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1. INTRODUCTION

The stability of single-file dynamics is of great interest in
traffic engineering. Pioneering work by Reuschel, Pipes,
and others (Reuschel, 1950; Pipes, 1953; Kometani and
Sasaki, 1958; Chandler et al., 1958) have shown that single
file traffic flow can present stability problems. Although
the problem dates back to the 1950s and early 1960s and
has been actively researched since then, see the review of
Wilson and Ward (2011), it is still relevant today. Even
current adaptive cruise control (ACC) systems exhibit
unstable dynamics in experiments, cf. the results in Gunter
et al. (2020); Makridis et al. (2021); Ciuffo et al. (2021).

In fact, many factors can perturb the stability of single-
file uniform streaming. It is a well-known fact that lag
and delay in the dynamics can lead to linear instability
of the uniform equilibrium solution, see Gasser et al.
(2004); Orosz et al. (2010); Tordeux et al. (2012, 2018).
More recent approaches show that additive stochastic
noise can also perturb single-file dynamics, even for stable
deterministic systems, cf. Treiber and Helbing (2009);
Tordeux and Schadschneider (2016); Treiber and Kesting
(2017); Friesen et al. (2021); Ehrhardt et al. (2024).

Port-Hamiltonian systems (pHS) have recently emerged as
a modelling framework for nonlinear physical systems, cf.
van der Schaft and Jeltsema (2014). Unlike conservative
Hamiltonian systems, pHS integrate control and external
forcing into the dynamics through input and output ports.
PHS can represent systems from diverse physical domains
such as thermodynamics, electromechanics, electromag-
netics, fluid mechanics and hydrodynamics, cf. Rashad
et al. (2020). The functional structure of pHS, which ex-
tends the Hamiltonian framework with dissipation, input

and output ports, serves as a meaningful representation
for a wide range of physical systems.

Recent research shows that pHS provide valuable mod-
elling techniques for multi-agent systems, including multi-
input multi-output (MIMO) systems (Sharf and Zelazo,
2019), swarm behaviour (Matei et al., 2019), interacting
particle systems (Jacob and Totzeck (2023)), pedestrian
dynamics (Tordeux and Totzeck, 2023), or autonomous
vehicles and adaptive cruise control systems (Knorn et al.,
2014; Dai and Koutsoukos, 2020). These micro-level agent-
based models are constructed using finite-dimensional
pHS. In addition, macroscopic traffic flow models (Bansal
et al., 2021) and more general fluid dynamics models
(Rashad et al., 2021a,b) use infinite-dimensional pHS.

In this paper, we first recall a symmetric port-Hamiltonian
single-file model recently introduced to describe collection
motions in one dimension, see Ehrhardt et al. (2024).
Interestingly, the uniform solutions are stable for the
deterministic model. However, the introduction of white
noise in the dynamics causes the model to diverge. We
show that the introduction of a control term - the input
port in the port-Hamiltonian formulation - allows the
dynamics to be stabilised even in the presence of noise.

The paper is structured as follows. In the next section, we
introduce the port-Hamiltonian single-file model, elucidat-
ing its intricacies, and additionally, we expound upon its
extension with the inclusion of the input control term. The
analysis of the long-term behavior of the models, coupled
with an exploration of their behavior as the number of
agents N approaches infinity, is presented in Section 3.
Some simulation results with a line of 10 agents are shown
in Section 4. Section 5 is dedicated to discussions that
not only encapsulate the key findings but also propose
potential avenues for further extensions of the model.



2. PORT-HAMILTONIAN SINGLE-FILE MODELS

Let us first start with the notations and the definitions of
the models we are considering.

Notations. We consider N ∈ {3, 4, . . . } agents on a seg-
ment of length L with periodic boundaries. We denote

q(t) =
(
qn(t)

)N
n=1

∈ RN , t ∈ [0,∞),

the positions of the agents and

p(t) =
(
pn(t)

)N
n=1

∈ RN , t ∈ [0,∞),

are the velocities of the agents at time t. We assume that
the positions q(t) and the velocities p(t) of the N agents
are known at time t = 0,

p(0) = p|t=0 = p ∈ RN , q(0) = q|t=0 = q ∈ RN ,

and that the positions of the agents are initially ordered
by their indices, i.e.,

0 ≤ q1(0) ≤ q2(0) ≤ . . . ≤ qN (0) ≤ L. (1)

Furthermore, in the following we consistently use the index
n+ 1 to represent the nearest neighbour on the right and
n − 1 for the nearest neighbour on the left. The right
neighbour of theN -th agent is the first agent, i.e., n+1 = 1
when n = N . Conversely, the left neighbour of the first
agent is the N -th agent, i.e., n− 1 = N if n = 1.

The distances to the right neighbours (see Fig. 1)

Q(t) = (Qn(t))
N
n=1 ∈ RN , t ∈ [0,∞),

are given by{
Qn(t) = qn+1(t)− qn(t), n ∈ {1, . . . , N − 1},
QN (t) = L+ q1(t)− qN (t).

(2)

The distance to the left is QN for the first agent and Qn−1

for the n-th agent, n ∈ {2, . . . , N}. The index order of the
agents at time zero makes the initial distance positive

Q(0) = Q|t=0 := Q ∈ [0,∞)N .

pn pn+1

Qn = qn+1 − qn

Ring of length L N agents

Fig. 1. Illustration of the single-file motion system with
periodic boundary conditions. Here, qn represents the
curvilinear position, Qn = qn+1 − qn is the distance
to the right neighbour and pn denotes the velocity of
the n-th vehicle.

2.1 Initial stochastic motion model

First, we introduce a probability space (Ω,F ,P) on which
there exists an N -dimensional standard Brownian motion

W =
(
Wn

)N
n=1

: [0,∞)× Ω → RN .

For the n-th agent at time t ∈ [0,∞), the model reads
dQn(t) =

(
pn+1(t)− pn(t)

)
dt,

dpn(t) =
(
U ′(Qn(t))− U ′(Qn−1(t))

)
dt

+ β
(
pn+1(t)− 2pn(t) + pn−1(t)

)
dt+ σ dWn(t),

Q(0) = Q, p(0) = p,

(3)

where β ∈ (0,∞) is the dissipation rate, σ ∈ R is the noise
volatility, and U ′ is the derivative of a convex potential

U ∈ C1(R, [0,∞)). In the following, we use the quadratic
functional

U(x) =
1

2
(αx)2, x ∈ R, α ∈ (0,∞). (4)

Remark 1. The ensemble’s mean velocity

p(t) =
1

N

N∑
n=1

pn(t), t ∈ [0,∞), (5)

is a Brownian motion with variance σ2/N for any potential
function U . In fact, thanks to the telescopic form of the
model (3) and the periodic boundaries, we have

dp(t) =
1

N

N∑
n=1

dpn(t) =
σ

N

N∑
n=1

dWn(t), t ∈ [0,∞).

In addition, the ensemble’s mean velocity (5) is conserved
for the deterministic system with σ = 0.

2.2 Extended stochastic motion model

The motion model (3) is symmetric and there is no
inherent preference or favoured direction of motion. In
the following model we introduce a relaxation process to
a desired velocity u ∈ R with relaxation rate γ ∈ [0,∞).
The extended motion model reads for the n-th agent at
time t ∈ [0,∞)

dQn(t) =
(
pn+1(t)− pn(t)

)
dt,

dpn(t) =
(
U ′(Qn(t))− U ′(Qn−1(t))

)
dt

+β
(
pn+1(t)− 2pn(t) + pn−1(t)

)
dt

+ γ
(
u− pn(t)

)
dt+ σ dWn(t),

Q(0) = Q, p(0) = p.

(6)

Note that the extended model (6) recovers the model (3)
for γ = 0.

Remark 2. The ensemble’s mean velocity (5) follows an
Ornstein-Uhlenbeck process for any potential function U .
Thanks to the telescopic form of the model (6) and the
periodic boundaries we have

dp(t) = γ
(
u− p(t)

)
dt+

σ

N

N∑
n=1

dWn(t), t ∈ [0,∞).

In addition, the ensemble’s mean velocity (5) relaxes to u
for the deterministic system with σ = 0.

2.3 Port-Hamiltonian formulation

Next, we rewrite the extended system (6) in matrix form
and identify a port-Hamiltonian structure.

Proposition 3. Let Z(t) = (Q(t), p(t))⊤ ∈ R2N , t ∈ [0,∞).
Then the dynamics of the periodic system (6) are given by

dZ(t) = (J −R)∇H(Z(t)) dt+ Sudt+GdW (t),

Z(0) = z(0) = (Q, p)⊤ ∈ R2N ,
(7)

with

J =

[
0 A

−A⊤ 0

]
∈ R2N×2N ,

R =

[
0 0
0 βA⊤A+ γI

]
∈ R2N×2N ,

A =


−1 1

. . .
. . .

−1 1
1 −1

 ∈ RN×N , (8)



S =

(
0
γ1

)
∈ R2N , G =

[
0
σI

]
∈ R2N×N ,

1 = (1, . . . , 1) ∈ RN and the Hamiltonian operator
H : R2N → R,

H(Q, p) =
1

2
∥p∥2 +

N∑
n=1

U(Qn), p ∈ RN , Q ∈ RN . (9)

The matrix J is skew-symmetric by N ×N block, while R
is symmetric positive semi-definite.

Proof. First note that for all (Q, p)⊤ ∈ R2N we have

(∇H)(Q, p) =

[
U ′(Q)

p

]
, with U ′(Q) =

(
U ′(Qn)

)N
n=1

.

We also have

A⊤A =


2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

 ∈ RN×N .

It follows directly from the extended model (6) that
dQ(t) = Ap(t) dt,

dp(t) =
(
−A⊤U ′(Q(t))− (βA⊤A+ γI)p(t)

)
dt

+ γu dt+ σ dW (t)

(10)

and therefore

dZ(t) = B̃∇H(Z(t)) dt+ Sudt+GdW (t)

with

B̃ :=

[
0 A

−A⊤ −βA⊤A− γI

]
= J −R and S =

[
0
γI

]
.

It is clear that J is skew-symmetric and R is symmetric.
Furthermore, it holds for all (Q, p)⊤ ∈ R2N that

(Q⊤, p⊤)R

(
Q
p

)
= β∥Ap∥2 + γ∥p∥2 ∈ [0,∞)

and therefore R is positive semi-definite.

Remark 4. In the model, the Hamiltonian and the skew-
symmetric matrix J represent the conservative part of the
system. The velocity terms and the relaxation term to
the desired velocity are part of the dissipation matrix R,
the input matrix S, and the input control u. Note that
the model (3) with γ = 0 is a stochastic Hamiltonian
dissipative system while the extended model (6) with γ > 0
is a stochastic port-Hamiltonian system with input u.

Remark 5. Using the skew-symmetry of J and the Itô
formula, we obtain for the Hamiltonian H given by (9),
after simplifications, that

dH(Z(t)) =
(
−β∥Ap(t)∥2 + γ

〈
p(t), u1− p(t)

〉)
dt

+
Nσ2

2
dt+ σp⊤(t) dW (t).

(11)

Note that thanks to the skew symmetry, the Hamiltonian
behaviour does not depend on the positions of the agents
and the distance-dependent interaction potential U (pa-
rameter α).

3. LONG-TIME BEHAVIOUR

We now consider the dynamics of the difference to the
desired speed u

p̃n(t) = pn(t)− u, t ∈ [0,∞), n ∈ {1, . . . , N}, (12)

p̃(t) =
(
p̃n(t)

)N
n=1

and Z̃(t) = (Q(t), p̃(t))⊤. Note that

Z̃(t) = Z(t) for the initial model (3) for which u = 0.

The process Z̃ satisfies

dZ̃(t) = BZ̃(t) dt+GdW (t), t ∈ [0,∞), (13)

with

B =

[
0 A

−α2A⊤ −βA⊤A− γI

]
and G =

[
0
σI

]
.

Furthermore, the Hamiltonian time derivative for the
deterministic system with σ = 0 satisfies

dH(Z̃(t))/dt = −β∥Ap̃(t)∥2 − γ∥p̃(t)∥2 ≤ 0. (14)

Remark 6. The uniform equilibrium solution for which

Qn = L/N and pn = 1
N

∑N
j=1 pj(0) for all n ∈ {1, . . . , N}

is stable for the deterministic model (3) with σ = 0 and a
quadratic potential (4) for all α ∈ (0,∞) and β ∈ (0,∞).

Remark 7. The uniform equilibrium solution for which
Qn = L/N and pn = u for all n ∈ {1, . . . , N} is stable for
the deterministic model (6) with σ = 0 and a quadratic
potential (4) for all α ∈ (0,∞), β ∈ (0,∞) and γ ∈ (0,∞).

Indeed, the Hamiltonian H given by (9) is a convex
operator which is minimal for the uniform configuration
Qu

n = L/N and pun = pu for all n ∈ {1, . . . , N}, pu = p(0)
for the initial model (3) and pu = u for the extended model
(6). Then the decrease of the Hamiltonian with time (14)
provides the stability of the deterministic systems.

Interestingly, both the deterministic motion models (3)
and (6) with a quadratic potential (4) and σ = 0 have
stable uniform solutions. However, only the extended
model (6) with a control input u in a port-Hamiltonian
framework remains stable when stochastically perturbed.
In the next result we show a weak convergence to a
Gaussian distribution. In Proposition 10 we determine the
covariance matrix of this stationary distribution and in
Corollary 11 we present its limit as the number of agents
N tends to infinity.

Remark 8. In Proposition 9 below the spectral analysis of
B is extended based on the results given in Ehrhardt et al.
(2024). However, we can note beforehand that each block
of B is circulant and we have for λ ∈ C
|B−λI2N | = |C|, C = λ2IN+λ(βA⊤A+γIN )+α2A⊤A.

The matrix C =

 c0 cN−1 . . . c1
c1 c0 . . . c2
. . . . . . . . .

cN−1 cN−2 . . . c0

, with c0 = λ2 +

λ(2β+γ)+2α2, c1 = cN−1 = −λβ−α2, and cj = 0 for all
j ∈ {2, . . . , N − 2}, is circulant. Since the determinant of

a circulant matrix is given by |C| =
∏N−1

j=0

(
c0 + cN−1ω

j +

cN−2ω
2j + · · ·+ c1ω

(N−1)j
)
, where ω = e2πi/N , we obtain

the characteristic equation of the matrix B as
N−1∏
j=0

(
λ2 + λ(2β + γ) + 2α2 − (λβ + α2)(ωj + ω(N−1)j)

)
=

N−1∏
j=0

(
λ2 + λ(βµj + γ) + α2µj

)
= 0,

where µj = 2− ωj − ω(N−1)j = 2− 2 cos
(
2πj
N

)
. From this

we can directly compute the eigenvalues of B leading to
(15) in the proof of Proposition 9.



Proposition 9. If γ > 0 then the process Z̃ converges
weakly as t → ∞ to a Gaussian distribution with mean

vector [L/N1 0]
⊤ ∈ R2N .

Proof. We first generalise some results of Ehrhardt et al.
(2024) to the case γ ̸= 0. In particular, we present the
eigenvalue decomposition of the system matrix B. To this
end, let λ0,1 = 0, λ0,2 = −γ and for all j ∈ {1, . . . , N −1},
k ∈ {1, 2} let µj = 2− 2 cos

(
2πj
N

)
∈ [0, 4] and

λj,k =
1

2

(
− (βµj + γ)+ (−1)k

√
(βµj + γ)2 − 4α2µj

)
∈ C.
(15)

We have B = WΛW−1, where W ∈ C2N×2N is given in
(Ehrhardt et al., 2024, Setting 3.1) and Λ ∈ C2N×2N is
the diagonal matrix with the vector of eigenvalues

[λ0,1 λ1,1 . . . λN−1,1 λ0,2 λ1,2 . . . λN−1,2] ∈ C2N

on its diagonal. To see this note that B only differs from
the system matrix B in Ehrhardt et al. (2024) by the
term −γI in the lower right block. This entails that the
statement of (Ehrhardt et al., 2024, Lemma 3.3) also holds
true for B with the only modification that λ1, λ2 ∈ C
are now the complex roots of z 7→ z2 + (βκκ̃ + γ)z +
α2κκ̃. From this it follows using the same arguments as in
(Ehrhardt et al., 2024, Lemma 3.5) that B = WΛW−1.
Note that λ0,1 = 0 and that all other eigenvalues λj,k have
strictly negative real part (in particular, in contrast to the
situation in Ehrhardt et al. (2024), we have λ0,2 = −γ <
0).

Next define the process Y (t) = W−1Z̃(t), t ∈ [0,∞).
Then Y solves the complex-valued stochastic differential
equation dY (t) = ΛY (t) dt + W−1GdW (t). Note that
(Ehrhardt et al., 2024, Lemma 3.5) provides a closed-
form representation of W−1. In particular it follows that
the first row of W−1G is zero (this is due to the fact
that the first row of W−1 is given by u∗

0,1 = (v∗0 0), see
(Ehrhardt et al., 2024, Setting 3.1)). This together with
the fact that λ1,0 = 0 implies that the first component Y1

of Y is constant equal to Y1(0). The remaining diagonal
entries of Λ have strictly negative real parts. From this we
conclude that the process (Re(Y (t)), Im(Y (t))), t ∈ [0,∞),
is (degenerate) Gaussian and converges weakly as t → ∞
to its unique invariant distribution. It follows that also
Z̃(t) = Re(Z̃(t)) = Re(W)Re(Y (t)) − Im(W)Im(Y (t)),
t ∈ [0,∞), converges weakly as t → ∞ to its unique
invariant distribution. Since the invariant distribution of
Y has a mean vector (Y1(0), 0)

⊤, we obtain that the mean

vector of the invariant distribution of Z̃ is given by

W
(
Y1(0)
0

)
= Y1(0)w0,1 = (u∗

0,1Z̃(0))w0,1

=
1√
N

N∑
k=1

Z̃k(0)
1√
N

(
1

0

)
=

L

N

(
1

0

)
where we used the notation of (Ehrhardt et al., 2024,

Setting 3.1) and the fact that
∑N

k=1 Z̃k(0) = L. This
concludes the proof.

The covariance matrix Σ of the limiting Gaussian distri-
bution of Proposition 9 necessarily satisfies the matrix
Lyapunov equation associated with the system Z̃ (see, e.g.,

(Gardiner, 1985, Section 4.4.6) or (Pavliotis, 2014, Section
3.7)). In our setting this equation is (see (13))

BΣ+ ΣB⊤ = −GG⊤. (16)

In the next steps we will show that (16) uniquely deter-
mines Σ and derive its closed-form representation. To do
this we write

Σ =

[
V1 V2

V ⊤
2 V3

]
∈ R2N×2N (17)

for some V2 ∈ RN×N and symmetric V1, V3 ∈ RN×N . Then
(16) is equivalent to

AV ⊤
2 = −V2A

⊤, AV3 − α2V1A− βV2A
⊤A = γV2 (18)

α2(A⊤V2 + V ⊤
2 A) + β(A⊤AV3 + V3A

⊤A) + 2γV3 = σ2I.
(19)

From the symmetry of the system we conclude that the
matrices V1, V2, V3 are circulant and that V2 is also sym-
metric. In particular, we have that V3 is determined by a
vector v = (v0, . . . , vN−1)

⊤ ∈ RN via

V3 =

 v0 vN−1 . . . v1
v1 v0 . . . v2
. . . . . . . . . . . .

vN−1 vN−2 . . . v0

 (20)

and similarly V1 and V2. Since circulant matrices commute,

we see that (19) is equivalent to βA⊤AV3 + γV3 = σ2

2 I.
Since V3 is completely determined by v, it suffices to
look at the first column of this matrix equation which

is (βA⊤A + γI)v = σ2

2 e1, where e1 ∈ RN is the first

standard unit vector. Since (βA⊤A+ γI) is circulant, this
linear system is equivalent to the convolution equation

w ∗ v = σ2

2 e1, where w = (2β + γ −β 0 . . . 0 −β)
⊤ ∈ RN

is the first column of βA⊤A + γI. Next we apply the
discrete Fourier transform FN to this equation to obtain
for each k ∈ {0, 1, . . . , N−1} that [FN (w)](k)[FN (v)](k) =
σ2

2 [FN (e1)](k). Using that [FN (w)](k) = 2β + γ −
β(e−2πik/N + e2πik/N ) and [FN (e1)](k) = 1 and applying
the inverse Fourier transform gives

vj =
σ2

2N

N−1∑
k=0

e2πijk/N

2β + γ − β(e−2πik/N + e2πik/N )

=
σ2

2N

N−1∑
k=0

cos(2πjk/N)

γ + 4β sin2(πk/N)
.

(21)

This determines V3.

Next we use (18) to show that V2 = 0. Note that the fact
that V2 is symmetric and circulant, together with the first
equation in (18), ensures that it satisfies (A+A⊤)V2 = 0.
Since the kernel of A + A⊤ is spanned by 1, we conclude
that V2 is a multiple of 1, where 1 ∈ RN×N is the matrix
consisting only of 1s. Multiplying the second equation in
(18) by 1 (remember that 1 = (1, . . . , 1)⊤ ∈ RN ) implies
γV21 = 0, which finally gives V2 = 0.

The block V1 can now be derived from the second equation
in (18). Again, due to the cyclicity of V3, this equation is
equivalent to V3A = α2V1A, and so we can read off the
solution V1 = 1

α2V3. Note, however, that A is not regular,

but only of rank N − 1, with 1 ∈ RN being the basis of its
kernel. From this we conclude that the solution set of V1 =
1
α2V3 is given by {α−2(V3+κ1)|κ ∈ R}. Next, note that for



all t ∈ [0,∞) we have that
∑N

n=1 Qn(t) = L. This implies

that 0 = 1⊤V11 = α−21⊤(V3 + κ1)1 = α−2(N
∑N−1

j=0 vj +

κN2). This implies that κ = − 1
N

∑N−1
j=0 vj = − σ2

2γN . So we

have V1 = α−2(V3 − σ2

2γN 1). We summarise these results

in the following proposition.

Proposition 10. Suppose γ > 0. Then the covariance
matrix of the limiting distribution of Z̃ (cf. Proposition 9)
is given by (17) with V3 given by (20) and v by (21), V2 = 0

and V1 = α−2(V3 − σ2

2γN 1).

Next, we present the limit of the covariance matrix as the
number of agents N tends to infinity.

Corollary 11. Suppose γ > 0 and for all N ∈ {3, 4, . . .},
j ∈ {0, 1, . . . , N − 1} let vNj be given by (21). Then it

holds for all Ñ ∈ {3, 4, . . .}, j ∈ {0, 1, . . . , Ñ − 1} that

(vNj )N∈{Ñ,Ñ+1,...} converges to σ2aj

2F with a = 1+ γ
2β − F

2β

and F =
√

γ2 + 4βγ.

Proof. Let a = 1+ γ
2β − F

2β and b = 1+ γ
2β + F

2β with F =√
γ2 + 4βγ, and observe that a ∈ (0, 1) and b > 1. For all

j ∈ N0 let gj : {z ∈ C : |z| < b} → C, gj(z) = σ2zj

2β(b−z) and

note that gj is a holomorphic function on {z ∈ C : |z| < b}.
Further, let Γ: [0, 1] → C, Γ(t) = e2πit. Observe for all
N ∈ {3, 4, . . .}, j ∈ {0, 1, . . . , N − 1} that vj ≡ vNj in (21)
is a Riemann sum and that it holds that

vNj =
1

N

N∑
k=1

gj

(
Γ
(

k
N

))
Γ
(

k
N

)
Γ
(

k
N

)
− a

.

We thus consider for all j ∈ N0 the line integral

1

2πi

∫
Γ

gj(z)

z − a
dz =

∫ 1

0

gj
(
Γ(t)

)
Γ(t)

Γ(t)− a
dt.

By Cauchy’s integral formula, we have for all j ∈ N0 that

1

2πi

∫
Γ

gj(z)

z − a
dz = gj(a) =

σ2aj

2F
.

Therefore, we obtain for all j ∈ N0 that

lim
N→∞

1

N

N∑
k=1

gj

(
Γ
(

k
N

))
Γ
(

k
N

)
Γ
(

k
N

)
− a

=
σ2aj

2F

=

σ2

(
1 + 1

2
γ
β − 1

2

√(
γ
β

)2
+ 4 γ

β

)j

2β
√(

γ
β

)2
+ 4 γ

β

.

4. SIMULATION RESULTS

In this section we present simulations of N = 10 agents
moving according to the dynamics (3) and (6) along a
segment of length L = 501 with periodic boundaries and
α = β = σ = 1. The simulations are performed from
a uniform zero velocity initial condition using an Euler-
Maruyama scheme with a time step of dt = 0.001. The
trajectories over the first 500 time units are shown in
Fig. 2. The upper panel shows the trajectories for the
diverging dynamics (3) with γ = 0, where the ensemble’s
mean velocity follows a Brownian motion. The middle and
lower panels show the trajectories of the extended port-
Hamiltonian model with γ = 0.1 and γ = 1, respectively,

where the velocities of the vehicles remain close to the
control input velocity u = 0.

The simulations can be run in real time on the online plat-
form at: https://www.vzu.uni-wuppertal.de/fileadmin/
site/vzu/Simulating Collective Motion.html?speed=0.7.
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Fig. 2. Trajectories of 10 vehicles along a segment of length
L = 501 with periodic boundaries with the dynamics
(6) with γ = 0 (the ensemble’s mean velocity diverges,
upper panel) and with the pHS with γ = 0.1 and
γ = 1 and the controlled input velocity u = 0 (middle
and lower panels).

5. CONCLUSION

This study has revisited and analysed a symmetric port-
Hamiltonian single-file model in one dimension, empha-
sising the impact of white noise on its stability. The in-
troduction of a control term within the port-Hamiltonian
framework has proven effective in stabilising the dynamics,
even in the presence of noise. These findings offer valuable
insights for enhancing the control of road traffic flows.

Future research may explore time-dependent control strate-
gies (u = u(t)), distance-dependent control (u = u(Qn))
as seen in the model by Rüdiger et al. (2022), agent-
specific controls (u = un), and random controls with
uncertainties (u = U). These potential extensions provide
a rich landscape for further investigation and refinement,
contributing to the ongoing development of robust and
adaptable models for traffic flow control.

https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_Collective_Motion.html?speed=0.7
https://www.vzu.uni-wuppertal.de/fileadmin/site/vzu/Simulating_Collective_Motion.html?speed=0.7
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