5-tuple (X ,Z,F ,D, H) such that(

−δXt,dH, δfR
t , eRt , δf

C
t , eCt , δf

N
t , eNt

)
∈ D(Xt) (17)

and the weak energy balance is given by

EH(Xt)− EH(X0) ≤ E
∫ t

0
⟨eNs , δfN

s ⟩+ E
∫ t

0
⟨eCs , δfC

s ⟩. (18)

Furthermore, we can reformulate the stochastic port-Hamiltonian system in Itô form by defining
the following alternative representation of the Dirac structure.
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Figure 2: Schematic representation of a general implicit port-Hamiltonian system.

Definition 5 (Dirac structure [2]). Let F := FZR
×FZC

×FZN
be the space of flows δf , E = F∗ be

the dual space of efforts e, Gθ : FZθ
→ FZθ

be a function such that ⟨eSt , Gθδf
θ
t ⟩ = ⟨G∗

θe
S
t , δf

θ
t ⟩ and

J be a matrix such that J = −J⊤. Then the Dirac structure D can be defined as

D :=
{
(δfS

t , δf
R
t , δfC

t , δfN
t , eSt , e

R
t , e

C
t , e

N
t ) ∈ F × E :

δfS
t = −JeSt δZt −GRδf

R
t −GCδf

C
t −GNδfN

t ,

eRt = G∗
Re

S
t , eCt = G∗

Ce
S
t , eNt = G∗eSt

}
.

(19)

Consider the special case

δfR
t = −R̃eRt δZt, δfN

t = ξtδZ
N
t , δfC

t = utδZ
C
t

with E
∫ t

0
⟨eRs , R̃eRs δZs⟩ − E

∫ t

0
⟨eNs , fN

s δZN
s ⟩ ≥ 0,

(20)

where the reason for the minus sign in front of R̃ is that we want it to be the incoming power
regarding the interconnection (as in [1]).

Definition 6 (Stochastic input-output PHS with stochastic Dirac structure [2]). Using the same
notation as above, if Z = (Z,ZR, ZC , ZN ) is a semimartingale and H : X → R is a Hamiltonian
function, then the stochastic input-output port Hamiltonian system with stochastic Dirac structure
is given by 

δXt = −JdH(Xt)δZt +GRR̃eRt δZt −GCutδZ
C
t −GNξtδZ

N
t ,

eNt = G∗
NdH(Xt),

eCt = G∗
CdH(Xt)

(21)
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and by taking J̃ = −J and eRt = G∗
RdH(Xt), the system 21 becomes

δXt =
(
J̃ +GRR̃G∗

R

)
dH(Xt)δZt −GCutδZ

C
t −GNξtδZ

N
t ,

eNt = G∗
NdH(Xt),

eCt = G∗
CdH(Xt).

(22)

Theorem 1. [2] If X is a solution of the equation (22) and Z,ZN , ZC are such that

⟨Z,ZC⟩t = ⟨Z,ZN ⟩t = ⟨Z,ZC⟩t = 0

where ⟨·, ·⟩t is the quadratic covariation at time t, then X can be equivalently rewritten in Itô terms
as

dXt = V S(Xt) dZt + LV SV S(Xt) d⟨Z,Z⟩t+

−
nN∑
i=1

V N
i (Xt) dZ

N
t − 1

2

nN∑
i,j=1

LCN
j
V N
i (Xt) d⟨ZN ;i, ZN ;j

t ⟩+

−
nC∑
i=1

V C
i (Xt)u

i
t dZ

C;i
t − 1

2

nC∑
i,j=1

LV C
j
V C
i (Xt)ut d⟨ZC;i, ZC;j⟩t,

(23)

where L is the Lie derivative and V α, α = S,N,C are defined as

(
J̃ +GRR̃G∗

R

)
dH = V S , GNξt =

nN∑
i=1

V M
i , GC =

nC∑
i=1

V C
i . (24)

3 Passivity in Stochastic Systems

Extending the notion of passivity to the stochastic case is challenging because the presence of noise
affects the energy of the system. The standard requirement that the structure matrix R be symmetric
and positive semidefinite is no longer sufficient due to the presence of the semimartingale Z, which
makes the Stochastic port-Hamiltonian System (SPHS) non-dissipative, so it is necessary to impose
specific conditions on the noise to ensure losslessness and passivity.

Proposition 2. [2] If X is the solution of an explicit I-S-O stochastic PHS with dissipation, i.e.{
δXt = XL

H(Xt) δZt + uXL
Hg

(Xt) δZ
g
t +XL

HN
(Xt) δZ

N
t ,

yt = [H,Hg]L,
(25)

with
XL

H(·) := [·, H]L, XL
Hg

(·) := [·, Hg]L, XL
HN

(·) := [·, HN ]L,

then for all φ ∈ C∞(X ) it holds{
δφ(Xt) = [φ,H]L(Xt) δZt + u[φ,Hg]L(Xt) δZ

g
t + [φ,HN ]L(Xt) δZ

N
t ,

yt = [H,Hg]L.
(26)

The equation changes when there is no external noise and the semimartingale perturbing the
control is deterministic.
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Definition 7 (Strong and weak passivity [2]). If H ∈ C∞(X ) is the total energy of the explicit
I-S-O stochastic PHS with dissipation, then it is strongly passive if for all t ≥ 0 it holds

H(Xt) ≤ H(X0) +

∫ t

0
u⊤(s)y(s) δZC

s , (27)

or weakly passive if for all t ≥ 0 it holds

EH(Xt) ≤ EH(X0) + E
∫ t

0
u⊤(s)y(s)δZC

s . (28)

Assuming ξ = 0, the energy conservation relation of the system{
δXt =

(
J(Xt)−R(Xt)

)
∂xH(Xt) δZt + g(Xt)u δZ

C
t + ξ(Xt) δZ

N
t ,

eC = g⊤(Xt)∂
H
x (Xt),

(29)

where J = J⊤, is given by

H(Xt)−H(X0) =

∫ t

0
⟨dH, δXs⟩ =

∫ t

0
⟨eRs , δfR

s ⟩+
∫ t

0
⟨eCs , δfC

s ⟩

=

∫ t

0

〈
∂xH(Xs), R(Xs)e

R δZs

〉
+

∫ t

0
⟨y, u δZC

s ⟩

=

∫ t

0

〈
∂xH(Xs),−R(Xs)∂xH(Xs)δZs

〉
+

∫ t

0
y⊤u δZC

s

= −
∫ t

0
∂⊤
x H(Xs)R(Xs)∂xH(Xs)δZs +

∫ t

0
y⊤u δZC

s .

(30)

We can see that even if R is strictly positive, we cannot infer that the strongly passive condition
holds; in fact, we should also require that∫ t

0
∂⊤
x H(Xs)R(Xs)∂xH(Xs) δZs ≥ 0. (31)

However, the latter condition is usually difficult to satisfy in a real system, so it makes more sense
to require the weaker condition.

E
∫ t

0
∂⊤
x H(Xs)R(Xs)∂xH(Xs) δZs ≥ 0, (32)

which guarantee the weak passivity property. However, computing the expectation of a Stratonovich
integral is often challenging. The natural solution to this problem is to transform the equation (28)
into Itô terms. This transformation allows us to take advantage of the favourable probabilistic
properties of the Itô integral. To achieve this, we can apply the Theorem 1 to the equation (28).

4 Application and Generalization

4.1 Interconnection of Multiple SPHS

An essential property of port-Hamiltonian systems is their interconnectivity, which allows complex
systems to be viewed as compositions of simpler parts. This interconnectivity can be analysed re-
garding the components and how they are interconnected. In particular, through the composition of
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Dirac structures, the power-preserving interconnection of port-Hamiltonian systems defines another
port-Hamiltonian system. The Hamiltonian of the interconnected port-Hamiltonian system is the
sum of the Hamiltonians of its components, and the energy-dissipation relation is the union of the
energy-dissipation relations of the subsystems.

The following proposition discusses the connection of multiple SPHS, defining a new system with
interconnected Dirac structures and combined Hamiltonians.

Proposition 3. Suppose we have N stochastic port-Hamiltonian systems with state space Xi, Hamil-
tonian Hi, flow-effort space Fi × Ei and perturbation Zi for i = 1, . . . , N . Assuming that they are
connected by DI (see Figure 3), then their interconnection defines a stochastic port-Hamiltonian
system with Dirac structure D ◦ DI and Hamiltonian H :=

∑N
i=1Hi.

Figure 3: Interconnection of N implicit port-Hamiltonian systems.

4.2 Discrete Stochastic PHS

Consider the continuous stochastic port-Hamiltonian system
dXt =

(
(J −R)∂xH(Xt) + g(Xt)ut

)
dt+ ξ(Xt) δWt,

yt = g⊤(Xt)∂xH(Xt),

zt = ξ⊤(Xt)∂xH(Xt),

(33)

where J = −J⊤, R positive semidefinite, g represents control port, H is the Hamiltonian, u ∈ U
is the control input, y ∈ Y is the output of the system, ξ is a matrix, z is the associated effort to
δWt and W is a standard Brownian motion adapted to the reference filtration (Ft)t≥0. Then we can
introduce the discretization

Ẋ(tk0 + τh) = −f(tk0 + τh) = −
s∑

j=1

fk
j lj(τ) (34)
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with

Ẋ(tki ) := −fk
i , li =

s∏
j=1

τ − cj
ci − cj

, τ ∈ [0, 1],

where li is the ith Lagrange interpolation polynomial of order s and τ is the normalized time param-
eterizing the sampling intervals. Thus, we can generalize the continuous SPHS to a discrete form,
preserving the structure of the Hamiltonian and the control inputs, as follows:

Definition 8 (Discrete stochastic port-Hamiltonian system [5]). A discrete stochastic port-Hamiltonian
system can be written as

X(tk0 + cih) = xk0 − h
∑s

i=1 aijf
k
j ,

X(tk0 + h) = xk0 − h
∑s

i=1 ajf
k
i ,

−aijf
k = (Jk

j −Rk
j )aije

k
j + aijg

k
j u

k
j + bijξ

k
j ∆W,

(35)

where ∆W is a truncated centred Gaussian random variable with variance h, aij =
∫ ci
0 lj(σ)dσ,

aj =
∫ 1
0 lj(σ)dσ and M = M⊤ [5].

Note that in the discrete case, the system is passive if it holds

E
[
∆Hk

]
≤ hE

[
(yk)⊤uk

]
. (36)

4.3 Stochastic Motion Model of Agents

An application to a stochastic motion model of agents is presented by Ehrhardt, Kruse, and Tordeux
[12], who analyze the case where positions and velocities of agents are modeled in a ring structure.
The initial positions and velocities are set, and the system is governed by differential equations
involving the velocities and positions of neighboring agents [12]. The dynamic equations of the
agents are given by:

dQn(t) =
(
pn+1(t)− pn(t)

)
dt,

dpn(t) =
(
U ′(Qn(t))− U ′(Qn−q(t))

)
dt+

+β
(
pn+1(t)− 2pn(t) + pn−1(t)

)
dt+ σ dWn(t)

(37)

with Q(0) = Q0 ∈ [0,+∞)N the initial distance, p(0) = p0 the initial velocity, β ∈ (0,+∞) a
dissipation rate, σ ∈ R the noise volatility, U ′ the derivative of a convex potential U ∈ C1(R, [0,+∞))
and W = (Wn)

N
n=1 : [0,+∞) × Ω → RN an N -dimensional standard Brownian motion defined on

(Ω,F ,P). These equations represent the acceleration of the nth agent depending on the velocities of
its neighbors and the stochastic perturbations of the Brownian motion [13].

The motion of the agents is further formulated using a stochastic port-Hamiltonian framework

dZ(t) = (J −R)∇H(Z(t)) dt+GdW (t),

where Z(t) =
(
Q(t), p(t)

)⊤ ∈ R2N , t ∈ [0,+∞), J and R are defined as skew-symmetric and
symmetric positive semidefinite matrices, respectively. This formulation allows the application of
Hamiltonian dynamics to model agents’ behaviour under stochastic influences. In particular, the
Hamiltonian is independent of Q and U , and its expectation could increase with time. Moreover,
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describing the limiting behavior of these stochastic systems is challenging, so the authors [12] focus
on the specific scenario where the quadratic function characterizes the potential

U(x) =
(αx)2

2
x ∈ R, α ∈ (0,∞), (38)

in which the process reads

dZ(t) = BZ(t) dt+GdW (t), Z(0) = (Q0, p0)
⊤, (39)

where B is defined such that BZ(t) = (J−R)∇H(Z(t)). In this case, the resulting process converges
for t → ∞ in distribution to a normal distribution with known expectation and covariance matrix.

5 Results and Discussion

To introduce the port-Hamiltonian formalism into the neural network architecture, we can analyze
the behavior of port-Hamiltonian Neural Networks (pHNN) on different tasks such as the mass-
spring system with the damped term, external force and the Duffing equations. In particular, the
port-Hamiltonian Neural Network (pHNN) is a significant advance in learning and predicting the
dynamics of non-autonomous systems. Many real-world dynamical systems involve time-dependent
forces and energy dissipation, which pose a challenge for learning. Desai et al. [3] evaluate the pHNN
on several tasks, including a mass-spring system with damping and an external force, and a Duffing
system. In particular, the pHNN can visually recover the PoincarÃ© section of a chaotically driven
system, highlighting its potential to identify and understand chaotic trajectories with minimal data.
Its applicability extends to complex nonlinear forced and damped physical systems, encouraging
applications in areas such as chemical bonding forces, robotic motion, and controlled dynamics
without explicit knowledge of force and damping.

Figure 4: Schematic representation of a port-Hamiltonian neural network (pHNN).

As we can see in Figure 4, the main idea is to use port Hamiltonian theory to explicitly learn
the force Fθ2 , the damping term Nθ3 and the Hamiltonian Hθ1 . This should allow us to predict the
time derivatives [

ˆ̇qt
ˆ̇pt

]
=

 dĤθ1
dpt

−dĤθ1
dqt

+ N̂θ3
dĤθ1
dpt

+ F̂θ2

 . (40)
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Furthermore, knowing [q̇, ṗ] from the data, we can compute the loss function [15]

L = ||ˆ̇qt − q̇t||22 + || ˆ̇pt − ṗt||22︸ ︷︷ ︸
first part

+λF ||F̂θ2 ||1 + λN ||N̂θ3 ||1︸ ︷︷ ︸
second part

. (41)

In particular, the procedure for implementing the port-Hamiltonian neural network is as follows:

• Obtain ground truth state variable data [q, p, t] and time derivatives [q̇, ṗ] from trajectories of
a given system;

• Provide state variable information to pHNN, which learns a Hamiltonian, force, and damping
term to predict [ˆ̇q, ˆ̇p];

• Optimize pHNN by minimizing the loss function of equation (41);

• Train the system;

• Use the pHNN in a scientific integrator to evolve a set of random initial conditions in the test
set;

• Estimate the goodness of the performance by computing the mean square error of the predicted
state variables.

To understand the power of this method, we again compare different neural network models: the
baseline neural network, the Hamiltonian neural network, the time-dependent Hamiltonian neural
network, and the port-Hamiltonian neural network, against ground truth data [3].
In a simple mass-spring system, characterized by mass m and spring constant k, the time-independent
Hamiltonian is given by

H =
1

2
kq2 +

p2

2m
.

After training the system and testing it over 25 random initial conditions, we find that both the
Hamiltonian Neural Network (HNN) and the port-Hamiltonian Neural Network (pHNN) produce
similar results in terms of state and energy mean squared error (MSE). In particular, pHNN suc-
cessfully learns to predict force and damping over time, even when the ground truth observations
are null. However, the prediction error remains small, approximately on the order of 10−5 and 10−8,
respectively. Furthermore, comparing the state and energy MSE among the listed methods, it is
evident that HNN achieves the lowest MSE, followed by pHNN, time-dependent Hamiltonian neural
network (TDHNN), and the baseline neural network (bNN).
In the damped mass-spring system, we introduce a damping term that gradually decreases the initial
energy of the system over time. Denoted by δ, the damping coefficient, the system is described by
the equation

q̇ = −δq .

Furthermore, based on the definition p = mq̇, we have:

q̇ =
1

m
p .

By integration, we get q⊤q − δq⊤q̇, which, when combined with a kinetic energy term, gives the
Hamiltonian:

H =
p⊤p

2m
+

q⊤q

2
− δq⊤q̇ .
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However, this formulation violates the previous equation, since ∂H
∂p = q̇−δmq−1q̇ ̸= q̇. Consequently,

including this term violates energy conservation, making it impossible to derive a scalar Hamiltonian
for such a system. After training and testing this system, it is observed that both the Hamiltonian
Neural Network (HNN) and the Time Dependent Hamiltonian Neural Network (TDHNN) fail to
capture the dynamics of the system accurately. However, the baseline neural network (bNN) and
the port-Hamiltonian neural network (pHNN) show better performance, effectively recovering the
system dynamics and minimizing the state and energy mean square error (MSE). Moreover, in this
scenario, the pHNN converges to forcing and damping terms consistent with the ground truth.
In the forced mass-spring system, we introduce a forced time-dependent force that governs the
undamped system. A Hamiltonian describing this forced mass-spring system has the form

H =
1

2
kq2 +

p2

2m
− qF0 sin(ωt) .

Here, F0 is the force amplitude and ω is the frequency of the external force term. After training
and testing, both the Hamiltonian neural network (HNN) and the time-dependent Hamiltonian
neural network (TDHNN) have difficulty learning the dynamics due to the lack of explicit time
dependence in the Hamiltonian. Conversely, the port-Hamiltonian neural network (pHNN) exhibits
the lowest state, and energy mean squared error (MSE), indicating better performance. In addition,
the baseline neural network (bNN) has a relatively low MSE. However, when we consider a more
complex force term, such as

H =
1

2
kq2 +

p2

2m
− qF0 sin(ωt) sin(2ωt),

where the complexity of the force significantly affects the performance of bNN. In this scenario, the
state and energy MSE of bNN becomes comparable to that of HNN. Meanwhile, pHNN continues to
capture and evolve the non-harmonic force accurately, demonstrating superior performance in initial
state tests compared to other models.

The problem with the presented neural networks is that in the real world, such neurons are
noisy, and the output is a probabilistic input function. Therefore, in the appendix, we analyze some
stochastic representations of the NNs.

According to [14], we consider the structure of a port-Hamiltonian system of the form{
ẋ = [J(x)−R(x)]∂H∂x (x) +G(x)u,

y = G⊤(x)∂H∂x (x),
(42)

with x ∈ Rn the energy variable, H(x) : Rn → R the total stored energy, u, y ∈ Rm the port power
variables.
In this context, we can explore Evolution Strategies (ES) as a stochastic optimization technique to
evolve a population of solutions. ES includes basic concepts such as mutation, selection, and fitness
evaluation. These strategies simulate collective learning processes within a population of individuals.

ES is part of a broader category of evolutionary algorithms, including genetic algorithms (GA)
and evolutionary programming. These methods start with a random population and evolve through
selection, mutation, and recombination processes. The interaction between creating new genetic
information and its evaluation and selection drives evolution. Individuals who perform better have
an increased chance of survival and produce offspring that inherit their genetic information.

In ES, the control synthesis problem is simplified to finding the minimum of a function, called
fitness, within a feasible set of values. Each individual in the population is characterized by a set

14



of exogenous parameters π and endogenous parameters σ representing points in the search space
and independent paths in the phase space, respectively. Sufficient initial conditions are provided to
avoid overfitting and excessive computational cost.

The goal is for the set of trajectories to approach an equilibrium point under the influence of a
stabilizing controller. The fitness metric evaluates the performance of the controller, which is derived
from the energy function Ha. Mutation and self-adaptation act independently on each individual,
generating new parameters accordingly:

πi+1 = πi + σi ·N(0, 1)

σi+1 = σi · exp(τ ·N(0, 1)) + τ ′ ·N(0, 1) .

Here, τ and τ ′ are proportional to (
√
2nπ)

−1 and (
√
2
√
nπ)

−1, respectively, where nπ represents the
dimension of the search space. These equations govern the evolution of the parameters within the
ES framework and facilitate the exploration of the solution space.

6 Conclusions

The authors of [14] introduced a method that uses a neural network as an approximator to generate
a gradient field for controller design, thereby avoiding the need to solve partial differential equa-
tions. To extend these results to a stochastic port-Hamiltonian scenario, it’s necessary to introduce
stochastic elements into the existing framework. This can be done by the following steps:

1. Define a stochastic version of the port-Hamiltonian system by introducing stochastic differen-
tial equations (SDEs) to model the system dynamics. For example, consider a system described
by

dx =
(
J(x)−R(x)

)
∇H(x) dt+G(x)u dt+Σ(x) dW,

Where Σ(x) is a matrix characterising the intensity of stochastic perturbations and dW is a
standard Wiener process.

2. Extend the control synthesis methodology to account for the stochastic nature of the system.
Modify the control law to ensure stability and performance despite stochastic disturbances.
The control law might take the form

u = −K(x) + µ(x)

where K(x) is derived from the deterministic part of the system (as in the original paper) and
µ(x) is an additional term to counteract stochastic disturbances.

Accordingly, an appropriate Lyapunov function must be identified or constructed to ensure the
stability of the stochastic system. Lyapunov analysis for stochastic systems typically uses Itô’s
formula and aims to show that the expected value of the Lyapunov function decreases with time.
Using evolutionary strategies, adapt the optimization process to handle the stochastic nature of the
system. This may involve modifying the fitness function to account for stochastic behavior, possibly
by considering expected performance over a range of stochastic disturbances. Finally, a new case
study will extend the ball and beam system to include stochastic elements. Simulations can be used
to demonstrate the stochastic disturbances.
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A Stochastic Neural Networks

Neurons, the basic computational units in the brain, are known to form neural networks (NNs) by
connecting through synaptic junctions. However, real neurons introduce noise that makes the output
a probabilistic function of the input. Unlike deterministic NNs, the activation map is stochastic.
These networks are better at avoiding local minima during training. They are better suited to tasks
with noisy or incomplete data, although implementation and training complexity increases in the
stochastic case. In particular, their randomness improves their robustness against overfitting since
they do not learn the noise in the training data precisely as deterministic networks do.

The interconnection of neurons from different layers creates a neural network. The primary
components for the synapses and neurons that make up a stochastic neural network are the stochastic
neurons implemented by magnetic tunnel junctions (MTJs). Without going into the physical details,
it can be described that an MTJ device consists of two ferromagnets separated by a thin insulator
and is characterized by a switching (activation) probability (see Zhu and Park [9] for more technical
details). In the artificial neural network model, input spikes flow into synapses, each assigned a
weight, as shown in Figure 5.

Figure 5: Schematic representation of a basic artificial Neuron block.

Then
Σ := Input × Weights = Summed Output

defines the weighted summation and finally the neuron fires depending on a threshold or activa-
tion function. Vreeken [10] introduced Spiking Neural Networks (SNNs), artificial neural networks
designed to mimic natural neural networks closely. Neurons emit these short bursts of electrical
energy when they accumulate in sufficient numbers. The spike travels along the neuron’s axon and
is controlled by the synapse, which consists of the end of the axon, a synaptic gap, and the initial
part of the dendrite. Neurons must then use the spatial and temporal information of incoming spike
patterns to encode their message to other neurons.

A modification of stochastic neural networks is presented by Yu et al. [11] with a Simple and
Effective Stochastic Neural Network (SE-SNN). This approach is based on the notion that activation
uncertainty can be modeled at each layer by predicting a Gaussian mean and variance and then
sampling the layer during the forward pass. This method emphasizes the activation distribution and
incorporates an activation regularizer to optimize models with high uncertainty while still predicting
the target label. SE-SNN exhibits favorable properties in pruning, adversarial defense, learning with
label noise, and improving model calibration. In the context described, instead of encoding data
using binary numbers, we can consider the representation by the probability of encountering 1’s in bit
streams. Stochastic Computing (SC) uses this technique to represent continuous values using streams
of random bits. It uses conventional digital logic to perform computations based on stochastic bit
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streams. SC, as described in [8], encompasses a wide range of techniques, but the focus here is on
a specific aspect used in [7]. The main benefits of SC include reducing hardware complexity and
enabling fault-tolerant computing. This reduction in complexity comes from implementing functions
such as the sigmoid, hyperbolic tangent, and exponential functions using linear finite state machines,
resulting in lower hardware costs. However, this may result in reduced computational accuracy. In
addition, as noted in [7], the noise introduced in SC can mitigate overfitting problems and improve
inference accuracy. Consequently, both input and output are represented by bit streams, with
values encoded as probabilities of encountering 1’s in these streams. This approach emphasizes the
fusion of probabilistic methods with digital computation, providing a unique data representation
and processing paradigm.
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