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Abstract. Mathematical epidemiology has a long history of origin and de-

velopment. In particular, mathematical modeling and analysis of infectious
diseases has become a fundamental and indispensable approach to discovering

the characteristics and mechanisms of the transmission dynamics of epidemics,

thereby effectively predicting possible scenarios in reality, as well as controlling
and preventing diseases.

In recent decades, differential equations have been widely used to model
many important infectious diseases. The study of these differential equation

models is very useful in both theory and practice, especially in proposing

appropriate strategies for disease control and prevention. This is of great
benefit to public health and health care.

In this survey article, we review many recent developments and real-life

applications of deterministic differential equation models in modeling major
infectious diseases, focusing on the following aspects: mathematical modeling,

qualitative analysis, numerical methods, and real-life applications. We also

present and discuss some open problems and future directions that research in
differential equation models for infectious diseases can take.

This article is a good introduction to the topic, also to learn more about

nonstandard finite difference (NSFD) methods.

1. Introduction

Infectious diseases have always been a major and constant threat to public
health. Mankind has always had to face and fight many infectious diseases with
varying degrees of danger, such as influenza, hepatitis, Zika, malaria, measles, tu-
berculosis, hepatitis, vector-borne diseases, Ebola, and most recently the COVID-19
pandemic. As a result, several approaches, policies, and strategies have been pro-
posed to combat infectious diseases. Among these, mathematical epidemiology has
a long history of origin and development. In particular, mathematical modeling
and analysis of infectious diseases has become a fundamental and indispensable ap-
proach to discover the characteristics and transmission mechanisms of epidemics,
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to effectively predict possible scenarios in reality, to control and prevent diseases
[25, 70, 71, 72, 73, 74, 75, 297, 332].

The well-known SIR model, proposed by Kermack and McKendrick in 1927
[230], can be considered one of the first epidemic models and is usually used to
introduce epidemic modeling. The study of mathematical models of infectious dis-
eases is very useful in both theory and practice, especially in proposing appropriate
strategies for disease control and prevention. This is of great benefit to public
health and health care.

It is well known that differential equations, including ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs), have several useful applica-
tions in real life. They are widely used to describe many important phenomena and
processes in science and engineering (see e.g. [25, 49, 70, 71, 72, 73, 74, 75, 234,
297, 332, 413]). One of its prominent applications is the mathematical modeling
and analysis of infectious diseases. Over the past few decades, a large number of
differential equation models have been extensively developed to explore the trans-
mission dynamics of major infectious diseases. These models have confirmed the
important role of differential equations in epidemic modeling.

Nowadays, epidemic models based on differential equations have always been an
important and indispensable approach in modeling infectious diseases, especially in
the context that epidemics are constantly changing and posing new challenges. For
differential equation models of infectious diseases, the following aspects are mainly
focused:

• Mathematical Modeling: The use of differential equations and the founda-
tions of mathematical epidemiology to propose mathematical models that
describe the transmission of infectious diseases.

• Qualitative study: Investigate mathematical properties of the proposed
differential equation models, including existence and uniqueness of solu-
tions, positivity and boundedness of solutions, asymptotic stability prop-
erties, conservation laws, physical properties, and basic reproduction num-
ber.

• Numerical Methods: Construction of efficient numerical methods, espe-
cially numerical methods that preserve important mathematical features
of the proposed differential equation models.

• Practical Applications: Applying the theoretical results to provide sce-
narios of disease spread, to suggest anti-epidemic measures and strategies,
to evaluate the effectiveness of vaccines and existing anti-epidemic mea-
sures, to study the spread of computer viruses, rumors and malware on
the Internet, and to model animal diseases. and animal disease modeling
with applications in agriculture.

The aim of this review article is to review many recent developments and real-
life applications of deterministic differential equation models in modeling major
infectious diseases, focusing mainly on the following aspects: mathematical mod-
eling, qualitative analysis, numerical methods, and real-life applications. We also
present and discuss some open problems and future directions that research in
differential equation models for infectious diseases can take.

The outline of this article is as follows: In Section 2, we provide an overview of
epidemic models based on differential equations, considering basic models and their
variants and extensions. In Section 3 we focus on the qualitative analysis aspect and
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its practical applications. Numerical methods are presented in Section 4. Future
research and open problems are discussed in Section 5. The last section contains
concluding remarks and discussions.

2. Mathematical Modeling

In this section, we review results on mathematical modeling based on deter-
ministic ODEs and PDEs for infectious diseases.

2.1. ODE models: Basic Epidemic Models. We start with one of the first
and basic epidemic models introduced by Kermack and McKendrick in 1927 [230].
For this purpose, let us consider general autonomous dynamical systems described
by ODEs of the form

(2.1) ẏ(t) = f
(
y(t)

)
, t > 0, y(0) = y0 ∈ Rn,

where y = [y1, y2, . . . , yn]
⊤ : [0,∞) → Rn, f = [f1, f2, . . . , fn]

⊤ : Rn → Rn and ẏ
stands for the time derivative of y. Here it is assumed that the right-hand-side
function f satisfies all necessary smoothness assumptions so that solutions of (2.1)
exist and are unique (see e.g. [49, 234, 413]).

Many mathematical models based on (2.1) have been proposed to study epi-
demic models. In these models, diseases caused by viruses or bacteria are not
modelled directly in the population model, but only indirectly through the number
of infected individuals. For example, the classical SI, SIS and SIR epidemic models
classify individuals in the population according to their status with respect to the
disease: healthy, infected and immune. More clearly, the disease states S, I and R
are defined as follows [25, 439]:

• susceptible S: Individuals who are not infected but are susceptible to
acquiring the disease and becoming contagious.

• infected I: Individuals who have been infected, are currently contagious,
and have the potential to spread the disease to others.

• removed R: Individuals who have experienced the disease, recovered, and
achieved permanent immunity, or are isolated until both recovery and
permanent immunity are achieved.

Models with these states are called SIR models, adapted to the characteristics of
the infectious disease, for example:

• SI implies the absence of any possible recovery: S → I;
• SIS indicates the possibility of recovery, but does not guarantee immunity:
S → I → S;

• SIR represents a temporary state of immunity: S → I → R → S.

One of the simplest models involves the dynamics of S−, I−, R− individuals, first
introduced by Kermack and McKendrick in 1927 [230] (see also [297]):

Ṡ(t) = −βI(t)S(t),

İ(t) = βI(t)S(t)− αI,

Ṙ(t) = αI(t), t > 0,

(2.2)

where

• β is the proportionality constant (’transmission rate’);
• α is the recovery rate;
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• βI(t) is called the force of infection.
• βSI represents the number of new infections per unit of time (incidence).

Although the SIR model (2.2) looks analytically simple, finding its exact ana-
lytical solution is an interesting problem. Some analytical techniques used to find
the solution of (2.2) can be found in [92, 189, 237].

It is not difficult to analyze basic mathematical properties of the Kermack-
McKendrick SIR model [230, 297]. More clearly, it can be shown that

lim
t→∞

S(t) = S∞ > 0, lim
t→∞

R(t) = R∞ > 0, lim
t→∞

I(t) = I∞ = 0.

The quantity S∞ is called the final size of the epidemic. In particular, the function
I(t) of infected individuals can monotonically decrease to zero, or first monoton-
ically increase to some maximum value Imax and then decrease to zero. Here, a
necessary and sufficient condition for the initial increase of I(t) is easily determined
and is given by

S(0) >
α

β
.

On the other hand, Imax can be computed as

Imax = −α

β
+

α

β
ln

α

β
+ S0 + I0 −

α

β
lnS0.

The quantity Imax is very useful in estimating the progression of epidemics since it
indicates when the number of infections will begin to decline.

Note that the Kermack-McKendrick SIR epidemic model, for example, uses
some hypotheses:

• Infected individuals are also infectious;
• the total population remains constant;
• the population experiences no births or deaths;
• the population is closed, that is, no outside individuals enter or leave the
population;

• all recovered individuals have complete immunity and are impervious to
reinfection.

The above assumptions may seem rather restrictive, but they can be satisfied within
certain limits. For example, several childhood diseases such as chickenpox, small-
pox, rubella, mumps, scarlet fever, hand-foot-and-mouth disease lead to permanent
immunity, or many vaccines can create long-lasting or even lifelong immunity [297].

Although the Kermack-McKendrick SIR epidemic model is simple and under
some strict assumptions, it is still appropriate and effective for modeling many
infectious diseases. In fact, once we have given disease-specific time series data,
the parameter estimation problem for the SIR model can be solved by compar-
ing its solution to the given data. Examples of parameter estimation from data
can be found in [70, 72, 297]. Recently, the Kermack-McKendrick SIR epidemic
model was used to study and predict the transmission dynamics of the COVID-19
pandemic [228, 244, 254, 296, 331, 401, 438].

In [231], the limitation of the SIR model (2.2) was improved by considering
the effect of the continuous introduction of new susceptible individuals into the
population. However, the results presented in [231] had two important limitations.
One was that the disease of interest was the only cause of death, and the second
was that the age of the individuals did not affect their infectivity, susceptibility,
or reproductive capacity. In [232], the first of the above limitations was overcome
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by the introduction of constant non-specific mortality rates, which, for the sake
of generality, are assumed to be different. are assumed to be different for virgins
(individuals who have never been infected), sick, and recovered.

In general, the classical SIR model should be adapted to the characteristics of
each epidemic.

2.2. Variants and Extensions of the Basic Models. The classical epi-
demic models have played an important role in epidemic modeling. Inspired by
basic epidemic models and principles of mathematical epidemiology, many math-
ematical models models have been proposed and developed to study infectious
diseases.

There are several types of incidence, depending on the assumption made about
the force of infection. One of the simplest forms is the mass action incidence
or bilinear incidence function, which is f(S, I) = βSI. In the model (2.2), the
interaction term βIS is a linearly increasing function of the number of infected
individuals. As analyzed in [90], while this interaction term may be true for small
I, it seems rather unrealistic that it can still hold for large I. For this reason,
Capasso and Serio modified (2.2) by replacing the linear interaction term βIS by
a non-linear function g(I)S, where g(I) satisfies

(1) ∀x ∈ R+ : g(x) ≥ 0;
(2) g(0) = 0;
(3) ∃ c ∈ R+\{0} s.t. ∀x ∈ R+ : g(x) ≤ c;
(4) g′(x) : R+ → R, the derivative of g, exists and is bounded on any compact

interval of R+, with g′(0) > 0;
(5) ∀x ∈ R+ : g(x) ≤ xg′(0), where R+ := [0,∞).

The function g(I) takes into account the ”saturation” phenomenon or the other
”psychological” effects. Two famous nonlinear incidence functions are the satu-
rated incidence rate f(S, I) = βSI/(1 + γI) and the standard incidence function
f(S, I) = βSI/(S+I). Epidemic models using generalized nonlinear incidence rate
can be found in [151, 152, 165, 192, 212, 261, 270, 272, 303, 378, 399, 424].

In the SIR model, it was assumed (2.2) that the rate of contacts per infective is
proportional to the total population size N , which was widely used in all early epi-
demic models. As mentioned in [70, 74], this assumption is quite unrealistic except
in the early stages of an epidemic occurring within a moderately sized population.
It is more realistic to consider a contact rate that is a non-increasing function of
total population size. The SIR model can then be generalized by assuming that
an average member of the population makes C(N) contacts per unit time, with
C ′(N) ≥ 0, and defining

β(N) =
C(N)

N
,

where β′(N) is assumed to be negative to express the idea of saturation in the
number of contacts. The following are some special cases of C(N) that have been
widely used in epidemic modeling with general contact rates.

• Standard incidence: C(N) = λ;
• Mass action incidence: C(N) = βN ;
• Interaction of Michaelis-Menten type:

C(N) =
aN

1 + bN
,
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which was used in [134].
• Saturating contact rate based on a mechanistic derivation for pair forma-
tion [190]

C(N) =
aN

1 + bN +
√
1 + 2bN

.

• C(N) = λNα with α = 0.05 was used in [306]. It has been shown
that this function works quite well for data on contact-borne diseases in
medium-sized cities.

In recent decades, the basic classical epidemic models and their variants have
been extensively developed to describe the transmission dynamics of many major
infectious diseases:

• Basic virus dynamics models [30, 67, 149, 196, 340, 427];
• Influenza [6, 8, 93, 182, 394];
• Severe acute respiratory syndrome (SARS) [69, 110, 179, 210, 337,
469];

• Ebola [57, 130, 264, 291, 335];
• Hepatitis B and C [154, 197, 202, 293, 298, 324, 339, 358, 411, 416,

446, 459, 466];
• Tuberculosis [64, 181, 275, 333, 372, 405, 422, 425];
• Vector-borne diseases [62, 77, 117, 217, 263, 381, 450];
• Malaria [14, 161, 216, 240, 289, 338, 386, 420, 428];
• Measles [16]
• Zika virus [9, 163, 239, 285, 336, 392, 448, 470];
• Dengue fever [12, 97, 142, 336, 360, 366];
• COVID-19 pandemic [10, 15, 28, 58, 118, 141, 203, 228, 238, 241,
244, 254, 259, 288, 296, 327, 330, 331, 345, 353, 370, 375, 401,
420, 438];

• HIV/AIDS [155, 178, 221, 273, 280, 341, 379, 434].

Besides, epidemic models are widely used in

• Diabetes Mellitus [95, 333];
• cancer: malignant invasion of tumor cells [295];
• cervical cancer: human papillomavirus model [81];
• animal disease modeling with applications in agriculture [1, 7, 44, 427];
• chemostat models to represent microbial growth and competition [17, 18,

403];
• modeling the spreading of computer viruses and rumors on the Internet
[165, 211, 219, 268, 355, 356, 367, 368, 390, 462, 463, 464, 474,
475];

• modeling addictions, e.g. alcohol drinking [121, 214, 382, 456], tobacco
[167, 260, 274, 393, 433, 440], heroin [113, 274, 328, 410, 451],
opioids [55, 80, 87, 113, 472], cocaine [383, 385], drug consumption
[129, 173, 441], obesity [45, 85, 150, 223, 384], etc.

It should be emphasized that the ODE models of the form (2.1) are also ex-
tended in the context of delayed systems [5, 94, 115, 149, 159, 160, 195, 350,
371, 404, 429, 458]; time fractional-order systems [5, 32, 105, 414, 427]; and
stochastic systems [24, 27, 31, 76, 84, 104, 174, 389] for modeling infectious
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diseases. These extended models provide an additional powerful approach to the
disease analysis.

2.3. PDE Models. In addition to ODE models of the form (2.1), PDE mod-
els, which extend ODE models, have also been extensively studied for the analysis
of infectious diseases [25, 71, 75, 297, 332, 387].

More specifically, compartmental models in epidemiology can be extended by
using spatial reaction-diffusion systems, where each compartment, representing a
different species, is allowed to invade a spatial domain Ω ⊂ Rm (or a metric graph
network) with a space-dependent density. The densities interact with each other
according to the same mathematical laws as for the space-independent case, but are
individually subject to a spatial diffusion mechanism, usually associated with the
Laplace operator [42]. Then a system of n interacting species, each with a spatial
density {

ui(x, t) : x ∈ Ω, t ≥ 0
}
, i = 1, 2, . . . , n

can be described by a system of semilinear parabolic PDEs of the form

(2.3)
∂u

∂t
(x, t) = D∆u(x, t) + f

(
u(x, t)

)
supplied with suitable boundary conditions, whereD = diag(d1, d2, . . . , dn), f : Rn →
R is the interaction law among the species via their densities, and

∆u(x, t) =
∂2u

∂x2
1

(x, t) + . . .+
∂2u

∂x2
n

(x, t).

Spatial models of the form (2.3) have been used to study the transmission of in-
fection, depending on how a particular disease is transmitted between different
populations or subpopulations.

Allen et al. [26] proposed an SIS reaction-diffusion model in a heterogeneous
environment in the form

∂

∂t
S(t, x) = dS∆S(t, x)− β(x)S(t, x)I(t, x)

S(t, x) + I(t, x)
+ γ(x)I(t, x), t > 0, x ∈ Ω,

∂

∂t
I(t, x) = dI∆I(t, x) +

β(x)S(t, x)I(t, x)

S(t, x)− I(t, x)
− γ(x)I(t, x), t > 0, x ∈ Ω,

(2.4)

with the coupling condition

(2.5)
∂

∂n
S(t, x) =

∂

∂n
I(t, x) = 0,

where

• S(t, x) and I(t, x) denote the density of susceptible and infectious indi-
viduals in a given spatial region Ω, which is assumed to be a bounded
domain in Rn(n ≥ 1) with a smooth boundary ∂Ω;

• Ω is isolated from the outside for the host, implying the homogeneous
Neumann boundary condition; n is the outward unit normal vector on
∂Ω, and ∂/∂n denotes the normal derivative along n on ∂Ω.

• dS and dI are the dispersion for susceptible and infectious individuals,
respectively;

• the positive functions β(x) and γ(x) are the spatially dependent trans-
mission and recovery rates at position x ∈ Ω, respectively.
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The existence, uniqueness and asymptotic profile of the equilibria are then analyzed.
In [213], Huang et al. proposed and studied two modified SIS diffusion models

associated with the Dirichlet boundary condition, which reflects a hostile environ-
ment in the boundary. The analysis of the basic reproduction number and a partial
result on the global stability of the endemic equilibrium are presented.

In [255], a spatially diffusive SIR epidemic model with the mass action infection
mechanism and homogeneous Neumann boundary condition was considered in the
form

∂

∂t
S(t, x) = kS∆S(t, x) + b(x)− β(x)S(t, x)I(t, x)− µ(x)S(t, x), t > 0, x ∈ Ω,

∂

∂t
I(t, x) = kI∆I(t, x) + β(x)S(t, x)I(t, x) +

(
µ(x) + γ(x)

)
I(t, x), t > 0, x ∈ Ω,

∂

∂t
R(t, x) = kR∆R(t, x) + γ(x)I(t, x)− µ(x)R(t, x), t > 0, x ∈ Ω,

(2.6)

with initial data

(2.7) S(0, x) = S0(x), I(0, x) = I0(x), R(0, x) = R0(x), x ∈ Ω,

and coupling conditions

(2.8)
∂

∂n
S(t, x) =

∂

∂n
I(t, x) =

∂

∂n
R(t, x)0,

where

• S(t, x), I(t, x) and R(t, x) denote the populations of susceptible, infective
and recovered individuals at position x and time t, respectively;

• kS , kI and kR denote the dissemination rates for susceptible, infectious
and recovered individuals, respectively;

• b(x), β(x), µ(x) and γ(x) denote the birth rate, the transmission rate, the
mortality rate and the recovery rate at position x, respectively.

By discretizing the PDE model (2.6) with respect to the space variable and con-
structing Lyapunov functions for the corresponding ODE models, the global as-
ymptotic stability of (2.6) has been established [255].

In [256], the model (2.6) is extended by a new more realistic model with non-
local diffusion.

In a recent paper, some extensions of the classical SIR model with non-symmetric
spatial dependence are introduced to study the spread of some diseases [419].

Also, a large number of spatial reaction-diffusion models of major infectious
diseases such as HBV, malaria, influenza, West Nile virus transmission, Zika, etc.
can be found in [50, 91, 108, 122, 233, 242, 243, 266, 276, 277, 326, 369,
396, 406, 415, 437, 443, 444, 445, 455, 457, 459, 473], in which the models
proposed in [108, 233, 242, 276, 396, 437, 455, 473] can be directly used to
study the COVID-19 epidemic.

3. Qualitative analysis and applications

Qualitative analysis of differential equations modeling infectious diseases is very
important since it can have many useful applications in reality, such as suggesting
appropriate strategies for disease control and prevention; evaluating the effects of
vaccines; waning immunity; parameter estimation problems; parameter sensitivity
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analysis and optimal control strategies (usually w.r.t. vaccination strategies, stake-
holder decisions (wearing masks, physical isolation, curfews, etc.).

In this section, we emphasize qualitative analytical aspects of differential equa-
tion models and their applications. Methods, approaches and tools used in quali-
tative analysis are also discussed.

3.1. Analysis of ODE models. The first property of interest for ODE mod-
els of infectious diseases is well-posedness, including existence, uniqueness of solu-
tions, and continuous dependence on initial data. Well-posedness is easy to establish
and is often automatically satisfied due to the smoothness of the right-hand-side
functions [25, 49, 234, 413]. In general, in addition to well-posedness, qualitative
analysis aspects of ODE models of infectious diseases focus mainly on the following
issues.

3.1.1. The positivity and boundedness of the solutions. Obviously, positivity
should be an obvious property of the solutions of ODEmodels for infectious diseases,
i.e. y(t) ∈ Rn

+ = {(y1, y2, . . . , yn) ∈ Rn|y1, y2, . . . , yn ≥ 0} for t > 0 whenever y(0) ∈
Rn

+. In this case, the set Rn
+ is called a positively invariant set. This property can be

easily verified using well-known theorems on the positivity of ODEs [209, Lemma
1], [403]. Meanwhile, boundedness can be established on the basis of comparison
theorems for differential equations [304]. Note that positively invariant sets and
feasible sets of ODE models are obtained from their positivity and boundedness.

3.1.2. Conservation laws. Many ODE models in population dynamics and also
in epidemiology can satisfy some conservation laws, such as direct, generalized and
subconservation laws [317, 320]. Conservation laws for ODE models of infectious
diseases can be established based on the theory of ODEs [17, 25, 234, 403, 413]
or comparison theorems for differential equations [304].

3.1.3. Equilibrium points. Equilibrium points of ODE models of the form (2.1)
are solutions of the equation f(y) = 0. An equilibrium point is also called a fixed
point, constant solution, steady state, critical point or a steady-state solution [25,
234, 413]. In general, it is not difficult to determine the set of equilibrium points,
except when the ODE model under consideration has high dimensions and contains
many parameters. Two common types of equilibria are disease-free equilibrium
(DFE) and endemic equilibrium (EE) points, which correspond to the possibility
of the epidemic being suppressed or remaining in the community.

3.1.4. Local asymptotic stability (LAS). The LAS of equilibrium points can be
studied by the Lyapunov direct method using the Routh-Hurwitz criteria [25, 234,
413]. This approach analyzes the LAS of an equilibrium point by considering the
position of the eigenvalues of the Jacobian matrix evaluated at the equilibrium
point with respect to the left-half plane. More specifically, an equilibrium point
y∗ is locally asymptotically stable if all eigenvalues λ of the Jacobian J(y∗) =
(∂f/∂y)(y∗) satisfy Re(λ) < 0, and it is unstable if Re(λ) > 0 for one or more of
the eigenvalues of J . Note that the direct Lyapunov method is only applicable to
hyperbolic equilibrium points. Here, an equilibrium point y∗ is said to be hyperbolic
if none of the eigenvalues of the matrix J lie on the imaginary axis, and non-
hyperbolic otherwise, cf. [413].

3.1.5. Global asymptotic stability (GAS). The GAS analysis of equilibrium points
is a very important problem because it can reveal the future evolution of epidemics.
In particular, the GAS of free-disease equilibrium points indicates that epidemics
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will be extinguished, while the GAS of endemic-equilibrium points indicates that
epidemics will exist stably in the population. In general, the GAS problem is
not an easy one. One of the most successful approaches to this problem is the
Lyapunov stability theory [262, 284]. In particular, several classes of Lyapunov
functions have been proposed to analyze the GAS of ODE models in epidemiol-
ogy [89, 248, 249, 250, 344, 370, 397, 435, 460], where common classes of
Lyapunov functions are linear, quadratic and Volterra-type Lyapunov functions or
combinations of them. In fact, it is not easy to construct Lyapunov functions for a
given ODE model.

On the other hand, the geometric method is a remarkable approach to the
GAS analysis of ODEs [269, 270, 271]. Also, the Poincare-Bendixson theorem in
combination with the Bendixson-Dulac criterion is very useful in studying the GAS
of two-dimensional dynamical systems governed by ODEs [25, 297].

3.1.6. Basic reproduction number. One of the most important concerns about
any infectious disease is its reproductive number R0, which is useful in guiding
control strategies [133, 430, 431, 432]. The basic reproduction number can be
defined as the expected number of secondary cases produced by a typical infected
individual during its entire period of infectiousness in a fully susceptible population
[133]. It can also be considered as a threshold parameter for the local asymptotic
stability of the disease-free equilibrium [430]. The basic reproduction number of
epidemic models with the help of sensitivity analysis is very useful in guiding control
strategies.

3.1.7. Optimal control problems. Epidemic models based on differential equa-
tions are often combined with optimal control strategies to find effective disease
control measures [52, 60, 78, 103, 236, 282, 392, 395]. Here, the proposed
optimal control problems are solved using Pontryagin’s maximum principle [357].

3.1.8. Epidemic models with effect of vaccines. It is well known that vaccines
are effective tools to combat infectious diseases and to project people against dis-
eases. For this reason, epidemic models with the effect of vaccines are often con-
sidered [6, 20, 143, 144, 149, 153, 166, 177, 180, 215, 253, 377, 398]. The
study of vaccination models can evaluate the efficacy of certain vaccines and suggest
effective vaccination strategies.

3.1.9. Parameter estimation problem. ODE models for infectious diseases can
be combined with real data of diseases to predict possible scenarios in reality. There-
fore, the parameter estimation problem is very important to find best-fit parame-
ters [70, 72, 297]. Following this approach, the parameter estimation problem has
been extensively studied for several epidemic models [111, 286, 329, 362, 380],
especially for the COVID-19 pandemic [228, 244, 282, 296, 331].

3.1.10. Bifurcation analysis and chaos. It is well-known that bifurcation theory
studies qualitative changes in the state of a system as a parameter is varied [96,
258]. In general, applications of bifurcation analysis in epidemiology are very
diverse, especially in studying the evolution and determining factors that may be
associated with the suppression or outbreak of disease. For example, the forward
bifurcation phenomenon, first noted by Kermack and McKendrick in [230], can
be observed in several disease transmission models [146]. For epidemic models
that exhibit forward bifurcation, the condition R0 < 1 is a necessary and sufficient
condition for disease elimination [146, 183]. For many years, bifurcation analysis
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for epidemic models has been studied extensively with many useful applications,
including forward bifurcation, backward bifurcation, Hopf bifurcation, Bogdanov-
Takens bifurcation, saddle-node bifurcation, flip bifurcation are mainly focused [21,
23, 48, 68, 109, 170, 185, 222, 257, 279, 301, 376, 391].

Chaos theory has many useful applications in many fields such as physics,
biology, ecology and epidemiology, economics, etc. [65, 198, 302, 388]. Over
the past few decades, chaos theory has been developed and studied with the aim
of discovering chaotic phenomena/dynamics, complicated or even unpredictable
dynamical behavior in epidemic models [59, 66, 79, 147, 170, 175, 225, 290,
291, 292, 342, 343].

3.2. Analysis of PDE models. In general, the qualitative analysis aspects
for PDE models of infectious diseases are very similar to those of ODE models. In
particular, the qualitative analysis of PDE models also focuses on well-posedness
of mathematical models, positivity and boundedness of the solution, conservation
laws, equilibria and their asymptotic stability, basic reproduction numbers and
their implications, optimal control problems, parameter estimation, vaccination
models, bifurcations and chaos [26, 50, 53, 54, 83, 98, 99, 116, 117, 122,
145, 164, 172, 213, 220, 233, 243, 255, 256, 266, 267, 277, 281, 287, 325,
326, 352, 369, 396, 406, 407, 409, 415, 419, 437, 442, 443, 444, 445, 449,
455, 457, 459, 461, 468, 471, 473, 476]. Some methods and tools used in the
qualitative analysis of ODE models, such as basic reproduction number, Lyapunov
stability theory, optimal control, bifurcation and chaos analysis, can be developed
and extended for PDE models. However, the qualitative study for PDE models is
more challenging due to the complexity of their structures.

4. Numerical methods

4.1. Standard and nonstandard numerical methods. It is well known
that both ODEs and PDEs can be solved exactly only in a small number of cases,
and that in most real-world situations it is almost inevitable to find approximate
solutions. For this reason, numerical methods for differential equations have become
one of the most fundamental and practically important research tasks [49, 186,
187, 265, 402, 412, 413, 423].

Numerical solutions for ODE models can be easily obtained using standard
numerical methods such as the Runge-Kutta and Taylor (one-step) methods and
multistep methods, while finite difference methods are appropriate and efficient for
the numerical solution of PDE models [49, 186, 187, 265, 404, 412, 413, 423].
However, mathematical models arising in real-world applications in general, and in
infectious disease modeling in particular, often possess several essential qualitative
features, such as positivity, boundedness, asymptotic stability properties, conser-
vation laws, periodicity and physical properties, etc., which must be respected
by corresponding numerical schemes. Therefore, an important requirement for
numerical methods is that they correctly preserve the essential properties of the
corresponding differential equations. However, it has been shown by Mickens in
[308, 311, 315, 316, 319, 321] that standard numerical methods cannot preserve
the mathematical properties of ODEs for all values of the temporal step size.

In the 1980s, Mickens proposed the concept of nonstandard finite difference
(NSFD) methods to compensate for drawbacks and shortcomings of standard nu-
merical methods [308, 311, 315, 316, 319, 321]. One of the main and outstanding
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advantages of NSFD methods is that they can preserve essential mathematical prop-
erties of differential equations independently of the values of the step size. Such
NSFD methods are said to be dynamically consistent. Thus, dynamically consistent
NSFD methods are efficient and suitable for simulating the behavior of dynamic
differential equation models over long periods of time.

In addition to NSFD methods for ODEs, geometric numerical integration [88,
176, 188] (or both [85]) and positivity-preserving Runge-Kutta methods [61, 169,
209] and modified Patankar-Runge-Kutta schemes [246, 247] have also been de-
veloped to construct reliable numerical methods that preserve the positivity as well
as other dynamical properties of ODE models.

In the next subsection, we provide an overview of NSFD methods for mathe-
matical models of infectious diseases and their applications.

4.2. Nonstandard finite difference methods for epidemiological mo-
dels of infectious diseases. In numerical analysis, numerical instabilities are
solutions of finite difference models that do not correspond to any solution of the
counterpart differential equation [319]. Mickens, the creator of the concept of
NSFD methods, wrote: ”Numerical instabilities are an indication that the discrete
models are unable to model the correct mathematical properties of the solutions to
the differential equations of interest” [308, 311, 315, 316, 319, 321]. The concept
of NSFD schemes was first introduced by Mickens in the 1980s to overcome the usual
numerical instabilities associated with standard finite-difference schemes [308, 311,
315, 316, 319, 321]. A finite difference scheme is said to be nonstandard if it is
constructed based on a set of basic rules proposed by Mickens [308, 311, 315,
316, 319, 321]. In particular, NSFD schemes for the ODE models of the form
(2.1) can be defined as follows.

Consider a general finite difference scheme for (2.1) of the form

(4.1) D∆t(yk) = F∆t(f ; yk),

where D∆t(yk) ≈ dy/dt, F∆t(f ; yk) ≈ f(y) and tk = k∆t, ∆t is the step size.

Definition 4.1 ([33, 38, 138]). The finite difference scheme (4.1) is called an
NSFD scheme if at least one of the following conditions is satisfied:

• D∆t(yk) =
yk+1 − yk
ϕ(∆t)

, where ϕ(∆t) = ∆t + O(∆t2) is a non-negative

function and is called a nonstandard denominator function;
• F∆t(f ; yk) = g(yk, yk+1,∆t), where g(yk, yk+1,∆t) is a non-local approx-
imation of the right-hand side of the system (2.1).

NSFD schemes for (parabolic) PDEs [29, 101, 107, 132, 193, 227, 252, 305,
313, 334, 348, 359], fractional-order differential equations [82], delay differential
equations are similarly defined based on the Mickens’ methodology.

The main advantage of NSFD schemes over standard schemes is expressed in
the following definitions.

Definition 4.2 ([33, 38]). Assume that the solutions of the equation (2.1)
satisfy some property P. The numerical scheme (4.1) is said to be (qualitatively)
stable with respect to the property P (or P-stable), if for every value of ∆t > 0 the
set of solutions of (4.1) satisfies the property P.

Definition 4.3 ([35, 278, 315]). Consider the differential equation dy/dt =
f(y). Let a finite difference scheme for the equation be yk+1 = F (yk; ∆t). Let the
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differential equation and/or its solutions have the property P. The discrete model
equation is dynamically consistent with the differential equation if it and/or its
solutions also have the property P.

Nowadays, NSFD methods based on the Mickens’ methodology have become
an efficient approach for numerically solving ODE models arising in real-world
problems [3, 33, 34, 38, 119, 120, 123, 124, 125, 126, 127, 128, 135, 136,
137, 138, 139, 140, 158, 206, 207, 307, 308, 311, 312, 315, 316, 317, 319,
320, 321, 323, 349, 351, 373, 374, 408, 452, 453, 454]. In particular, NSFD
schemes have been extensively studied for epidemic models, such as

• General epidemiological models [38, 46, 47, 100, 184, 299, 300]
• Influenza disease [162, 224, 235];
• Ebola [15, 39, 57, 218, 417];
• Hepatitis B [201, 202];
• Visceral Leishmaniasis [2, 400];
• Malaria [37, 156];
• Measles [11, 157];
• Zika [285, 421];
• COVID-19 [58, 118, 191, 194, 203, 288, 361, 426];
• Cancer: malignant invasion of tumor cells [43];
• Computer virus propagation models [127, 199, 367].

Compared to numerical methods for ODE models, numerical methods for PDE
models are more challenging. Finite difference methods are one of the most common
and efficient approaches for numerical simulation of PDEs [49, 265, 412, 423]. It
is important to note that positivity should be an obvious property of the solutions of
both ODE and PDE models for infectious diseases. Therefore, positivity preserving
numerical methods are essential. To the best of our knowledge, numerical methods
that preserve positivity and other dynamical properties for the PDE models are
few. However, NSFD methods based on Mickens’ methodology have been shown to
be suitable and effective in constructing such numerical methods [33, 35, 36, 102,
114, 148, 308, 309, 310, 311, 314, 315, 316, 318, 319, 321, 322, 447]. In
particular, dynamically consistent NSFD schemes have been applied to solve some
PDE models of infectious diseases [168, 293, 294, 347, 358, 415, 416, 465].

Even though NSFD methods have several advantages, most of the existing
dynamically consistent NSFD methods are only first-order convergent [106, 112,
119, 199, 201, 202], which can be considered as an inherent drawback of NSFD
methods. For this reason, the problem of improving the accuracy of NSFD methods
has attracted the attention of many researchers [19, 106, 126, 171, 200, 204, 205,
207, 208, 245, 299, 300]. However, it is very challenging to construct dynamically
consistent NSFD methods, especially high-order methods, for differential equations.

In recent years, there has been an increased interest in solving PDEs using
Deep Learning (see e.g. [56, 63, 191, 363]). More recently, in [251], a deep
learning approach has been proposed to improve numerical methods for PDEs.
This approach is based on an approximation of the local truncation error of the
numerical method used to approximate the spatial derivatives of a given PDE.

In general, the construction of numerical methods, especially those that pre-
serve important properties of differential models, is an important problem but not
easy to solve. In addition, high-order numerical methods are still an important
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problem that has not been fully solved, and the reduced spatial accuracy of NSFD
methods for PDEs is still an open problem.

NSFD methods for PDEs have lacked guaranteed first-order temporal accuracy
and consistency for key models such as diffusion and reaction-diffusion systems.
In a recent paper Pasha, Nawaz and Arif [347] proposed a novel NSFD scheme
that overcomes this limitation and guarantees first-order temporal accuracy and
second-order spatial accuracy while preserving positivity.

5. Future research and open problems

Although research on differential equation models for infectious diseases has
been extensively developed over the past decades and has achieved many important
successes, these models still need to be studied and expanded for the following
reasons.

First, mankind is always facing and fighting many infectious diseases, which
are not only constantly changing but also difficult to predict, and thus always pose
a great and constant threat to public health. In this context, the development of
mathematical models of infectious diseases remains a fundamental and effective ap-
proach to discover the characteristics and mechanisms of transmission of epidemics,
and thus effectively predict possible scenarios in reality. On the other hand, as the
existing differential equation models are built based on observations, experience,
and understanding of the diseases, they often become outdated and therefore need
to be updated and modified to keep up with the constant changes in epidemics.
Therefore, in addition to building new models, improving existing models is also
very important.

Second, once mathematical models have been formulated, aspects of qualita-
tive study and approximate solutions are raised. Addressing these issues is useful
for finding appropriate strategies for disease prevention and control, as well as for
predicting disease spread scenarios. In addition, infectious diseases often need to
be monitored over very long periods of time. This leads to the rapid solution of
differential equation models over long time periods. Therefore, efficient numeri-
cal methods are urgently needed. However, the construction of efficient high-order
numerical methods in general, and numerical methods that preserve essential qual-
itative properties of differential equation models in particular, is still an important
problem that has not been fully solved.

Lastly, the practical application of mathematical models of infectious diseases
is essential, but has not been widely used. In particular, theoretical studies should
be combined with observed real-world epidemic data to calibrate the mathematical
models and find optimal parameters, thereby building scenarios that better reflect
reality and proposing appropriate anti-epidemic strategies.

For the above reasons, differential equation models for infectious diseases need
to be studied and developed. To achieve this, it is also necessary to develop and
extend research methods to keep pace with the complexity of the proposed models.

Another future direction is to use one NSFD scheme not exclusively, but as
one element in a hybrid scheme approach, e.g. using operator splitting [11, 15],
Chebyshev collocation [4], Hermite Polynomials [365] wavelets [364, 436] or a
predictor corrector NSFD approach [157].

A special challenge are mimetic / fitted operator schemes for singular perturbed
problems, due to the necessary resolution of boundary layers having different scales,
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e.g. convection-diffusion equations [40, 41, 229], Burgers-Huxley equation [131],
differential difference equations [350] or boundary value ODE problems [283, 346].

Finally, most recent reseacrh dirctions for NSFD schemes are the GPU ac-
celeration of the (serial) NSFD code [226] and geometric numerical integration,
symmetrization of NSFD schemes [85].

6. Concluding remarks and discussions

In this work, we have reviewed many but not all recent developments and
real-life applications of deterministic ODEs and PDEs of major infectious diseases,
mainly focusing on mathematical modeling, qualitative analysis, numerical meth-
ods and real-life applications. We have also presented and discussed some open
problems and future directions that research in differential equation models for
infectious diseases can take.

In the presentation, we focus only on deterministic differential equation models
associated with the integer-order derivatives. Delayed models, stochastic models
[14, 51, 354, 467], and fractional-order models, especially for PDEs [40, 41, 82,
418], will be considered in future work.

All the results presented demonstrate the important role of differential equation
models in disease modeling. Moreover, they remain an effective and indispensable
approach to study the characteristics of infectious diseases and thereby suggest
effective measures for disease prevention and public health protection.
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[209] Z. Horváth, Positivity of Runge-Kutta and diagonally split Runge-Kutta methods, Applied

Numerical Mathematics 28 (1998) 309-326.
[210] S.-B. Hsu, Lih-Ing W. Roeger, The final size of a SARS epidemic model without quarantine,

Journal of Mathematical Analysis and Applications 333 (2007) 557-566.
[211] Y. Hu, Q. Pan, W. Hou, M. He, Rumor spreading model considering the proportion of

wisemen in the crowd, Physica A 505 (2018) 1084-1094.

[212] Z. Hu, W. Ma, S. Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and

treatment, Mathematical Biosciences 238 (2012) 12-20.
[213] W. Huang, M. Han, K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease

transmission, Mathematical Biosciences and Engineering 7 (2010) 51-66.
[214] H.-F. Huo, H. Xue, H. Xiang, Dynamics of an alcoholism model on complex networks with

community structure and voluntary drinking, Physica A 505 (2018) 880-890.

[215] M. Iannelli, M. Martcheva, X.-Z. Li, Strain replacement in an epidemic model with super-

infection and perfect vaccination, Mathematical Biosciences 195 (2005) 23-46.

https://doi.org/10.1080/10236198.2023.2291151


DIFFERENTIAL EQUATION MODELS FOR INFECTIOUS DISEASES 25
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methods for a mathematical model for influenza disease, Mathematics and Computers in

Simulation 79 (2008) 622-633.

[225] A. Jones, N. Strigu, Is spread of COVID-19 a chaotic epidemic, Chaos, Solitons & Fractals
142 (2021) 110376.

[226] Y. Kanai, T. Hoshino, T. Ohtani, N. V. Kantartzis, GPU Acceleration of the Nonstandard

FDTD Method, In: 2023 International Applied Computational Electromagnetics Society
Symposium (ACES), pp. IEEE, 2023, pp. 1-2.

[227] S. Kayenat, A. K. Verma, NSFD schemes for a class of nonlinear generalised advec-

tion–diffusion–reaction equation, Pramana 96(1) (2022) 14.
[228] L. Kalachev, E. L. Landguth, J. Graham, Revisiting classical SIR modelling in light of the

COVID-19 pandemic, Infectious Disease Modelling 8 (2023) 72-83.

[229] O. O. Kehinde, J. B. Munyakazi A. R. Appadu, A NSFD Discretization of Two-Dimensional
Singularly Perturbed Semilinear Convection-Diffusion Problems, Frontiers in Applied Math-

ematics and Statistics 8 (2022) 861276.
[230] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics,

Proceedings of the Royal Society of London - Series A 115 (1927) 700-721.

[231] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics.
II. -The problem of endemicity, Proceedings of the Royal Society of London - Series A 138

(1932) 55-83.
[232] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics.

III. -Further studies of the problem of endemicity, Proceedings of the Royal Society of London
- Series A 141 (1933) 94-122.

[233] P. G. Kevrekidis, J. Cuevas-Maraver, Y. Drossinos, Z. Rapti, G. A. Kevrekidis, Reaction-
diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples, Physical

Review E 104 (2021) 024412.
[234] H. K. Khalil, Nonlinear systems, Prentice Hall, 2002.
[235] M. M. Khalsaraei, A positive and elementary stable nonstandard explicit scheme for a

mathematical model of the influenza disease, Mathematics and Computers in Simulation
182 (2021) 397-410.

[236] M. A. Khan, S. Islam, J. C Valverde, S. A. Khan, Control strategies of hepatitis B with

three control variables, Journal of Biological Systems26(2018) 1-21.
[237] H. Khan, R. N. Mohapatra, K. Vajravelu, S.J. Liao, The explicit series solution of SIR and

SIS epidemic models, Applied Mathematics and Computation 215 (2009) 653-669.



26 MANH TUAN HOANG AND MATTHIAS EHRHARDT

[238] I. U. Khan, A. Hussain, S. Li, A. Shokri, Modeling the Transmission Dynamics of Coro-

navirus Using Nonstandard Finite Difference Scheme, Fractal and Fractional 7(6) (2023)

451.
[239] M. A. Khan, S. W. Shah, S. Ullah, J. F. Gomez-Aguilar, A dynamical model of asymp-

tomatic carrier zika virus with optimal control strategies, Nonlinear Analysis: Real World

Applications 50 (2019) 144-170.
[240] M. I. Khan, K. Al-Khaled, A. Raza, S. U. Khan, J. Omar, A. M. Galal, Mathematical and

numerical model for the malaria transmission: Euler method scheme for a malarial model,

International Journal of Modern Physics B 37(16) (2023) 2350158.
[241] O. Khyar, K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general

incidence rates: application to COVID-19 pandemic, Nonlinear Dynamics 102 (2020) 489-

509.
[242] K. I. Kim, Z. Lin, L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlin-

ear Analysis: Real World Applications 11 (2010) 313-322.
[243] K. Kitagawa , S. Nakaok, Y. Asai, K. Watashi, S. Iwami, A PDE multiscale model of

hepatitis C virus infection can be transformed to a system of ODEs, Journal of Theoretical

Biology 448 (2018) 80-85.
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