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Abstract: In this paper we study the variations of the sound field hologram of a moving source in an
inhomogeneous ocean waveguide. It is assumed that intense internal waves (internal solitons) are
the reason for the inhomogeneities of the shallow water waveguide. The results of 3D modeling of
the sound field considering horizontal refraction by internal waves are presented. In the context of
3D modeling, the interferogram (sound intensity distributions in the frequency-time domain) and the
hologram (2D Fourier transform of the interferogram) of moving sources are analyzed. The hologram
of the moving source consists of two disjoint regions corresponding to the unperturbed field and
the field perturbed by internal waves. This structure of the hologram allows the reconstruction of
the interferogram of the unperturbed field in a shallow water waveguide in the absence of intense
internal waves. The error in the reconstruction of the unperturbed interferogram is estimated.

Keywords: shallow water; sound field; modes interference; interferogram; hologram; internal waves

1. Introduction

Currently, there is a great scientific interest in interferometric signal processing in
underwater acoustics. The interferometric signal processing based on stable structural fea-
tures of the interference pattern of the broadband sound field in shallow water waveguide.
We refer the interested reader to the most relevant papers [1–12] in which significant results
have been obtained in this direction for regular waveguides without inhomogeneities.

The holographic signal processing [13–22] is one of the most advantageous approaches
of interferometric methods. In holographic processing [15,16], a quasi-coherent accumula-
tion of spectral density along localized fringes of an interference pattern (interferogram
I(ω, t)) is performed in frequency-time variables [13,14]. An interferogram I(ω, t) is un-
derstood as the square of the modulus of the received signal in frequency-time variables.
The geometry of the localized bands is determined by the parameters of the waveguide
and source parameters (range, velocity, movement direction) [15,16]. A two-dimensional
Fourier transform (2D-FT) is applied to the accumulated spectral density of the inter-
ferogram I(ω, t) [13–17]. The result of the 2D-FT of the interferogram I(ω, t) is called
Fourier-hologram (hologram F(τ, ν̃)). The hologram F(τ, ν̃) is localized in a narrow band
as focal spots corresponding to the interference of different modes.

The physical and mathematical principles of hologram formation were first described
in [13,14]. In the development of holographic processing [13–22], it was assumed that the
oceanic environment is homogeneous, i.e., that its parameters are constant in the space-time
domain.

However, in many cases, acoustic signals propagate in waveguides with hydrody-
namic perturbations. The hydrodynamic perturbations of the waveguide leads to a dis-
tortion of the interferogram I(ω, t) and an increase of the focal spots in the hologram
F(τ, ν̃). In the presence of hydrodynamic perturbations, the interferogram can be presented
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as the sum of two components. The first of them corresponds waveguide in absence of
the perturbation and the second one is due to waveguide perturbation. Since the 2D-FT
is a linear transform, the hologram F(τ, ν̃) can be represented as a superposition of two
hologram-components. These components consist of a hologram component related to
the source in the unperturbed waveguide and a hologram component due to waveguide
perturbation.

In inhomogeneous waveguides, the holographic signal processing was first considered
for experimental data processing obtained in the SWARM-95 experiment [23–26]. It was
shown that holographic signal processing allows to separate the interferogram components
of the unperturbed and perturbed sound fields [27,28]. This experimental result was
described theoretically and verified by numerical modeling in the papers [29,30]. The aim
of this work is to present the results of numerical modeling of holographic signal processing
for a moving source and a non-moving receiver in the presence of intense internal waves
(IIWs) causing significant horizontal refraction. The IIWs influence on the error of the
source parameters estimations (range, velocity and movement direction) are analysed.

The paper consists of five sections. After the introduction in Section 1 we describe in
Section 2 the 3D model of a shallow water waveguide in the presence of IIWs. Next, in
Section 3, we derive the mathematical models of the interferogram I(ω, t) and the hologram
F(τ, ν̃) of a moving source in a shallow water waveguide in presence of the IIWs. The
algorithm of the numerical calculation of the interferogram and hologram of moving source
is developed. It is based on vertical modes and the horizontal parabolic approximation
approach. The proposed algorithm allows to take into account the horizontal refraction
of the sound field caused by IIWs propagating across the acoustic track (source-receiver).
The results of the numerical modeling of the interferogram I(ω, t) and hologram F(τ, ν̃)
of the broadband sound source in the shallow water waveguide in the presence of IIWs
causing horizontal refraction are analyzed in Section 4. Within the numerical modeling, the
influence of IIWs on the interferogram I(ω, t) and hologram F(τ, ν̃) of the source sound
field is considered for two different cases of source parameters. The first case is a stationary
acoustic track source-receiver (non-moving source). The second case is a non-stationary
acoustic trace (moving source). In order to compare the numerical modeling results for
both cases in the presence of IIWs, the initial data for the simulation are chosen to be the
same. The IIWs influence on the error of the source parameters estimates (range, velocity)
are analysed.

2. Shallow Water Waveguide Model in Presence of Internal Waves

In this section, we describe the 3D model of the shallow water waveguide used
in our research (Figure 1). The shallow water waveguide in the Cartesian coordinate
system (X, Y, Z) is represented as a water layer with a sound velocity c(x, y, z, t) and a
density ρ(x, y, z, t). The water layer is confined in depth by a free surface (z = 0) and a
homogeneous absorbing half-space (z = H) - the sea bottom.
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receiver 
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X 
Y 

Figure 1. Shallow water model in presence of internal waves.
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The complex refractive index and density of the bottom are denoted by nb(1 + iκ), ρb
[31]. The parameter κ = χcb/54.6 f is determined by the bottom loss coefficient - χ, the
bottom sound speed - cb and the sound frequency - f . The space-time of the sound speed
in the water layer can be represented in the following form:

c(x, y, z, t) = c(z) + δc(x, y, z, t), (1)

with c(z) - sound speed profile in the waveguide in the absence of the IIWs, δc(x, y, z, t) -
sound speed variations caused by the IIWs. According to Eq. (1), the squared refractive
index in the water layer is

n2(x, y, zq, t) = n̄2(z) + ñ2(x, y, z, t), (2)

where n̄2(z) corresponds to the unperturbed waveguide, ñ2(x, y, z, t) is due to IIWs.
According to [32,33] we have

ñ2(x, y, z, t) = −2QN2(z) ζ(x, y, z, t). (3)

Here, Q ≈ 2.4 s2/m is a constant determined by the water physical properties; N(z) =
(gρ−1dρ/dz)1/2 is the buoyancy frequency, ζ(x, y, z, t) are the vertical displacements in the
water layer due to IIWs. According to the predominance of the first gravitational mode
[34], ζ(x, y, z, t) can be written as follows

ζ(x, y, z, t) = Φ1(z) ζ0(x, y, t), (4)

where Φ1(z) denotes the eigenfunction of the first gravity mode, normalized at depth z0:
Φ1(z0) = 1; ζ0(x, y, t) are vertical displacements in waveguide water layer due to IIWs at
depth z0.
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Figure 2. Problem geometry. Acoustic track (source-receiver) orientation relative to IIWs.

According to [34] we can represent IIWs as the sequence of internal solitons (IS -
soliton-like solution of KdV-equation). Given the chosen problem geometry (Figure 2), the
vertical displacements in the water layer of the waveguide ζ0(x, y, t) can be described as

ζ0(x, y, t) =
N

∑
n=1

−Bn sech2[(y − Dn − unt)/ηn
]
, (5)

where N - count of the IS in train, Bn - IS amplitude, un - IS velocity, Dn - IS shift in
horizontal plane, ηn - IS width.

IIWs - hydrodynamic phenomenon, which is widespread in the oceanic environment.
In shallow waters they are trains of intense short-period vertical displacements in the water
layer of the ocean waveguide. They are described as trains of IS that propagate to the shelf
coast. The reason for the IIWs are internal tides [34]. According to experimental data [34],
the parameters of IIWs are the following:
- train length: ∼ 3 − 5 km (N ∼ 4 − 7);
- ζ has quasi-sinusoidality form (narrow spatial spectrum);
- ζ are synchronized in depth (dominance of the Φ1(z));
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- propagation velocity: un ∼ 0.5 − 1 m/s;
- IS amplitude: Bn ∼ 10 − 30 m;
- IS width: ηn ∼ 100 − 200 m;
- interval between IS: ∼ 300 − 500 m;
- curvature radius of IS front in horizontal plane ∼ 15 − 25 km.

These parameters lead to specific acoustic phenomena due to IIWs. In [32,33] it is
shown that the presence of IIWs causes significant horizontal refraction of sound rays,
which is at a small angle to the wavefront of the IIWs. As a result, the dynamic waveguides
are approximately parallel to the IIWs fronts in the horizontal plane. Within the "vertical
modes and horizontal rays" approach, it is shown that horizontal dynamic waveguides
have selective character for sound modes. The structure of horizontal rays is different for
different sound modes. It is shown that the structure of horizontal rays of sound modes
also depends on frequency [32,33]. This frequency dependence of horizontal refraction has
a resonance-like form and is evident in the propagation of broadband sound signals.

3. Interferogram and Hologram of Moving Source

In the framework of the "vertical modes and horizontal parabolic approximation"
approach, the complex sound field in the shallow-water waveguide in the presence of the
IIWs equations (1)–(5) can be written in the following way [32,33]:

p(r, z, ω, t) =
M

∑
m=0

Pm(r, ω, t) ϕm(z, ω) exp
[
i(h̄m + iγ̄m)x

]
, (6)

where r = (x, y) is the radius vector of the source in the horizontal plane, Pm is the
mode amplitude, h̄m + iγ̄m is the complex horizontal wavenumber of the m-th acoustic
mode, where ϕm(z, ω) is the corresponding acoustic mode in the waveguide without
IIWs. In Eq.(6), summation is performed up to M, the total number of acoustic modes
to be considered. Consequently, the acoustic pressure depends on the acoustic frequency
ω = 2π f .

The ϕm(r, ω, t) are the eigenfunctions (acoustic modes) and hm(r, ω, t) and γm(r, ω, t)
are the real and imaginary parts of the eigenvalues (horizontal wavenumbers) ξm(ω) =
hm(r, ω, t) + iγm(r, ω, t), obtained by solving the Sturm-Liouville problem under the usual
boundary conditions for free surface and bottom [31]. The horizontal wavenumber
hm(x, z, t) of the m-th acoustic mode in a waveguide with IIWs can be represented as
the sum of the unperturbed component (h̄m(ω)) and the perturbation h̃m(r, ω, t) due to
IIWs:

hm(r, ω, t) = h̄m(ω) + h̃m(r, ω, t). (7)

The linear correction in the framework of the perturbation theory [32,33] is determined by
the expression

h̃m(r, ω, t) =
k2

2h̄m

∫ H

0
ϕ2

m(z, ω) ñ2(r, z, ω, t) dz. (8)

Here k = ω/c0 is the sound wavenumber, c0 is the sound speed at depth z0. Considering
Eq. (3), we obtain for h̃m(r, ω, t) the expression:

h̃m(r, ω, t) = −qm(ω)ζ(r, t), (9)

where the coefficient qm(ω) is given by

qm(ω) =
Qk2

h̄m

∫ H

0
ϕ2

m(z) N2(z)Φ1(z) dz. (10)

From Eq. (10) it follows that the horizontal structures depend on the acoustic mode numbers
and on the frequency [32,33]. It also follows from Eq. (10) that the frequency dependence
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of horizontal refraction has a resonance-like form and manifests itself in the propagation of
broadband acoustic signals.

The mode amplitude Pm(r, ω, t) is determined as the solution of the parabolic equation:

∂Pm

∂x
=

i
2h̄m

∂2Pm

∂y2 +
ih̄m

2
(
n2

m(r, ω, t)− 1
)

Pm, (11)

where nm(r, ω, t) - horizontal refractive index of the m-th acoustic mode in waveguide in
presence of the IIWs:

nm(r, ω, t) = hm(r, ω, t)/h̄m. (12)

The numerical solution of Eq. (12) is performed using the "Split Step Fourier" (SSF)
algorithm [35,36]:

Pm(x + ∆x, y, ω, t)

= exp
[
−ih̄m∆xUm(x, y, ω, t)

]
× FFT−1

{
exp

[
ih̄m∆xTm(h)

]
× FFT

[
P∗

m(x, y, ω, t)
]∗}. (13)

Here FFT - forward Fast Fourier Transformation operator, FFT−1 - backward Fast Fourier
Transformation operator, Tm(h) = 0.5(h/h̄m)2 - operator in the Fourier Space of wavenum-
bers h̄m, Um(x, y, ω, t) = −0.5

(
n2

m(x, y, ω, t) − 1
)

- operator in the space of coordinates
(x, y) in the horizontal plane.

In the framework of the "vertical modes and horizontal parabolic approximation"
(Eq. (6)), the interference pattern of the sound intensity distribution I(ω, t) of the moving
source - (interferogram) in the frequency-time domain (ω, t) can be written as:

I(ω, t) = ∑
m

∑
n

Pm(ω, t) P∗
n (ω, t) exp

[
ih̄mn(ω)(x0 − vt)

]
= ∑

m
∑
n

Imn(ω, t), m ̸= n,
(14)

where h̄mn(ω) = h̄m(ω) − h̄n(ω). Here, Imn(ω, t) - partial interferogram produced by
interference of m-th and n-th modes, Pm(ω, t) - amplitude of the m−th acoustic mode,
x0 - initial source coordinate at time t0 = 0, t - current time, v - velocity of the moving
source. The superscript "*" denotes the complex conjugate value. The mode attenuation,
and depths of the source zs and receiver zq are taken into account by the mode amplitude
Pm(ω, t) . The condition m ̸= n means that the mean value has been removed from the
interferogram I(ω, t).

Let us consider a hologram of the moving sound source in the presence of the IIWs.
We apply a 2D-dimensional Fourier transform (2D-FT) to the interferogram I(ω, t) (Eq. (14))
in the frequency-time variables (ω, t). The result of the 2D-FT is called Fourier hologram
(hologram) F(τ, ν̃):

F(τ, ν̃) = ∑
m

∑
n

∫ ∆t

0

∫ ω2

ω1

Imn(ω, t) exp
[
i(ν̃t − ωτ)

]
dt dω

= ∑
m

∑
n

Fmn(τ, ν̃),
(15)

where τ and ν̃ = 2πν are the time and circular frequency in the hologram domain, Fmn(τ, ν̃)
- partial hologram produced by interference of m-th and n-th modes, ω1 = ω0 − (∆ω/2),
ω2 = ω0 + (∆ω/2) - integral limits, ∆ω - frequency band, ω0 - reference frequency, ∆t -
observation time.

We consider the linear approximation of the waveguide dispersion:

h̄m(ω) = h̄m(ω0) +
dh̄m(ω0)

dω
(ω − ω0). (16)
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It is assumed that sound field spectrum and mode amplitude Pm as a function of frequency
ω are slow compared to the fast oscillation of exp[ihm(ω)(x0 + vt)]. Under this assumption,
the partial hologram equation Eq. (15) reads:

Fmn(τ, ν̃) = Pm(ω0)P∗
n (ω0)∆ω∆t exp[iΦmn(τ, ν̃)]×

×
sin

{[
x0

dhmn(ω0)
dω − τ

]∆ω
2

}
sin

{[
vhmn(ω0) + ν̃

]∆t
2

}
[
x0

dhmn(ω0)
dω − τ

]∆ω
2
[
vhmn(ω0) + ν̃

]∆t
2

, (17)

where Φmn(τ, ν̃) is the phase of the Fmn(τ, ν̃) - partial hologram produced by interference
of m-th and n-th modes.

Φmn(τ, ν̃) =
( ν̃∆t

2
− τω0

)
+ hmn(ω0)

(∆t
2

v + x0

)
. (18)

In Eq. (17) the approximation x0 ≫ v∆t is used.
The hologram distribution F(τ, ν̃) in domain (τ, ν̃) is localized in two narrow areas as

focal spots. They are located:

1. in I and III quadrants, when source moves to receiver (v < 0);
2. in II and IV quadrants, when source moves away from receiver, (v > 0).

The hologram distribution F(τ, ν̃) contains (M − 1) focal spots with coordinates
(τµ, ν̃µ) lying on the straight line ν̃ = ε̃τ. Here, µ = 1, M − 1 is the number of the focal
spot. In the focal spot with coordinates (τµ, ν̃µ) the maxima of (M − µ) partial holograms
accumulate.

The angular coefficient ε̃ = 2πε can be represented in the form ε̃ = −δω/δt, where
δω is the frequency shift of the interference maximum during the observation time δt. The
dimensions of the focal spots δτ, δν̃ along τ, ν̃ do not depend on the number of focal spots
and are the same: δτ = 4π/δω, δν̃ = 4π/δt.

For the first focal spot closest to the origin, the radial velocity and initial distance are
given as [? ]:

v̇ = −kvν̃1, ẋ0 = kxτ1, (19)

where

kv = (M − 1)
(

h1M(ω0)
)−1

, kx = (M − 1)
(

dh1M(ω0)/dω
)−1

. (20)

In contrast to the true values, the estimated source parameters are marked by a dot
at the top. The holographic method of signal processing is realized in the following
way. During the observation time ∆t, in the frequency band ∆ω J independent signal
realizations of duration t1 with a time interval t2 are quasi-coherently accumulated along
the interference fringes:

J = ∆t/(t1 + t2). (21)

Signal realizations are independent if t2 > 2π/∆ω. In this way, the interferogram I(ω, t)
is formed and the 2D FT transform is applied to it. As result, the hologram F(τ, ν̃) of the
moving source in the shallow water waveguide is obtained.

In general, the structures of the interferogram I(ω, t) and the hologram F(τ, ν̃) are
very different. However, a hologram F(τ, ν̃) is a unique representation of an interferogram
I(ω, t). Thus, the inversion of the hologram F(τ, ν̃) (using the inverse 2D-FT transform)
allows the reconstruction of the original interferogram I(ω, t).

4. Results of Numerical Simulation

The results of numerical modeling of the interferogram I(ω, t) and hologram F(τ, ν̃)
of the broadband sound source in the shallow water waveguide in the presence of IIWs
causing horizontal refraction are analyzed in Section 4. Within the numerical modeling, the
influence of IIWs on the interferogram and hologram of the source sound field is considered
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for two different cases of source parameters. The first case is a stationary acoustic track
source-receiver (non-moving source). The second case is a non-stationary acoustic trace
(moving source). In order to compare the numerical modeling results for both cases in the
presence of IIWs, the initial data for the simulation are chosen to be the same.

Section 4 consists of three parts. The shallow water waveguide and source parameters
are described in Section 4.1. The numerical modeling results for stationary acoustic trace
source-receiver (non-moving source) are presented in Section 4.2. The numerical modeling
results for non-stationary acoustic track source-receivers (moving source) are analyzed in
Section 4.3.

4.1. Waveguide parameters

Consider a shallow water waveguide with parameters related to the SWARM’95 (1995)
experiment on the New Jersey coast [15]. The sound speed profile c(z) in the water layer of
the waveguide is shown in Figure 3.

1480 1510 1540

c, m/s

0

20

40

60

z
, 
m

Figure 3. Sound speed profile c(z). Experiment SWARM’95 (1995) [15].

In the context of numerical modeling, the following two frequency ranges are consid-
ered:

1. ∆ f1 = 100 − 120 Hz;
Bottom refractive index nb = 0.84 (1 + i 0.03);
Bottom density ρb = 1.8 g/cm3;
Modes count M = 4.

2. ∆ f2 = 300 − 320 Hz;
Bottom refractive index nb = 0.84 (1 + i 0.05);
Bottom density ρb = 1.8 g/cm3;
Modes count M = 10.

The wavenumbers of the modes hm(ω0) and their derivatives dhm(ω0)/dω at mid-range
frequencies are given in Table 1 ( f01 = 110 Hz) and Table 2 ( f02 = 310 Hz).

Table 1. Modes parameters. Frequency f01 = 110 Hz

Mode numbers, m 1 2 3 4

hm, m−1 0.4635 0.4557 0.4450 0.4310
(dhm/dω)104, (m/s)−1 6.7624 6.8085 6.9014 7.0914

Table 2. Modes parameters. Frequency f02 = 310 Hz

Mode numbers, m 1 2 3 4 5 6 7 8 9 10

hm, m−1 1.3123 1.3073 1.3006 1.2920 1.2826 1.2730 1.2630 1.2525 1.2403 1.2258
(dhm/dω)104, (m/s)−1 6.7511 6.7619 6.7813 6.7973 6.8080 6.8150 6.8312 6.8753 6.9703 7.0574
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The problem geometry: acoustic track (source-receiver), IIWs propagation direction,
source motion direction are shown in Figure 2. An IIWs train Eq. (5) consists of three
identical IS (N = 3). The IS parameters are as follows:
- amplitude Bn = 20 m;
- width ηn = 200 m;
- velocity un = 0.7 m/s;
- distance between IS Λ = 500 m;
- straight wavefront in horizontal plane.

4.2. Non-moving source (v = 0 m/s)

Let us consider the results of numerical modeling for a non-moving source (v = 0 m/s).
The source-receiver range x0 = 10 km. The source depth is zs = 20 m. The receiver depth
zq = 45 m. The source spectrum is uniform. The sound pulses are recorded periodicity
with interval 5s. The sampling frequency is 0.25 Hz. The observation time is T = 20 min.
The two frequency bands ∆ f1 = 100 − 120 Hz (Table 1) and ∆ f2 = 300 − 320 Hz (Table 2)
are considered.

The results of the numerical modeling are shown in Figures 4–11. Figures 4 and 5
show the interferogram I( f , t) and the hologram F(τ, ν̃) for the case of the absence of IIWs.
Figure 4 corresponds to ∆ f1 = 100 − 120 Hz and Figure 5 to ∆ f2 = 300 − 320 Hz. The
interferograms I( f , t) consist of localized vertical fringes. The hologram F(τ, ν̃) consists of
focal spots on the horizontal axis. This is the result of a non-moving source. The irregularity
of the interferogram I( f , t) and the number of focal spots in the hologram F(τ, ν̃) increase
with frequency. This is explained by the increase in the number of acoustic modes in the
sound field.

(a)

-0.5  0  0.5

, s

-0.005

 

0

 

0.005

, 
H

z

0 0.5 1

(b)

Figure 4. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f1 =

100 − 120 Hz. Non-moving source (v = 0 m/s). IIWs are absent.
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(a)
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(b)

Figure 5. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f2 =

300 − 320 Hz. Non-moving source (v = 0 m/s). IIWs are absent.

Figures 6 and 7 show the interferogram I( f , t) and the hologram F(τ, ν̃) in the case
of IIWs presence. Figure 6 corresponds to ∆ f1 = 100 − 120 Hz and Figure 7 to ∆ f2 =
300 − 320 Hz. When the acoustic track is located between the IS crests (horizontal spatial
period Λ = 250 m), the interferogram I( f , t) contains horizontal fringes with the width
∆t = 5.9 min. In this case, the sound field of the source is focused along the acoustic track
due to the horizontal refraction caused by IIWs. Such structure of the interferogram I( f , t)
with horizontal fringes leads to the formation of a periodic structure of focal spots in the
hologram F(τ, ν̃).

The estimates for the focal spot sizes δ f , δt, periodicity intervals L f and Lt are as
follows:

1. ∆ f1 = 100 − 120 Hz;
δ f1 = 2.5 Hz, δt1 = 1.3 min;
L f1 = 9.2 Hz, Lt1 = 8 min.

2. ∆ f2 = 300 − 320 Hz;
δ f2 = 3.5 Hz, δt2 = 1.3 min;
L f2 = 5.5 Hz, Lt2 = 8 min.

Under natural conditions, the IIWs train consists of different ISs with different parameters.
This leads to a blurring of the pronounced periodic structure of interferogram I( f , t) and
hologram F(τ, ν̃).

(a)
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Figure 6. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f1 =

100 − 120 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).
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(a) (b)

Figure 7. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f2 =

300 − 320 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

The structure of the focal spots arrangement in the hologram F(τ, ν̃) allows the sepa-
ration of the sound field component corresponding to the waveguide without IIWs and the
sound field component related to the perturbation by IIWs.

The results of filtering the hologram focal spots located mainly on the horizontal axis
in Figures 6 and 7 and their inverse 2D FT (interferogram) are shown in Figures 8 and 10.
The reconstructed interferograms and holograms in Figures 8 and 10 correspond to the
interferograms and holograms without IIWs in Figures 4 and 5. It can be seen that the
focal spots on the reconstructed and the initial hologram are the same. The closeness of
the initial and reconstructed interferograms is shown in Figure 11. Figure 11 shows the 1D
interferograms for t0 = 0min. Red curve - IIWs are absent. Blue curve - IIWs are present.

The error of the interferogram reconstruction is estimated by the dimensionless quan-
tity:

d =
∑J

j=1

∣∣I1( f j)− I2( f j)
∣∣

∑J
j=1

∣∣I1( f j)
∣∣ , (22)

where I1( f ), I2( f ) are initial and reconstructed 1D-interferograms, respectively.

1. ∆ f1 = 100 − 120 Hz;
d1 = 0.117, J = 80.

2. ∆ f2 = 300 − 320 Hz;
d2 = 0.096, J = 80.
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Figure 8. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Frequency
range ∆ f1 = 100 − 120 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m,
un = 0.7 m/s).
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Figure 9. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Frequency
range ∆ f2 = 300 − 320 Hz. Non-moving source (v = 0 m/s). IIWs are present (Bn = 15 m,
un = 0.7 m/s).
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Figure 10. Reconstructed 1D-interferogram I( f ) (a) ∆ f1 = 100 − 120 Hz and (b) ∆ f2 = 300 − 320
Hz. Non-moving source (v = 0 m/s). Red curve - IIWs are absent. Blue curve - IIWs are present.

The numerical modeling results for the frequency range ∆ f2 = 300 − 320 Hz are
identical to those for the range ∆ f1 = 100 − 120 Hz. From the presented results it follows
that the described method allows to separate the sound field component corresponding to
the waveguide without IIWs and the sound field component related to the interference by
IIWs. Thus, the interferogram of the waveguide without IIWs can be reconstructed for the
case of the non-moving source in the presence of IIWs.

4.3. Moving source (v = 1 m/s)

Let us consider the results of numerical modeling for a moving source (v = 1 m/s).
At the initial time t0 = 0, the source-receiver range is x0 = 10 km. The source depth is
zs = 20 m. The receiver depth is zq = 45 m. The source moves along the horizontal axis X
to the receiver. The velocity of the source is v = 1 m/s. The source spectrum is uniform.
The sound field pulses have duration t1 = 4 s (sampling frequency 0.25 Hz). The interval
between the end of the previous and the beginning of the next pulse t2 = 1 s. So, time
interval between pulses t∗ = 5 s, (t∗ = t1 + t2). The time observation is ∆t = 20 min. The
two frequency bands ∆ f1 = 100 − 120 Hz (Table 1) and ∆ f2 = 300 − 320 Hz (Table 2) are
considered.

The results of the numerical modeling are shown in Figures 12–17. The dashed lines
on the holograms show the band where the focal spots of the sound field of the moving
source are concentrated in the waveguide without IIWs. It can be seen that the linear size
of the band: δτ ≈ 0.15 s, δν ≈ 0.002 Hz corresponds to the theoretical estimates of the
focal spots sizes δτ = 0.1 s, δν = 0.0017 Hz.
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Figure 12 and Figure 13 show the interferogram I( f , t) and the hologram F(τ, ν̃) of
the moving source for the case where there is no IIWs. The Figure 12 corresponds to
∆ f1 = 100 − 120 Hz and Figure 13 to δ f2 = 300 − 320 Hz. The interferograms I( f , t)
consist of localized angled fringes. The hologram F(τ, ν̃) consists of focal spots in the
dotted line band. This is the result of the movement of the source. The irregularity of the
interferogram I( f , t) and the number of focal spots in the hologram F(τ, ν̃) increase with
frequency, as they do for a non-moving source.

(a) (b)

Figure 11. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f1 =

100 − 120 Hz. Moving source (v = 1 m/s). IIWs are absent.

(a) (b)

Figure 12. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f2 =

300 − 320 Hz. Moving source (v = 1 m/s). IIWs are absent.

The estimates of the interferogram and hologram parameters:

1. ∆ f1 = 100 − 120 Hz:
interference fringes angular coefficients: δ f /δt ≈ −0.015 s−2,
first focal spot coordinates τ1 = 1.30 · 10−1 s, v1 = 1.79 · 10−3 Hz,
source parameters (range and velocity): v̇ = 1.0 m/s, ẋ0 = 11.8 km.

2. ∆ f2 = 300 − 320 Hz:
interference fringes angular coefficients: δ f /δt ≈ −0.04 s−2,
first focal spot coordinates τ1 = 4.08 · 10−1 s, v1 = 1.54 · 10−3 Hz,
source parameters (range and velocity): v̇ = 1.0 m/s, ẋ0 = 12.0 km.

Figures 14 and Figure 15 show the interferogram I( f , t) and the hologram F(τ, ν̃) of
the moving source in the case of IIWs presence. Figure 14 corresponds to ∆ f1 = 100 − 120
Hz and Figure 15 to ∆ f2 = 300 − 320 Hz. When the acoustic track is located between the
crests of the IS (horizontal spatial period Λ = 250 m), the interferogram I( f , t) contains
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horizontal fringes with the width ∆t = 5.8 min. In this case, the sound field of the source
is focused along the acoustic track due to the horizontal refraction caused by IIWs. Such
a structure of the interferogram I( f , t) with horizontal fringes leads to the formation of a
periodic structure of focal spots in the hologram F(τ, ν̃).

(a) (b)

Figure 13. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f1 =

100 − 120 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

(a) (b)

Figure 14. Normalized interferogram I( f , t) (a) and hologram F(τ, ν̃) (b). Frequency range ∆ f2 =

300 − 320 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7 m/s).

The estimates for the focal spots sizes δ f , δt, periodicity intervals L f and Lt are as
follows:

1. ∆ f1 = 100 − 120 Hz;
δ f1 = 2.4 Hz, δt1 = 1.1 min;
L f1 = 5.6 Hz, Lt1 = 8.3 min.

2. ∆ f2 = 300 − 320 Hz;
δ f2 = 2.8 Hz, δt2 = 1.1 min;
L f2 = 6.8 Hz, Lt2 = 8.1 min.

The structure of the arrangement of focal spots in the hologram F(τ, ν̃) of the moving
source allows to separate the sound field component corresponding to the waveguide
without IIWs and the sound field component related to the disturbance by IIWs.

The results of the filtration of the hologram focal spots, shown in the dotted lines of
Figure 14 and Figure 15 and their inverse 2D FT (interferogram) are shown in Figure 16
and Figure 17. The reconstructed interferograms and holograms in Figure 16 and Figure 17
correspond to the interferograms and holograms without IIWs in Figure 12 and Figure 13.
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It can be seen that the focal spots on the reconstructed and the initial hologram are close to
each other.

The estimates of the filtered interferogram and filtered hologram parameters read:

1. ∆ f1 = 100 − 120 Hz:
first focal spot coordinates τ1 = 1.5 · 10−1 s, v1 = 2.05 · 10−3 Hz,
source parameters (range and velocity): v̇ = 1.2 m/s, ẋ0 = 13.7 km.

2. ∆ f2 = 300 − 320 Hz:
first focal spot coordinates τ1 = 4.08 · 10−1 s, v1 = 1.54 · 10−3 Hz,
source parameters (range and velocity): v̇ = 1.0 m/s, ẋ0 = 12.0 km.
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Figure 15. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Frequency
range ∆ f1 = 100 − 120 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7
m/s).
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Figure 16. Normalized filtered hologram F(τ, ν̃) (a) and filtered interferogram I( f , t) (b). Frequency
range ∆ f2 = 300 − 320 Hz. Moving source (v = 1 m/s). IIWs are present (Bn = 15 m, un = 0.7
m/s).

It can be seen that the focal spots on the reconstructed and initial holograms of the
moving source are the same. The proximity of the initial and reconstructed interferograms
of the moving source is shown in Figure 17. Figure 17 shows the 1D interferograms for
t0 = 0 min. Red curve - IIWs are not present. Blue curve - IIWs are present.

The error of the interferogram reconstruction is estimated by the dimensionless quan-
tity Eq. (22):

1. ∆ f1 = 100 − 120 Hz;
d1 = 0.45, J = 80.
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2. ∆ f2 = 300 − 320 Hz;
d2 = 0.60, J = 80.
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Figure 17. Reconstructed 1D-interferogram I( f ) (a) ∆ f1 = 100 − 120 Hz and (b) ∆ f2 = 300 − 320
Hz. Moving source (v = 1 m/s). Red curve - IIWs are absent. Blue curve - IIWs are present.

Compared to the non-moving source, the error for the frequency ranges ∆ f1 = 100 −
120 Hz and ∆ f2 = 300 − 320 Hz has increased by a factor of 3.7 and 6.2, respectively. It
can be seen that the interferogram of the waveguide without IIWs is reconstructed less
accurately for the case of the moving source in the presence of IIWs. This difference in
the error values is explained by the different situation of the variability of the propagation
conditions. In the case of the non-moving source, there is a temporal variability of the
waveguide only due to the IIWs. In the case of the moving source, there is a temporal
variability of the waveguide due to IIWs and a spatio-temporal variability caused by the
movement of the source.

5. Conclusions

In the framework of numerical simulation, we investigated the stability of the holo-
graphic signal processing method in the case of the moving broadband acoustic source
source in the presence of IIWs. IIWs are assumed to propagate across the acoustic track
(source-receiver). In this case, IIWs cause significant horizontal refraction of the sound
field. As a result, the dynamic horizontal waveguides are approximately parallel to the IIW
fronts in the horizontal plane.

The stability of holographic signal processing is based on the hologram structure of
the moving source in the presence of IIWs. The hologram of the moving source consists
of two disjoint components. The first is the sound field component corresponding to the
waveguide without IIWs. The second component is the perturbation of the sound field by
the IIWs causing horizontal refraction.

Such a hologram structure allows the separation of the sound field components. It
is possible to filter the first component with minimal distortion. The filtered hologram
component is used to reconstruct the interferogram of a moving source in the waveguide
in the absence of IIWs. The reconstructed sound field interferograms in the presence of
IIWs and the interferograms in the waveguide without IIWs differ in contrast. However,
the angular coefficients of the interference fringes are the same.

Thus, in the presence of IIWs, it is possible to estimate the parameters of the source
(range, velocity, direction, etc.) from the reconstructed sound field component. With an
increase in the frequency range, the error in estimating the source parameters decreases.
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