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A Nonstandard Finite Difference Scheme for a
Time-Fractional Model of Zika Virus Transmission

Maghnia Hamou Maamar, Matthias Ehrhardt, and Louiza Tabharit

Abstract. In this paper we consider a compartmental model describing the

transmission of Zika virus to humans and mosquito populations and an ex-

tended model including a second reservoir host of a non-human primate (mon-
key). This model is later generalized by a fractional time derivative.

To properly simulate the spread of the disease we design for each model
a nonstandard finite difference (NSFD) scheme that is able to guarantee the

positivity of the solution and exhibits the correct asymptotic behaviour of the

solution.
Numerical simulations of the models illustrate these advantages, e.g. the

positivity preservation, compared to using standard solver like the Runge-

Kutta Fehlberg method ode45.

1. Introduction

The Zika virus (ZIKV) is an emerging arbovirus that is transmitted by several
so-called vectors, the most important being the Aedes aegypti mosquito. Vectors
are living organisms that can transmit infectious pathogens between humans, or
from animals to humans. ZIKV was first isolated from a macaca monkey in the
Zika forest in Uganda in 1947, giving the virus its name, cf. [12, 13].

The first major ZIKV epidemic began 2007 on the Yap archipelago in the
Federated States of Micronesia, where a high number of cases were recorded in
about 75% of the population within a few months [15, 22]. Later, a worldwide
epidemic occurred in French Polynesia (2013-2014) with approximately 28,000 cases
(about 11%) of the total population [28]. In 2015, ZIKV was reported in Brazil via
viremic travelers or infected mosquitoes [45], it also began to spread in Mexico [18].
Messina [33] showed that up to 2.17 billion people live in ”risk areas” (tropical and
subtropical regions).

The ZIKV infection is associated with mild symptoms: Fever, headache, rash,
myalgia, and conjunctivitis, similar to other arboviruses (dengue or chikungunya)
[23] and no deaths have been reported to date. Nevertheless, ZIKV has emerged as
a major cause of the development of the Guillain-Barré syndrome [5]. Also, there is
still uncertainty about the outcome of co-infections with other arboviruses such as
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Dengue fever. Furthermore, there is no available treatment for ZIKV infection. Pa-
tient care is based on symptomatic treatment with a combination of acetaminophen
and antihistamine medications [22].

Several mathematical models have been developed to address different cate-
gories in epidemiology, such as prediction of disease outbreaks and evaluation of
control strategies [8, 21, 29, 43]. The first mathematical epidemic model dates
back to Kermack and McKendrick (1927), who were concerned with mass events
in the susceptible, infected, and recovered (SIR) disease transmission cycle [24].
Manore and Hyman [30] proposed a mathematical model for ZIKV representing
disease transition and population dynamics Gao [17] developed a model of ZIKV
transmission through bites of Aedes mosquitoes and also through sexual contact.
Lee and Pietz [27] developed a mathematical model for Zika virus using logistic
growth in human populations. Nishiura et al. [37] proposed a mathematical Zika
model that exhibits the same dynamics as Dengue fever.

Fractional order approaches were used in COVID-19 transmission models by
using fractional order Caputo derivative [40], the analysis of semi-analytical solu-
tions of a hepatitis B epidemic model using the Caputo-Fabrizio operator [2], the
study of stability and Lyapunov functions for HIV/AIDS epidemic models with
the Atangana-Baleanu-Caputo derivative [41], the mathematical modeling of the
measles epidemic with optimized fractional order under the classical Caputo differ-
ential operator [39].

In this work we derive a new nonstandard finite difference scheme (NSFD)
for a recent SEIR (susceptible-exposed-infectious-recovered) model [29] that de-
scribes the spread of the Zika virus using a human-mosquito compartmental model
and a human-mosquito-monkey compartmental model. Despite the fact that this
NSFD scheme has a nonlinear denominator function, this schemes has a couple
of favourable properties: it is explicit and due to its construction it reproduces
important properties of the solution, like the number and location of fixed-points,
the positivity and certain conservation laws. The goal of this work is to briefly
demonstrate, in detail, how the NSFD methodology is to be applied to a system of
coupled ordinary differential equations (ODEs), where the discretizations are dy-
namical consistent with the basic properties of the continuous differential equations,
e.g. positivity, asymptotic behaviour, memory effects, etc..

The paper is organized as follows. In Section 2, we formulate the ZIKV trans-
mission models. Section 3 includes the analysis, especially the boundedness of the
solution and the stability analysis of the two considered models. In Section 4 we
design the nonstandard finite difference method for the two proposed models and
show how it can be extended to time-fractional variants of the models using the L1
method. In Section 4 we propose NSFD schemes for the conventional and the time-
fractional version of our models. The numerical results of our novel schemes are
shown in Section 5. Finally, Section 6 presents the conclusions and some outlook.

2. The ZIKV transmission models

In this section, we will briefly describe the two considered mathematical com-
partmental models [29] to describe the ZIKV transmission.

In areas without nonhuman primates, such as Yap State and French Polynesia,
ZIKV is likely maintained in a human-mosquito-human cycle, suggesting that the
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virus has adapted to humans as reservoir hosts [26]. This setting will lead us the
first model, formulated in a SEIR-SEI framework.

Boorman and Porterfield [7] showed in a laboratory setting that Monkeys can
become infected with ZIKV. However, there is no evidence that ZIKV is transmitted
to humans through contact with animals. On the other hand, the presence of
specific antiviral antibodies in various nonhuman primates, suggesting that other
reservoirs may play a role in the ZIKV transmission cycle, cf. [11]. For this reason
we also consider a second extended model.

2.1. The Parameters. The human population is divided into four classes
(so-called ’compartments’): susceptible, exposed (latently infected), infected, and
recovered (individuals who have acquired immunity). We denote the number in
each compartment by Sh, Eh, Ih, and Rh. Accordingly, we divide the vector popu-
lation (adult female mosquitoes) into three compartments: susceptible, exposed,
and infected, with the analogous notation Sv, Ev and Iv. Next, we define the total
number of populations as

(2.1) Nh = Sh + Eh + Ih +Rh, Nv = Sv + Ev + Iv.

Further, let us introduce a couple of parameters, cf. [29].

• B is the average number of bites per mosquito per day.
• βvh is the probability rate that a bite from an infectious vector will infect a
human, the product Bβvh is the number of disease-transmitting bites per
infectious mosquito per day, and the product BβvhIv(t) is the number
of disease-transmitting bites per day in the entire mosquito population
at time t (measured in days). However, multiplying BβvhIv(t) by the
proportion of susceptible people at time t represents the number of disease-
transmitting bites per day by infectious mosquitoes on susceptible people
at time t (the daily rate at which susceptible people are exposed).

• The parameter µh is the proportion of the human population that dies
each day (’human mortality rate’).

• νh is the daily rate at which exposed people become infected (’human
infection rate’).

• ηh denotes the daily rate at which infected people become immune. (’hu-
man immunity rate’).

• The parameter βhv is the probability rate that the bite of an infectious
human will infect a mosquito; Bβhv is the number of disease-transmitting
bites per mosquito per day. Thus, the product BβhvSv(t) is the number
of bites per day that result in disease being transmitted by susceptible
mosquitoes at time t. Multiplying BβhvSv(t) by the proportion of infec-
tious people at time t the complete rate of disease-transmitting bites at
time t (the daily rate at which susceptible mosquitoes become infected).

• The parameter µv is the proportion of the mosquito population that dies
each day (’mosquito mortality rate’).

• νv denotes the daily rate at which exposed mosquitoes become infected
(’mosquito infection rate’).

We include a constant system inflow, the per-capita birth rates Λh, Λv (e.g. birth
of new individuals that can get infected, and the natural mortality rates µh, µv.
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2.2. The human-mosquito model. Now we are ready to formulate the first
model. The system of ODEs has the following form

dSh(t)

dt
= Λh − (Bβvh

Iv(t)

Nv(t)
+ µh)Sh(t),

dEh(t)

dt
= Bβvh

Iv(t)

Nv(t)
Sh(t)− (νh + µh)Eh(t),

dIh(t)

dt
= νhEh(t)− (ηh + µh)Ih(t),

dRh(t)

dt
= ηhIh(t)− µhRh(t),

dSv(t)

dt
= Λv − (Bβhv

Ih(t)

Nh(t)
+ µv)Sv(t),

dEv(t)

dt
= Bβhv

Ih(t)

Nh(t)
Sv(t)− (νv + µv)Ev(t),

dIv(t)

dt
= νvEv(t)− µvIv(t).

(2.2)

The dynamical system described by (2.2) is depicted in Figure 1. We note that
by a convention in epidemiology models all parameters in (2.2) are assumed to be
positive.
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Figure 1. A schematic representation of the human-mosquito
model (2.2).

Summing up the equations in (2.2) gives immediately the ODE system for the
time evolution of the total populations of humans and mosquitos

dNh(t)

dt
= Λh − µhNh(t),

dNv(t)

dt
= Λv − µv Nv(t),

(2.3)

that can be solved easily, cf. Section 4.4. Since the Zika virus transmission has a
faster dynamic than the human birthrate and the human natural mortality, Nh(t)
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can be regarded as a conserved quantity of the above ODE system, if we set for
simplicity Λh = µh = 0. Note that this is not the case for the vector (mosquito)
which has a comparable dynamic and the asymptotic behaviour

(2.4) lim
t→∞

Nv(t) =
Λv

µv
.

This well-known limiting behaviour can be exploited for a further simplification of
the model (2.2) (so-called ’limiting model’) by removing Iv, and thus the remaining
vector components Sv, Ev can be plotted in a 2D phase diagram, cf. [9]. We return
later to this property when designing the numerical scheme.

2.3. The human-mosquito-monkey model. Accordingly, we define the to-
tal monkey population as

(2.5) Nm(t) = Sm(t) + Em(t) + Im(t) +Rm(t).

Next, we introduce similar parameters for the monkey population, cf. [29]:

• βvm is the probability rate that a bite from an infectious mosquito will
infect a monkey.

• The parameter µm is the proportion of the monkey population that dies
each day.

• νm is the daily rate at which exposed monkeys become infected.
• ηm the daily rate at which infected monkeys become immune.

The corresponding system of ODEs for the temporal evolution of the human,
vector and monkey population has the following form

dSh(t)

dt
= Λh − (Bβvh

Iv(t)

Nv(t)
+ µh)Sh(t),

dEh(t)

dt
= Bβvh

Iv(t)

Nv(t)
Sh(t)− (νh + µh)Eh(t),

dIh(t)

dt
= νhEh(t)− (ηh + µh)Ih(t),

dRh(t)

dt
= ηhIh(t)− µhRh(t),

dSv(t)

dt
= Λv − (Bβhv

Ih(t)

Nh(t)
+Bβmv

Im(t)

Nm(t)
+ µv)Sv(t),

dEv(t)

dt
= (Bβhv

Ih(t)

Nh(t)
+Bβmv

Im(t)

Nm(t)
)Sv(t)− (νv + µv)Ev(t),

dIv(t)

dt
= νvEv(t)− µvIv(t)

dSm(t)

dt
= Λm −

(
Bβvm

Iv(t)

Nv(t)
+ µm

)
Sm(t),

dEm(t)

dt
= Bβvm

Iv(t)

Nv(t)
Sm(t)− (νm + µm)Em(t),

dIm(t)

dt
= νmEm(t)− (ηm + µm)Im(t),

dRm(t)

dt
= ηmI(t)− µmRm(t).

(2.6)

The dynamical system described by equations (2.6) is depicted in Figure 2.
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Figure 2. A schematic representation of the human-mosquito-
monkey model (2.6).

Again, summing up the equations in (2.6) yields for the total populations

dNh(t)

dt
= Λh − µhNh(t),

dNv(t)

dt
= Λv − µv Nv(t),

dNm(t)

dt
= Λm − µmNm(t),

(2.7)

with simple exact solutions, see Section 4.4. Analogously, Nh(t) and Nm(t) can be
regarded as a conserved quantity of the above ODE system, if we set Λh = µh = 0
and Λm = µm = 0.

Using standard arguments (see e.g. [36]) it can be easily shown that both ODE
systems (2.2), (2.6) preserve the positivity of the solution. This basic property
should be respected by any reasonable numerical method and yields as a byproduct
the stability of the scheme.

2.4. A Fractional-order human-vector model. The fractional-order dy-
namics of the transmission of the Zika virus to human and vector populations is
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given by the following system

(2.8)



CDαSh(t) = Λα
h −

(
Bαβvh

Iv(t)
Nα,v(t)

+ µα
h

)
Sh(t)

CDαEh(t) = Bαβvh
Iv(t)

Nα,v(t)
Sh(t)− (ναh + µα

h)Eh(t)
CDαIh(t) = ναhEh(t)− (ηαh + µα

h)Ih(t)
CDαRh(t) = ηαh Ih(t)− µα

hRh(t)
CDαSv(t) = Λα

v −
(
Bαβhv

Ih(t)
Nα,h(t)

+ µα
v

)
Sv(t)

CDαEv(t) = Bαβhv
Ih(t)

Nα,h(t)
Sv(t)− (ναv + µα

v )Ev(t)
CDαIv(t) = ναv Ev(t)− µα

v Iv(t),

with the initial conditions

Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0) ≥ 0,

where CDαX(t) is the Caputo derivative and it is defined as:

CDαX(t) =
1

Γ(1− α)

∫ t

0

dX(τ)

dτ
(t− τ)−α dτ, t > 0 and 0 < α < 1.

Adding the equations of the system (2.8) yields the fractional ODEs

(2.9) CDαNα,h(t) = Λα
h − µα

hNα,h(t) and
CDαNα,v(t) = Λα

v − µα
vNα,v(t).

In the model given above, we modified the right-hand sides parameters µα
h ,

Bα, ναh , η
α
h , µ

α
v and ναv using the procedure described in Diethelm [14] in order to

adjust the dimensions because the dimension of the left-hand sides of the equations
is (time)−α. Note that in the limit case α → 1, the system (2.8) reduces to the
classical system given in (2.2).

3. Analysis of the models

3.1. Non-negativity and boundedness of solutions. The positivity and
boundedness of the solutions of an epidemiological system are essential properties.
Therefore, it is important to prove that all subpopulations in the systems (2.2),
(2.6), and (2.8) are non-negative and bounded for all times t ≥ 0. The following
results show how to confirm these two properties.

We now focus on the human-mosquito system (2.2) and prove the following
theorem, which confirms the positivity and boundedness of the system.

Theorem 3.1. The closed region

Ω =
{
(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7

+ : 0 ≤ Nh ≤ Λh

µh
and 0 ≤ Nv ≤ Λv

µv

}
is a positively invariant set for the system (2.2).

Proof. Let Sh(0) > 0, then

dSh(t)

dt
= Λh(t)−

(
Bβvh

Iv(t)

Nv(t)
+ µh

)
Sh(t)

≥ −
(
Bβvh

Iv(t)

Nv(t)
+ µh

)
Sh(t).
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By using the Comparison Lemma [25], we have

Sh(t) ≥ Sh(0)

∫ t

0

exp

(
−
(
Bβvh

Iv(s)

Nv(s)
+ µh

))
ds ≥ 0.

Similarly, it can be shown that

Eh(t) ≥ 0, Ih(t) ≥ 0, Rh(t) ≥ 0, Sv(t) ≥ 0, Eh(t) ≥ 0 and Ih(t) ≥ 0.

From equations (4.4) and (4.5) the quantities Nh(t) and Nv(t) are non-negative for
all t ≥ 0, and

lim
t→∞

supNh(t) ≤
Λh

µh
and lim

t→∞
supNv(t) ≤

Λv

µv
.

Thus, Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t) and Iv(t) are bounded. □

The corresponding proof for the human-mosquito-monkey system (2.6) is anal-
ogous.

The following theorem highlights the positivity and boundedness of the fractional-
order human-vector model (2.8):

Theorem 3.2. The region Ωα =
{
(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ∈ R7

+ : 0 ≤ Nα,h

≤ Λα
h

µα
h

and 0 ≤ Nα,v ≤ Λα
v

µα
v

}
is a non-negative invariant for the model (2.8) for

t ≥ 0.

Proof. We have

CDαNα,h(t) + µα
hNα,h(t) = Λα

h

and using the Laplace transform, we obtain

sαL
(
Nα,h(t)

)
− sα−1Nα,h(0) + µα

hL
(
Nα,h(t)

)
=

Λα
h

s

then

L
(
Nα,h(t)

)
=
sα−1Nα,h(0)

sα + µα
h

+
Λα
hs

−1

sα + µα
h

,

and applying the inverse Laplace transform, we get

(3.1) Nα,h(t) = Nα,h(0)Eα

(
−(µht)

α
)
+ Λα

ht
αEα,α+1

(
−(µht)

α
)

where Eα,α+1 denotes the Mittag-Leffler function

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
α > 0, β > 0.

Using the well-known recurrence relation for the Mittag-Leffler function [20] for
β = 1,

Eα,β(z) =
1

Γ(β)
+ zEα,β+α(z)

we may write the equation (3.1) as

(3.2) Nα,h(t) =
Λα
h

µα
h

+
(
Nα,h(0)−

Λα
h

µα
h

)
Eα

(
−(µht)

α
)
,

and thus

lim sup
t→∞

Nα,h(t) ≤
Λα
h

µα
h

.
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We proceed similarly to derive the equation of Nα,v(t),

(3.3) Nα,v(t) =
Λα
v

µα
v

+
(
Nα,v(0)−

Λα
v

µα
v

)
Eα

(
−(µvt)

α
)
,

and conclude that

lim sup
t→∞

Nα,v(t) ≤
Λα
v

µα
v

.

As a result, the functions Sh, Eh, Ih, Rh, Sv, Ev and Iv are all non-negative. □

3.2. Stability Analysis. System (2.8) always has a disease-free equilibrium
(DFE) at:

EDF = (N∗
α,h, 0, 0, 0, N

∗
α,v, 0, 0),

where

N∗
α,h =

Λα
h

µα
h

and N∗
α,v =

Λα
v

µα
v

.

The infection components considered in (2.8) model consist of Eh, Ih, Ev and Iv.
By using the next generation approach [14], the basic reproduction number of the
model (2.8) is defined as Rα

0 = ρ(FαV
−1
α ), where Fα represents the new infection

matrix and Vα represents the transition matrix. The values for Fα and Vα are
provided below:

Fα =


0 0 0

BαβvhN
∗
α,h

N∗
α,v

0 0 0 0

0
BαβhvN

∗
α,v

N∗
α,h

0 0

0 0 0 0


and

Vα =


(ναh + µα

h) 0 0 0
−ναh (ηαh + µα

h) 0 0
0 0 (µα

v + ναv ) 0
0 0 −ναv µα

v

 .

Thus,

Rα
0 =

√
ναh ν

α
v B

αβvhBαβhv
µα
v (ν

α
h + µα

h)(µ
α
v + ναv )(η

α
h + µα

h)
.

3.3. Local and global stability of DFE. The following theorem discuss the
local stability of DFE.

Theorem 3.3. The disease-free equilibrium of the proposed fractional-order
model is locally asymptotically stable if Rα

0 < 1 and is unstable if Rα
0 > 1.

Proof. The Jacobian matrix of system (2.8) at DFE is given by,

J(EDF ) =



−µα
h 0 0 0 0 0 −

BαβvhN∗
α,h

N∗
α,v

0 −(να
h + µα

h) 0 0 0 0
BαβvhN∗

α,h
N∗

α,v

0 να
h −(ηα

h + µα
h) 0 0 0 0

0 0 ηα
h −µα

h 0 0 0

0 0 −Bαβhv

N∗
α,v

N∗
α,h

0 −µα
v 0 0

0 0 Bαβhv

N∗
α,v

N∗
α,h

0 0 −(µα
v + να

v ) 0

0 0 0 0 0 να
v −µα

v


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the characteristic polynomial is then given by,

p(X) = (X + µα
v )(X + µα

h)
2(X4 + a3X

3 + a2X
2 + a1X + a0)

then X1 = X2 = −µα
v and X3 = −µα

v are three eigenvalues. The remaining
eigenvalues correspond to the roots of the following polynomial

q(X) = a0X
4 + a1X

3 + a2X
2 + a3X + a4

where
a0 = 1,

a1 = ηαh + 2µα
h + 2µα

v + ναv + ναh ,

a2 = (ηαh + µα
h)(µ

α
v + ναv ) + (µα

v + ναh + µα
h)(η

α
h + µα

h + µα
v + ναv ) + µα

v (ν
α
h + µα

h),

a3 = (2µα
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h) + µα
v (ν

α
h + 2µα

h + ηαh )(µ
α
v + ναv ),

and
a4 = µα

v (η
α
h + µα

h)(ν
α
h + µα

h)(µ
α
v + ναv )

(
1− (Rα

0 )
2
)
.

The polynomial q(X) has the following Hurwitz matrix :

H =


a1 a3 0 0
a0 a2 a4 0
0 a1 a3 0
0 a0 a2 a4


So, by the Routh-Hurwitz criterion the roots of q(X) have negative real parts if
and only if all principal minors are strictly positive, that is,

H1 = a1 > 0,

H2 = a1a2 − a3

= (ηαh + µα
h)(µ

α
v + ναv ) (η

α
h + µα

h + µα
v + ναv ) + µα

v (µ
α
h + ναh + µα

v )(ν
α
h + µα

h)

+ (ηαh + 2µα
h + 2µα

v + ναv + ναh )(µ
α
v + ναh + µα

h)(η
α
h + µα

h + µα
v + ναv )

> 0,

H3 = a1a2a3 − a21a4 − a23

= µα
v (η

α
h + 2µα

h + 2µα
v + ναv + ναh )

2(ηαh + µα
h)(ν

α
h + µα

h)(µ
α
v + ναv )(R

α
0 )

2

+ µα
v (η

α
h + 2µα

h + 2µα
v + ναh )(µ

α
v + ναh + µα

h)(η
α
h + µα

h)(ν
α
h + µα

h)(η
α
h + µα

h)

+ µα
v (η

α
h + 2µα

h + ναh )(µ
α
v + ναv )(ν

α
h + µα

h)(η
α
h + µα

h + µα
v )(ν

α
h + µα

h)

+ µα
v (2µ

α
v + ναv )(ν

α
h + µα

h)(ν
α
h + µα

h)(η
α
h + µα

h + µα
v + ναv )(µ

α
v + ναv )

+ (ηαh + 2µα
h + ναh )(ν

α
h + µα

h)(µ
α
v + ναv )(η

α
h + µα

h + µα
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h)

+ (2µα
v + ναv )(ν

α
h + µα

h)(η
α
h + µα

h + µα
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h)(µ
α
v + ναv )

+ ναv ν
α
v µ

α
v (η

α
h + µα

h + 2µα
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h + ηαh )

+ ναv µ
α
vµ

α
h(η

α
h + µα

h + 2µα
v + ναv )(µ

α
v + ναv )(η

α
h + µα

h)

+ µα
v (µ

α
v + ναv )(µ

α
h + 2µα

v + ναv )(η
α
h + µα

h + µα
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h)

+ µα
v (µ

α
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h)(η
α
h + µα

h)(η
α
h + µα

h + ναh )

+ µα
vµ

α
v (µ

α
v + ναv )(ν

α
h + 2µα

h + ηαh )(2µ
α
v + ναv )(ν

α
h + µα

h)

+ 2µα
vµ

α
vµ

α
h(ν

α
h + µα

h)(η
α
h + µα

h)(µ
α
h + µα

v + ναh )
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+ µα
v ν

α
v (ν

α
h + µα

h)µ
α
h(µ

α
v + ναv )µ

α
h + µα

v ν
α
v (η

α
h + ναh + µα

h)µ
α
hν

α
v ν

α
h

+ µα
vµ

α
v ν

α
v (ν

α
h + µα

h + ηαh )(η
α
h + 2µα

v + ναv )(η
α
h + µα

h)

+ µα
v ν

α
v (ν

α
h + µα

h)(η
α
h + µα

h)(ν
α
h + µα

h)(η
α
h + µα

h)

+ (µα
v + ναv )(η

α
h + µα

h + 2µα
v + ναv )(η

α
h + µα

h)(2µ
α
v + ναv )(η

α
h + µα

h)(ν
α
h + µα

h)

+ µα
v ν

α
v ν

α
h (2µ

α
h + ναh )(ν

α
h + µα

h)(µ
α
v + ναv ) + µα

vµ
α
v (η

α
h + µα

h)µ
α
hν

α
h (µ

α
v + ναv )

+ µα
vµ

α
v (η

α
h + µα

h + 2µα
v + ναv )(η

α
h + µα

h)(2µ
α
h + ηαh )(µ

α
v + ναv )

+ µα
vµ

α
v (2µ

α
v + ναv )(η

α
h + µα

h)ν
α
h (µ

α
v + ναv )

+ µα
vµ

α
v (η

α
h + µα

h + 2µα
v + ναv )(η

α
h + µα

h + µα
v + ναv )(ν

α
h + 2µα

h + ηαh )(µ
α
v + ναv )

+ µα
v ν

α
v (µ

α
h + 2µα

v + ναv + ναh )(ν
α
h + µα

h)(η
α
h + µα

h)(ν
α
h + µα

h)

+ µα
vµ

α
v (ν

α
h + 2µα

h + ηαh )(µ
α
h + ναh )(µ

α
v + ναv )(µ

α
v + ναv )

+ 2µα
vµ

α
v ν

α
h (µ

α
h + 2µα

v + ναh )(ν
α
h + µα

h)(η
α
h + µα

h)

+ µα
v ν

α
v ν

α
v ν

α
h η

α
h (η

α
h + ναh + µα

h) > 0,

and

H4 = a4H3 > 0.

□

In order to prove the global stability of the equilibrium points, we need to recall
the following result:

Lemma 3.4 (See [10]). Let X(t) ∈ R be a continuous and differentiable func-
tion. Then, for any time instant t ≥ 0

(3.4) CDα
[
X∗ g

(X(t)

X∗

)]
≤

(
1− X∗

X(t)

)
CDαX(t), X∗ ∈ R, ∀α ∈ (0, 1),

where g(x) = x− 1− lnx.

Note that for α = 1, the inequality in (3.4) becomes equality. Now, taking
into account the Lyapunov direct method, we provide the global stability of the
equilibria in the following theorem.

Theorem 3.5. If (Rα
0 )

2 < Nv(0)Nh(0)
N∗

α,hN
∗
α,v

< 1, then the DFE is globally asymptot-

ically stable.

Proof. We consider the following Lyapunov function

V (t) =W1S
∗
h g

(Sh(t)

S∗
h

)
+W2Eh(t) +W3Ih(t)

+W4(t)S
∗
v g

(Sv(t)

S∗
v

)
+W5(t)Ev(t) +W6(t)Iv(t),

where

W1 =W2 =
ναh
ϕ1
,W3 = 1,W4(t) =W5(t) =

ναh ν
α
v B

α
1 (t)S

∗
h

ϕ1ϕ3µα
v

, and W6(t) =
ναhB

α
1 (t)S

∗
h

ϕ1µα
v

,

with

ϕ1 = ναh + µα
h , ϕ2 = ηαh + µα

h , ϕ3 = µα
v + ναv , B

α
1 (t) =

Bαβvh
Nv(t)

and Bα
2 (t) =

Bαβhv
Nh(t)

.
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Now using Lemma 3.4, the derivative of V in the Caputo sense with respect to t is
given by:

CDαV (t) ≤W1
(Sh(t)− S∗

h)

Sh(t)
CDαSh(t) +W2

CDαEh(t) +W3
CDαIh(t)

+W4(t)
(Sv(t)− S∗

v )

Sv(t)
CDαSv(t)−W4(t)

S∗
v

Nv(t)
g
(Sv(t)

S∗
v

)
CDαNv(t)

+W5(t)
CDαEv(t)−W5(t)

Ev(t)

Nv(t)
CDαNv(t)

+W6(t)
CDαIv(t)−W6(t)

Iv(t)

Nv(t)
CDαNv(t)

and thus

CDαV (t) ≤W1
(Sh(t)− S∗

h)

Sh(t)

(
Λα
h − (Bα

1 (t)Iv(t) + µα
h)Sh(t)

)
+W2

(
Bα

1 (t)Iv(t)Sh(t)− ϕ1Eh(t)
)
+W3

(
ναhEh(t)− ϕ2Ih(t)

)
+W4(t)

(Sv(t)− S∗
v )

Sv(t)

(
Λα
v − (Bα

2 (t)Ih(t) + µα
v )Sv(t)

)
+W5(t)

(
Bα

2 (t)Ih(t)Sv(t)− ϕ3Ev(t)
)
+W6(t)

(
ναv Ev(t)− µα

v Iv(t)
)

− 1

Nv(t)

(
W4(t)S

∗
v g

(Sv(t)

S∗
v

)
+W5(t)Ev(t) +W6(t)Iv(t)

)(
Λα
v − µα

vNv(t)
)

which implies

CDαV (t) ≤ −µα
hW1

(Sh(t)− S∗
h)

2

Sh(t)
− µα

vW4(t)
(Sv(t)− S∗

v )
2

Sv(t)

−W1B
α
1 (t)(Sh(t)− S∗

h)Iv(t) +W2B
α
1 (t)Iv(t)Sh(t)− ϕ1W2Eh(t)

+W3ν
α
hEh(t)− ϕ2W3Ih(t)−W4(t)B

α
2 (t)(Sv(t)− S∗

v )Ih(t)

+W5(t)B
α
2 (t)Ih(t)Sv(t)− ϕ3W5(t)Ev(t) +W6(t)ν

α
v Ev(t)− µα

vW6(t)Iv(t)

− µα
v

Nv(t)

(
W4(t)S

∗
v

(Sv(t)

S∗
v

)
+W5(t)Ev(t) +W6(t)Iv(t)

)
(N∗

α,v −Nv(t))

and have

CDαV (t) ≤ −µα
hW1

(Sh(t)− S∗
h)

2

Sh(t)
− µα

vW4(t)
(Sv(t)− S∗

v )
2

Sv(t)

+Bα
1 (t)(W2 −W1)Iv(t)Sh(t) + (W3ν

α
h − ϕ1W2)Eh(t)

+
(
W4(t)B

α
2 (t)S

∗
v − ϕ2W3

)
Ih(t) +Bα

2 (t)
(
W5(t)−W4(t)

)
Ih(t)Sv(t)

+
(
W6(t)ν

α
v − ϕ3W5(t)

)
Ev(t) +

(
W1B

α
1 (t)S

∗
h − µα

vW6(t)
)
Iv(t)

− µα
v

Nv(t)

(
W4(t)S

∗
v g

(Sv(t)

S∗
v

)
+W5(t)Ev(t) +W6(t)Iv(t)

)
(N∗

α,v −Nv(t))
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thus

CDαV (t) ≤ −µα
hW1

(Sh(t)− S∗
h)

2

Sh(t)
− µα

vW4(t)
(Sv(t)− S∗

v )
2

Sv(t)

+ ϕ2

(
(Rα

0 )
2 S∗

vS
∗
h

Nv(t)Nh(t)
− 1

)
Ih(t)

− µα
v

Nv(t)

(
W4(t)S

∗
v g

(Sv(t)

S∗
v

)
+W5(t)Ev(t) +W6(t)Iv(t)

)
(N∗

α,v −Nv(t)).

This implies that if (Rα
0 )

2 < Nv(0)Nh(0)
N∗

α,hN
∗
α,v

then CDαV (t) < 0 for all (Sh, Eh, Ih, Rh, Sv,

Ev, Iv) ̸= EDF and CDαV (t) = 0 for (Sh, Eh, Ih, Rh, Sv, Ev, Iv) = EDF . Therefore,
by LaSalle’s invariance principle, the DFE is globally asymptotically stable.

□

4. The Nonstandard Finite Difference Method

In this section we explain the technique of nonstandard finite difference schemes
(NSFDs). A NSFD scheme is constructed to satisfy the positivity condition and
the conservation laws. Consequently, the solutions are bounded, i.e. stable. Also,
only the fixed-points of the ODE systems (2.2), (2.6) appear in the NSFD scheme.
The specific full details are not given; we refer to the book of Mickens [34] for the
discretization strategy.

4.1. Nonstandard Finite Difference Schemes. NSFD methods for the
numerical integration of differential equations had their origin in a paper by Mickens
published in 1989 [34]. In this section, an NSFD scheme is constructed to satisfy
the essential positivity condition and the conservation law for Λh = µh = 0, Λv =
µv = 0 and Λm = µm = 0 which leads as a byproduct to the stability of the scheme.
We will also check that the equilibrium points of the ODE model also appear in
the proposed NSFD scheme.

Let us recall that schemes such as those based on Runge-Kutta methods can
yield wrong negative solutions (see [32, 19]) can produce ’false’ or ’spurious’ fixed-
points, which are not fixed points of the original ODE system, cf. [35].

Finally, we will determine in Section 4.4 the so-called denominator function
ϕ(h), such that we obtain the correct long-time behaviour. We refer to [6, 42],
where we established an NSFD scheme for a similar compartment model as here.

We remind the reader that a numerical scheme for a system of first-order dif-
ferential equations is called NSFD scheme if at least one of the following conditions
[34] is satisfied:

• The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives appearing in the differential equations.

• Discrete representations for derivatives must, in general, have nontrivial
denominator functions.

– The first-order derivatives in the system are approximated by the
generalized forward difference method (forward Euler method)

du

dt

∣∣∣
t=tn

≈ un+1 − un

ϕ(h)
,

with the numerical approximation un ≈ u(tn), n = 0, 1, 2 . . . on the
uniform grid tn = nh with the step size h = ∆t.
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– Here, ϕ ≡ ϕ(h) > 0 is the so-called denominator function such that
ϕ(h) = h + O(h2). This function ϕ(h) is chosen so that the dis-
crete solution has the same asymptotic behaviour as the analytical
solution, see Section 4.4.

• The nonlinear terms are approximated by non-local discrete representa-
tions, for instance by a suitable function of several points of a mesh, like
u2(tn) ≈ un un+1 or u3(tn) ≈ (un)2 un+1.

• Special conditions that hold for either the ODE and/or its solutions should
also apply to the difference equation model and/or its solution, e.g. pos-
itivity of the solution, convexity of the solution (in finance), equilibrium
points of the ODE system, including their local asymptotic stability prop-
erties.

In NSFD schemes, derivatives must be modeled by discrete analogues that take
the form, cf. [34]

(4.1)
du(t)

dt

∣∣∣
t=tn

→ un+1 − ψ(h)un

ϕ(h)
,

where tn = nh, un is the approximation of u(tn), and ψ(h) = 1+O(h). The purpose
of this more general time discretization (4.1) in NSFD schemes, is to properly model
the asymptotic long-time behaviour of the solution.

4.2. NSFD scheme for the human-mosquito model. Next, we propose
the following NSFD discretization for solving the ODE system (2.2)

Sn+1
h − Sn

h

ϕh(h)
= Λh −

(
Bβvh

Inv
Nn

v

+ µh

)
Sn+1
h ,

En+1
h − En

h

ϕh(h)
= Bβvh

Inv
Nn

v

Sn+1
h − (νh + µh)E

n+1
h ,

In+1
h − Inh
ϕh(h)

= νhE
n+1
h − (ηh + µh)I

n+1
h ,

Rn+1
h −Rn

h

ϕh(h)
= ηhI

n+1
h − µhR

n+1
h ,(4.2)

Sn+1
v − Sn

v

ϕv(h)
= Λv −

(
Bβhv

Inh
Nn

h

+ µv

)
Sn+1
v ,

En+1
v − En

v

ϕv(h)
= Bβhv

Inh
Nn

h

Sn+1
v − (µv + νv)E

n+1
v ,

In+1
v − Inv
ϕv(h)

= −µvI
n+1
v + νvE

n+1
v ,

with the denominator functions for each subsystem

(4.3) ϕh(h) =
eµhh − 1

µh
and ϕv(h) =

eµvh − 1

µv
.

The exact solutions of Nh and Nv are given by

(4.4) Nh(t) =
Λh

µh
+
(
Nh(0)−

Λh

µh

)
e−µht,
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and

(4.5) Nv(t) =
Λv

µv
+
(
Nv(0)−

Λv

µv

)
e−µvt.

Thus

Nn+1
h (t) = Nh(tn+1) and N

n+1
v (t) = Nv(tn+1).

Let us briefly comment on the discretizations of the nonlinear (here: quadratic)
terms. For example, in the first line (4.2) we have discretized the nonlinear contact
term βvhIv(t)Sh(t) in (2.2) by βvhI

n
v S

n+1
h rather than, say, Inv S

n
h or In+1

v Sn+1
h . The

rule is that exactly one factor of the variable appearing in the time derivative (here
Sh) must be taken at the new time level n+1. This is needed to obtain a positivity
preserving scheme, see (4.6). In order not to destroy the explicit sequential eval-
uation, all other variables are taken from the previous time level, unless they are
already known from a previous step, like In+1

h Sn+1
v in the sixth line. If possible,

discrete conservation properties (here: total population of humans, vectors) must
also be taken into account.

Observe that although the initial scheme (4.2) can be considered implicit, the
variables at the (n+ 1)-th discrete-time level can be explicitly calculated in terms
of the previously known variable values as given in the sequence of the equations
above, i.e. we can rewrite it as an explicit form

Sn+1
h =

Sn
h + ϕh(h),Λh

1 + ϕh(h)
(
Bβvh

In
v

Nn
v
+ µh

) ,
En+1

h =
En

h + ϕh(h)Bβvh
In
v

Nn
v
Sn+1
h

1 + ϕh(h)(νh + µh)

In+1
h =

Inh + ϕh(h)νhE
n+1
h

1 + ϕh(h)(ηh + µh)
,

Rn+1
h =

Rn
h + ϕh(h)ηhI

n+1
h

1 + ϕh(h)µh
,(4.6)

Sn+1
v =

Sn
v + ϕv(h)Λv

1 + ϕv(h)
(
Bβhv

In
h

Nn
h
+ µv

) ,
En+1

v =
En

v + ϕv(h)Bβhv
In
h

Nn
h
Sn+1
v

1 + ϕv(h)(µv + νv)
,

In+1
v =

Inv + ϕv(h)νvE
n+1
v

1 + ϕv(h)µv
.

The calculation must be done in exactly this order. All parameters appearing in
these type of epidemic models are always non-negative. This is the convention used
in fields related to the spread of diseases. From the explicit representation (4.6)
it is easy to deduce that this scheme preserves the positivity, given some natural
conditions on the parameters.

4.3. NSFD scheme for the human-mosquito-monkey model. Corre-
spondingly, the NSFD discretization for solving the ODE system (2.6) reads
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Sn+1
h − Sn

h

ϕh(h)
= Λh −

(
Bβvh

Inv
Nn

v

+ µh

)
Sn+1
h ,

En+1
h − En

h

ϕh(h)
= Bβvh

Inv
Nn

v

Sn+1
h − (νh + µh)E

n+1
h ,

In+1
h − Inh
ϕh(h)

= νhE
n+1
h − (ηh + µh)I

n+1
h ,

Rn+1
h −Rn

h

ϕh(h)
= ηhI

n+1
h − µhR

n+1
h ,

Sn+1
v − Sn

v

ϕv(h)
= Λv −

(
Bβhv

Inh
Nn

h

+Bβmv
Inm
Nn

m

+ µv

)
Sn+1
v ,

En+1
v − En

v

ϕv(h)
=

(
Bβhv

Inh
Nn

h

+Bβmv
Inm
Nn

m

)
Sn+1
v − (µv + νv)E

n+1
v ,

In+1
v − Inv
ϕ(h)

= νvE
n+1
v − µvI

n+1
v ,

Sn+1
m − Sn

m

ϕm(h)
= Λm −

(
Bβvm

Inv
Nn

v

+ µm

)
Sn+1
m ,

En+1
m − En

m

ϕm(h)
= Bβvm

Inv
Nn

v

Sn+1
m − (νm + µm)En+1

m ,

In+1
m − Inm
ϕm(h)

= νmE
n+1
m − (ηm + µm)In+1

m ,

Rn+1
m −Rn

m

ϕm(h)
= ηmI

n+1
m − µmR

n+1
m .

(4.7)

Accordingly, we rewrite the scheme (4.7) in an explicit sequential formulation

Sn+1
h =

Sn
h + ϕh(h) Λh

1 + ϕh(h)
(
Bβvh

In
v

Nn
v
+ µh

) ,
En+1

h =
En

h + ϕh(h)BβvhBβvh
In
v

Nn
v
Sn+1
h

1 + ϕh(h) (νh + µh)
,

In+1
h =

Inh + ϕh(h) νhE
n+1
h

1 + ϕh(h) (ηh + µh)
,

Rn+1
h =

Rn
h + ϕh(h) ηhI

n+1
h

1 + ϕh(h)µh
,

Sn+1
v =

Sn
v + ϕv(h) Λv

1 + ϕv(h)
(
Bβhv

In
h

Nn
h
+Bβmv

In
m

Nn
m

+ µv)
,

En+1
v =

En
v + ϕv(h)

(
Bβhv

In
h

Nn
h

+Bβmv
In
m

Nn
m
)Sn+1

v

1 + ϕv(h) (νv + µv)
,(4.8)

In+1
v =

Inv + ϕv(h) νvE
n+1
v

1 + ϕv(h)µv
,
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Sn+1
m =

Sn
m + ϕm(h) Λm

1 + ϕm(h)
(
Bβvm

In
v

Nn
v

+ µm

) ,
En+1

m =
En

m + ϕm(h)Bβvm
In
v

Nn
v
Sn+1
m

1 + ϕm(h) (νm + µm)
,

In+1
m =

Inm + ϕm(h) νmE
n+1
m

1 + ϕm(h) (ηm + µm)
,

Rn+1
m =

Rn
m + ϕm(h) ηmI

n+1
m

1 + ϕm(h)µm
.

4.4. The denominator function. Finally, it only remains to correctly de-
termine the denominator function ϕ(h). To do so, we reconsider the combined total
population N = Nh, Nv or Nm of the ODE systems (2.2) and (2.6)), now without
neglecting the birthrates and the natural mortality. Here, we introduce accordingly
the combined values Λ = Λh,Λv or Λm, µ = µh, µv or µm for the system (2.2)
and the extended system (2.6). At a first glance, it looks inappropriate to add the
populations of humans, mosquitos and monkeys, but this has purely mathematical
reasons: it is used for the asymptotic behaviour that later leads to the denominator
function ϕ(h), which must be the same for all components of the ODE system.

Adding the equations of (2.2) or (2.6), we easily obtain the following differential
equation describing the dynamics of the combined total population N

(4.9)
dN(t)

dt
= Λ− µN(t) .

It is solved by

(4.10) N(t) =
Λ

µ
+
(
N(0)− Λ

µ

)
e−µt = N(0) +

(
N(0)− Λ

µ

)
(e−µt − 1),

with N(0) = Nh(0) + Nv(0) + Nm(0). From (4.10) we immediately deduce that
we have in the long term limt→∞N(t) = Λ/µ. Let us briefly note that this link
between the transient dynamics and their ’natural’ limiting systems can be used to
reduce the dimension of this model, cf. [9].

Next, adding the equations in the discrete NSFD model (4.2) yields

(4.11)
Nn+1 −Nn

ϕ(h)
= Λ− µNn+1,

i.e.

Nn+1 =
Nn + ϕ(h)Λ

1 + ϕ(h)µ
= Nn −

(
Nn − Λ

µ

) ϕ(h)µ

1 + ϕ(h)µ

= Nn +
(
Nn − Λ

µ

)( 1

1 + ϕ(h)µ
− 1

)
.

(4.12)

The denominator function can be derived by comparing Equation (4.11) with the
discrete version of Equation (4.10), that is

(4.13) Nn+1 = Nn +
(
Nn − Λ

µ

)
(e−µh − 1), h = ∆t,

such that the (positive) denominator function is defined by

(4.14)
1

1 + ϕ(h)µ
= e−µh,
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i.e.

(4.15) ϕ(h) =
eµh − 1

µ
=

1 + µh+ 1
2µ

2h2 + · · · − 1

µ
= h+

µh2

2
+ · · · = h+O(h2).

Note that the conservation property requires all the denominator functions ϕ(h)
for the compartments to be the same. Otherwise, it would be impossible to obtain
a discrete analogue like (4.11) which is also needed for stability reasons.

Remark 4.1. An even more accurate way to compute the denominator function
would take into account the transition rate Υi at which the ith compartment is
entered by individuals for all model compartments Ki, i = 1, 2, . . . (e.g. βvh, νh,
ηh, νv,. . . ), cf. [16]. In this case the parameter µ occurring in the denominator
function in Equation (4.15) would be replaced by a parameter 1/T ∗. T ∗ could be
determined as the minimum of the inverse transition parameters:

T ∗ = min
i=1,2,...

{ 1

Υi

}
.

4.5. A NSFD scheme for a time-fractional model. Again, let us consider
a uniform temporal grid t0 = 0 < t1 < · · · < tNT

= T , tn = nT/NT , where NT ∈ N.
Next, we present a numerical approximation of the Caputo derivative using the
NSFD method. We have

CDαX(t)
∣∣
t=tn+1

=
1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

dX(τ)

dτ
(tn+1 − τ)−α dτ

We discretize the term dX(τ)
dτ on the interval [tj , tj+1] as

dX(τ)

dτ
=
Xj+1 −Xj

ϕα(h)
,

where Xj = X(tj) and ϕα(h) from (4.15).

CDαX(t)
∣∣
t=tn+1

≈ 1

Γ(2− α)

n∑
j=0

∆j
α,n

Xj+1 −Xj

ϕα(h)
,

where

∆j
α,n =

(
(tn+1 − tj)

1−α − (tn+1 − tj+1)
1−α

)
.

Each equation in (2.8) can be written as

CDαX(t) = F
(
X(t)

)
,

at the point t = tn+1, we have

(4.16)
1

Γ(2− α)

n∑
j=0

∆j
α,n

Xj+1 −Xj

ϕα(h)
− F (Xn+1) = 0 n = 1, . . . , NT − 1.

Now, we apply the scheme (4.16) to the system (2.8), we obtain

Sn+1
h =

h1−αSn
h −

∑n−1
j=0 ∆j

α,n(S
j+1
h − Sj

h) + Γ(2− α)ϕα,h(h)Λ
α
h(

h1−α + Γ(2− α)ϕα,h(h)
(
Bαβvh

In
v

Nn
α,v

+ µα
h

)) ,

En+1
h =

h1−αEn
h −

∑n−1
j=0 ∆j

α,n(E
j+1
h − Ej

h) + Γ(2− α)ϕα,h(h)B
αβvh

In
v

Nn
α,v
Sn+1
h(

h1−α + Γ(2− α)ϕα,h(h)(ναh + µα
h)
) ,
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In+1
h =

h1−αInh −
∑n−1

j=0 ∆j
α,n(I

j+1
h − Ijh) + Γ(2− α)ϕα,h(h)ν

α
hE

n+1
h(

h1−α + Γ(2− α)ϕα,h(h)(ηαh + µα
h)
) ,

Rn+1
h =

h1−αRn
h −

∑n−1
j=0 ∆j

α,n(R
j+1
h −Rj

h) + Γ(2− α)ϕα,h(h)η
α
h I

n+1
h(

h1−α + Γ(2− α)ϕα,h(h)µα
h

) ,

(4.17)

Nn+1
α,h =

h1−αNn
α,h −

∑n−1
j=0 ∆j

α,n(N
j+1
α,h −N j

α,h) + Γ(2− α)ϕα,h(h)Λ
α
h(

h1−α + Γ(2− α)ϕα,h(h)µα
h

)
Sn+1
v =

h1−αSn
v −

∑n−1
j=0 ∆j

α,n(S
j+1
v − Sj

v) + Γ(2− α)ϕα,v(h)Λ
α
v(

h1−α + Γ(2− α)ϕα,v(h)(Bαβhv
In
h

Nn
α,h

+ µα
v )
) ,

En+1
v =

h1−αEn
v −

∑n
j=0 ∆

j
α,n(E

j+1
v − Ej

v) + Γ(2− α)ϕα,v(h)B
αβhv

In
h

Nn
α,h
Sn+1
v(

h1−α + Γ(2− α)ϕα,v(h)(ναv + µα
v )
) ,

In+1
v =

h1−αInv −
∑n−1

j=0 ∆j
α,n(I

j+1
v − Ijv) + Γ(2− α)ϕα,v(h)ν

α
v E

n+1
v(

h1−α + Γ(2− α)ϕα,v(h)µα
v

) ,

Nn+1
α,v =

h1−αNn
α,v −

∑n−1
j=0 ∆j

α,n(N
j+1
α,v −N j

α,v) + Γ(2− α)ϕα,v(h)Λ
α
v(

h1−α + Γ(2− α)ϕα,v(h)µα
v

) .

Setting n = 0, equations of Nn+1
α,h and Nn+1

α,v in (4.17) give

(4.18) N1
α,h ≈

h1−αN0
α,h

h1−α + ϕα,h(h)Γ(2− α)µα
h

+
ϕα,h(h)Γ(2− α)Λα

h

h1−α + ϕα,h(h)Γ(2− α)µα
h

and

(4.19) N1
α,v ≈

h1−αN0
α,v

h1−α + ϕα,v(h)Γ(2− α)µα
v

+
ϕα,v(h)Γ(2− α)Λα

v

h1−α + ϕα,v(h)Γ(2− α)µα
v

.

The exact solution of the equations (3.2) and (3.3) can be rewritten as

(4.20) Nα,h(t) = Nα,h(0)Eα

(
−(µht)

α
)
+

Λα
h

µα
h

(
1− Eα

(
−(µht)

α
))

and

(4.21) Nα,v(t) = Nα,v(0)Eα

(
−(µvt)

α
)
+

Λα
v

µα
v

(
1− Eα

(
−(µvt)

α
))
.

The denominator function ϕα,h(h) (ϕα,v(h) respectively) can be derived by
comparing the exact version (4.20) ((4.21) respectively) with the discrete version
(4.18) ((4.19) respectively), that is

ϕα,h(h) =
h1−α

(
1− Eα

(
−(µhh)

α
))

Eα

(
−(µhh)α

)
Γ(2− α)µα

h

and ϕα,v(h) =
h1−α

(
1− Eα

(
−(µvh)

α
))

Eα

(
−(µvh)α

)
Γ(2− α)µα

v

.

It is not difficult to show that ϕα,h(h) and ϕα,v(h) reduce to the classical ϕh(h) and
ϕv(h) in (4.3) when α = 1.
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5. Numerical Results

In this section, we present the numerical solution of the systems (2.2) and (2.6)
using the NSFD schemes (4.6) and (4.8). Then, we compare it with the solution
computed by the ode45 solver of Matlab.

5.1. The human-mosquito Model. We denote by Y the matrix of order
NT × 7 that contains the approximated solution determined by the ode45 solver
which is given by

Y =


Sh(t1) Eh(t1) Ih(t1) Rh(t1) Sv(t1) Ev(t1) Iv(t1)
Sh(t2) Eh(t2) Ih(t2) Rh(t2) Sv(t2) Ev(t2) Iv(t2)

...
...

...
...

...
...

...
Sh(tNT

) Eh(tNT
) Ih(tNT

) Rh(tNT
) Sv(tNT

) Ev(tNT
) Iv(tNT

)

 .

The parameters used to simulate the model are listed in the Table 1. The initial
conditions are always set to

Sh(0) = 9e4, Eh(0) = 0, Ih(0) = 1e4, Rh(0) = 0,

Sv(0) = 1.188e5, Ev(0) = 0, Iv(0) = 1.2e3.

Table 1. Fixed and operational parameters for disease-free and
disease-endemic equilibrium.

DFE EE

Λh 4.6e2 4.6e2

µh 6e-04 6e-04

B 0.1523 0.1932

βhv 0.0805 0.773

βvh 0.0741 0.7823

νh 0.0833 0.0833

ηh 0.2 0.2

Λv 3.2e4 3.2e4

µv 0.0333 0.0333

νv 0.1 0.1

T (days) 22× 365 22× 365

The following Figures 3–8 represent the trajectories in the three dimensional
space of the human and the vector populations, respectively. They show that the
NSFD method remains stable and approaches the disease-free equilibrium (DFE)
or endemic equilibrium (EE) points.

The Figures 9 and 10 show that the approximate solutions obtained by the
NSFD method and ode45 method are very closed to each other. However, the
solution Y obtained by the ode45 solver becomes negative for some values of t.
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Figure 4. The convergence of the discrete system (4.6) to the
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This does not figure clearly in the curves because the smallest negative value of Y
is −4.02e− 07.

The Table 2 presents the percentage of negative values in the matrix Y simu-
lating the human-mosquito model (2.2) with the ode45 solver using the parameters
for the disease-free point in the Table 1. The results given in Table 2 show that the
NSFD preserves the positivity for all step sizes in [0, T ], which is a desirable mod-
eling property. On the other side, the ode45 method yields solutions that becomes
negative for some value of t.
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Table 2. Percentage of negative paths for the standard ode45

solver .

NT = 100 NT = 200 NT = 400 NT = 800 NT = 1000 NT = 1200 NT = 2000

ode45 17.57% 17.57% 17.5% 17.59% 17.59% 17.54% 17.6%

min(Y ) -3.67e-07 -1.13e-07 -4.02e-07 -4.02e-07 -4.02e-07 -4.02e-07 -4.02e-07
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5.2. The human-mosquito-monkey model. Now we simulate the system
for the data given in Tables 2 and 2. The initial conditions are always set to

Sm(0) = 6.4e4, Em(0) = 0, Im(0) = 1.6e4, Rm(0) = 0.

Figures 11–14 show that the numerical solution approximates very well the solu-
tion of the continuous system by preserving positivity and converging towards the
equilibrium points DFE or EE. Table 4 gives the percentage of negative values for
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Figure 9. The NSFD and ode45 method numerical simulations
of human sub-populations Sh(t), Eh(t), Ih(t) and Rh(t) for model
(2.2) with NT = 200 and t ∈ [0, 1825].

the NSFD method and the ode45 solver. It can easily be seen that NSFD preserves
the positivity of the continuous system where the ode45 solver failed in some cases.

Table 3. Fixed and operational parameters for disease-free and
disease-endemic equilibria (Monkey population).

DFE EE

Λm 1e3 1e3

µm 3.87e− 4 3.87e− 4

βmv 0.0805 0.773

βvm 0.0741 0.7823

νm 0.035 0.035

ηm 0.2 0.2

5.3. The time-fractional model. In this section, we provide some numerical
simulations of the discrete model (4.17) with different values of fractional order α.
To proceed with the simulation, we use the parameter values in Table 1 and the
initial conditions in (5.1). The numerical simulation results for the NSFD fractional
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Figure 10. The NSFD and ode45 method numerical simulations
of vector sub-populations Sv(t), Ev(t) and Iv(t) for model (2.2)
with NT = 200 and t ∈ [0, 1825].

Table 4. Percentage of negative paths for the standard ode45

solver.

NT = 100 NT = 200 NT = 400 NT = 800 NT = 1000 NT = 1200 NT = 2000

ode45 14.73% 14% 14.1% 14.16% 14.14% 14.24% 14.17%

min(Y ) -1.18-06 -9.05-07 -1.14e-06 -1.14e-06 -1.18e-06 -1.2e-06 -1.2e-06

order obtained for different values of α are displayed in Figures 15–20. These figures
show two different scenarios:

Case 1 DFE. : The dynamical behavior of system for different values of α
is shown in Figures 15–17 for Rα

0 < 1 which implies that it converges to
the DFE. It is noticeable that due to the memory property of the Caputo
fractional derivatives, the evolution of the system becomes slower each
time the α decreases. Therefore, the system decays to the equilibrium
like t−α, as previously established in [31].

Case 2 EE.: For Rα
0 > 1, Figures 18–20 show the impact of changing the

Caputo fractional order α on Zika dynamics. The observed behavior from
these figures demonstrates that the EE is shifted towards EE,EEα1

, EEα2

and EEα3 when α is decreasing.

The numerical results above show the memory effect for the fractional dynamical
system which does not occur in the ODE system as already proved by [3, 4].
And show also that the new approach is very effective, preserves the positivity of
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the system, applies simpler and can be used as an alternate method for solving
fractional differential problems.
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6. Conclusion and Outlook

In this work we have presented a novel nonstandard finite difference (NSFD)
method for calculating numerical solutions to a SEIR model for the spread of the
Zika virus. In the absence of the exact solution and in order to prove the efficiency of
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the method, the approximate solution is compared with the ode45 solver solution.
The numerical simulations show that the discrete system converges to the same
equilibrium points as that of the continuous system. They also prove that the
positivity is preserved in case of the NSFD scheme and may be violated using a
standard ODE solver.

It is worth recalling that we have used Caputo-type fractional derivatives to
describe the temporal dynamics of epidemiological models. The most important
reason for using a system of ODEs/PDEs of time-fractional order equations is to
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account for memory effects. These types of effects exist e.g. in many realistic
systems like in endemic models to describe the waning effects of the vaccination or
a biphasic decline behavior of infections or diseases.
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Appendix

A.1. The human-mosquito model. The system (2.8) has a unique endemic
equilibrium point that exists whenever Rα

0 > 1 and it is given by

S∗
h =

Λα
hN

∗
α,v

BαβvhI∗v + µα
hN

∗
α,v

,

E∗
h =

BαβvhΛ
α
hI

∗
v

(ναh + µα
h)(B

αβvhI∗v + µα
hN

∗
α,v)

,

R∗
h =

ηαh
µα
h

I∗h,

S∗
v =

Λα
vN

∗
α,h

BαβhvI∗h + µα
vN

∗
α,h

,

E∗
v =

BαβhvΛ
α
v I

∗
h

(µα
v + ναv )(B

αβhvI∗h + µα
vN

∗
h,α)

,

I∗v =
ναv E

∗
v

µα
v

,

I∗h =
Λα
hµ

α
v (µ

α
v + ναv )

(
(Rα

0 )
2 − 1

)
Bαβhv

(
µα
h(µ

α
v + ναv ) + ναv B

αβvh
) .

A.2. The human-mosquito-monkey model. The system (2.6) has two
equilibrium points, the disease-free equilibriumDFE = (Λh

µh
, 0, 0, 0, Λv

µv
, 0, 0, Λm

µm
, 0, 0, 0)⊤

and the endemic equilibrium EE = (S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , S

∗∗
v , E∗∗

v , I∗∗v , S∗∗
m , E∗∗

m , I∗∗m ,
R∗∗

m )⊤, where

S∗∗
h =

ΛhN
∗
v

BβvhI∗∗v + µhN∗
v

,

E∗∗
h =

BβvhΛhI
∗∗
v

(νh + µh)(BβvhI∗∗v + µhN∗
v )
,

I∗∗h =
νhBβvhΛhI

∗∗
v

(ηh + µh)(νh + µh)(BβvhI∗∗v + µhN∗
v )
,

R∗∗
h =

ηhI
∗∗
h

µh
,

S∗∗
v = N∗

v − (µv + νv)I
∗∗
v

νv
,

E∗∗
v =

µv

νv
I∗∗v ,

S∗∗
m = N∗

m − (νm + µm)E∗∗
m

µm
,

E∗∗
m =

BβvmI
∗∗
v µmN

∗
m

(νm + µm)(µmN∗
v +BβvmI∗∗v )

,

I∗∗m =
νmE

∗∗
m

(ηm + µm)
,

R∗∗
m =

ηm
µm

I∗∗m ,

I∗∗v is implicitly given as the zero of the following rational fraction expression
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P (I∗∗v ) =
µhνhBβhvBβvh

(
νvN

∗
v − (µv + νv)I

∗∗
v

)
(ηh + µh)(νh + µh)(BβvhI∗∗v + µhN∗

v )

+
µmνmBβmvBβvm

(
νvN

∗
v − (µv + νv)I

∗∗
v

)
(ηm + µm)(νm + µm)(µmN∗

v +BβvmI∗∗v )
− µv(µv + νv),

which is determined numerically. The basic reproduction number of (2.6) is

R0 =
√
Rhv

0 +Rmv
0 ,

where

Rhv
0 =

νvνhB
2βvhβhv

µv(µv + νv)(µh + ηh)(µh + νh)
,

and

Rmv
0 =

νvνmB
2βmvβvm

µv(µv + νv)(µm + νm)(µm + ηm)
.

A.3. The time-fractional model. The proof of the theorem requires the
following lemma :

Lemma A.1. If X0, X1, . . . , Xn ≥ 0 then

h1−αXn −
n−1∑
j=0

∆j
α,n

(
Xj+1 −Xj

)
≥ 0.

Proof. For n ∈ N∗, we have

h1−αXn−
n−1∑
j=0

∆j
α,n

(
Xj+1−Xj

)
=

(
h1−α−∆n−1

α,n

)
Xn+∆0

α,nX
0+

n−1∑
j=1

(
∆j

α,n−∆j−1
α,n

)
Xj .

and
h1−α −∆n−1

α,n =
(
2− 21−α

)
h1−α ≥ 0.

Thus

h1−αXn −
n−1∑
j=0

∆j
α,n

(
Xj+1 −Xj

)
≥ 0

□

Theorem A.2 (Positivity of solution). Let the initial data S0
h, E

0
h, I

0
h, R

0
h, S

0
v , E

0
v ,

and I0v ≥ 0, then all the components Sn+1
h , En+1

h , In+1
h , Rn+1

h , Sn+1
v , En+1

v , and
In+1
v ≥ 0 in the system (4.17) are satisfied for all n ∈ N.

Proof. We have for n = 0

S1
h =

h1−αS0
h + Γ(2− α)ϕα,h(h)Λ

α
h(

h1−α + Γ(2− α)ϕα,h(h)
(
Bαβvh

I0
v

N0
α,v

+ µα
h

)) ≥ 0,

E1
h =

h1−αE0
h + Γ(2− α)ϕα,h(h)B

αβvh
I0
v

N0
α,v
S1
h(

h1−α + Γ(2− α)ϕα,h(h)(ναh + µα
h)
) ≥ 0,

I1h =
h1−αI0h + Γ(2− α)ϕα,h(h)ν

α
hE

1
h(

h1−α + Γ(2− α)ϕα,h(h)(ηαh + µα
h)
) ≥ 0,

R1
h =

h1−αRh0 + ϕα,h(h)Γ(2− α)ηαh I
1
h(

h1−α + ϕα,h(h)Γ(2− α)µα
h

) ≥ 0,
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S1
v =

h1−αS0
v + ϕα,v(h)Γ(2− α)Λα

v(
h1−α + ϕα,v(h)Γ(2− α)(Bαβhv

I0
h

N0
α,h

+ µα
v )
) ≥ 0,

E1
v =

h1−αE0
v + ϕα,v(h)Γ(2− α)Bαβhv

I0
h

N0
α,h
S1
v(

h1−α + ϕα,v(h)Γ(2− α)(ναv + µα
v )
) ≥ 0,

I1v =
h1−αI0v + ϕα,v(h)Γ(2− α)ναv E

1
v(

h1−α + ϕα,v(h)Γ(2− α)µα
v

) ≥ 0.

We suppose that for 1, 2, . . . , n, Sn
h , E

n
h , I

n
h , R

n
h , S

n
v , E

n
v and Inv ≥ 0. The hypothesis

of induction and Lemma A.1 allow for the statement for n+ 1, i.e.

Sn+1
h , En+1

h , In+1
h , Rn+1

h , Sn+1
v , En+1

v , and In+1
v ≥ 0.

□
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