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Abstract

Deep learning-based numerical schemes for solving high-dimensional backward stochastic dif-
ferential equations (BSDEs) have recently raised plenty of scientific interest. While they enable
numerical methods to approximate very high-dimensional BSDEs, their reliability has not been
studied and is thus not understood. In this work, we study uncertainty quantification (UQ) for
a class of deep learning-based BSDE schemes. More precisely, we review the sources of uncer-
tainty involved in the schemes and numerically study the impact of different sources. Usually,
the standard deviation (STD) of the approximate solutions obtained from multiple runs of the
algorithm with different datasets is calculated to address the uncertainty. This approach is com-
putationally quite expensive, especially for high-dimensional problems. Hence, we develop a UQ
model that efficiently estimates the STD of the approximate solution using only a single run
of the algorithm. The model also estimates the mean of the approximate solution, which can
be leveraged to initialize the algorithm and improve the optimization process. Our numerical
experiments show that the UQ model produces reliable estimates of the mean and STD of the ap-
proximate solution for the considered class of deep learning-based BSDE schemes. The estimated
STD captures multiple sources of uncertainty, demonstrating its effectiveness in quantifying the
uncertainty. Additionally, the model illustrates the improved performance when comparing dif-
ferent schemes based on the estimated STD values. Furthermore, it can identify hyperparameter
values for which the scheme achieves good approximations.

Keywords backward stochastic differential equations, high-dimensional problems, deep neural
networks, uncertainty quantification, heteroscedastic nonlinear regression

1 Introduction

Deep learning has attracted the interest of academics in various fields, including computer vi-
sion and natural language processing, as well as traditional sciences such as physics, chemistry,
biology, and finance. Since the predictions of models that use deep learning in decision-making
processes are prone to noise and model errors [27], assessing the model’s reliability before it can
be used in practice is critical. An example of such decisions is the pricing and hedging of different
contracts in finance. Companies may suffer from significant financial losses as a result of poor
judgments. Thus, it is highly desirable to understand the uncertainties in deep learning-based
numerical schemes and develop methods to quantify them.
Backward stochastic differential equations (BSDEs) are important tools used to model problems
in scientific fields due to their connections to partial differential equations (PDEs) and stochastic
control problems via the nonlinear Feynman–Kac formula [32]. In most cases, nonlinear BSDEs

1



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

cannot be solved explicitly. Hence, advanced numerical techniques to approximate their solutions
become desired. Over the years, many numerical methods have been proposed for solving BSDEs,
e.g., [6, 52, 18, 37, 53, 5, 38, 55, 17, 8, 54, 46, 45]. However, most of those methods are not suitable
for solving high-dimensional BSDEs due to the curse of dimensionality. Some techniques such
as parallel computing using GPU computing [19, 30] or sparse grid methods [51, 12, 7] can only
solve moderate dimensional BSDEs within a reasonable computational time.
Recently, the authors in [11, 20] developed a deep learning-based scheme (we refer to it as the
DBSDE scheme in the rest of the paper) for solving high-dimensional nonlinear BSDEs. The
method employs deep neural networks (DNNs) to approximate the unknown gradient of the
solution by reformulating the BSDE problem as a stochastic optimization problem. Due to the
universal approximation capability [23, 9] of neural networks (NNs), the objective function can
be effectively optimized in practice. Therefore, the function values of interest (the unknown
solution and its gradient) are obtained quite accurately. The method has opened the door to
solve such problems in hundreds of dimensions within a reasonable computational time. After the
DBSDE scheme, there are several works proposed to improve it, e.g., by algorithmic adjustments
or methodological extensions [44, 13, 25, 3, 48, 15, 29, 31]. Furthermore, some convergence
analysis of the DBSDE scheme have also been studied, e.g., see [21, 28] for the error analysis
(utilizing universal approximation capability of NNs) and [49] for its gradient convergence (under
a restrictive choice of NN setting).
As an example, we consider the pioneering DBSDE scheme to study uncertainty quantifica-
tion (UQ) and introduce our UQ model. In the DBSDE scheme, the authors reformulate the
BSDE as a stochastic control problem and use the Euler-Maruyama method to discretize the
integrals. The unknown functions (solution at initial time and its gradient on the whole time
domain) are estimated using DNNs. The parameters of DNNs are then optimized using the
stochastic gradient descent (SGD) algorithm. The DBSDE method incorporates various sources
of uncertainty, including finite time discretization, restrictive choice of DNN specifications, the
lack of convergence guarantees of the SGD algorithm, and finite sample size during stochastic
optimization. It is crucial to identify and quantify these different sources of uncertainty in the
DBSDE scheme for practical applications. Therefore, we review these sources of uncertainty
and numerically demonstrate the impact of different sources. Our numerical experiments show
that it is practically challenging to disentangle them, emphasizing the importance of quantify-
ing uncertainty before using the scheme in practice. Usually, the standard deviation (STD) of
the approximate solutions obtained from multiple runs of the DBSDE algorithm with different
datasets is calculated to account for the uncertainty in a given prediction, see [11]. This approach
is computationally expensive, especially in high-dimensional cases. Therefore, we develop a UQ
model to estimate the STD of the approximate solution without requiring multiple runs. Several
techniques have been proposed in the literature to quantify uncertainty, such as Monte Carlo
Dropout [14], Monte Carlo DropConnnect [39], deep ensembles [36, 43], Flipout-based varia-
tional inference [50], Markov Chain Monte Carlo [35], and many others [22, 42, 41]. A review
of these techniques can be found in [1]. To the best of our knowledge, there are no applications
or developments of UQ models specifically for deep learning-based BSDE schemes. Hence, we
develop a UQ model with the aim of addressing this gap.
Our UQ model is based on a commonly used approach for quantifying uncertainty in het-
eroscedastic nonlinear regression, see [2] for heteroscedastic least square type regression meth-
ods and [40, 36, 33] for heteroscedastic NN regression methods. We make the assumption that
the residuals or errors of the DBSDE scheme follow a normal distribution with zero mean and
the STD depending on the chosen parameter set of the discretized BSDE. This is a standard
assumption in heteroscedastic regression. In our method, we use a DNN to learn two functions
that estimate the mean and STD of the approximate solution. To train the DNN, we construct
a dataset of independent and identically distributed (i.i.d) samples, which includes different
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parameter sets of the discretized BSDE and the corresponding approximate solutions obtained
from the DBSDE algorithm. After generating a moderate number of samples, we optimize the
network parameters by minimizing the negative log-likelihood. Our UQ model provides an es-
timate of the STD of the approximate solution in a more computationally efficient manner
compared to running multiple iterations of the algorithm per parameter set. Additionally, the
estimated mean of the approximate solution from our model can be used to initialize the algo-
rithm and improve the optimization process. Note that the proposed UQ model is applicable not
only to the DBSDE scheme but also to other deep learning-based schemes for solving BSDEs. In
addition to the DBSDE scheme, we apply our UQ model to the Locally additive DBSDE (LaDB-
SDE) scheme [31], which exhibits better convergence than the DBSDE scheme. Our numerical
experiments demonstrate that the UQ model produces reliable estimates of the mean and STD
of the approximate solution for both the DBSDE and LaDBSDE schemes. Moreover, we show
multiple practical implications of using the UQ model. Firstly, the estimated STD captures
multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty.
Secondly, the UQ model illustrates the improved performance of the LaDBSDE scheme in com-
parison to the DBSDE scheme based on the corresponding estimated STD values. Finally, our
UQ model can be utilized to determine DNN hyperparameter values for which the respective
scheme performs well, e.g. the number of discretization points.
The remainder of the paper is organized as follows. In Section 2, we provide the necessary
foundations to view the BSDE as a learning problem. In Section 3, we introduce the DBSDE
scheme for solving high-dimensional BSDEs, discuss the sources of uncertainty in the scheme, and
present a UQ model to estimate the STD of the approximate solution. In Section 4, we analyze
the practical impact of different sources of uncertainty in the DBSDE scheme and demonstrate
the effectiveness of our UQ model through numerical tests for both the DBSDE and LaDBSDE
schemes. Finally, in Section 5, we conclude our work.

2 Backward stochastic differential equations as a learning prob-
lem

In the following, we introduce the notions of the BSDEs that are used throughout the paper.

2.1 Preliminaries

Let (Ω,F ,P, {Ft}0≤t≤T ) be a complete, filtered probability space. In this space a standard d-
dimensional Brownian motion Wt is defined, such that the filtration {Ft}0≤t≤T is the natural
filtration of Wt. Throughout the whole paper we rely on the following notations

• |x| for the standard Euclidean norm of x ∈ R or x ∈ Rd.

• S2
(
[0, T ]× Ω;Rd

)
for the space of continuous and progressively measurable stochastic

processes X : [0, T ]× Ω → Rd such that E
[
sup0≤t≤T |Xt|2

]
<∞.

• ∆ = {tn|tn ∈ [0, T ], n = 0, 1, . . . , N, tn < tn+1,∆t = tn+1− tn, t0 = 0, tN = T} is a uniform
discretization of the time interval [0, T ].

• H2
(
[0, T ]× Ω;R1×d) for the space of progressively measurable stochastic processes Z :

[0, T ]× Ω → R1×d such that E
[∫ T

0 |Zt|2 dt
]
<∞.

• H∆,2
(
{0, 1, . . . , N} × Ω;R1×d) for the space of progressively measurable discrete stochastic

processes Z∆ : {0, 1, . . . , N} × Ω → R1×d such that E
[∑N

n=0 |Z∆
tn |

2∆t
]
<∞.
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• L2
Ft
(
Ω;Rd

)
for the space of Ft-measurable random variables ξ : Ω → Rd such that

E
[
|ξ|2
]
<∞.

• C1,2
(
[0, T ]× Rd;R

)
for the space of continuous and differentiable functions of two argu-

ments u : [0, T ] × Rd → R, differentiable with respect to the first argument and twice
differentiable with respect to the second argument.

• D⊤ for the transpose of matrix D ∈ Rd×d.

• Tr [D] for the trace of matrix D ∈ Rd×d.

2.2 Nonlinear Feynman-Kac formula

We present the nonlinear Feynman–Kac formula, which provides a probabilistic representation
for the solution of a semi-linear parabolic PDE through a (decoupled) forward-backward stochas-
tic differential equation (FBSDE).
Let T ∈ (0,∞), d ∈ N, the functions f : [0, T ] × Rd × R × R1×d → R and g : Rd → R are
continuous, and (a, b) : [0, T ] × Rd → Rd × Rd×d is continuously differentiable for all variables.
Let u ∈ C1,2([0, T ]× Rd;R) satisfy that u(T, x) = g(x) and the semi-linear parabolic PDE

∂u

∂t
+∇u(t, x) a(t, x) + 1

2
Tr
[
bb⊤Hessu(t, x)

]
+ f (t, x, u,∇u b) (t, x) = 0, (1)

for all (t, x) ∈ ([0, T ] × Rd), where Hessu is the Hessian matrix and ∇u the gradient of u with
respect to the spatial variable x. Consider the following decoupled FBSDE{

Xt = x0 +
∫ t
0 a (s,Xs) ds+

∫ t
0 b (s,Xs) dWs,

Yt = g (XT ) +
∫ T
t f (s,Xs, Ys, Zs) ds−

∫ T
t Zs dWs,

(2)

where f : [0, T ] × Rd × R × R1×d → R is the driver function, f(t,Xt, Yt, Zt) is Ft-adapted, the
third term on the right-hand side is an Itô-type integral and g : Rd → R is the function for the
terminal condition depending on the final value XT of the forward stochastic differential equa-
tion (SDE). The triple of processes {(Xt, Yt, Zt)}0≤t≤T ∈ S2

(
[0, T ]× Ω;Rd

)
×S2 ([0, T ]× Ω;R)×

H2
(
[0, T ]× Ω;R1×d) is the solution of the above FBSDE if it satisfies (2) P-a.s. ∀ t ∈ [0, T ]. As-

sume that (1) has a classical solution u ∈ C1,2([0, T ]×Rd;R) and the usual regularity conditions
of (2) are satisfied [32]. Then the solution of (2) can be represented P-a.s. by

Yt = u (t,Xt) , Zt = ∇u (t,Xt) b (t,Xt) ∀ t ∈ [0, T ) . (3)

2.3 Formulation of the BSDE as a suitable stochastic control problem

We now view the solution (Xt, Yt, Zt) of (2) as the stochastic control problem

inf
Y0∈L2

F0
(Ω;R), Z∈H2([0,T ]×Ω;R1×d)

L (Y0, Z) ,

s.t. Xt = x0 +

∫ t

0
a (s,Xs) ds+

∫ t

0
b (s,Xs) dWs,

Yt = Y0 −
∫ t

0
f (s,Xs, Ys, Zs) ds+

∫ t

0
Zs dWs,

(4)

for t ∈ [0, T ], where
L (Y0, Z) := E

[
|g(XT )− YT |2

]
.
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The solution of (2) is a minimizer of (4) since the loss function attains zero when it is evaluated
at the solution. In addition, the wellposedness of the BSDEs (under the usual regularity condi-
tions [32]) ensures the existence and uniqueness of the minimizer. Due to (3), we seek a function
approximator for u : Rd → R and ∇u b : [0, T ] × Rd → R1×d to approximate the unknown
solution Y0 = u(t0, x0) and Zt = ∇u (t,Xt) b (t,Xt) ∀ t ∈ [0, T ]. Due to their approximation
capability in high dimensions, NNs are a promising candidate.

2.4 Neural networks as function approximators

For our purpose, we consider fully connected feedforward NNs or DNNs. Let d0, d1 ∈ N be
the input and output dimensions, respectively. We fix the global number of layers as L + 2,
L ∈ N the number of hidden layers each with η ∈ N neurons. The first layer is the input layer
with d0 neurons and the last layer is the output layer with d1 neurons. A DNN is a function
ϕ(·; θ) : Rd0 → Rd1 composed of a sequence of simple functions, which therefore can be collected
in the following form

x ∈ Rd0 7−→ AL+1(·; θ(L+ 1)) ◦ ϱ ◦AL(·; θ(L)) ◦ ϱ ◦ . . . ◦ ϱ ◦A1(x; θ(1)) ∈ Rd1 ,

where θ := (θ(1), . . . , θ(L+ 1)) ∈ RP and P is the total number of network parameters, x ∈ Rd0
is called an input vector. Moreover, Al(·; θ(l)), l = 1, 2, . . . , L + 1 are affine transformations:
A1(·; θ(1)) : Rd0 → Rη, Al(·; θ(l)), l = 2, . . . , L : Rη → Rη and AL+1(·; θ(L + 1)) : Rη → Rd1 ,
represented by

Al(v; θ(l)) = Wlv + Bl, v ∈ Rηl−1 ,

where θ(l) := (Wl,Bl), Wl ∈ Rηl×ηl−1 is the weight matrix and Bl ∈ Rηl is the bias vector with
η0 = d0, ηL+1 = d1, ηl = η for l = 1, . . . , L and ϱ : R → R is a nonlinear function (called the
activation function), and applied component-wise on the outputs of Al(·; θ(l)). Common choices
are tanh(·), sin(·),max(0, ·) etc. All these matrices Wl and vectors Bl form the parameters θ of
the DNN and can be collected as

P =
L+1∑
l=1

ηl(ηl−1 + 1) = η(d0 + 1) + η(η + 1)(L− 1) + d1(η + 1),

for fixed d0, d1, L and η. We denote by Θ the set of possible parameters for the DNN ϕ(·; θ)
with θ ∈ Θ. The Universal Approximation Theorem [23, 9] justifies the use of NNs as function
approximators.

3 Uncertainty in the DBSDE scheme

In this section, we discuss the sources of uncertainty in the DBSDE scheme and propose a UQ
model to estimate the STD of the approximate solution.

3.1 The DBSDE scheme

We use the time discretization ∆, and for notational convenience we write Wn = Wtn , ∆Wn =
Wn+1 −Wn, (Xn, Yn, Zn) = (Xtn , Ytn , Ztn), (X

∆
n , Y

∆
n , Z

∆
n ) the approximations of (Xn, Yn, Zn).

By using the Euler-Maruyama method one obtains

X∆
n+1 = X∆

n + a
(
tn, X

∆
n

)
∆t+ b

(
tn, X

∆
n

)
∆Wn,

Y ∆
n+1 = Y ∆

n − f
(
tn, X

∆
n , Y

∆
n , Z

∆
n

)
∆t+ Z∆

n ∆Wn,
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where n = 0, . . . , N − 1. Since the Brownian motions are independent, ∆Wn ∼ N (0d, ∆t Id),
with 0d ∈ Rd a vector of zeros and Id ∈ Rd×d the identity matrix. The discretized counterpart
of (4) is given as

inf
Y ∆
0 ∈L2

F0
(Ω;R), Z∆∈H∆,2({0,1,...,N−1}×Ω;R1×d)

L∆
(
Y ∆
0 , Z∆

)
,

s.t. X∆
0 = x0,

X∆
n+1 = X∆

n + a
(
tn, X

∆
n

)
∆t+ b

(
tn, X

∆
n

)
∆Wn,

Y ∆
n+1 = Y ∆

n − f
(
tn, X

∆
n , Y

∆
n , Z

∆
n

)
∆t+ Z∆

n ∆Wn,

(5)

for n = 0, 1, . . . , N − 1, where

L∆
(
Y ∆
0 , Z∆

)
:= E

[
|g(X∆

N )− Y ∆
N |2

]
.

The authors in [11] considered DNNs, namely ϕy0 : Rd → R and ϕzn : Rd → R1×d for n =
0, 1, . . . , N − 1 to estimate the solution of (5). For a sample of size m we have

min
θ∈Θ

L∆,m
(
ϕy0(x0; θ

y
0), ϕ

z(X∆; θz)
)
,

s.t. X∆
0 = x0, Y ∆,θ

0 = ϕy0(x0; θ
y
0),

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆t+ b

(
tn, X

∆
n,j

)√
∆tZj ,

Z∆,θ
n,j = ϕzn(X

∆
n,j ; θ

z
n),

Y ∆,θ
n+1,j = Y ∆,θ

n,j − f
(
tn, X

∆
n,j , Y

∆,θ
n,j , Z

∆,θ
n,j

)
∆t+ Z∆,θ

n,j

√
∆tZj ,

(6)

for n = 0, 1, . . . , N − 1, j = 1, . . . ,m, Zj ∼ N (0d, Id) and

L∆,m
(
ϕy0(x0; θ

y
0), ϕ

z(X∆; θz)
)
:=

1

m

m∑
j=1

|g(X∆
N,j)− Y ∆,θ

N,j |
2.

Note that Y ∆,θ
0 = θy0 ∈ R and Z∆,θ

0 = θz0 ∈ R1×d are considered as learnable parameters in [11],
which are initialized by sampling from uniform distributions. Furthermore, N − 1 DNNs are
employed to calculate Z∆,θ

n for n = 1, 2, . . . , N − 1. The architecture of the DBSDE scheme is
displayed in Figure 1.
In the numerical section, we also consider the LaDBSDE scheme [31] to demonstrate the appli-
cability of our UQ model to other deep learning-based BSDE schemes. The LaDBSDE scheme
addresses the issues encountered in the DBSDE scheme, such as convergence to an approxima-
tion far from the true solution or even divergence, especially for a complex solution structure
and a long terminal time. In the LaDBSDE scheme, the BSDE problem is formulated as a global
optimization problem with local loss functions at each time step. The process Y is approximated
using the same DNN ϕy, while the process Z is obtained through automatic differentiation due
to (3). These approximations are performed by globally minimizing quadratic local loss functions
defined at each time step, which always includes the terminal condition YT . The loss functions
are obtained by iterating the Euler-Maruyama discretization of the integrals with the terminal
condition YT . For further details, we refer to [31]. In the following sections, we introduce all the
sources of uncertainty in the DBSDE scheme and propose a UQ model to estimate the uncer-
tainty. It is important to emphasize that our approach is applicable not only to the DBSDE
scheme but also to the LaDBSDE scheme and potentially to other deep learning-based BSDE
schemes as well.
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t0 t1 t2 · · · tN−1

∆W0 ∆W1 ∆W2 · · · ∆WN−1

X∆
0 X∆

1 X∆
2 · · · X∆

N−1 X∆
N

ϕz1 ϕz2 · · · ϕzN−1

Z∆,θ
1Z∆,θ

0

ϕz0

Z∆,θ
2

· · · Z∆,θ
N−1

ϕy0

Y ∆,θ
0 Y ∆,θ

1 Y ∆,θ
2

· · · Y ∆,θ
N−1 Y ∆,θ

N

L∆,m

Y ∆
N

Figure 1: Architecture of the DBSDE scheme.

3.2 Sources of uncertainty in the DBSDE scheme

For notational convenience, we consider

• Y⋆ := argminY∈L2
F0

(Ω;R)×H2([0,T ]×Ω;R1×d) L(Y) the solution to (4), where Y = (Y0, Z).

• Y∆,⋆ := argminY∆∈L2
F0

(Ω;R)×H∆,2({0,1,...,N−1}×Ω;R1×d) L
∆(Y∆) the solution to (5), where

Y∆ =
(
Y ∆
0 , Z∆

)
.

• θ⋆ := argminθ∈Θ L∆(Yθ) the optimal parameters, where Yθ =
(
ϕy0(x0; θ

y
0), ϕ

z(X∆; θz)
)
.

• θm,⋆ := argminθ∈Θ L∆,m(Yθ) the optimal parameters in (6).

• A : N → Θ the optimization algorithm and θ̂m = A(m) an estimate for the sample of size
m.

• φN : L2
F0

(Ω;R)×H∆,2
(
{0, . . . , N − 1} × Ω;R1×d)→ L2

F0
(Ω;R)×H2

(
[0, T ]× Ω;R1×d) is

an interpolation scheme. We choose φN such that L∆ − L ◦ φN = 0.

Then, constructing a telescopic sum we obtain the following error decomposition of the DBSDE
scheme

L(φN (Yθ̂m)) ≤ L(Y⋆)

+ L(φN (Y∆,⋆))− L(Y⋆)

+ |L∆(Y∆,⋆)− L(φN (Y∆,⋆))|
+ L∆(Yθ⋆)− L∆(Y∆,⋆)

+ L∆(Yθm,⋆)− L∆(Yθ⋆)

+ |L∆,m(Yθm,⋆)− L∆(Yθm,⋆)|

+ L∆,m(Yθ̂m)− L∆,m(Yθm,⋆)

+ |L∆(Yθ̂m)− L∆,m(Yθ̂m)|

+ |L(φN (Yθ̂m))− L∆(Yθ̂m)|.
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Since L∆ − L ◦ φN = 0, we have

L(φN (Yθ̂m)) ≤ L(φN (Y∆,⋆)) (7)

+ L∆(Yθ⋆)− L∆(Y∆,⋆) (8)

+ L∆(Yθm,⋆)− L∆(Yθ⋆) (9)

+ |L∆,m(Yθm,⋆)− L∆(Yθm,⋆)| (10)

+ L∆,m(Yθ̂m)− L∆,m(Yθm,⋆) (11)

+ |L∆(Yθ̂m)− L∆,m(Yθ̂m)|. (12)

In the decomposition above, each term corresponds to a specific source of uncertainty. The nam-
ing convention we adopt here is motivated by [24]. The term (7) captures the discretization
error associated with the Euler-Maruyama method. Note that a DNN architecture has to be
chosen when implementing the algorithm. Hence, (8) represents the model or approximation
error [4, 26]. Since the scheme optimizes the empirical loss, (9) denotes the estimation error,
as the empirical loss is only an estimate of the true loss. Selecting an SGD-type algorithm
to optimize the DNN parameters introduces the optimization error, represented by (11). Fi-
nally, (10) and (12) correspond to the sampling errors, which are insignificant compared to the
other error sources. Identifying these errors is important to evaluate their practical impact on
the uncertainty of the scheme. In the numerical section, we discuss such errors.

3.3 The UQ model

In practice, it is challenging to disentangle the sources of uncertainty in the DBSDE scheme,
as we demonstrate in the numerical experiments. Consequently, quantifying the uncertainty of
the DBSDE scheme becomes crucial for practical applications. In this section, we develop a UQ
model to estimate the uncertainty. After applying the DBSDE scheme, we obtain the random

variables Y ∆,θ̂m

0 ∈ R and Z∆,θ̂m

0 ∈ R1×d that approximate Y0 and Z0, respectively. To evaluate
the quality of such approximations, one can use the expected squared error when the exact
solution is known. This metric accounts for all the error sources in the DBSDE scheme and is
calculated as

ϵy :=

√
E
[
(Y ∆,θ̂m

0 − Y0)2
]
∈ R+, ϵzk :=

√
E
[
(Z∆,θ̂m,k

0 − Zk0 )
2
]
∈ R+,

for k = 1, . . . , d. However, (Y0, Z0) is usually unknown, the STD of the approximate solutions

σy :=

√
E
[
(Y ∆,θ̂m

0 − µy)2
]
∈ R+, σzk :=

√
E
[
(Z∆,θ̂m,k

0 − µzk)2
]
∈ R+,

is often used, where k = 1, . . . , d, µy := E
[
Y ∆,θ̂m

0

]
∈ R and µzk := E

[
Z∆,θ̂m,k
0

]
∈ R. To compute

the STD (and the expected squared error when the exact solution (Y0, Z0) is available), Q runs
of the DBSDE algorithm must be done. The STD and the expected squared error are used as
the benchmark in our experiments. To this end, we have the root mean squared error (RMSE)
and the ensemble (biased sample) STD as

ϵ̃y :=

√√√√ 1

Q

Q∑
q=1

(
Y ∆,θ̂m

0,q − Y0

)2
, σ̃y :=

√√√√ 1

Q

Q∑
q=1

(
Y ∆,θ̂m

0,q − µ̃y
)2
,

for Y0 and

ϵ̃zk :=

√√√√ 1

Q

Q∑
q=1

(
Z∆,θ̂m,k
0,q − Zk0

)2
, σ̃zk :=

√√√√ 1

Q

Q∑
q=1

(
Z∆,θ̂m,k
0,q − µ̃zk

)2
,

8
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for Z0, k = 1, . . . , d, where
(
Y ∆,θ̂m

0,q , Z∆,θ̂m

0,q

)
represents the approximated solutions from the q-th

run of the algorithm, µ̃y := 1
Q

∑Q
q=1 Y

∆,θ̂m

0,q and µ̃zk := 1
Q

∑Q
q=1 Z

∆,θ̂m,k
0,q are the ensemble (sample)

means of the approximate solution. Note that one can use the ensemble unbiased STD. However,
the estimate of the STD from the UQ model is biased (as a maximum likelihood estimate).
Therefore, for the purpose of comparison in numerical experiments, it is more convenient to
use the ensemble biased STD. Usually, Q = 10 is used, which is computationally expensive in

high dimensions. Therefore, we propose a UQ model to estimate the STDs for
(
Y ∆,θ̂m

0 , Z∆,θ̂m

0

)
by using only Q = 1 run of the algorithm. The model is based on an approach commonly
used to quantify uncertainty in heteroscedastic nonlinear regression. We make the assumption
that the errors of the DBSDE scheme follow a normal distribution with zero mean and the
STD depending on the parameter set of the discretized BSDE (such as T , x0, ∆t, etc.). This
assumption aligns with the standard practice in heteroscedastic regression. To train the UQ
model, we construct a dataset of length M with i.i.d samples D = {xi,yi, zi}Mi=1. Here, xi ∈ Rn

represents n parameters of the discretized BSDE, for example, xi := (x0,i, Ti,∆ti), and (yi, zi) :=(
Y ∆,θ̂m

0 (xi), Z
∆,θ̂m

0 (xi)
)
∈ R × R1×d are the approximations of (Y0(xi), Z0(xi)) obtained from

the DBSDE scheme using parameter set xi. We use uniform distributions to select the parameter
set xi

x0,i ∼ U [xmin0 , xmax0 ], Ti ∼ U [Tmin, Tmax],
where (xmin0 , xmax0 ) and (Tmin, Tmax) are the boundaries of the corresponding uniform distribu-
tions for x0 and T . The dataset D is generated using Algorithm 1. Note that one can use the
entire dataset to build a learning algorithm that considers Y0 and Z0 as pairs (the BSDE solution
at t0 is the pair (Y0, Z0)). However, this approach may introduce increased complexity for the
learning algorithm, mainly because the magnitudes of the solutions for y and z over different
parameter sets x can differ significantly. Additionally, assumptions regarding their correlation
might be necessary. Hence, we divide the dataset D into two datasets, Dy = {xi,yi}Mi=1 and
Dz = {xi, zi}Mi=1, and develop two different learning algorithms. Given the input feature x, we
use one DNN to model the probabilistic predictive distribution pω(y|x) and another for pψ(z|x),
where ω and ψ are the parameters of the corresponding DNNs. More precisely, we treat each
observed value as a sample from a Gaussian distribution (multivariate Gaussian for Z0), with
the mean and STD as functions of the parameter set, namely

yi ∼ N (µy (xi) , (σ
y)2 (xi)), zi ∼ N (µz (xi) , Id (σ

z)2 (xi)), (13)

and allow the networks to calculate their estimates as (µ̂y,ω(xi), σ̂
y,ω(xi)) ∈ R × R+ and(

µ̂z,ψ(xi), σ̂
z,ψ(xi)

)
∈ Rd × Rd,+. These calculations are performed by minimizing the negative

log-likelihood

Lω,M (Dy) := − log (pω(y|x)) = 1

M

M∑
i=1

(
log (σ̂y,ω(xi)) +

1

2

(yi − µ̂y,ω(xi))
2

(σ̂y,ω)2(xi)

)
+ cy,

for Y0 and assuming that the covariance matrix of Z∆,θ̂m

0 is diagonal, then

Lψ,M (Dz) := − log
(
pψ(z|x)

)
=

1

M

M∑
i=1

(
d∑

k=1

log
(
σ̂zk,ψ(xi)

)
+
1

2

(
zi − µ̂z,ψ(xi)

)⊤ (
(σ̂z,ψ)2(xi)

)−1 (
zi − µ̂z,ψ(xi)

))
+ cz,

for Z0, where c
y > 0, cz > 0 are constants. We use Algorithm 2 and 3 to estimate the parameters

in (13) for Y0 and Z0, respectively.

9
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Algorithm 1: Algorithm generating dataset D for UQ model

Input:
(
N,M, d, xmin0 , xmax0 , Tmin, Tmax, Y min

0 , Y max
0

)
- problem related parameters

Input: (a, b, f, g) - functions of BSDE system
Input: (α,K, L, η, ϱ,m) - DNN hyperparameters in DBSDE scheme
Output: D = {xi,yi, zi}Mi=1 - Dataset for UQ model
for i = 1 :M do

x0,i ∼ U [xmin0 , xmax0 ]
Ti ∼ U [Tmin, Tmax]
∆ti =

Ti
N

xi = (x0,i, Ti,∆ti)
for n = 0 : N do

tn = n∆ti
end
Initialize parameter set θ

θ̂y,m,00 = Y ∆,θ̂m,0

0 (xi) ∼ U [Y min
0 , Y max

0 ]

θ̂z,m,00 = Z∆,θ̂m,0

0 (xi) ∼ U [−1d, 1d] - 1d vector of all ones(
θ̂z,m,01 , . . . , θ̂z,m,0N−1

)
- Xavier normal initializer [16]

θ̂m,0 =
(
θ̂y,m,00 , θ̂z,m,00 , θ̂z,m,01 , . . . , θ̂z,m,0N−1

)
Optimization or training part

for κ = 1 : K do
for j = 1 : m do

X∆
0,j = x0,i

for n = 0 : N − 1 do
Euler-Maruyama for the forward SDE
∆Wn,j ∼ N (0d,∆ti Id)

X∆
n+1,j = X∆

n,j + a
(
tn, X

∆
n,j

)
∆ti + b

(
tn, X

∆
n,j

)
∆Wn,j

Use DNN with (L, η, ϱ) for Z and Euler-Maruyama for Y
d0 = d1 = d
if n < N − 1 then

Z∆,θ̂m,κ−1

n+1,j = ϕzn+1(X
∆
n+1,j ; θ̂

z,m,κ−1
n+1 )

Y ∆,θ̂m,κ−1

n+1,j = Y ∆,θ̂m,κ−1

n,j − f(tn, X
∆
n,j , Y

∆,θ̂m,κ−1

n,j , Z∆,θ̂m,κ−1

n,j )∆ti

+Z∆,θ̂m,κ−1

n,j ∆Wn,j

else

Y ∆,θ̂m,κ−1

n+1,j = Y ∆,θ̂m,κ−1

n,j − f(tn, X
∆
n,j , Y

∆,θ̂m,κ−1

n,j , Z∆,θ̂m,κ−1

n,j )∆ti

+Z∆,θ̂m,κ−1

n,j ∆Wn,j

end

end

end

L∆,m(θ̂m,κ−1) = 1
m

∑m
j=1 |g(X∆

N,j)− Y ∆,θ̂m,κ−1

N,j |2
Adam optimization step

θ̂m,κ - trained parameters with Adam optimizer [34], learning rate α
end

θ̂m = θ̂m,K - final estimated parameters after K optimization steps

(yi, zi) =
(
Y ∆,θ̂m

0 (xi), Z
∆,θ̂m

0 (xi)
)

end

10
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Algorithm 2: Algorithm estimating the parameters of (13) for Y0

Input:
(
M, n,Mvalid,M test,Dy

)
- parameters and dataset for UQ model

Input: (Ly, ηy, ϱy, αy, By, epy, λy) - DNN hyperparameters

Output:
(
µ̂y,ω̂

M
(x), σ̂y,ω̂

M
(x)
)
- estimates of UQ model for Y0

Split Dy into training, validation and testing samples

M train =M −Mvalid −M test

(xtrain,ytrain)
(xvalid,yvalid)
(xtest,ytest)
Normalize input data x based on training statistics

(xtrain,nr,xvalid,nr,xtest,nr)
d0 = n
dy1 = 2
Initialize parameters ω

ω̂M,0- Xavier normal initializer [16]
κ = 0
for e = 1 : epy do

κ = κ+ 1
for I = 1 : M

train

By do
Batch data
Dy,train,nr = {xtrain,nri ,ytraini }I Byi=(I−1)By+1

Use DNN with (Ly, ηy, ϱy) to estimate parameters in (13) for Y0(
µ̂y,ω̂

M,κ−1
(x), σ̂y,ω̂

M,κ−1
(x)
)
= ϕy

(
{xtrain,nri }I Byi=(I−1)By+1; ω̂

M,κ−1
)

Calculate loss including L2 regularization

Lω̂
M,κ−1,M (Dy,train,nr) = 1

By
∑I By

i=(I−1)By+1

(
log
(
σ̂y,ω̂

M,κ−1
(xtrain,nri )

)
+1

2

(
ytrain,nri −µ̂y,ψ̂M,κ−1

(xtrain,nri )
)2

(σ̂y,ω̂
M,κ−1

)2(xtrain,nri )

)
+λy

∑Ly+1
l=1

(
ω̂M,κ−1(l)

)2
Adam optimization step

ω̂M,κ - trained parameters with Adam optimizer [34], learning rate αy

end

end

ω̂M = ω̂M,κ - final estimated parameters of DNN after epy epochs, each with Mtrain

By

number of batches(
µ̂y,ω̂

M
(x), σ̂y,ω̂

M
(x)
)
- estimated parameters of (13) for Y0, x training, validation or

testing sample

11
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Algorithm 3: Algorithm estimating the parameters of (13) for Z0

Input:
(
M, n,Mvalid,M test,Dz

)
- parameters and dataset for UQ model

Input: (Lz, ηz, ϱz, αz, Bz, epz, λz) - DNN hyperparameters

Output:
(
µ̂z,ψ̂

M
(x), σ̂z,ψ̂

M
(x)
)
- estimates of UQ model for Z0

Split Dz into training, validation and testing samples

M train =M −Mvalid −M test

(xtrain, ztrain)
(xvalid, zvalid)
(xtest, ztest)
Normalize input data x based on training statistics

(xtrain,nr,xvalid,nr,xtest,nr)
d0 = n
dz1 = 2d
Initialize parameters ψ

ψ̂M,0- Xavier normal initializer [16]
κ = 0
for e = 1 : epz do

κ = κ+ 1
for I = 1 : M

train

Bz do
Batch data
Dz,train,nr = {xtrain,nri , ztraini }I Bzi=(I−1)Bz+1

Use DNN with (Lz, ηz, ϱz) to estimate parameters in (13) for Z0(
µ̂z,ψ̂

M,κ−1
(x), σ̂z,ψ̂

M,κ−1
(x)
)
= ϕz

(
{xtrain,nri }I Bzi=(I−1)Bz+1; ψ̂

M,κ−1
)

Calculate loss including L2 regularization

Lψ̂
M,κ−1,M (Dz,train,nr) = 1

Bz
∑I Bz

i=(I−1)Bz+1

(∑d
k=1 log

(
σ̂zk,ψ̂

M,κ−1
(xtrain,nri )

)
+1

2

(
ztrain,nri − µ̂z,ψ̂

M,κ−1
(xtrain,nri )

)⊤
(
(σ̂z,ψ̂

M,κ−1
)2(xtrain,nri )

)−1 (
ztrain,nri − µ̂z,ψ̂

M,κ−1
(xtrain,nri )

))
+λz

∑Lz+1
l=1

(
ψ̂M,κ−1(l)

)2
Adam optimization step

ψ̂M,κ - trained parameters with Adam optimizer [34], learning rate αz

end

end

ψ̂M = ψ̂M,κ - final estimated parameters of DNN after epz epochs, each with Mtrain

Bz

number of batches(
µ̂z,ψ̂

M
(x), σ̂z,ψ̂

M
(x)
)
- estimated parameters of (13) for Z0, x training, validation or

testing sample

12
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4 Numerical results

In this section, we take the DBSDE scheme as an example to illustrate the impact of different
sources of uncertainty in the scheme and apply our UQ model to both the DBSDE and LaDBSDE
schemes. All the experiments were run in PYTHON using TensorFlow on the PLEIADES cluster,
which consists of 268 workernodes. Each workernode has 2 sockets with an AMD EPYC 7452
32-Core processor (256GB of memory). For more information, see PLEIADES documentation1.

4.1 Experimental setup

To efficiently generate the dataset for the UQmodel, we consider a straightforward parallelization
of Algorithm 1, namely one core is used to simulate the DBSDE scheme for one parameter set.
Hence, multiple cores provide a parallel generation of the dataset D. The implementation of
Algorithm 1 follows the hyperparameters considered in [11] for the DBSDE scheme. Each of
the DNNs consists of L = 2 hidden layers with η = 10 + d neurons per hidden layer, and
the rectifier function (ReLU) ϱ(x) = max(0, x) ∈ [0,∞) is used as the activation function.
Batch normalization is applied right after each matrix multiplication and before activation.
Furthermore, all network parameters are initialized using a normal distribution without any
pre-training. The Adam optimizer with learning rate α and K optimization steps is used as an
SGD-type algorithm. For the implementation of Algorithm 2, we first split the dataset Dy into
training, validation, and testing samples, whose sizes are denoted by M train, Mvalid and M test,
respectively. Note that the validation set is used to validate the performance of our UQ model
when tuning its hyperparameters. The input layer of the DNN has n neurons, and the output
layer has 2 neurons. The first neuron in the output layer estimates the mean of the approximate
solution µy(x), and the second neuron in the output layer estimates the STD of the approximate
solution σy(x), where the softplus activation function ϱ(x) = ln(1 + ex) ∈ (0,∞) is applied to
obtain positive estimates. The ReLU activation function is used for the Ly hidden layers. Note
that it is appropriate to choose ηy > dy1. The input data x is normalized based on the training
data. We use the Adam optimizer with a batch size By, L2 regularization with parameter λy,
and a specified number of epochs epy. The hyperparameters are set in a similar fashion for the
implementation of Algorithm 3.
To visually and quantitatively compare our estimates of the mean and STD of the approximate
solution to benchmark values, such as the exact solution, RMSE, ensemble mean, and ensemble
STD, we consider both linear and nonlinear BSDEs with available analytical solutions. We
take the Black-Scholes BSDE as a linear 1-dimensional example, which is used for pricing the
European options.

Example 1. The Black-Scholes BSDE reads [55]
dSt = aSt dt+ bSt dWt, S0 = s0,

−dYt = −
(
RYt + (a−R+ δ) Ztb

)
dt− Zt dWt,

YT = (ST −K)+ .
Note that a represents the expected return of the stock St, b denotes the volatility of the stock
returns, δ is the dividend rate the stock pays, and S0 the price of the stock at t = 0. Moreover,
T denotes the maturity of the option contract, while K represents the contract’s strike price.
Finally, R corresponds to the risk-free interest rate. The analytic solution (the option price Yt
and its delta hedging strategy Zt) is given by

Yt = St exp (−δ (T − t)) Φ (d1)−K exp (−R (T − t)) Φ (d2) ,
Zt = St exp (−δ (T − t)) Φ (d1) b,

d1/2 =
ln
(
St
K

)
+
(
R−δ± b2

2

)
(T−t)

b
√
T−t ,

1https://pleiadesbuw.github.io/PleiadesUserDocumentation/
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where Φ (·) is the standard normal cumulative distribution function. For the nonlinear case, we
consider the nonlinear high-dimensional Burgers type BSDE.

Example 2. The Burgers type BSDE reads [11]
dXt = b dWt, X0 = 0,

−dYt =
(
b
dYt −

2d+b2

2bd

)(∑d
k=1 Z

k
t

)
dt− Zt dWt,

YT =
exp(T+ 1

d

∑d
k=1X

k
T )

1+exp(T+ 1
d

∑d
k=1X

k
T )
,

where, Wt = (W 1
t ,W

2
t , . . . ,W

d
t )

⊤, Xt = (X1
t , X

2
t , . . . , X

d
t )

⊤ and Zt = (Z1
t , Z

2
t , . . . , Z

d
t ). The

analytic solution is given by
Yt =

exp(t+ 1
d

∑d
k=1X

k
t )

1+exp(t+ 1
d

∑d
k=1X

k
t )
,

Zt = b
d

exp(t+ 1
d

∑d
k=1X

k
t )

(1+exp(t+ 1
d

∑d
k=1X

k
t ))

21d.

At t0 we have that (Y0, Z0) =
(
0.5, b4d1d

)
.

The following experiments are organized as follows. Firstly, we illustrate the impact of the
sources of uncertainty in the DBSDE scheme for both examples by visualizing the effect of
different errors on the uncertainty. Secondly, we assess the performance of our UQ model for
the mean and STD of the approximate solution by comparing them with the benchmark values.
Additionally, we determine the number of runs of the DBSDE algorithm for which the ensemble
STD is comparable to the estimated STD. Furthermore, the computational cost of generating the
training data for the UQ model is evaluated. To demonstrate the applicability of the UQ model
to other deep learning-based BSDE schemes, we apply it to the LaDBSDE scheme. Finally, we
show the practical implications of our UQ model.

4.2 The impact of the sources of uncertainty in the DBSDE scheme

To demonstrate the impact of the sources of uncertainty in the DBSDE scheme, we fix the
parameter set of the BSDE and vary the hyperparameters of the DBSDE scheme that affect
the corresponding source of uncertainty. Initially, we focus on the estimation and optimization
errors. By using a high number of optimization steps K and different learning rate approaches,
the effect of these errors on the uncertainty of the DBSDE scheme is analyzed. Afterward, we
investigate the impact of the model error by increasing the number of hidden neurons η. Lastly,
the number of discretization points N is varied in order to study how the discretization error
contributes to the uncertainty of the DBSDE scheme.
For the parameter values T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0 in
Example 1, the exact solution is (Y0, Z0) = (9.4134, 11.9741). In Example 2, we chose d = 50 and
fix b = 25, T = 0.25. The exact solution is (Y0, Z0) = (0.5, 0.125150). For the DBSDE algorithm,
we start with the following hyperparameters: a constant learning rate approach (C-LR) with
K = 60000 optimization steps of the Adam algorithm, a learning rate α = 1e−2, and a batch
size of m = 128. To analyze the effect of estimation and optimization errors on the RMSE,
we plot the RMSE values in Figures 2 and 3 for Examples 1 and 2, respectively, for increasing
values of K. The RMSE values of Z0 are plotted only for the first component in Example 2
as it is similar for the other components in our experiments. We use N = 32 discretization
points and Q = 10 runs of the DBSDE algorithm. Note that each run of the DBSDE algorithm
involves a different seed for generating the dataset and different initialization values of DNN
parameters. As K increases, the sum of estimation and optimization errors decreases for both
examples as expected. This is because the DBSDE algorithm uses a new sample of size 128 after
each optimization step, and the optimizer tends to perform better with more training data and
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(a) RMSE values for Y0.
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(b) RMSE values for Z0.

Figure 2: RMSE values are plotted for Example 1 for increasing K, where T = 1,K = 100, S0 =
100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.
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(a) RMSE values for Y0.
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(b) RMSE values for Z1
0 .

Figure 3: RMSE values are plotted for Example 2 while increasing K, where T = 0.25 and b = 25.

optimization steps. This reduction in RMSE is evident until around 5000 optimization steps.
However, for K > 5000, the RMSE plateaus due to other error sources, such as model and
discretization errors, which are higher than the optimization error. Note that the RMSE values
for Example 2 are lower than those for Example 1 because the exact solution has a smaller value.
To further reduce the optimization error, we use a piecewise constant learning rate approach (PC-
LR) with α = {1e−2, 3e−3, 1e−3, 3e−4, 1e−4} and K = {20000, 30000, 40000, 50000, 60000}. We
compare the RMSE values using C-LR and PC-LR in Figure 4 for Example 1. A similar behavior
is observed for Example 2, see Figure 20 in Appendix A.
Next, we consider the model error. To try reduce the model error, one can increase the number
of hidden neurons η or the number of hidden layers L. We report the RMSE values for η ∈
{10+d, 32+d, 64+d, 128+d} in Figures 5 and 6 using PC-LR, for Examples 1 and 2, respectively.
We observe that for Example 1 the RMSE decreases when increasing η, but this trend only
persists until η = 64 + d. This is not the case for Example 2. However, note that d = 50 in
Example 2, i.e., the starting value of η is 60, which may explain why the RMSE did not decrease
as observed in Example 1.
Finally, we consider the discretization error, which appears to be larger than the model error. To
visualize this, we use the PC-LR approach while setting η = 128+ d, and plot the RMSE values
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0 1 2 3 4 5 6

·104

10−3

10−2

10−1

100

101

K

ϵ̃z

C-LR
PC-LR
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Figure 4: RMSE values are plotted for Example 1 using different learning rate approaches, where
T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.
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Figure 5: RMSE values are plotted for Example 1 using η ∈ {10 + d, 32 + d, 64 + d, 128 + d},
where T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.

in Figure 7 for N ∈ {2, 8, 32, 128, 256, 512, 1024} in the case of Example 1. When considering the
approximation of Y0, the RMSE decreases with increasing N until N = 32, after which it starts
to increase. This phenomenon is even more pronounced for the approximation of Z0. It is worth
noting that approximating Z is generally more challenging than approximating Y for BSDEs.
While a higher value of N can reduce the discretization error, it can also lead to a larger error
due to the increased number of DNNs and network parameters to be optimized. Additionally,
the propagated errors over time in the DBSDE scheme become larger with a higher value of
N . A similar behavior is observed for Example 2, see Figure 21 in Appendix A. To provide

further clarity, we display the RMSE values and the absolute errors ϵ̃yq = |Y ∆,θ̂m

0,q − Y0| and
ϵ̃zq = |Z∆,θ̂m

0,q −Z0| from the q-th run for N ∈ {32, 1024} in Figure 8 for Example 1. The variation
of absolute errors from different runs around the corresponding RMSE values indicates that the
increase in RMSE in Figure 7 for N > 32 is caused mainly by the propagated errors (same is
observed for Example 2, see Figure 22 in Appendix A). Note that choosing η > 128 + d does
not reduce the RMSE. Hence, disentangling the sources of uncertainty is practically challenging,
making it essential to quantify the uncertainty of the DBSDE scheme for practical applications.
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(a) RMSE values for Y0.
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Figure 6: RMSE values are plotted for Example 2 using η ∈ {10 + d, 32 + d, 64 + d, 128 + d},
where T = 0.25 and b = 25.
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Figure 7: RMSE values are plotted for Example 1 using N ∈ {2, 8, 32, 128, 256, 512, 1024}, where
T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.

4.3 Performance of the UQ model

In this section, we evaluate the quality of the mean and STD of the approximate solution
estimated from our UQ model for both the DBSDE and LaDBSDE schemes. We start with the
DBSDE scheme and consider Examples 1 and 2. In each example, the following structure is used.
Firstly, the dataset for training and evaluating the UQ model is generated. To gain insights into
the RMSE and ensemble STD, we visualize these values and determine an appropriate metric
for assessing the accuracy of the ensemble STD in approximating the RMSE. Secondly, we focus
on evaluating the accuracy of the estimated STD from the UQ model in approximating the
RMSE, and compare it with the performance of the ensemble STD. Additionally, we determine
the number of DBSDE runs that the estimated STD achieves the same quality as the ensemble
STD. The computational cost for training the UQ model is assessed in terms of the number of
DBSDE runs needed to train it. Finally, we evaluate the accuracy of the estimated mean from
the UQ model in approximating the exact solution, and compare it with the performance of
the ensemble mean. Regarding the LaDBSDE scheme, only Example 2 is analyzed to show the
applicability of the UQ model, following a similar structure as for the DBSDE scheme.
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(a) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Y0 with N = 32.
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(b) RMSE values and the absolute error from each
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(c) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Z0 with N = 32.
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(d) RMSE values and the absolute error from each
of Q = 10 DBSDE runs for Z0 with N = 1024.

Figure 8: RMSE values and the absolute errors from each of Q = 10 DBSDE runs are plotted for
Example 1 using N ∈ {32, 1024}, where T = 1,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03
and δ = 0.

4.3.1 The DBSDE scheme for the Black-Scholes example

The dataset D = {xi,yi, zi}Mi=1 for the UQ model is generated using Algorithm 1, where xi
includes the parameter set of the Black-Scholes BSDE, i.e. xi = (ai, bi, S0,i, Ri, δi,Ki, Ti). Note

that yi = Y ∆,θ̂m

0 (xi) and zi = Z∆,θ̂m

0 (xi) are the approximated solutions given by the DBSDE
algorithm for the parameter set xi of the Black-Scholes BSDE. The parameter set xi is generated
using uniform distributions, where the bounds are chosen to account for all different scenarios
of a European (call) option, namely in the money (ITM), at the money (ATM), and out of
the money (OTM). To calculate (yi, zi), we set K = 30000, α = 1e−2 and m = 128 for the
DBSDE algorithm. We generate 3 datasets where we treat T and N differently for each dataset.
In dataset D1, we fix the values of T and N. In dataset D2, we vary T , but we keep the step size
∆t fixed. In the last dataset D3, both T and ∆t vary. This way, we analyze the performance of
our UQ model in the case where the maturity value and discretization error vary. Additionally,
we analyze the cases where the maturity value or the discretization error is fixed. The range of
values for the parameters on each dataset is given in Table 1, where we choose a = 0.05, δ = 0,
and K = 100. We consider M = 2560 different parameter sets and run the DBSDE algorithm
Q = 10 times for each parameter set. Thus, we construct a dataset of length M = 2560 for the
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Dataset
Parameter range

b S0 R T N ∆t

D1 [0.1, 0.4] [K − 20,K + 20] [0.001, 0.1] 0.25 10 0.025

D2 [0.1, 0.4] [K − 20,K + 20] [0.001, 0.1]
[

1
12
, 1
]

T
∆t

0.025

D3 [0.1, 0.4] [K − 20,K + 20] [0.001, 0.1]
[

1
12
, 1
]

16 T
N

Table 1: Parameter range for Example 1.

UQ model by selecting the parameter set and the corresponding approximated solutions from
the first run of the DBSDE algorithm. We also calculate benchmark values such as the RMSE,
ensemble mean, and ensemble STD for each parameter set. Note that the datasets Dj are split
into Dy

j and Dz
j for j = 1, 2, 3 in order to built the UQ model for Y0 and Z0. To gain insights

into the benchmark values (the RMSE and ensemble STD), we display these values in Figure 9
and 10, sorted by the value of the exact solution (Y0 and Z0 respectively) for each dataset in the
log-domain. Since the exact solution is different for each parameter set x, we also display their
relative estimates, where,

ϵ̃y,r(x) :=
ϵ̃y(x)

|Y0(x)|
, σ̃y,r(x) :=

σ̃y(x)

|µ̃y(x)|
,

are the corresponding relative estimates for Y0 and

ϵ̃z,r(x) :=
ϵ̃z(x)

|Z0(x)|
, σ̃z,r(x) :=

σ̃z(x)

|µ̃z(x)|
,

are the corresponding relative measures for Z0. Note that we show only the last 256 out of 2560
values for better visualization. The RMSE, ensemble STD, and also their relative values exhibit
a strong positive correlation. Hence, we use the correlation to quantify the strength of the rela-
tionship between the RMSE and ensemble STD values. The correlation values in the log-domain
are reported in Table 2. Note that all the following calculations for evaluating the estimated
STD from the UQ model are conducted in the log-domain throughout this section. We observe
that the relative values provide a more reasonable measure than the absolute ones as the exact
solution varies for each parameter set x. Therefore, the relative values are used to evaluate the
performance of the UQ model in estimating the STD of the approximate solution. Furthermore,

Dataset

Measure Correlation D1 D2 D3

Absolute measure for Y0 ρ (log(ϵ̃y(x)), log(σ̃y(x))) 0.9207 0.8960 0.8910

Relative measure for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9862 0.9804 0.9797

Absolute measure for Z0 ρ (log(ϵ̃z(x)), log(σ̃z(x))) 0.7281 0.6903 0.6847

Relative measure for Z0 ρ (log(ϵ̃z,r(x)), log(σ̃z,r(x))) 0.9538 0.9040 0.9191

Table 2: Correlation between the RMSE and ensemble STD values, and their relative values for
Dj, j = 1, 2, 3 in Example 1.

we find that the cases with high relative RMSE values in Figure 9 and 10 correspond to deep
OTM options, for which the DBSDE algorithm may produce negative estimates of the option
price Y0 or its delta hedging strategy Z0, indicating divergence. The number of such cases is
given in Table 3.
To estimate the STD and mean of the approximate solution for Y0 and Z0, we use Algo-
rithm 2 and 3, respectively. Note that there is no evidence against the normality assump-
tion for our UQ model, see Appendix B. The datasets Dj are split into training, valida-
tion, and testing samples, where we set Mvalid = M test = 256, and the rest for training,
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Figure 9: RMSE, the ensemble STD and their relative estimates for Dy
j , j = 1, 2, 3 sorted by the

value of the exact solution in Example 1.

Dataset

Condition for divergence D1 D2 D3

Y ∆,θ̂m

0 (x) < 0 or Z∆,θ̂m

0 (x) < 0 52 35 41

Table 3: Number of diverged cases of the DBSDE scheme for Dj, j = 1, 2, 3 in Example 1.
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Figure 10: RMSE, the ensemble STD and their relative estimates for Dz
j , j = 1, 2, 3 sorted by

the value of the exact solution in Example 1.

M train = M − Mvalid − M test. To account for deviations in our results, we repeat each ex-
periment 10 times, training 10 different UQ models, and provide the mean as well as the STD.
For D1, n = 3, since xi = (bi, S0,i, Ri) is the parameter set, n = 5 for D2 and D3 where (T,N)
and (T,∆t) are also varied, respectively. We use ηy = ηz = 128 and Ly = Lz = 2. The learn-
ing rate α, number of epochs ep, batch size B, and L2 regularization parameter λ are tuned.
Based on the performance of the UQ model in the validation sample, the fine-tuned hyper-

21



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

parameters for Y0 in each dataset are: By = 128, λy = 3e−2, and a PC-LR approach with
αy = {1e−3, 3e−4, 1e−4, 3e−5, 1e−5} and epy = {1000, 100, 100, 100, 100}. For Z0, the fine-
tuned hyperparameters are: Bz = 128, λz = 1e−2, and the same PC-LR approach as for Y0.
Note that all the following results are shown for the testing sample. To evaluate the quality of
the estimated STD, we report in Table 4 the correlation between the relative RMSE and ensem-
ble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))), as well as the mean correlation between the relative
RMSE and estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))), where the averaging corresponds to
the number of repetitions of our experiment computed by

ρ
(
log(ϵ̃y,r(x)), log(σ̂y,ω̂

M ,r(x))
)
:=

1

10

10∑
i=1

ρ
(
log(ϵ̃y,r(x)), log(σ̂y,ω̂

M
i ,r(x))

)
,

ρ
(
log(ϵ̃z,r(x)), log(σ̂z,ψ̂

M ,r(x))
)
:=

1

10

10∑
i=1

ρ
(
log(ϵ̃z,r(x)), log(σ̂z,ψ̂

M
i ,r(x))

)
.

Moreover, σ̂y,ω̂
M ,r(x)) and σ̂z,ψ̂

M ,r(x)) represents the estimated relative STD values from 10
different trained UQ models for Y0 and Z0, respectively. The index i corresponds to the values
estimated from the i-th trained UQ model. The STD of the correlation is given in the brackets.
The correlation values for the relative ensemble STD and the mean correlation values for the

Dataset

UQ approach Metric D1 D2 D3

Ensemble for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9925 0.9848 0.9857

UQ model for Y0 ρ
(
log(ϵ̃y,r(x)), log(σ̂y,ω̂

M ,r(x))
)

0.9863 (0.0004) 0.9649 (0.0020) 0.9665 (0.0034)

Ensemble for Z0 ρ (log(ϵ̃z,r(x)), log(σ̃z,r(x))) 0.9485 0.9138 0.9171

UQ model for Z0 ρ
(
log(ϵ̃z,r(x)), log(σ̂z,ψ̂

M ,r(x))
)

0.9373 (0.0023) 0.8754 (0.0068) 0.8871 (0.0113)

Table 4: Correlation between the relative RMSE and ensemble STD values, and the mean cor-
relation between the relative RMSE and estimated STD values from the UQ model for Dj,
j = 1, 2, 3 using the testing sample in Example 1. The STD of the correlation is given in the
brackets.

relative estimated STD from our UQ model are very close for Y0 and Z0. This demonstrates
that the relative estimated STD effectively approximates the relative ensemble STD. Moreover,
we determine the number of runs of the DBSDE algorithm for which the relative ensemble STD
is approximately equal to the relative estimated STD. Therefore, we display in Figure 11 the
correlation between the relative RMSE and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))) for
different DBSDE runs, the mean correlation between the relative RMSE and estimated STD
values ρ (log(ϵ̃r(x)), log(σ̂r(x))), and their intersection. The shaded area gives the STD of the
correlation. We observe that the relative estimated STD from the UQ model is as good as the
relative ensemble STD calculated from around Q = 8 runs of the DBDSE algorithm for Y0 and
Q = 7 for Z0 in dataset D1. When the maturity T is also varied in dataset D2, the relative
estimated STD is as good as the relative ensemble STD calculated from around Q = 5 runs of
the DBDSE algorithm for Y0 and Z0. For the last dataset D3 where the maturity T and the
step size ∆t are also varied, the relative estimated STD is as good as the relative ensemble
STD calculated from around Q = 6 runs of the DBSDE algorithm for Y0 and Q = 6 for Z0.
We conclude that using a training dataset of length M train = 2048 to train the UQ model, the
relative estimated STD can perform as well as the relative ensemble STD of at least Q = 5
DBSDE runs.
Using a larger M train, the UQ model is expected to provide a better estimate of the relative
STD. However, this increases the computational cost as the number of DBSDE runs needed to
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Figure 11: Correlation between the relative RMSE and ensemble STD values for different DBSDE
runs, and the mean correlation between the relative RMSE and estimated STD values from the
UQ model (STD of correlation given in the shaded area) for Dj, j = 1, 2, 3 using the testing
sample in Example 1. The black dot defines their intersection.

train the UQ model is equal to M train. To show such a trade-off, we display in Figure 12 the
mean correlation between the relative RMSE and estimated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x)))
while increasing the number of DBSDE runs to train the UQ model from 10% to 100% ofM train.
We observe that the UQ model can give a good estimate of the relative STD even when trained
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Figure 12: Mean correlation between the relative RMSE and estimated STD values from the
UQ model while increasing the number of DBSDE runs to train the model from 10% to 100%
of M train for Dj, j = 1, 2, 3 using the testing sample in Example 1. The STD of the correlation
is given in the shaded area.

with 1024 DBSDE runs.
Our UQ model does not only estimates the STD of the approximate solution but also its mean.
We use the RMSE to measure the quality of the estimated mean compared to the ensemble mean
and the expected (exact) solution, which are presented in Table 5. The mean RMSE (RMSE)
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corresponds to the number of repetitions of our experiment computed by

RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)
:=

1

10

10∑
i=1

RMSE
(
Y0(x), µ̂

y,ω̂Mi (x)
)
,

RMSE
(
Z0(x), µ̂

z,ψ̂M (x)
)
:=

1

10

10∑
i=1

RMSE
(
Z0(x), µ̂

z,ψ̂Mi (x)
)
,

where µ̂y,ω̂
M
(x) and µ̂z,ψ̂

M
(x) represents the estimated mean values from 10 different trained

UQ models for Y0 and Z0, respectively. The index i corresponds to the values estimated from the
i-th trained UQ model. The STD of the RMSE is given in the brackets. The RMSE between the

Dataset

UQ approach Metric D1 D2 D3

Ensemble for Y0 RMSE (Y0(x), µ̃
y(x)) 1.79e−2 2.36e−2 2.50e−2

UQ model for Y0 RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)

2.11e−2 (7.73e−4) 3.72e−2 (2.29e−3) 3.95e−2 (1.56e−3)

Ensemble for Z0 RMSE (Z0(x), µ̃
z(x)) 1.15e−1 1.83e−1 1.52e−1

UQ model for Z0 RMSE
(
Z0(x), µ̂

z,ψ̂M (x)
)

1.15e−1 (1.62e−3) 1.90e−1 (2.78e−3) 1.63e−1 (3.65e−3)

Table 5: RMSE between the exact solution and ensemble mean values, and the mean RMSE
between the exact solution and estimated mean values from the UQ model for Dj, j = 1, 2, 3
using the testing sample in Example 1. The STD of the RMSE is given in the brackets.

exact solution and ensemble mean values RMSE (Y0(x), µ̃
y(x)), and the mean RMSE between

the exact solution and estimated mean values RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)

are very close. The

same can be concluded for Z0. Hence, the estimated mean given by our UQ model can be used
as highly accurate initializers of (Y ∆,θ

0 , Z∆,θ
0 ) in the DBSDE algorithm, instead of initializing

them randomly using uniform distributions.

4.3.2 The DBSDE scheme for the Burgers type example

We generate dataset D = {xi,yi, zi}Mi=1 using Algorithm 1, where xi now includes the parameter
set of the Burgers type BSDE, namely xi = (bi, Ti), and yi ∈ R and zi ∈ R1×d the corresponding
approximate solution for Y0(xi) and Z0(xi). We keep the same hyperparameter values of the
DBSDE algorithm as in Example 1 to generate the dataset D and consider only varying the
parameter set as done for the dataset D3 in Example 1, namely (b, T,∆t) are varied. In Table 6
the range of parameter values is reported. We set againM = 2560 and Q = 10 for each parameter

Dataset
Parameter range

b T N ∆t

D [0.2, 40]
[

1
12
, 0.3

]
32 T

N

Table 6: Parameter range for Example 2.

set, and split the dataset D into Dy and Dz. The RMSE, ensemble STD, and their relative values
for Y0 and Z1

0 are displayed in Figures 13 and 14, sorted by the value of the corresponding exact
solution. Note that for Z0, only the results for the first component are shown (with similar
behavior observed for other components of Z0). We find that the DBSDE algorithm produces
negative approximations of Z0 in a significant number of cases (1184 cases), especially for small
values of b (b ≈ 0.2). Additionally, for large values of b and T (b > 40 and T > 0.3), the
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Figure 13: RMSE, the ensemble STD and their relative estimates for Dy sorted by the value of
the exact solution in Example 2.
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(b) Relative estimates for Dz.

Figure 14: RMSE, the ensemble STD and their relative estimates for Dz sorted by the value of
the exact solution in Example 2.

relative RMSE values become very large. Similar to the previous example, Figures 13 and 14
demonstrate a strong positive correlation among the RMSE, ensemble STD, and their relative
values. The correlation values in the log-domain are reported in Table 7 for dataset D.

Measure Correlation Dataset D
Absolute measure for Y0 ρ (log(ϵ̃y(x)), log(σ̃y(x))) 0.9887

Relative measure for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9881

Absolute measure for Z1
0 ρ (log(ϵ̃z1(x)), log(σ̃z1(x))) 0.9889

Relative measure for Z1
0 ρ (log(ϵ̃z1,r(x)), log(σ̃z1,r(x))) 0.9269

Table 7: Correlation between the RMSE and ensemble STD values, and their relative values for
D in Example 2.

To train the UQ model, we follow the same procedure as in Example 1. We again choose a testing
and validation sample of 256 and use the rest for training the UQ model. Note that n = 3 since
xi = (bi, Ti,∆ti). Based on the validation sample, the fine-tuned hyperparameters for Y0 are as
follows: By = 32, λy = 1e−3, and a PC-LR approach with αy = {1e−3, 3e−4, 1e−4, 3e−5, 1e−5}
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and epy = {5000, 500, 500, 500, 500}. For Z1
0 , the fine-tuned hyperparameters are: Bz = 128,

λz = 3e−2, and a PC-LR approach with αz = αy and epz = {1000, 100, 100, 100, 100}. In
Table 8, we present the correlation between the relative RMSE and ensemble STD values
ρ (log(ϵ̃r(x)), log(σ̃r(x))), as well as the mean correlation between the relative RMSE and es-
timated STD values ρ (log(ϵ̃r(x)), log(σ̂r(x))). The correlation values for the relative ensemble

UQ approach Metric Dataset D
Ensemble for Y0 ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x))) 0.9870

UQ model for Y0 ρ
(
log(ϵ̃y,r(x)), log(σ̂y,ω̂

M ,r(x))
)

0.9538 (0.0011)

Ensemble for Z1
0 ρ (log(ϵ̃z1,r(x)), log(σ̃z1,r(x))) 0.9457

UQ model for Z1
0 ρ

(
log(ϵ̃z1,r(x)), log(σ̂z1,ψ̂

M ,r(x))
)

0.9416 (0.0008)

Table 8: Correlation between the relative RMSE and ensemble STD values, and the mean cor-
relation between the relative RMSE and estimated STD values from the UQ model for D using
the testing sample in Example 2. The STD of the correlation is given in the brackets.

STD and the mean correlation values for the relative estimated STD from our UQ model are
very close for Y0 and Z1

0 , indicating that our UQ model can provide highly accurate estimates
of the relative ensemble STD also in high dimensions. In Figure 15, we display the correla-
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(a) Dataset Dy.
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(b) Dataset Dz.

Figure 15: Correlation between the relative RMSE and ensemble STD values for different DBSDE
runs, and the mean correlation between the relative RMSE and estimated STD values from the
UQ model (STD of correlation given in the shaded area) for D using the testing sample in
Example 2. The black dot defines their intersection.

tion between the relative RMSE and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))) for differ-
ent DBSDE runs, the mean correlation between the relative RMSE and estimated STD values
ρ (log(ϵ̃r(x)), log(σ̂r(x))), and their intersection. The relative estimated STD from the UQ model
achieves the quality of the relative ensemble STD calculated from around Q = 8 runs of the
DBDSE algorithm for Y0 and around Q = 10 for Z1

0 . In this example, the performance of the UQ
model improves compared to the previous example. One possible explanation for this improve-
ment is the exact solution in this example, which remains the same for Y0 and slightly varies for
Z0 across different parameter sets x, namely Example 2 is less challenging than Example 1.
To show the computation cost of generating the training data for the UQ model, we dis-
play in Figure 16 the mean correlation between the relative RMSE and estimated STD values
ρ (log(ϵ̃r(x)), log(σ̂r(x))) while increasing the number of DBSDE runs to train the model. Even
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(a) Dataset Dy.
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(b) Dataset Dz.

Figure 16: Mean correlation between the relative RMSE and estimated STD values from the
UQ model while increasing the number of DBSDE runs to train the model from 10% to 100%
of M train for D using the testing sample in Example 2. The STD of the correlation is given in
the shaded area.

when training the UQ model with 1024 DBSDE runs, a good estimate of the STD is achieved.
Next, we examine the performance of our UQ model for the mean of the approximate
solution. We calculate the RMSE between the exact solution and ensemble mean values
RMSE (Y0(x), µ̃

y(x)), as well as the mean RMSE between the exact solution and estimated

mean values RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)
for Y0, and similarly for Z1

0 . The corresponding values

are reported in Table 9. Based on the results, we can conclude that the estimated means given by

UQ approach Metric Dataset D
Ensemble for Y0 RMSE (Y0(x), µ̃

y(x)) 2.00e−2

UQ model for Y0 RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)

2.57e−2 (2.22e−3)

Ensemble for Z1
0 RMSE

(
Z1

0 (x), µ̃
z1(x)

)
2.38e−2

UQ model for Z1
0 RMSE

(
Z1

0 (x), µ̂
z1,ψ̂

M

(x)
)

1.71e−2 (5.81e−4)

Table 9: RMSE between the exact solution and ensemble mean values, and the mean RMSE
between the exact solution and estimated mean values from the UQ model for D using the
testing sample in Example 2. The STD of the RMSE is given in the brackets.

our UQ model can serve as highly accurate initializers for (Y ∆,θ
0 , Z∆,θ

0 ) in the DBSDE algorithm
also in high dimensions.

4.3.3 The LaDBSDE scheme for the Burgers type example

We now demonstrate that the proposed UQ model can be applied to other deep learning-based
BSDE schemes, specifically the LaDBSDE scheme [31]. As application, we select the Burgers
type BSDE, due to its nonlinearity and higher dimensionality. We choose the hyperparameters
for the LaDBSDE scheme similarly to those used in the DBSDE scheme. More precisely, we
consider K = 30000, α = 1e−3, m = 128, η = 10 + d, L = 4, and ϱ(x) = tanh(x). Batch
normalization is applied after each matrix multiplication and before activation functions. The
Adam optimizer is used as an SGD-type algorithm. Using parameter set x as outlined in Table 6,
we apply the LaDBSDE scheme and collect the corresponding approximation of Y0(x) and Z0(x).
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To distinguish this dataset from the one generated by the DBSDE scheme, we denote it as D̃.
We split the dataset D̃ into D̃y and D̃z to train and test the UQ model for Y0 and Z0, respectively.
Using a validation sample of 256, the fine-tuned hyperparameters of the UQ model for Y0 are:
By = 128, λy = 3e−2, and a PC-LR approach with αy = {1e−3, 3e−4, 1e−4, 3e−5, 1e−5} and
epy = {2000, 400, 400, 400, 400}. For Z1

0 , we have Bz = 128, λz = 1e−3, and a PC-LR approach
with αz = αy and epz = {1000, 500, 500, 500, 500}. In Figure 17, we display the correlation
between the relative RMSE and ensemble STD values ρ (log(ϵ̃r(x)), log(σ̃r(x))) for different
LaDBSDE runs, the mean correlation between the relative RMSE and estimated STD values
ρ (log(ϵ̃r(x)), log(σ̂r(x))), and their intersection. The relative estimated STD from the UQ model

2 3 4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1

Q

ρ

ρ (log(ϵ̃y,r(x)), log(σ̃y,r(x)))

ρ
(
log(ϵ̃y,r(x)), log(σ̂y,ω̂

M ,r(x))
)

(a) Dataset D̃y.
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Figure 17: Correlation between the relative RMSE and ensemble STD values for different LaDB-
SDE runs, and the mean correlation between the relative RMSE and estimated STD values from
the UQ model (STD of correlation given in the shaded area) for D̃ using the testing sample in
Example 2. The black dot defines their intersection.

achieves the quality of the relative ensemble STD calculated from Q = 7 runs of the LaDBDSE
algorithm for Y0 and aroundQ = 8 for Z1

0 (similar performance for other components of Z0). This
demonstrates that the UQ model can be applied to other deep learning-based BSDE schemes,
which work in a similar manner to the DBSDE scheme. The computational cost to train the
UQ model in the case of the LaDBSDE scheme is shown in Figure 18. We can draw the same
conclusions as for the DBSDE scheme from the results obtained in this case.
In Table 10, we present the RMSE between the exact solution and ensemble mean values
RMSE (Y0(x), µ̃

y(x)), as well as the mean RMSE between the exact solution and estimated

mean values RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)
for Y0 (similar for Z1

0 ). The RMSE between the exact

UQ approach Metric Dataset D̃
Ensemble for Y0 RMSE (Y0(x), µ̃

y(x)) 9.71e−4

UQ model for Y0 RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)

6.53e−4 (2.02e−5)

Ensemble for Z1
0 RMSE

(
Z1

0 (x), µ̃
z1(x)

)
1.04e−3

UQ model for Z1
0 RMSE

(
Z1

0 (x), µ̂
z1,ψ̂

M

(x)
)

8.88e−4 (5.08e−5)

Table 10: RMSE between the exact solution and ensemble mean values, and the mean RMSE
between the exact solution and estimated mean values from the UQ model for D̃ using the
testing sample in Example 2. The STD of the RMSE is given in the brackets.

solution and ensemble mean values RMSE (Y0(x), µ̃
y(x)), and the mean RMSE between the
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Figure 18: Mean correlation between the relative RMSE and estimated STD values from the
UQ model while increasing the number of LaDBSDE runs from 10% to 100% of M train for D̃
using the testing sample in Example 2. The STD of the correlation is given in the shaded area.

exact solution and estimated mean values RMSE
(
Y0(x), µ̂

y,ω̂M (x)
)
are very close. The same

conclusion can be drawn for Z1
0 . This indicates that our UQ model can also provide highly

accurate approximations of the mean of the approximate solution for the LaDBSDE scheme.
Moreover, the RMSE values are much smaller than those in Table 9 for Y0 and Z1

0 . This indi-
cates that our UQ model can identify on average the improved approximations provided by the
LaDBSDE scheme compared to the DBSDE scheme.

4.4 Practical implications of the UQ model

In this section, we study what sources of uncertainty can be captured by our UQ model and we
demonstrate its applicability to downstream tasks.
We start by analyzing the sources of uncertainty that our UQ model can effectively capture. It
can be expected that the estimated STD captures uncertainty due to the optimization heuristic
as well as the uncertainty due to data sampling. However, it is less clear about the uncertainty
stemming from the discretization error, as it might bias the approximations provided by the
DBSDE scheme. To illustrate the behavior of the relative RMSE, ensemble STD, and estimated
STD values across varying ∆t values, we display these measures in Figure 19 using the testing
data in dataset D from Example 2. Note that we use the relative estimated STD from the first
trained UQ model (out of our ensemble of 10 models considered for evaluation). As ∆t decreases,
the bias from the discretization error decreases, and the relative estimated STD improves in
approximating the relative RMSE. For larger values of ∆t, the bias grows, but the STD also
increases. Therefore, the trend of the STD remains consistent with the RMSE, indicating that the
relative estimated STD remains reasonable across different values of ∆t for approximating the
relative RMSE. The same is observed for the relative ensemble STD. To measure the strength
and direction of the monotonic relationship between the relative RMSE and estimated STD
values across ∆t values, we consider Spearman’s rank correlation (ς). This metric is calculated
as

ς (ϵ̃r(x), σ̂r(x)) = 1−
6
∑Mtest

i=1 (rank(ϵ̃r(x))i − rank(σ̂r(x))i)

M test
(
(M test)2 − 1

) ,

where, e.g. rank(ϵ̃r(x))i is the assigned rank to ϵ̃r(xi). Note that ς (ϵ̃r(x), σ̃r(x)) is calculated
similarly. The rank correlation values are displayed in Table 11. The high positive rank corre-
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Figure 19: Relative RMSE, ensemble STD and estimated STD values from the UQ model for
increasing value of ∆t for D using the testing sample in Example 2.

UQ approach Rank correlation Dataset D
Ensemble for Y0 ς (ϵ̃y,r(x), σ̃y,r(x)) 0.9308

UQ model for Y0 ς
(
ϵ̃y,r(x), σ̂y,ω̂

M
1 ,r(x)

)
0.8455

Ensemble for Z1
0 ς (ϵ̃z1,r(x), σ̃z1,r(x)) 0.9778

UQ model for Z1
0 ς

(
ϵ̃z1,r(x), σ̂z1,ψ̂

M
1 ,r(x)

)
0.9352

Table 11: Rank correlation between the relative RMSE, ensemble STD, and estimated STD
values for D using the testing sample in Example 2.

lation values indicate that the relative estimated STD from our UQ model can reflect multiple
sources of uncertainty, including the uncertainty caused by the discretization error.
Next, we aim to determine whether our UQ model can detect the enhanced performance of the
LaDBSDE scheme over the DBSDE scheme for each parameter set, rather than just considering
the average performance as shown before. For this purpose, the accuracy score (acc) for the
testing sample of datasets D and D̃ of Example 2 is considered. We define binary labels to
calculate it. For the relative RMSE, we consider

ℓϵ̃
r
(xi) =

{
1 if ϵ̃r,LaDBSDE(xi) < ϵ̃r,DBSDE(xi),
0 otherwise,

for the parameter set xi. Similarly, we define binary labels ℓσ̃
r
(x) and ℓσ̂

r
(xi) for the relative

ensemble STD and estimated STD, respectively. The accuracy score between the labels of the
relative RMSE and estimated STD values represents the number of parameter sets in which the
smallest relative RMSE and estimated STD values are achieved from the same scheme, divided
by the total number of parameter sets, i.e.

acc
(
ℓϵ̃
r
(x), ℓσ̂

r
(x)
)
=

1

M test

Mtest∑
i=1

1ℓϵ̃r (xi)=ℓσ̂
r (xi)

.

Similarly, we calculate the accuracy score between the labels of relative RMSE and ensemble
STD values acc

(
ℓϵ̃
r
(x), ℓσ̃

r
(x)
)
and report them in Table 12. The accuracy score of 1 for Z1

0

implies that the relative estimated STD from our UQ model illustrates enhanced performance
when comparing the DBSDE and LaDBSDE schemes across the entire testing sample. This
observation is valid only for approximately 80% of the testing sample for Y0.
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UQ approach Accuracy score Datasets D and D̃
Ensemble for Y0 acc

(
ℓϵ̃
y,r

(x), ℓσ̃
y,r

(x)
)

0.8320

UQ model for Y0 acc

(
ℓϵ̃
y,r

(x), ℓσ̂
y,ω̂M1 ,r

(x)

)
0.7891

Ensemble for Z1
0 acc

(
ℓϵ̃
z1,r

(x), ℓσ̃
z1,r

(x)
)

1.0000

UQ model for Z1
0 acc

(
ℓϵ̃
z1,r

(x), ℓσ̂
z1,ψ̂

M
1 ,r

(x)

)
1.0000

Table 12: Accuracy score between the binary labels of the relative RMSE, ensemble STD, and
estimated STD values from D and D̃ using the testing sample in Example 2.

Moreover, as the RMSE increases due to propagated errors with increasing N (from a certain
value of N depending on the parameter set values), it is of interest to determine whether the UQ
model can identify the value of N at which the algorithm attains the smallest RMSE based on
the estimated STD. To investigate this, we generate a dataset DN similar to D in Table 6 with
a fixed maturity T = 0.3, and each sampled parameter set is solved for N = {2, 8, 32, 128}. The
dataset DN consists of 2560 parameter sets, resulting in a total number of samples M = 10240.
We choose M train = 8192 and Mvalid = M test = 1024. Note that n = 2 since xi = (bi, N),
N ∈ N. We use the same hyperparameters for the UQ model as for dataset D and train only
one model. To evaluate the accuracy score, we define the binary multi-label

ℓϵ̃
r
(xi) =


{1, 0, 0, 0} if Nmin,ϵ̃r(xi) = 2,
{0, 1, 0, 0} if Nmin,ϵ̃r(xi) = 8,
{0, 0, 1, 0} if Nmin,ϵ̃r(xi) = 32,
{0, 0, 0, 1} if Nmin,ϵ̃r(xi) = 128,

for the relative RMSE, where Nmin,ϵ̃r(xi) = argminN∈N ϵ̃r(bi, N). The binary multi-labels for
the relative ensemble STD ℓσ̃

r
(xi) and estimated STD ℓσ̂

r
(xi) are defined similarly. The accuracy

score values between these multi-labels for the testing sample of DN are presented in Table 13.
We observe that the accuracy score values between the multi-labels of the relative RMSE and

UQ approach Accuracy score Dataset DN

Ensemble for Y0 acc
(
ℓϵ̃
y,r

(x), ℓσ̃
y,r

(x)
)

0.6680

UQ model for Y0 acc

(
ℓϵ̃
y,r

(x), ℓσ̂
y,ω̂M1 ,r

(x)

)
0.4805

Ensemble for Z1
0 acc

(
ℓϵ̃
z1,r

(x), ℓσ̃
z1,r

(x)
)

0.7773

UQ model for Z1
0 acc

(
ℓϵ̃
z1,r

(x), ℓσ̂
z1,ψ̂

M
1 ,r

(x)

)
0.5469

Table 13: Accuracy score between the multi-labels of the relative RMSE, ensemble STD, and
estimated STD values from DN using the testing sample in Example 2.

estimated STD values acc
(
ℓϵ̃
r
(x), ℓσ̂

r
(x)
)
are approximately 0.5. This indicates that the relative

estimated STD correctly predicted the value of N with the smallest relative RMSE for around
50% of the parameter sets in the testing sample.
The accuracy score serves as a restrictive metric, requiring each predicted label (ℓσ̃

r
(x) or ℓσ̂

r
(x))

to exactly match the true label (ℓϵ̃
r
(x)). Hence, it doesn’t tolerate partial errors. For instance, if

the N value with the smallest relative RMSE coincides with the one having the second smallest
relative estimated STD, the prediction is counted as incorrect. This rigid evaluation fails to
consider the order of predicted labels. For this purpose, we consider the mean reciprocal rank
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(MRR) metric, since there is only one relevant label per sample. It measures the effectiveness
of a model in ranking a list of predicted labels based on their relevance to the only true label.
In our case, the true label is Nmin,ϵ̃r(x). The predicted ones are denoted by Nsort,σ̃r(x) and
Nsort,σ̂r(x), the ascending sorted N values for the parameter set x based on the value of relative
ensemble STD and estimated STD, respectively. Hence, MRR

(
Nmin,ϵ̃r(x),Nsort,σ̂r(x)

)
is given

by

MRR
(
Nmin,ϵ̃r(x),Nsort,σ̂r(x)

)
=

1

256

256∑
i=1

1

pos (Nmin,ϵ̃r(xi),Nsort,σ̂r(xi))
,

where pos
(
Nmin,ϵ̃r(xi),N

sort,σ̂r(xi)
)
gives the position where the true label Nmin,ϵ̃r(xi) is found

in the list of predicted labels Nsort,σ̂r(xi). The mean reciprocal rank values are reported in
Table 14. We observe that, on average, our UQ model can show that the smallest relative RMSE

UQ approach Mean reciprocal rank Dataset DN

Ensemble for Y0 MRR
(
Nmin,ϵ̃y,r (x),Nsort,σ̃y,r (x)

)
0.8119

UQ model for Y0 MRR

(
Nmin,ϵ̃y,r (x),Nsort,σ̂y,ω̂

M
1 ,r

(x)

)
0.6849

Ensemble for Z1
0 MRR

(
Nmin,ϵ̃z1,r (x),Nsort,σ̃z1,r (x)

)
0.8812

UQ model for Z1
0 MRR

(
Nmin,ϵ̃z1,r (x),Nsort,σ̂z1,ψ̂

M
1 ,r

(x)

)
0.7614

Table 14: Mean reciprocal rank between the N value with the smallest relative RMSE and the
ascending sorted N values based on the relative ensemble STD and estimated STD values from
DN using the testing sample in Example 2.

is achieved for the N value of either the first or second smallest relative estimated STD.

5 Conclusions

In this work, we investigate the sources of uncertainty in the deep learning-based BSDE schemes
and develop a UQ model based on heteroscedastic nonlinear regression to estimate the uncer-
tainty. We apply the UQ model to the pioneering scheme developed in [11] and the one in [31].
The STD of the approximate solution captures the uncertainty, which is usually estimated by
performing multiple runs of the algorithm with different datasets. This approach is quite com-
putationally expensive, especially in high-dimensional cases. Our UQ model estimates the STD
much cheaper, namely using a single run of the algorithm. Under the assumption of normally
distributed errors with zero mean and the STD depending on the parameter set of the discretized
BSDE, we employ a DNN to learn two functions that estimate the mean and STD of the ap-
proximate solution. The DNN is trained using a dataset of i.i.d. samples, consisting of various
parameter sets of the discretized BSDE and their corresponding approximated solutions from
a single run of the algorithm. The network parameters are optimized by minimizing the nega-
tive log-likelihood. The STD is thus estimated much cheaper. Furthermore, the estimated mean
can be leveraged to initialize the algorithm, improving the optimization process. Our numerical
results demonstrate that the proposed UQ model provides reliable estimates of the mean and
STD of the approximate solution for both considered schemes, even in high-dimensional cases.
The estimated STD captures various sources of uncertainty, showcasing its capability in quan-
tifying the uncertainty. Moreover, the UQ model illustrates the improved performance of the
LaDBSDE scheme compared to the DBSDE scheme based on the corresponding estimated STD
values. Finally, it can also identify the hyperparameters that yield a well-performing scheme.
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Appendix A Impact of the sources of uncertainty for the Burg-
ers type BSDE

In this section, we visualize the effect of different errors on the RMSE for Example 2. The
impact of the optimization error is shown in Figure 20 using C-LR and PC-LR approaches. For

0 1 2 3 4 5 6
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(a) RMSE values for Y0.
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ϵ̃z
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PC-LR

(b) RMSE values for Z1
0 .

Figure 20: RMSE values are plotted for Example 2 using different learning rate approaches,
where T = 0.25 and b = 25.

the discretization error, see Figure 21. The effect of the optimization error and propagated errors
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(a) RMSE values for Y0.
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(b) RMSE values for Z1
0 .

Figure 21: RMSE values are plotted for Example 1 using N ∈ {2, 8, 32, 128, 256, 512, 1024},
where T = 0.25 and b = 25.

over time are displayed in Figure 22.

Appendix B Normality assumption of the error distribution

In this section, we conduct a test to assess the normality of the error distribution in (13) for
Example 1. For the parameter values T = 0.33,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03
and δ = 0, the exact solution is (Y0, Z0) = (5.0679, 11.1420). Using N = 16, K = 30000,
α = 1e−2 and conducting Q = 500 independent runs of the DBSDE algorithm, we display the
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(a) RMSE values and the absolute error for each
of Q = 10 DBSDE runs for Y0 with N = 32.
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(b) RMSE values and the absolute error for each
of Q = 10 DBSDE runs for Y0 with N = 1024.
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(c) RMSE values and the absolute error for each
of Q = 10 DBSDE runs for Z1

0 with N = 32.
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(d) RMSE values and the absolute error for each
of Q = 10 DBSDE runs for Z1

0 with N = 1024.

Figure 22: RMSE values and the absolute errors from each of Q = 10 DBSDE runs are plotted
for Example 2 using N ∈ {32, 1024}, where T = 0.25 and b = 25.

empirical distribution of the approximations in Figure 23. The observed empirical distributions
exhibit a Gaussian shape. To further assess the normality, we perform the Shapiro-Wilk [47] and
D’Agostino and Pearson’s [10] tests for the assessment of normality. The p-values obtained from
these tests are presented in Table 15. With a significance level of 0.05, we conclude that there is

Shapiro-Wilk D’Agostino-Pearson

Y ∆,θ̂m

0 0.5014 0.5368

Z∆,θ̂m

0 0.4391 0.6489

Table 15: p-value of the statistical tests in Example 1 for parameter set T = 0.33,K = 100, S0 =
100, a = 0.05, b = 0.2, R = 0.03 and δ = 0.

no evidence to reject the assumption of normal distribution for the approximate solutions Y ∆,θ̂m

0

and Z∆,θ̂m

0 .
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(a) Empirical distribution of Y ∆,θ̂m

0 , where the cal-
culated parameters are (µ̃y, σ̃y) = (5.0659, 0.0248).
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(b) Empirical distribution of Z∆,θ̂m

0 , where
the calculated parameters are (µ̃z, σ̃z) =
(11.1946, 0.0764).

Figure 23: Empirical distribution of the approximate solution (13) in Example 1 for parameter
set T = 0.33,K = 100, S0 = 100, a = 0.05, b = 0.2, R = 0.03 and δ = 0. The curve represents a
fitted normal distribution to the data.
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