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Abstract

In this paper we introduce an improved version of the fifth-order weighted essentially non-
oscillatory (WENO) shock-capturing scheme by incorporating deep learning techniques. The
established WENO algorithm is improved by training a compact neural network to adjust
the smoothness indicators within the WENO scheme. This modification enhances the accu-
racy of the numerical results, particularly near abrupt shocks. Unlike previous deep learning
based methods, no additional post-processing steps are necessary for maintaining the con-
sistency. We demonstrate the superiority of our new approach using several examples from
the literature for the two-dimensional Euler equations of gas dynamics. Through intensive
study of these test problems, which involve various shocks and rarefaction waves, the new
technique is shown to outperform traditional fifth-order WENO schemes, especially in cases
where the numerical solutions exhibit excessive diffusion or overshoot around shocks.

Keywords: Weighted essentially non-oscillatory method, Hyperbolic conservation laws,
Smoothness indicators, Deep Learning, Euler equations
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1. Introduction

It has long been a challenge to adequately simulate complex flow problems using numer-
ical methods. Recently, this has been further improved using machine learning techniques.
As an example, in [1, 2, 3], the concept of physics-informed neural networks (PINNs) for
the solution of complex fluid flow problems was proposed, which seamlessly combines the
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data and the mathematical models; see [1, 4, 5, 6, 7, 8] for more details. Similarly, a new
method using a U-Net-like convolutional neural network (CNN) along with established finite
difference discretization techniques was proposed to learn approximate solutions for the NSE
without the need for parameterization [9]. Also, recently, a framework called local transfer
function analysis (LTA) for optimizing numerical methods for convection problems using a
graph neural network (GNN) was proposed [10].

The work [11] investigated the use of PINNs to approximate the hyperbolic Euler equa-
tions of gas dynamics. The Euler equations and initial and boundary conditions are used
to create a loss function that solves scenarios with smooth solutions and those with discon-
tinuities. Next, in [4], a novel approach, called conservative PINNs, for solving nonlinear
conservation laws, such as the compressible Euler equations, was presented. In the recent
paper [12], another novel approach has been proposed where machine learning improves
finite-difference-based approximations of PDEs while maintaining high-order convergence
through node refinement.

This research area is also the context of our work. Recently, improvements to the standard
finite difference methods (FDMs) have been developed [13]. By adding a small convolutional
neural network, the solutions of the standard PDEs are improved, while the convergence
and consistency properties of the original methods are preserved. We aim to further improve
modern FDMs, such as WENO schemes, for nonlinear hyperbolic systems using machine
learning. For this type of PDEs, it is known that discontinuities (shocks) can occur despite
initial smoothness, which makes specialized numerical methods mandatory. Therefore, the
focus of our attention is on the behavior of numerical solutions in the vicinity of shocks.

To better frame our current work, let us very briefly sketch the historical development
of WENO schemes. Crandall and Majda [14] introduced monotone schemes in 1980 that
maintain stability and satisfy entropy conditions, but are only exactly first order due to
Godunov’s theorem. Next, shock-capturing schemes were developed to accurately handle
shocks and gradients without excessive diffusion [15]. The essentially non-oscillatory (ENO)
schemes [16] were outstanding, achieving high accuracy in smooth regions and effective
shock resolution using smoothness indicators, e.g. [17, 18]. Extensions such as the Hermite
WENO (HWENO) schemes [19, 20] and hybrid methods [21, 22] were introduced for higher
accuracy and efficiency. A gas-kinetic theory based KWENO scheme was proposed in [23]
for hyperbolic conservation laws. Moreover, further modifications of WENO scheme have
been developed, e.g. [24, 25, 26, 27, 28, 29].

And then machine learning for solving PDEs entered the scene. Neural networks ap-
proximated the solutions of PDEs and improved numerical methods for PDEs. While the
data-driven approach is promising for improving modern numerical methods, it is always
important to maintain a balance between new data-driven insights and established mathe-
matical structures, i.e., the basic numerical scheme (here based on physical principles), e.g.,
for hyperbolic problems, the resulting hybrid scheme should be conservative in any case. We
have maintained this balance, and next we will briefly describe our approach.
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Recent approaches to solving numerical PDEs include neural network-based WENO
methods that modify coefficients and smoothness indicators of established state-of-the-art
numerical methods to further improve these schemes, especially near shocks. However, some
methods achieve only first-order accuracy [30].

In this paper, we present a new approach called ”WENO-DS”, a Deep learning-based
extension of the family of WENO methods and extend it to solving a general two-dimensional
system of hyperbolic conservation laws

Ut + F (U)x +G(U)y = 0. (1)

To this end, we modify the smoothness indicators of the WENO schemes using a small
neural network, maintaining high accuracy in smooth regions and reducing diffusion and
overshoots (oscillatory behaviour) near shocks. The resulting machine learning enhanced
WENO scheme combines accuracy and improved qualitative behavior for both smooth and
discontinuous solutions.

The paper is organized as follows. In Section 2, we introduce two underlying WENO
schemes and explain the basic ideas, such as the smoothness indicators, on a 1D conserva-
tion law. In Section 3, we present our method for improving these schemes using a deep
learning approach to modify the smoothness indicators accordingly. This novel idea does not
destroy the basic structure of the WENO schemes, such as the conservative property, and
qualitatively improves the solution near shocks with only small additional computational
costs. In this section, we also elaborate on implementation aspects, such as adaptive activa-
tion functions and the design of the small network, and the training procedure. In Section 4,
we briefly describe our application example of the 2D Euler equations of gas dynamics. Sub-
sequently, in Section 5 we present in detail the numerical results with a wide range of test
configurations. Finally, in Section 6 we conclude our work and give a brief overview of future
research directions.

2. The WENO scheme

We first introduce the standard fifth-order WENO scheme for solving one-dimensional
hyperbolic conservation laws

ut + f(u)x = 0, (2)

as developed by Jiang and Shu [17, 18]. For this purpose, we consider the uniform grid
defined by the points xi = x0 + i∆x with cell boundaries xi+ 1

2
= xi +

∆x
2
, i = 0, . . . , I. The

semi-discrete formulation of (2) can be written as

dui(t)

dt
= − 1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (3)

where ui(t) approximates u(xi, t) pointwise and f̂ is a numerical approximation of the flux
function f , i.e. f̂i+ 1

2
and f̂i− 1

2
are numerical flux approximations at the cell boundaries xi+ 1

2
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and xi− 1
2
, respectively. The numerical flux f̂i+ 1

2
is chosen such that for all sufficiently smooth

u
1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
=

(
f(u)

)
x

∣∣
x=xi

+O(∆x5), (4)

with fifth-order of accuracy. Defining a function h implicitly by

f
(
u(x)

)
=

1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ) dξ, (5)

we obtain

f ′(u(xi)
)
=

1

∆x

(
hi+ 1

2
− hi− 1

2

)
, hi± 1

2
= h(xi± 1

2
), (6)

where hi± 1
2
approximates the numerical flux f̂± 1

2
with the fifth-order of accuracy in a sense

that
f̂i± 1

2
= hi± 1

2
+O(∆x5). (7)

This procedure results in a conservative numerical scheme.
To ensure numerical stability, the flux splitting method is applied. We therefore write the

flux in the form

f(u) = f+(u) + f−(u), where
df+(u)

du
≥ 0 and

df−(u)

du
≤ 0. (8)

The numerical flux f̂i± 1
2
is then given by f̂i± 1

2
= f̂+

i± 1
2

+f̂−
i± 1

2

and we get the final approximation

dui

dt
= − 1

∆x

[(
f̂+
i+ 1

2

− f̂+
i− 1

2

)
+
(
f̂−
i+ 1

2

− f̂−
i− 1

2

)]
. (9)

Remark 1. In our implementation we use the Lax-Friedrichs flux splitting

f±(u) =
1

2

(
f(u)± αu

)
, (10)

with α = max
u
|f ′(u)|.

2.1. The fifth order WENO scheme

First, we consider the construction of f̂+
i+ 1

2

and drop the superscript + for simplicity. For

this approximation a 5-point stencil

S(i) = {xi−2, . . . , xi+2} (11)

is used. The main idea of fifth-order WENO scheme is to divide this stencil (11) into three
candidate substencils, which are given by

Sm(i) = {xi+m−2, xi+m−1, xi+m}, m = 0, 1, 2. (12)
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The numerical fluxes f̂m(xi+ 1
2
) = f̂m

i+ 1
2

= hi+ 1
2
+ O(∆x3) are then calculated for each of

the small substencils (12). Let f̂m(x) be the polynomial approximation of h(x) on each of
the substencils (12). By evaluation of these polynomials at x = xi+ 1

2
the following explicit

formulas can be obtained [18]

f̂ 0
i+ 1

2
=

2f(ui−2)− 7f(ui−1) + 11f(ui)

6
,

f̂ 1
i+ 1

2
=
−f(ui−1) + 5f(ui) + 2f(ui+1)

6
,

f̂ 2
i+ 1

2
=

2f(ui) + 5f(ui+1)− f(ui+2)

6
,

(13)

where the value of a function f at u(xi) is indicated by f(ui) = f(u(xi)). Then, we obtain
a final approximation on a big stencil (11) as a linear combination of the fluxes (13)

f̂i+ 1
2
=

2∑
m=0

dmf̂
m
i+ 1

2
, (14)

where the coefficients dm are the linear weights, which would form the upstream fifth order
central scheme for the 5-point stencil and their values are

d0 =
1

10
, d1 =

6

10
, d2 =

3

10
. (15)

As described in [17, 18], the linear weights can be replaced by nonlinear weights ωJS
m , m =

0, 1, 2, such that

f̂i+ 1
2
=

2∑
m=0

ωJS
m f̂m

i+ 1
2
, (16)

with

ωJS
m =

αJS
m∑2

i=0 α
JS
i

, where αJS
m =

dm
(ϵ+ βm)2

. (17)

The parameter βm is crucial for deciding which substencils to include in the final flux ap-
proximation. It is referred to as smoothness indicator and its main role is to reduce or
remove the contribution of the substencil Sm, which contains the discontinuity. In this case
the corresponding nonlinear weight ωJS

m becomes smaller. For smooth parts of the solution,
the indicators are designed to come closer to zero, so that the nonlinear weights ωJS

m comes
closer to the ideal weights dm. We will further analyze the smoothness indicators in the next
section. The parameter ϵ is used to prevent the denominator from becoming zero. In all our
experiments, we set the value of ϵ to 10−6.
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2.2. Smoothness indicators

In [17], the smoothness indicators have been developed as:

βm =
2∑

q=1

∆x2q−1

∫ x
i+1

2

x
i− 1

2

(dqf̂m(x)

dxq

)2

dx, (18)

with f̂m(x) being the polynomial approximation in each of three substencils. Their explicit
form corresponding to the flux approximation f̂i+ 1

2
can be obtained as

β0 =
13

12

(
f(ui−2)− 2f(ui−1) + f(ui)

)2
+

1

4

(
f(ui−2)− 4f(ui−1) + 3f(ui)

)2
,

β1 =
13

12

(
f(ui−1)− 2f(ui) + f(ui+1)

)2
+

1

4

(
−f(ui−1) + f(ui+1)

)2
,

β2 =
13

12

(
f(ui)− 2f(ui+1) + f(ui+2)

)2
+

1

4

(
3f(ui)− 4f(ui+1) + f(ui+2)

)2
.

(19)

Remark 2. As mentioned before, we only considered the construction of the numerical flux
f̂+
i+ 1

2

. For the numerical approximation of the flux f̂+
i− 1

2

we can use formulas (13)–(17) and

(19) and shift each index by −1.

The negative part of the flux splitting can be obtained using symmetry (see, e.g., [31]),
and we briefly summarize the formulas for f̂−

i+ 1
2

and omit the superscript −:

f̂ 0
i+ 1

2
=

11f(ui+1)− 7f(ui+2) + 2f(ui+3)

6
,

f̂ 1
i+ 1

2
=

2f(ui) + 5f(ui+1)− f(ui+2)

6
,

f̂ 2
i+ 1

2
=
−f(ui−1) + 5f(ui) + 2f(ui+1)

6
,

(20)

where the weights ωJS
m are computed as in (17) using the smoothness indicators given by

β0 =
13

12

(
f(ui+1)− 2f(ui+2) + f(ui+3)

)2
+

1

4

(
3f(ui+1)− 4f(ui+2) + f(ui+3)

)2
,

β1 =
13

12

(
f(ui)− 2f(ui+1) + f(ui+2)

)2
+

1

4

(
f(ui)− f(ui+2)

)2
,

β2 =
13

12

(
f(ui−1)− 2f(ui) + f(ui+1)

)2
+

1

4

(
f(ui−1)− 4f(ui) + 3f(ui+1)

)2
.

(21)

In the next section, where the deep learning algorithm will be introduced, this will help to
understand how the improved smoothness indicators will be constructed.
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2.3. The WENO-Z scheme

Borges et al. [25] pointed out that the classical WENO-JS scheme described in previous
sections looses the fifth-order accuracy at the critical points where f ′(u) = 0, and proposed
new nonlinear weights defined by

ωZ
m =

αZ
m

2∑
i=0

αZ
i

, where αZ
m = dm

[
1 +

( τ5
βm + ϵ

)2
]

(22)

and
τ5 = |β0 − β2| (23)

is a new global smoothness indicator.

3. Deep smoothness WENO scheme

In [32, 33, 34] the new WENO-DS scheme based on the improvement of the smoothness
indicators was developed. The smoothness indicators βm, m = 0, 1, 2, are multiplied by the
perturbations δm, which are the outputs of the respective neural network algorithm. The
new smoothness indicators are denoted by βDS

m :

βDS
m = βm(δm + C), m = 0, 1, 2, (24)

where C is a constant that ensures the consistency and accuracy of the new method. In all
our experiments we set C = 0.1. For more details and corresponding theoretical proofs of
accuracy and consistency we refer to [32, 33].

Note that the formulation of the new smoothness indicators βDS
m as a multiplication of

the original ones with the perturbations δm is very favorable. In a case where the original
smoothness indicator converges to zero, the improved βDS

m behaves in the same way. On the
other hand, if a subset Sm contains a discontinuity, the perturbation δm can improve the orig-
inal smoothness indicator so that the final scheme exhibits better numerical approximations.
Moreover, the theoretical convergence properties are not lost, see [32, 33].

In [32] the algorithm was successfully applied to one-dimensional benchmark examples
such as the Burgers’ equation, the Buckley-Leverett equation, the one-dimensional Euler
system, and the two-dimensional Burgers’ equation. In [33], the algorithm was extended
to nonlinear degenerate parabolic equations and further applied to computational finance
problems in [34]. The theoretical order of convergence was demonstrated on the smooth
solutions and the large numerical improvements were obtained when comparing the WENO-
DS method with the original WENO methods.
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3.1. Preservation of a conservative property for WENO-DS scheme

However, the multipliers introduced for the smoothness indicators in [32] were cell-based
(not interface-based). This means that although the high numerical accuracy was theoret-
ically demonstrated and numerically confirmed, the guarantee of the conservative property
was lost. As stated in [33], the conservative property can be easily recovered by defining the
multipliers such that

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i+ 1

2
+ C),

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i− 1

2
+ C),

(25)

with
δ0,i+ 3

2
= δ1,i+ 1

2
= δ2,i− 1

2
, i = 0, . . . , N. (26)

This makes the multipliers depend on the location of the substencils corresponding to βm,i+ 1
2

and βm,i− 1
2
. This ensures that the values f̂±

i− 1
2

can be obtained from the values f̂±
i+ 1

2

by simple

index shifting and that the conservative property is preserved.

3.2. Structure of neural network

To ensure the consistency of a numerical method, the Convolutional Neural Network
(CNN) is used. This is crucial to ensure the spatial invariance of the resulting numerical
method. This means that the multipliers δm are independent of their position in the spatial
grid and only depend on the solution itself.

Let us formulate the CNN as a function H(·) ∈ R2k+1 → R, where 2k + 1 is the size of
the receptive field of the CNN:

H
(
f̄(ūi)

)
= CNN

(
f̄(ūi)

)
. (27)

As an input we define a vector

f̄(ūi) =
(
f(u(xi−k)), f(u(xi−k+1)), . . . , f(u(xi+k))

)
,

ūi = ū(x̄i) =
(
u(xi−k), u(xi−k+1), . . . , u(xi+k)

)
.

(28)

The Figure 1 shows the values from which the multipliers δm, m = 0, 1, 2 are constructed,
assuming 2k + 1 = 3 for the receptive field. In this case, the values used to compute the
original smoothness indicators are also used to compute the multipliers δm, m = 0, 1, 2,
(see equations (19) and (21)). If we enlarge the receptive field of the CNN, we also enlarge
the stencil for computing the multipliers δm, m = 0, 1, 2. In this way, the smoothness
indicators are basically computed from a wider stencil, which can lead to better numerical
approximations. In this case, we just need to add more bounds before feeding the values
(28) to the CNN.

As we are improving the existing numerical scheme and adding a neural network part to it,
it is important that the new numerical scheme remains computationally efficient. The neural
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Figure 1: The substencils used for computation of multipliers δm, m = 0, 1, 2 corresponding to the flux
approximations f̂±

i± 1
2

, assuming that for the receptive field of the CNN holds 2k + 1 = 3.

network part added to the numerical scheme could be computationally expensive. However,
we propose to use only a small CNN, which would not have such high computational costs.
The detailed structure of the CNN can be found in Section 4.1.

It was pointed out in [32] that better numerical results were obtained using two different
neural networks for the positive and negative part of a flux. We experimentally found that
we can avoid using more neural networks and use only one CNN. On the other hand, we
can achieve better results by using a superior training procedure and adaptive activation
functions. More details will be discussed in the next subsections.

For convergence and consistency of the numerical scheme, all hidden layers of the CNN
must be differentiable functions and the activation function in the last CNN layer must be
bounded from below [33]. Experimentally, we found that the use of a softplus activation
function in the last CNN layer is more effective and gives better numerical results compared
to e.g. sigmoid as used in [32].
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3.2.1. Adaptive activation functions

We can make the training more effective and get better numerical results by using adaptive
activation functions. [35, 36, 37]. The activation function is one of the most important
hyperparameters in neural network architectures. The purpose of this hyperparameter is to
introduce nonlinearity into the prediction. There are many activation functions proposed
in the literature; see the comprehensive survey [38] for more details. However, there is no
basic rule for the choice of the activation function. This is the motivation to use an adaptive
activation function that can adapt to the problem at hand. In this work, we used global
adaptive activation functions [35], where the additional slope parameter is introduced in the
activation function as follows.

For the ELU activation function, we train the additional parameter α:

ELU =

{
x, if x > 0,

α(exp(x)− 1) if x ≤ 0
(29)

and we denote the adaptive ELU as aELU. For the softplus activation function, we train the
additional parameter β:

Softplus(x) =
1

β
log(1 + exp(βx)) (30)

and we denote the adaptive softplus as aSoftplus.

3.3. Training procedure

In this section we describe how the training procedure for WENO-DS is carried out. We
have experimented with different training procedures and have found experimentally that
following the training procedure described in [33] gives the best numerical results. First we
have to create the data set. For this purpose we compute the reference solutions using the
WENO-Z method on a fine grid of I × J = 400× 400 space points up to the given final time
T , where tn represents the time points, n = 0, . . . , N . More details on the construction of
the reference solutions are given in Sections 5.1, 5.2, 5.3.

During a training we compute the numerical solutions on a grid of I × J = 100 × 100
space points. At the beginning of a training we randomly select a problem from a data set
and perform a single time step to get to the time tn+1, using CNN to predict the multipliers
δm. However, by performing a single time step on a coarse grid, we do not match the time
step size of the fine precomputed solutions, as the adaptive time step size is used. So we
simply take the closest reference solution from the data set, use it as an initial condition and
do another small time step to get a reference solution in time tn+1. Then we compute the
loss and its gradient with respect to the weights of the CNN.

We then decide whether to proceed to the next time step of a current problem or to choose
another problem from our dataset and run a time step of that problem. The probability of
choosing the new problem has to be determined at the beginning of the training session and
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we set it to φ = 0.5 in our experiments. We set the maximum number of opened problems to
150. We remember all opened problems, and if no new problem is opened (with probability
1−φ), or if the maximum number of opened problems is reached, we execute the next time
step of a problem uniformly chosen from the set of already opened problems. Keeping the
solution from the previous time step as initial data, we repeat the same procedure until
we reach the maximum number of training steps. This training procedure gives us a great
opportunity to mix the solutions with different initial data and in different time points, which
makes the training more effective.

3.3.1. Optimizer and the optimal learning rate

To train the network, we used a gradient-based optimiser, namely a variant of stochastic
gradient descent, the Adam optimiser [39].

The learning rate is another important hyperparameter to choose. A larger learning
rate may miss the local minima, and a smaller learning rate may require a large number of
iterations to reach convergence. Therefore, it is important to find a near-optimal learning
rate. In this work, the learning rate is 0.001 to update the weights of the CNN. This near-
optimal learning rate was found through experiments.

3.3.2. Loss function

In this work, the loss function consists of the data mismatch term between the solution
predicted by the networks and the reference solution. For the loss function, we use the mean
square error loss as follows:

LOSSMSE(u) =
1

I

I∑
i=0

(ui − uref
i )2, (31)

where ui is a numerical approximation of u(xi) and uref
i is the corresponding reference solu-

tion. The L2 norm based loss function has the advantage of stronger gradients with respect
to ui, resulting in faster training. However, in our examples we use the L1 norm as the main
error measure, which is more typical for measuring errors for hyperbolic conservation laws.
Thus, for validation during training, we use the metrics

L1(u) =
1

I

I∑
i=0

|ui − uref
i |. (32)

4. Application of our approach to the 2D Euler equations

We consider the two-dimensional Euler equations of gas dynamics in the form (1) with

U =


ρ
ρu
ρv
E

 F (U) =


ρu

ρu2 + p
ρuv

u(E + p)

 G(U) =


ρv
ρuv

ρv2 + p
v(E + p)

 (33)
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for polytropic gas. Here, the variable ρ is the density, u the x-velocity component, v the
y-velocity component, E the total energy and p the pressure. Further, it holds

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
. (34)

γ denotes the ratio of the specific heats and we will use γ ∈ (1.1, 1.67) in this paper.
We consider the spatial domain [0, 1] × [0, 1] and solve the Riemann problem with the

following initial condition

(ρ, u, v, p) =


(ρ1, u1, v1, p1) x > 0.5 and y > 0.5,

(ρ2, u2, v2, p2) x < 0.5 and y > 0.5,

(ρ3, u3, v3, p3) x < 0.5 and y < 0.5,

(ρ4, u4, v4, p4) x > 0.5 and y < 0.5.

(35)

The combination of four elementary planar waves is used to define the classification of
the Riemann problem. A detailed study of these configurations has been done in [40, 41,
42, 43, 44, 45] and there are 19 different possible configurations for polytropic gas. These

are defined by three types of elementary waves, namely a backward rarefaction wave
←−
R , a

backward shock wave
←−
S , a forward rarefaction wave

−→
R , a forward shock wave

−→
S and a

contact discontinuity J±, where the superscript ± refers to negative and positive contacts.
To obtain the WENO approximations in the two-dimensional example, we apply the

procedure described in Section 2 using the dimension-by-dimension principle. Thus we obtain
the flux approximations for (1) as

1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
=

(
F (U)

)
x

∣∣
(xi,yj)

+O
(
∆x5

)
,

1

∆y

(
ĝi+ 1

2
− ĝi− 1

2

)
=

(
G(U)

)
y

∣∣
(xi,yj)

+O
(
∆y5

)
,

(36)

with the uniform grid defined by the nodes (xi, yj), ∆x = xi+1 − xi, ∆y = yj+1 − yj,
i = 0, . . . , I, j = 0, . . . , J .

In our examples we proceed with the implementation of the Euler system using charac-
teristic decomposition. This means that we first project the solution and the flux onto the
characteristic fields using left eigenvectors. Then we apply the Lax-Friedrichs flux splitting
(10) for each component of the characteristic variables. These values are fed into the CNN
and the enhanced smoothness indicators are computed. After obtaining the final WENO
approximation, the projection back to physical space is done using right eigenvectors, see
[46] for more details on this procedure.
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4.1. Size of the neural network

In our paper, we considered different structures of neural networks and carried out nu-
merous experiments with them. First, we used a rather simple CNN with only two layers
and a receptive field of width 3. The structure is shown in Figure 2a. The advantage of this
is its computational efficiency. Second, we used a CNN with the same number of layers, but
we increased the number of channels and made the receptive field wider. The structure is
shown in Figure 2b. Finally, we used only a receptive field of width 3, but added one more
layer and used a more complex neural network, as shown in Figure 2c. Each of these neural
networks gave interesting results and we summarize them in Section 5.
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(a) Two hidden layers, lower number of channels, receptive field of size 3.
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(b) Two hidden layers, higher number of channels, receptive field of size 5.
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(c) Three hidden layers, higher number of channels, receptive field of size 3.

Figure 2: Different structures of the convolutional neural network.

As can be seen, we have 4 input channels in the first hidden layer and 4 output channels
in the last hidden layer in each CNN. These represent the dimension of the solution U from
(33). In this way, the neural network also takes in information from other variables, which
can be useful for improving the numerical solution. The input F̄ (Ū), respectively Ḡ(Ū)
represents the numerical approximation after the projection using left eigenvectors and after
applying the flux splitting method.

We also have to adapt the loss function from (31) and use for training

LOSSMSE(ρ, u, v, p) = LOSSMSE(ρ) + LOSSMSE(u) + LOSSMSE(v) + LOSSMSE(p) (37)

and for the validation during training from (32)

L1(ρ, u, v, p) = L1(ρ) + L1(u) + L1(v) + L1(p). (38)
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When we plot the error on validation problems, we rescale the values for each validation
problem to be in the interval [0, 1] using the relationship

L∗
1(ρ, u, v, p) =

Ll
1(ρ, u, v, p)

maxl(Ll
1(ρ, u, v, p))

, l = 0, . . . , L, (39)

where L denotes the total number of training steps.

4.2. Construction of the data set for the CNN training procedure
For each of the 19 configurations of the Riemann problem, the specific relations must

be satisfied by the initial data and the symmetry properties of the solution. We present
the formulas given in [41] and create the data sets for the CNN training according to these
formulas.

We define

Φlr :=
2
√
γ

γ − 1

(√pl
ρl
−

√
pr
ρr

)
, Ψ2

lr :=
(pl − pr)(ρl − ρr)

ρlρr
, (Ψlr > 0) (40)

and

Πlr :=
( pl
pr

+
(γ − 1)

(γ + 1)

)/(
1 +

(γ − 1)

(γ + 1)

pl
pr

)
. (41)

In Sections 5.1, 5.2, 5.3 we list the specific relations for given examples that are sufficient
to uniquely define the solution. Following these relations, we randomly generate the initial
data and construct our data sets.

5. Numerical results

To demonstrate the efficiency of the proposed method, in this section we present the
numerical results obtained with the WENO-DS method after the CNN training procedure.
Note that the CNN training procedure only needs to be performed once as offline training
for each of the examples presented in Sections 5.1, 5.2, 5.3. No additional training was
performed for the examples in Section 5.4 as we show the results using the same trained
CNN from the previous examples. In Section 5.5 we perform two more trainings with larger
CNN and illustrate the results. Further details can be found in the respective sections.

For the following system of ordinary differential equations (ODEs)

dU(t)

dt
= L(U), (42)

we use a third-order total variation diminishing (TVD) Runge-Kutta method [17] given by

U (1) = Un +∆t L(Un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆t L(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆t L(U (2)),

(43)
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where Un is the numerical solution at the time step n.
For the scheme (43) we use an adaptive step size

∆t = 0.6min
(∆x

a
,
∆y

a

)
, (44)

with
a = max

i=0,...,I
j=0,...,J

(|λ+
i,j|, |λ−

i,j|) λ± = V ± c, V =
√
u2 + v2 c2 = γ

p

ρ
, (45)

where u, v are the velocities and c is the local speed of sound.
In the sequel we enumerate the different configurations of initial conditions according to

[44].

5.1. Configuration 2

This is the configuration with four rarefaction waves:
−→
R 21,

←−
R 32,

←−
R 34,

−→
R 41. The detailed

analysis was done in [45, 41] and we have to satisfy the following relations for this case:

u2 − u1 = Φ21, u4 − u3 = Φ34, u3 = u2, u4 = u1,

v4 − v1 = Φ41, v2 − v3 = Φ32, v2 = v1, v3 = v4
(46)

with the compatibility conditions Φ21 = −Φ34 and Φ41 = −Φ32. Moreover, for a polytropic
gas the equations

ρl/ρr = (pl/pr)
1/γ for (l, r) ∈ {(2, 1), (3, 4), (3, 2), (4, 1)} (47)

have to be included. Furthermore, we have ρ2 = ρ4, ρ1 = ρ3, p1 = p3, p2 = p4, u2−u1 = v4−v1
and u4 − u3 = v2 − v3.

We use for creating of the data set the values

ρ1 ∈ U [0.7, 2], ρ2 ∈ U [0.5, ρ1], p1 ∈ U [0.2, 1.5],
u1 ∈ U [−1, 1], v1 = u1, γ ∈ (1.1, 1.67)

(48)

and for the other values we use the relations (46), (47) with (40). We also compute the
reference solutions using the WENO-Z method on a grid I × J = 400× 400 space points up
to the final time T ∈ U [0.1, 0.2] and create the data set consisting of 50 reference solutions.

For training, we use the training procedure described in Section 3.3. First, we use the
simplest neural network structure shown in Figure 2a and perform the training for the total
number of 4000 training steps. We plot the evolution of the L∗

1 error (39) for the validation
problems in Figure 3. Note that these problems were not included in the training data, and
the initial conditions of these problems were generated analogously to the construction of
the training data set. For these problems, we measured the error every 100 training steps
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and at a randomly chosen final time T . We select the final model based on the evolution
of the error of the validation set. We see that the error decreases up to a certain point for
all problems and then starts to increase for some problems. Longer training would lead to
overfitting of the training data. Finally, we choose the final model from the 2800 training
step and present the results using this model.
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Figure 3: The values (39) for different validation problems evaluated each 100 training steps.

As a test problem we use the problem from [44] with γ = 1.4, T = 0.2 and the initial
condition

(ρ, u, v, p) =


(1, 0, 0, 1) x > 0.5 and y > 0.5,

(0.5197,−0.7259, 0, 0.4) x < 0.5 and y > 0.5,

(1,−0.7259,−0.7259, 1) x < 0.5 and y < 0.5,

(0.5197, 0,−0.7259, 0.4) x > 0.5 and y < 0.5.

(49)

The results are shown in Table 1. As can be seen, we achieve a significant error improvement
for all four variables and for different discretizations. It should be noted that we trained only
with the discretization 100 × 100 space points and did not retrain the neural network for
different discretizations. We refer to the error of the WENO-Z method divided by the error
of WENO-DS (rounded to 2 decimal points) as the ’ratio’. The density contour plots are
shown in Figure 4 and the absolute pointwise errors for the density are shown in Figure 5.

Finally, we want to compare the computational cost of WENO-DS compared to the
original WENO scheme in solving the problem shown in Figure 6. Using a logarithmic scale,
we plot the computation time against the L1 error averaged over the four variables ρ, u, v,
p.

It should be noted that if we were to test the method on another unseen test problem
using the initial data from the previously described range, we would obtain very similar error
improvements in those cases.
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I × J 50× 50 100× 100 200× 200
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.012488 0.010722 1.16 0.005465 0.004648 1.18 0.001862 0.001547 1.20
u 0.014363 0.011986 1.20 0.006153 0.005066 1.21 0.002053 0.001627 1.26
v 0.014363 0.011986 1.20 0.006153 0.005066 1.21 0.002053 0.001627 1.26
p 0.013113 0.011510 1.14 0.005619 0.004899 1.15 0.001879 0.001587 1.18

Table 1: Comparison of L1 error of WENO-Z and WENO-DS methods for the solution of the Euler system
with the initial condition (49) for different spatial discretizations, T = 0.2.
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Figure 4: Density contour plot for the solution of the Riemann problem with the initial condition (49),
I × J = 100× 100, T = 0.2.
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Figure 5: Absolute pointwise errors for the density solution of the Riemann problem with the initial condition
(49), I × J = 100× 100, T = 0.2.

5.2. Configuration 3

This is the configuration with four shock waves:
←−
S 21,

←−
S 32,

←−
S 34,

←−
S 41. According to [41],

in this case we have the following equations that must be satisfied:

u2 − u1 = Ψ21, u3 − u4 = Ψ34, u3 = u2, u4 = u1,

v4 − v1 = Ψ41, v3 − v2 = Ψ32, v2 = v1, v3 = v4
(50)
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Figure 6: Comparison of computational cost against L1-error of the solution of the Riemann problem with
the initial condition (49).

and for polytropic gas the equations

ρl/ρr = Πlr for (l, r) ∈ {(2, 1), (3, 4), (3, 2), (4, 1)} (51)

are added. This gives the compatibility conditions Ψ21 = Ψ34 and Ψ41 = Ψ32. Furthermore,
we have ρ2 = ρ4, p2 = p4 and u2 − u1 = v4 − v1.

In this case we use for creating the data set the values

ρ1 ∈ U [1, 2], ρ2 ∈U [0.5, 1], p1 ∈ U [1, 2],
u1 ∈ U [−0.25, 0.25], v1 = u1, γ ∈ (1.1, 1.67)

(52)

and for the other values we use the relations (50), (51) with (40) and (41). Similar to the
previous example, we compute the reference solutions using the WENO-Z method on a grid
I × J = 400× 400 space points up to the final time T ∈ U [0.1, 0.3] and create the data set
consisting of 50 reference solutions.

We proceed with training as described in the previous section, using the same neural
network structure as shown in Figure 2a. Again, we train only on the discretization I × J =
100× 100 space steps. We run the training for 4000 training steps and plot the evolution of
the validation metrics (39) for the validation problems in Figure 7. We measured the error
every 100 training steps and at the randomly chosen final time T . Based on this, we choose
the final model from training step 3200 and present the results for the test problem with
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γ = 1.4, T = 0.3, and initial condition [44]

(ρ, u, v, p) =


(1.5, 0, 0, 1.5) x > 0.5 and y > 0.5,

(0.5323.1.206, 0, 0.3) x < 0.5 and y > 0.5,

(0.138, 1.206, 1.206, 0.029) x < 0.5 and y < 0.5,

(0.5323, 0, 1.206, 0.3) x > 0.5 and y < 0.5.

(53)
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Figure 7: The values (39) for different validation problems evaluated each 100 training steps.

We compare the results in Table 2. As can be seen, we achieve a large error improvement
for all discretizations listed. The density contour plots can be found in Figure 8 and the
absolute pointwise errors for the density in Figure 9. Here it can be seen that the error of
WENO-DS is significantly lower in the areas of the shock contacts.

I × J 50× 50 100× 100 200× 200
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.038682 0.027906 1.39 0.019232 0.012817 1.50 0.007454 0.004657 1.60
u 0.034692 0.027638 1.26 0.019588 0.015043 1.30 0.008249 0.005810 1.42
v 0.034692 0.027638 1.26 0.019588 0.015043 1.30 0.008249 0.005810 1.42
p 0.038920 0.030888 1.26 0.018666 0.014041 1.33 0.007275 0.005001 1.45

Table 2: Comparison of L1 error of WENO-Z and WENO-DS methods for the solution of the Euler system
with the initial condition (53) for different spatial discretizations, T = 0.3.

We also compare the weights ωZ
m, m = 0, 1, 2 (22) and the updated weights ωDS

m , m =
0, 1, 2 with the improved smoothness indicators (25). We plot these weights, corresponding
to the positive part of a flux f̂+ from the flux splitting, using WENO-Z and WENO-DS for
the previous test problem at the final time T = 0.3. Since we apply the principle dimension-
by-dimension, we present the weights only for the approximation of the flux F (U). For
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Figure 8: Density contour plot for the solution of the Riemann problem with the initial condition (53),
I × J = 100× 100, T = 0.3.
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Figure 9: Absolute pointwise errors for the density solution of the Riemann problem with the initial condition
(53), I × J = 100× 100, T = 0.3.

the approximations of the flux G(U), we could obtain these weights in this example using
symmetry. As can be seen, WENO-DS is much better at localizing the shock from the other
direction as well, which has a significant impact on error improvement.

Finally, let us compare the computational cost of WENO-DS for the problem shown in
Figure 11. We see that WENO-DS is much more computationally intensive compared to
WENO-DS. Again, if we tested the method on the unseen problems, but with the same
initial configuration, we would get analogous significant error improvements.

5.3. Configuration 16

This is the configuration with the combination of rarefaction wave, shock wave and

contact discontinuities:
←−
R 21, J

−
32, J

+
34,
−→
S 41. As shown in [41], the following relations must
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Figure 10: Comparison of the nonlinear weights ωZ
m,m = 0, 1, 2 and ωDS

m , m = 0, 1, 2.
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Figure 11: Comparison of computational cost against L1-error of the solution of the Riemann problem with
the initial condition (53).

hold for this case

u1 − u2 =Φ21, u3 = u4 = u1,

v4 − v1 = Ψ41, v3 = v2 = v1, p1 < p2 = p3 = p4
(54)
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and for polytropic gas we add the equation (47) for a rarefaction and (51) for a shock wave
between the lth and rth quadrants.

For our data set we use the values

ρ4 ∈ U [1, 2], ρ3 ∈ U [0.5, ρ4], p1 ∈ U [0.3, 1], p2 ∈ U [1, 1.5],
u1 ∈ U [−0.25, 0.25], v1 = u1, γ ∈ (1.1, 1.67)

(55)

To compute the data set consisting of 50 reference solutions, we use the WENO-Z method
on a grid I × J = 400× 400 space points up to the final time T ∈ U [0.1, 0.2].

We train the CNN with the structure shown in Figure 2a as in the previous examples on
the discretization I × J = 100× 100 space steps for the total number of 2000 training steps.
We show the evolution of the validation metrics (39) in Figure 12 and choose the model from
training step 1900.
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Figure 12: The values (39) for different validation problems evaluated each 100 training steps.

We test the trained WENO-DS on a test problem [44] with γ = 1.4, T = 0.2 and the
initial condition

(ρ, u, v, p) =


(0.5313, 0.1, 0.1, 0.4) x > 0.5 and y > 0.5,

(1.0222,−0.6179, 0.1, 1) x < 0.5 and y > 0.5,

(0.8, 0.1, 0.1, 1) x < 0.5 and y < 0.5,

(1, 0.1, 0.8276, 1) x > 0.5 and y < 0.5.

(56)

We compare the results in Table 3 and the density contour plots can be found in Figure 13.
As can be seen, WENO-DS outperforms WENO-Z and has smaller L1 errors in all cases. In
addition, we plot the absolute pointwise errors for the density solution and show them in
Figure 14.

For another unseen test problem with the same initial configurations, we would again
obtain analogous significant error improvements.
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I × J 50× 50 100× 100 200× 200
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.010980 0.009877 1.11 0.004834 0.004327 1.12 0.001827 0.001624 1.12
u 0.012464 0.011287 1.10 0.005989 0.005326 1.12 0.002223 0.001913 1.16
v 0.015020 0.013932 1.08 0.006609 0.006172 1.07 0.002527 0.002298 1.10
p 0.010594 0.009644 1.10 0.004236 0.003820 1.11 0.001576 0.001392 1.13

Table 3: Comparison of L1 error of WENO-Z and WENO-DS methods for the solution of the Euler system
with the initial condition (56) for different spatial discretizations, T = 0.2.
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Figure 13: Density contour plot for the solution of the Riemann problem with the initial condition (56),
I × J = 100× 100, T = 0.2.
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Figure 14: Absolute pointwise errors for density solution of the Riemann problem with the initial condition
(56), I × J = 100× 100, T = 0.2.

5.4. Configuration 11 and Configuration 19

In the previous sections, we trained three WENO-DS methods for three different types of
configurations. We denote by WENO-DS (C2), WENO-DS (C3), and WENO-DS (C16) the
methods from Sections 5.1, 5.2, and 5.3, respectively. In this section, we test these methods
on the unseen problems containing the combination of rarefaction wave, shock wave, and
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contact discontinuities. First, we consider Configuration 11 (
←−
S 21, J

+
32, J

+
34,
←−
S 41) with the

test problem with γ = 1.4, T = 0.3, and the initial condition [44]

(ρ, u, v, p) =


(1, 0.1, 0, 1) x > 0.5 and y > 0.5,

(0.5313, 0.8276, 0, 0.4) x < 0.5 and y > 0.5,

(0.8, 0.1, 0, 0.4) x < 0.5 and y < 0.5,

(0.5313, 0.1, 0.7276, 0.4) x > 0.5 and y < 0.5.

(57)

Second, we test the models on the configuration (J+
21,
←−
S 32, J

−
34,
−→
R 41) with the test problem

with γ = 1.4, T = 0.3 and the initial condition [44]

(ρ, u, v, p) =


(1, 0, 0.3, 1) x > 0.5 and y > 0.5,

(2, 0,−0.3, 1) x < 0.5 and y > 0.5,

(1.0625, 0, 0.2145, 0.4) x < 0.5 and y < 0.5,

(0.5197, 0,−0.4259, 0.4) x > 0.5 and y < 0.5.

(58)

We summarize the results in Tables 4 and 5. As can be seen, the method trained on problems
containing only rarefaction waves has the worst ability to generalize to unseen problems. On
the other hand, by using methods trained on problems containing shocks or a combination
of contact discontinuities, rarefaction, and shock waves, we obtain the error improvements
even on unseen problems with different initial configurations. We would like to emphasize
that the test problems in this section are far from the problems included in the training
and validation sets. This is not only due to the choice of initial data, but also to the
combination of rarefaction, shock waves and their direction, and positive and negative contact
discontinuities.

Configuration 11
WENO-Z WENO-DS (C2) ratio WENO-DS (C3) ratio WENO-DS (C16) ratio

ρ 0.007792 0.008000 0.97 0.006783 1.15 0.007538 1.03
u 0.008003 0.008701 0.92 0.007846 1.02 0.007840 1.02
v 0.007692 0.008300 0.93 0.007161 1.07 0.007370 1.04
p 0.005883 0.006467 0.91 0.005115 1.15 0.005776 1.02

Table 4: Comparison of L1 error of WENO-Z and WENO-DS methods trained on data in Sections 5.1, 5.2
and 5.3 for the solution of the Euler system with the initial condition (57), I × J = 100× 100, T = 0.3.

5.5. Bigger CNN and ability to generalize on unseen configurations

As can be seen from the previous Section 5.4, the models trained using the data from
Section 5.2 and Section 5.3 are able to generalize very well to unseen problems. The WENO-
DS method is able to properly localize the shocks and discontinuities, leading to a better
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Configuration 19
WENO-Z WENO-DS (C2) ratio WENO-DS (C3) ratio WENO-DS (C16) ratio

ρ 0.014844 0.014463 1.03 0.013702 1.08 0.013841 1.07
u 0.003749 0.003562 1.05 0.003689 1.02 0.003574 1.05
v 0.009891 0.009502 1.04 0.009791 1.01 0.009245 1.07
p 0.006123 0.005922 1.03 0.005595 1.09 0.005844 1.05

Table 5: Comparison of L1 error of WENO-Z and WENO-DS methods trained on data in Sections 5.1, 5.2
and 5.3 for the solution of the Euler system with the initial condition (58), I × J = 100× 100, T = 0.3.

numerical solution. Let us now increase the size of the CNN and use the structures shown
in Figures 2b, increasing the size of the receptive field and the number of channels, and
Figure 2c, increasing the number of channels and adding another CNN layer. Experimentally,
we found that only increasing the size of the receptive field and the number of channels leads
to similar results as described in the previous sections. In addition, increasing the receptive
field makes the WENO-DS computationally more expensive. This is because we need to
prepare wider inputs for the CNN, which also need to be projected onto the characteristic
fields using left eigenvectors, and the matrix multiplications are more expensive here. On
the other hand, if we use the CNN structure described in Figure 2c, we obtain a trained
WENO-DS method that provides a much better numerical solution even for unseen problems
with significantly different initial configurations.

Let us now train the method on two data sets. First, we use the dataset from the
Section 5.2, train the CNN, and denote the final method as WENO-DS (C3c). Second,
we train the CNN on the data set from the Section 5.3 and denote the final method as
WENO-DS (C16c). We test the methods on even more different configurations and compare
the results in Tables 6 and 7. We use boldface to indicate the configuration on which the
method was actually trained.

With the number of configurations listed in the tables, we cover a wide range of possible
combinations of contact discontinuities, rarefaction and shock waves. For all of them we
use the test examples from the literature, see, e.g. [44]. We treat the possibility with four
contact discontinuities with Configuration 6: J−

21, J
−
32, J

−
34, J

−
41, two contact discontinuities

and two rarefaction waves with Configuration 8:
←−
R 21, J

−
32, J

−
34,
←−
R 41, two shock waves and

two contact discontinuities using Configuration 14: J+
21,
←−
S 32, J

−
34,
←−
S 41 and Configuration 11

from Section 5.4. Finally, the combination of contact discontinuities, rarefaction, and shock

waves using Configuration 18: J+
21,
←−
S 32, J

+
34,
−→
R 41, and Configuration 19 form the Section 5.4.

As one can see, we obtain significant error improvements with both methods. Comparing
both methods, even better results are obtained when the CNN was trained on a data set
from Section 5.2 on a configuration with four shock waves. Compared to the Table 2, the
improvement for Configuration 3 is smaller but still significant. However, the method is able
to generalize much better to unknown configurations. For example, for Configuration 14,
we obtain an average improvement rate of 1.30 for all four variables. In addition, we use
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WENO-DS (C3c) to illustrate the density contour plots and absolute pointwise errors in
Figures 15, 16, and 17. Here we also show the difference from Configuration 3, with which
the model was actually trained.

The WENO-DS (C3c) method achieves large error improvements not only for problems
from the same configuration, but also for problems from significantly different configurations.
Since we used a larger CNN, the question is what is the actual numerical cost of these
improvements. We illustrate the computational costs in Figure 18. As can be seen from the
shift of the red dots to the right, the method involves larger computational costs. However,
it is still more effective or not worse than the original method in most cases. We would like
to emphasize that here we are comparing results with significantly different initial problems
than those on which the method was actually trained. Machine learning models are generally
not expected to give such better results on unseen problems.

Configuration 3 Configuration 6 Configuration 8 Configuration 11
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.019232 0.015033 1.28 0.038616 0.032696 1.18 0.005711 0.004975 1.15 0.007792 0.006316 1.23
u 0.019588 0.016359 1.20 0.019662 0.016144 1.22 0.008488 0.007396 1.15 0.008003 0.006487 1.23
v 0.019588 0.016359 1.20 0.022582 0.018951 1.19 0.008488 0.007396 1.15 0.007692 0.006282 1.22
p 0.018666 0.015214 1.23 0.010525 0.008821 1.19 0.005350 0.004844 1.10 0.005883 0.004813 1.22

Configuration 14 Configuration 18 Configuration 19
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.013169 0.010333 1.27 0.014918 0.012519 1.19 0.014844 0.012390 1.20
u 0.004835 0.003732 1.30 0.003534 0.003063 1.15 0.003749 0.003339 1.12
v 0.021299 0.016512 1.29 0.010315 0.009077 1.14 0.009891 0.008641 1.14
p 0.034996 0.026008 1.35 0.006795 0.005961 1.14 0.006123 0.005393 1.14

Table 6: Comparison of L1 error of WENO-Z and WENO-DS (C3c) methods for the solution of the Euler
system with various initial configurations, I × J = 100× 100.

Configuration 16 Configuration 6 Configuration 8 Configuration 11
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.004834 0.004127 1.17 0.038616 0.036329 1.06 0.005711 0.004777 1.20 0.007792 0.007695 1.01
u 0.005989 0.004981 1.20 0.019662 0.019575 1.00 0.008488 0.007056 1.20 0.008003 0.007824 1.02
v 0.006609 0.005776 1.14 0.022582 0.019974 1.13 0.008488 0.007056 1.20 0.007692 0.007482 1.03
p 0.004236 0.003663 1.16 0.010525 0.010216 1.03 0.005350 0.004624 1.16 0.005883 0.006295 0.93

Configuration 14 Configuration 18 Configuration 19
WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio WENO-Z WENO-DS ratio

ρ 0.013169 0.011718 1.12 0.014918 0.013447 1.11 0.014844 0.013198 1.12
u 0.004835 0.004042 1.20 0.003534 0.002975 1.19 0.003749 0.003256 1.15
v 0.021299 0.020330 1.05 0.010315 0.009302 1.11 0.009891 0.008796 1.12
p 0.034996 0.036038 0.97 0.006795 0.006535 1.04 0.006123 0.005752 1.06

Table 7: Comparison of L1 error of WENO-Z and WENO-DS (C16c) methods for the solution of the Euler
system with various initial configurations, I × J = 100× 100.

6. Conclusion

In this paper we introduced a novel approach, WENO-DS, which leverages the power
of deep learning to enhance the performance of the well-established Weighted Essentially
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Figure 15: Density contour plots and absolute pointwise errors for the solution of the Riemann problem with
initial Configuration 6, I × J = 100× 100, T = 0.3.

Non-Oscillatory (WENO) scheme in the context of solving hyperbolic conservation laws,
particularly exemplified by the two-dimensional Euler equations of gas dynamics. By seam-
lessly integrating deep learning techniques into the WENO algorithm, we have successfully
improved the accuracy of numerical solutions, particularly in regions near abrupt shocks.
Unlike previous attempts at incorporating deep learning into numerical methods, this ap-
proach stands out by eliminating the need for additional post-processing steps, ensuring
consistency throughout.

This study demonstrates the superiority of the WENO-DS approach
through an extensive examination of various test problems, including scenarios featuring
shocks and rarefaction waves. The results consistently showcase the newfound capabilities of
the approach, outperforming traditional fifth-order WENO schemes, especially when dealing
with challenges like excessive diffusion or overshooting around shocks.

The introduction of machine learning into the realm of solving partial differential equa-
tions (PDEs) has brought about promising improvements in numerical methods. However,
it is crucial to strike a balance between these data-driven insights and the foundational
mathematical principles underpinning the numerical scheme. This study successfully main-
tains this equilibrium, building upon the physical principles of the Euler equations while
incorporating deep learning enhancements.
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Figure 16: Density contour plots and absolute pointwise errors for the solution of the Riemann problem with
initial Configuration 8, I × J = 100× 100, T = 0.25.

In summary, the WENO-DS approach represents a significant advancement in the field
of numerical methods for hyperbolic conservation laws, where the incorporation of deep
learning techniques has not only enhanced the accuracy but also improved the qualitative
behavior of solutions, both in smooth regions and near discontinuities. This research paves
the way for future developments in the intersection of traditional numerical methods and
machine learning, offering a promising direction for further advancements in solving complex
PDEs like the Euler equations.
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Figure 18: Comparison of computational cost against L1-error of the solution of Riemann problem with
various initial configurations using WENO-Z and WENO-DS (C3c) methods.
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[33] T. Kossaczká, M. Ehrhardt, M. Günther, A neural network enhanced weighted essen-
tially non-oscillatory method for nonlinear degenerate parabolic equations, Phys. Fluids
34 (2) (2022) 026604.
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