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Abstract. Deep learning techniques have gained prominence in recent
years for enhancing and optimizing existing numerical schemes. One cru-
cial aspect in this context is the preservation of essential properties of
these schemes, such as consistency and convergence.
We apply a recently developed innovative deep learning-based enhance-
ment of the finite difference method to address the Asian option pricing
problem, showcasing its efficacy through numerical results. Our research
demonstrates that slight modifications to the scheme can yield even bet-
ter results while preserving the essential theoretical order of convergence.
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1 Introduction

Recently, deep learning has been widely used to modify and improve existing
numerical schemes. To do this, it is important to preserve the properties of the
existing schemes, such as consistency and convergence. For example, in [1]-[4] the
weighted essentially non-oscillatory (WENO) schemes, which belong to the class
of modern finite difference methods (FDMs), have been successfully improved.
The improved scheme exhibits better numerical results while maintaining the
formal order of accuracy, which can be proven theoretically.

In this work, we use the recently developed deep learning based FDM [5].
As shown in [5], this deep learning extension of FDM is able to provide higher
numerical accuracy and the method remains time efficient even when the deep
learning part is added. We apply this method to the example of the Asian option
pricing problem and show the numerical results using this method. Moreover, we
show that we can obtain even better results by slightly modifying the scheme,
while not destroying the theoretical order of convergence.

2 Deep FDM

We briefly introduce the Deep FDM (DFDM) as it was developed in [5]. We
consider a one-dimensional PDE of a form

∂u

∂t
= α(x)

∂2u

∂x2
+ β(x)

∂u

∂x
+ γ(x)u, (x, t) ∈ Ω1 × [0, T ],

u(x, 0) = u0(x),

(1)
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with the coefficients α, β, γ : Ω1 ⊆ R → R. We use the 1D spatial domain Ω1 =
[a, b] and introduce a uniform grid defined by the points xi = x0 + i∆x, i =
0, 1, . . . , I. For the time domain [0, T ] we use the uniform discretization defined
by the points tn = t0 + n∆t, n = 0, 1, . . . , N . Let un

i = u(xi, tn) be the value
of the exact solution at the grid point (xi, tn) and ûn

i be the corresponding
numerical approximation.

To modify the standard FDM, we use the Convolutional Neural Network
(CNN). This ensures the spatial invariance of the method and the computational
efficiency. Then, we define the neural network functions as F (·), G(·) : R2k+1 →
R, where 2k+1 is the size of the receptive field of the CNN. Using the standard
central finite difference scheme for the spatial discretizations and the explicit
Euler scheme for the temporal discretization, we obtain

ûn+1
i = ûn

i +∆t
[
α(xi)

( ûn
i+1 − 2ûn

i + ûn
i−1

∆x2
+∆x2F (ūn

i )
)

+ β(xi)
( ûn

i+1 − ûn
i−1

2∆x
+∆x2G(ūn

i )
)
+ γ(xi) û

n
i

]
.

(2)

The values ūn
i = ūn(x̄i) = (ûn(xi−k), . . . , û

n(xi+k)) = (ûn
i−k, . . . , û

n
i+k) represent

the input to the neural network. F (ūn
i ) and G(ūn

i ) represent the output of a
neural network trained so that the following approximations hold

F (ūn
i ) ≈

1

∆x2
ϵ2, G(ūn

i ) ≈
1

∆x2
ϵ1,

where ϵ2 = O(∆x2) and ϵ1 = O(∆x2) are the local truncation errors of both
standard central finite difference schemes. For more details and detailed expla-
nation we refer to [5].

3 Asian Option Pricing Problem

Let us consider Asian options of the European type depending on the arithmetic
mean of the asset price. In this case, we obtain the equation for the price of
the Asian option, which is given by the two-dimensional PDE. There are four
different types of arithmetic Asian option with regards to the payoff function
and we consider in this paper fixed-strike call option.

To avoid solving the two-dimensional PDE, Rogers and Shi [6] introduced a
reduced PDE of the form

∂u

∂t
+

1

2
σ2x2 ∂

2u

∂x2
−

( 1

T
+ rx

)∂u
∂x

= 0, 0 ≤ t ≤ T, x ∈ R, (3)

which can be solved equivalently for European style of Asian options. Here, r
denotes an interest rate, σ the volatility, x is defined by

x =
1

St

(
K −

∫ t

0

Sυ µ(dυ)
)
, (4)
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where µ is the probability measure with the density ρ(t) = 1/T in our case.
Further, S is the price of an underlying asset at time t and K the strike price.
The price of an option V is then given by V = S0u(K/S0, 0) for some initial
stock price S0.

After transforming (3) to the forward-in-time PDE using τ = T−t, we obtain

∂u

∂τ
=

1

2
σ2x2 ∂

2u

∂x2
−

(
1

T
+ rx

)
∂u

∂x
, 0 ≤ τ ≤ T, x ∈ R, (5)

which has a form of the PDE (1). We use the initial condition [6]

u(x, 0) = max(0,−x), (6)

and the boundary conditions [6]

u0 =
1− e−rτ

rT
− x0e

−rτ , uN = 0. (7)

We select the computational domain [xl, xr] = [−0.4, 4] and final time T = 1.

4 Modification of the Scheme and Training Procedure

The coefficient in front of a convection term ( 1
T + rx) is always positive in our

case and can become dominant. This means that to overcome the oscillations,
which could appear in the solution, the left-biased stencil should be used to
approximate the first derivative. This reads

∂u

∂x

∣∣∣
xi

=
u(xi, t)− u(xi−1, t)

∆x
+O(∆x). (8)

As we can see, the approximation is only of the first order, so for the enhanced
DFDM we can use the formula

û
′n
i =

ûn
i − ûn

i−1

∆x
+∆xG(ūn

i ) (9)

to get the deep learning improved approximation of the first derivative. Now we
insert the equation (9) into (2), replacing the central approximation of the first
derivative, and use it as our final scheme.

Remark 1. Also one-sided second order finite difference approximation for the
first derivative could be used. However, for this we would need to define one more
boundary point on the left side of the computational domain. Moreover, wider
stencil can again lead to numerical oscillations. In Section 5 we will compare
the numerical results using (9) as well as using second-order finite difference
approximations for the first derivative.
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We also introduce a multiplication factor for the deep learning terms

F (ūn
i ) = 103 min

(
|ûn

i+1 − 2ûn
i + ûn

i−1|, 102
)
F(ūn

i ),

G(ūn
i ) = 102 min

(
|ûn

i+1 − 2ûn
i + ûn

i−1|, 102
)
G(ūn

i ).
(10)

By adding these factors, we ensure that the bounded learned coefficients have sig-
nificant effects only in the non-smooth (kinked) part of the solution. By ensuring
that these factors are bounded, we do not violate the convergence properties.

For computational efficiency, we use a small CNN structure described in
Figure 1. Two output channels in the last hidden layer represent the correction
F(ūn

i ) of a diffusion term and the correction G(ūn
i ) of a convection term of (5).

Conv1d
in_channels = 2
out_channels = 5
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 5
out_channels = 5
kernel_size = 5
padding = 2

Conv1d
in_channels = 5
out_channels = 1
kernel_size = 1
padding = 0

udiff2

udiff1

Conv1d
in_channels = 1
out_channels = 3
kernel_size = 3
padding = 1

ELU Tanh

Conv1d
in_channels = 3
out_channels = 1
kernel_size = 1
padding = 0

ū

Conv1d
in_channels = 1
out_channels = 3
kernel_size = 3
padding = 1

ELU Tanh

Conv1d
in_channels = 3
out_channels = 2
kernel_size = 1
padding = 0

ū

Conv2d
in_channels = 1
out_channels = 1
kernel_size = 3
padding = 1

ELU Tanh

Conv2d
in_channels = 1
out_channels = 1
kernel_size = 1
padding = 0

ū
Fig. 1: The structure of the CNN used for the training.

We aim to obtain a numerical scheme, which can reliably solve the Asian
option pricing problem for all possible combinations of σ, r and T . For this
purpose, we first create a data set consisting of 100 reference solutions. We
generate the parameters σ and r randomly

σ ∈ U [0.1, 0.4], r ∈ U [0.1, 0.3]. (11)

For training, we fix T = 1, K = 100 and use the computational domain
[xl, xr] = [−0.4, 4]. The reference solutions are computed using standard cen-
tral finite difference schemes on a grid divided into 400 space points and the

temporal step size is chosen such that N = maxi=0,...,I

(
(τσ2x2

i )/(0.8∆x2)
)
.

For the training, we use the training procedure described in [5]. We divide
the spatial computational domain into 50 space steps. Then, we randomly select
a problem from a data set. Afterwards, we compute successively the solution
up to the fixed final time T . After each time step n we compute the loss with
respect to the weights of CNN, update the weights and continue to the next time
step n + 1. This means, in each subsequent time step, a new updated solution
according to (2) is input to the CNN. For the optimization we use the Adam
optimizer with the learning rate 0.0001. For the training procedure, we use the
mean squared error loss function

LOSSMSE(u) =
1

I

I∑
i=0

(ûn
i − un,ref

i )2, (12)

where ûn
i is a numerical approximation of u(xi, tn) obtained by DFDM, and

un,ref
i denotes the reference solution.
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After the training, we choose the model from a training step, in which the
best performance on problems from the validation set is obtained. These are
the problems with randomly generated initial parameters, which were not in the
training data. This is our final DFDM and we present the numerical results using
this method in the following section.

5 Numerical Results

Let us present the numerical results on a test set containing the problems with
the randomly generated initial data.

We compare the L2 errors in Table 1. We computed the solution with the
given r and σ parameters as given in the table. For the computation, we used
the central finite difference formula for the diffusion term, and for the convec-
tion term, we distinguish among the following possibilities: second-order central
finite difference scheme (FDMc), second-order one-sided finite difference scheme
(FDMs2), first-order one-sided finite difference scheme (FDMs1), and deep learn-
ing improved first-order one-sided finite difference scheme (DFDM). As can be
seen, DFDM has the smallest L2 errors in all cases. Compared to the FDMs1,
we obtain the largest improvement. The ratio denotes the error of the listed
standard finite difference methods divided by the error of DFDM.

We illustrate the solution for two selected cases in Figure 2. As can be seen,
FDMc and FDMs2 lead to spurious oscillations in the solution. FDMs1 does not
cause any oscillations, but has a large error near the kink. DFDM produces the
best solution among the methods.

We also computed the solution for the different final computation times T .
The results are shown in Table 2. Let us note, that we only trained the method
with the fixed T = 1, but we observe improving results also for different com-
putation times. Based on the presented results it can be stated, that the longer
computational time leads to even better numerical results using DFDM.

parameters L2 improvement ratios

σ r FDMs1 FDMs2 FDMc DFDM
ratio

(FDMs1)
ratio

(FDMs2)
ratio

(FDMc)

0.22 0.12 0.050304 0.016930 0.017986 0.008781 5.73 1.93 2.05

0.18 0.13 0.050193 0.021800 0.021481 0.011393 4.41 1.91 1.89

0.32 0.24 0.047173 0.010243 0.010361 0.003628 13.00 2.82 2.86

0.2 0.21 0.049032 0.018337 0.017864 0.008794 5.58 2.09 2.03

0.32 0.15 0.046425 0.010367 0.010167 0.003600 12.89 2.88 2.82

0.23 0.16 0.049239 0.015483 0.015921 0.007031 7.00 2.20 2.26

0.35 0.24 0.046521 0.009166 0.009298 0.003086 15.08 2.97 3.01

0.16 0.23 0.047185 0.025895 0.022651 0.015085 3.13 1.72 1.50

0.27 0.18 0.047725 0.012656 0.012479 0.004896 9.75 2.58 2.55

0.15 0.28 0.047074 0.029096 0.025772 0.017967 2.62 1.62 1.43

Table 1: Comparison of L2 error for the solution of (5) with various parameters
σ and r using different finite difference methods, I = 50, T = 1.
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(a) σ = 0.22, r = 0.12.
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(b) σ = 0.16, r = 0.23.

Fig. 2: Comparison of the solution of (5) using different finite difference methods,
I = 50, T = 1.

parameters L2 improvement ratios

σ r T FDMs1 FDMs2 FDMc DFDM
ratio

(FDMs1)
ratio

(FDMs2)
ratio

(FDMc)

0.22 0.12 0.8 0.051032 0.019911 0.020737 0.010952 4.66 1.82 1.89

0.18 0.13 0.9 0.047113 0.023283 0.019891 0.012144 3.88 1.92 1.64

0.32 0.24 1.1 0.047800 0.009610 0.010600 0.003927 12.17 2.45 2.70

0.2 0.21 2 0.049840 0.011665 0.012847 0.004838 10.30 2.41 2.66

0.32 0.15 0.5 0.046685 0.016061 0.013966 0.006675 6.99 2.41 2.09

0.23 0.16 3 0.048125 0.007549 0.008789 0.002720 17.69 2.78 3.23

0.35 0.24 1.5 0.045988 0.006936 0.007465 0.002200 20.91 3.15 3.39

0.16 0.23 1.8 0.048583 0.017193 0.016256 0.009683 5.02 1.78 1.68

0.27 0.18 0.6 0.050456 0.018115 0.018972 0.009517 5.30 1.90 1.99

0.15 0.28 2.5 0.052187 0.014689 0.016639 0.008149 6.40 1.80 2.04

Table 2: Comparison of L2 error for the solution of the equation (5) with various
parameters σ, r and T using different finite difference methods, I = 50.
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3. T. Kossaczká, M. Ehrhardt, and M. Günther, A neural network enhanced WENO
method for nonlinear degenerate parabolic equations. Phys. Fluids 34(2) (2022),
026604.
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