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Characteristic Boundary Condition for Thermal Lattice Boltzmann Methods
Friedemann Klass,Alessandro Gabbana,Andreas Bartel

• Definition of a characteristic boundary condition (CBC) for the Navier-Stokes-Fourier equations.
• Implementation of CBC for multi-speed lattice Boltzmann methods.
• Improved accuracy and stability by coupling the evaluation of the Laplacian of temperature and velocity with the high

order moments of the particle distribution function
• Numerical evaluation of CBC and comparison with other artificial boundary conditions.
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ABSTRACT
We introduce a non-reflecting boundary condition for the simulation of thermal flows with the lattice
Boltzmann Method (LBM). We base the derivation on the locally one-dimensional inviscid analysis,
and define target macroscopic values at the boundary aiming at minimizing the effect of reflections
of outgoing waves on the bulk dynamics. The resulting macroscopic target values are then enforced
in the LBM using a mesoscopic Dirichlet boundary condition. We present a procedure which allows
to implement the boundary treatment for both single-speed and high order multi-speed LBM models,
by conducting a layerwise characteristic analysis. We demonstrate the effectiveness of our approach
by providing qualitatively and quantitative comparison of several strategies for the implementation
of a open boundary condition in standard numerical benchmarks. We show that our approach allows
to achieve increasingly high accuracy by relaxing transversal and viscous terms towards prescribed
target values.

1. Introduction
In many numerical simulations the physical domain of a
given problem is infeasibly large and only information about
a small region of interest, encapsulated in the physical do-
main, is required. In these situations, the computational do-
main can be obtained by truncating the original domain. This
gives rise to artificial boundaries that need to be treated using
a boundary condition (BC). Since these artificial boundaries
should not interact with the bulk dynamics, it is beneficial to
employ non-reflecting boundary conditions (NRBC), which
let waves crossing the boundary out of the computational
domain without causing reflection effects.
The so-called characteristic boundary condition (CBC) is
among themost popular choices for NRBC. Its working prin-
ciple consists of identifying incoming and outgoing waves
at the boundary, to then modulate amplitude variations of
incoming waves. The CBC was originally developed for
nonlinear hyperbolic systems [1, 2] and later extended to
the Navier-Stokes equations [3], where it is widely used
in the area of computational aero-acoustics [4, 5]. Further-
more, CBCs have been successfully applied to magneto-
hydrodynamics [6, 7], reacting [8] and turbulent flow in two
[9] and three [10] spatial dimensions.
In this work, we present the derivation of a CBC for thermal
compressible flows, modeled by the Navier-Stokes-Fourier
equations. We employ the lattice Boltzmann method (LBM)
for the time evolution of the fluid bulk dynamic. The LBM
is an established algorithm for the simulation of fluid flows
that can be derived as a systematic approximation of the
Boltzmann equation [11, 12]. It has gained a lot of popularity
due to its simple algorithmic structure, whichmakes it highly

∗Corresponding author
klass@math.uni-wuppertal.de (F. Klass)

ORCID(s): 0000-0002-8566-0918 (F. Klass); 0000-0002-8367-6596 (A.
Gabbana); 0000-0003-1979-179X (A. Bartel)

amenable to large scale parallelization [13, 14, 15], the
ability to handle complex geometries [16] as well as multi-
phase [17] and multi-component [18] flows. Stemming from
the kinetic layer, the LBM provides the description of a
fluid flow in terms of a discrete set of particle distribu-
tion functions (populations) sitting at the sites of a discrete
lattice, with the macroscopic behavior emerging from the
velocity moments of the distribution. Continuous efforts are
being made to extend the range of applicability of LBM
and tackle problems such as thermal compressible flows.
There are three main approaches to thermal LBM present in
literature: i) hybrid coupling with a macroscopic solver (e.g.
finite differences, or finite volume) for evolving the energy
equation [19], ii) the double distribution approach, where a
second set of populations is used to evolve the temperature
field [20] and iii) models based on high order quadrature
rules [11, 21]. The latter approach provides an elegant and
self-consistent kinetic description of thermal compressible
flow [22, 23] via the high order moments of the particle
distribution function. However, higher order models give
rise to multi-speed velocity stencils, i.e., discrete velocity
stencils with a maximum displacement greater than one,
which generally complicate the definition of boundary con-
ditions.
Few implementations of characteristic boundary conditions
for isothermal (single-speed) LBM have been reported in
the literature [24, 25, 26, 27], finding application in the
simulation of fluid flows in high Reynolds number regimes
[28, 29, 30]. To the best of our knowledge, there are currently
only two works in the literature where the application of
characteristic BCs for multi-speed LBM is discussed: the
CBC for the Navier-Stokes equations presented in [24] has
been used in conjunction with multi-speed velocity stencils
in a previous article [31] by the authors of the work at
hand, and recently multi-speed CBC was used in the context
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of thermo-acoustic problems governed by the Euler equa-
tions [32].
In the work at hand, we develop a CBC suitable for thermal
compressible flows governed by the Navier-Stokes-Fourier
equations. We will focus our analysis on its coupling with
multi-speed LBM, however we shall remark that the proce-
dure here described is general an can be employed also in
combination to the other approaches for thermal LBM listed
above.
This article is organized as follows: Sec. 2 provides a brief
description of the LBM scheme used in this work. In Sec. 3,
we present the derivation of a CBC for the Navier-Stokes-
Fourier equations as well as a simplified version where
transversal and viscous terms are discarded. We then pro-
vide details on how to couple the macroscopic BC with
the mesoscopic layer. Subsequently, in Sec. 4, we bench-
mark the numerical accuracy of the BC in several test-beds,
comparing different realization of the CBC with a simple
zero-gradient extrapolation. Finally, concluding remarks and
future directions are summarized in Sec. 5.

2. Thermal Lattice Boltzmann Method
In this section, we provide a succinct overview of the LBM
which we use in this work to solve the Navier-Stokes-Fourier
equations. The reader not familiar with LBM is referred to
Ref. [33, 34] for a more comprehensive introduction. We
remark that while we focus on d = 2 spatial dimensions
during this work, to ease the presentation and provide a
broad and comprehensive picture of the behavior of CBCs,
the generalization to three spatial dimensions is conceptually
straightforward (see Appendix A).
The LBM operates at the mesoscopic level and provides the
time evolution of a fluid flow via the synthetic dynamics of
a set of discrete velocity distribution functions, governed by
the discrete lattice Boltzmann equation: (for i = 1, … , q)

fi(x + ciΔt, t + Δt) = fi(x, t) + Ωi(x, t). (1)
In the above, fi(x, t) are the discrete single particle dis-
tribution functions (to which we will refer to as lattice
populations), defined at each node x of a Cartesian grid,
and corresponding to each of the q components of a velocity
stencil {ci = (ci,x, ci,y) ∶ i = 1, … , q}, while Ωi is thecollision operator.
Hydrodynamic quantities of interest, such as density �, ve-
locity u = (ux, uy)⊤ and temperature T can be calculated
from the velocity moments of the distribution:

� =
q
∑

i=1
fi, �u =

q
∑

i=1
fici, 2�T =

q
∑

i=1
fi|ci − u|2. (2)

In Eq. (2), equality holds if the lattice velocities are chosen
according to the abscissa of a sufficiently high-order Gauss-
Hermite quadrature [35] i.e., {(!i, ci) ∶ i = 1, … , q},
where !i are the quadrature weights. It is customary to
distinguish between different LBMs using theDdQq nomen-
clature, in which d refers to the number of spatial dimensions
and q to the number of discrete components.

The commonly adoptedD2Q9model correctly recovers den-
sity and velocity, its underlying quadrature is not sufficiently
accurate to capture also the temperature. For this reason, in
this work, we employ the D2Q17 and the D2Q37 velocity
stencils (see Fig. 1); while both models can correctly recover
the third order velocity moments of the particle distribution
function, it can be shown [11] that the D2Q17 stencils fails
to capture the non-equilibrium component of the heat-flux
q,

q = 1
2

q
∑

i=1
fi|ci − u|2

(

ci − u
)

, (3)

a flaw cured by the D2Q37 stencil.
The collision operator Ωi is often modeled with the single
relaxation time Bhatnagar-Gross-Krook (BGK) approxima-
tion [36],

Ωi = −
1
�
(

fi(x, t) − f
eq
i (x, t)

)

, (4)
consisting of a relaxation with relaxation time � towards a
local equilibrium f eq

i , which is defined as expansion in Her-
mite polynomials of theMaxwell-Boltzmann distribution. In
this work, we consider a third order expansion for the D2Q17
stencil,

f eq,3
i (�,u, T ) = !i�

(

1 + u ⋅ ci

+ 1
2c2s

[

(u ⋅ ci)2 − u2 + (T − 1)(c2i − 2)
]

+
u ⋅ ci
6c4s

[

(u ⋅ ci)2 − 3u2 + 3(T − 1)(c2i − 4)
]

)

, (5)

and a fourth order expansion for the D2Q37 stencil

f eq,4i (�,u, T ) = f eq,3
i (�,u, T ) + !i�

(

1
24c6s

[

(u ⋅ ci)4 − 6(u ⋅ ci)2u2 + 3u4

+ 6(T − 1)
(

(u ⋅ ci)2(c2i − 4) + |u|2(4 − c2i )
)

+ 3(T − 1)2(c4i − 8c
2
i + 8)

])

, (6)

respectively, where u2 = u ⋅ u, c2i = ci ⋅ ci and the speed
of sound cs is a lattice specific constant. The values of the
lattice weights !i and speed of sound for both stencils are
given in Appendix B.
By applying amultiscale Chapman-Enskog expansion, see [37],
it can be shown [23] that Eq. (1) delivers a second order
approximation of the macroscopic Navier-Stokes-Fourier
equations. In the absence of external forces, they can be
stated as
Dt� = −�)iui

�Dtui = −)iP + �)jjui +
(

1 − 1
cv

)

�)i)juj (7)
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Figure 1: Schematic representation of the velocity directions for the D2Q17 (left) and D2Q37 (right) velocity stencils.

�cvDtT = −P)iui + �)iiT + �′i,j)iuj ,

where Dt = )t + ui)i is the material derivative, � is the
dynamic viscosity, � is the thermal conductivity, �ij denotesthe Kronecker delta and the Einstein summation convention
is used. In two spatial dimensions, the specific heat capaci-
ties at constant volume and pressure read cv = d

2 = 1 and
cp =

d
2 + 1 = 2. The viscous stress tensor is given as

�′i,j = �
(

)iuj + )jui −
1
cv
�i,j)kuk

)

and the pressure P is linked to density and temperature by
an ideal equation of state P = �T . The kinematic viscosity
� and thermal diffusivity � of the fluid are related to the
relaxation time parameter � as

� =
�
�
=
(

� − 1
2

)

c2s , � =
�
�cp

=
(

� − 1
2

)

c2s .

Using the single relaxation time BGK collision operator (4),
the Prandtl number is restricted to Pr = �

� = 1.We conclude this section by sketching the LBM algorithm in
Fig. 2. The starting point consists in initializing the discrete
distribution fi, for example by prescribing initial values
for the macroscopic fields via the equilibrium distribution
function (Eq. (5) or (6) in our case). The LBM iteration
consists of alternating the evaluation of the collision step
with the propagation of the lattice populations along the
discrete grid (streaming step) as defined by velocity stencil.
Next, missing post-streaming populations at the boundary
nodes are prescribed with a suitable BC, before updating the
macroscopic values to then start the next iteration.

3. Characteristic boundary conditions for
thermal flows

The general idea of a characteristic BC is to inspect an un-
derlying hyperbolic model from a set of macroscopic equa-
tions in order to distinguish between incoming and outgoing
wave components [2]. This basic hyperbolic description is
obtained by disregarding viscous and tangential boundary

terms, giving rise to the locally one dimensional inviscid
(LODI) approximation [3]. Next, outgoing wave compo-
nents resulting from the bulk dynamics are left unchanged,
while incoming waves are manipulated to achieve a desired
behavior.
In this section, we start by detailing in Sec. 3.1 the steps
required to define a CBC for the Navier-Stokes-Fourier
equations, also discussing in Sec. 3.2 a few possible choices
for the manipulation of the incoming waves. In Sec. 3.3, we
then provide details for the adaptation of the CBC to LBM.
3.1. Background on wave amplitudes, LODI and

CBC
We assume a bounded rectangular computational domain in
d = 2 dimensions. For the sake of brevity, we only discuss
the right-hand side boundary (i.e., x = xb and y is inside
an interval, cf. Fig. 3) and a procedure for the corners of
the computational domain. However, the treatment of other
straight boundaries is straightforward.
Starting from Eqns. (7), we can cast the time evolution of the
macroscopic quantities U ∶=

(

�, ux, uy, T
)⊤ as the sum of

three distinct contributions
)U
)t

= −A)U
)x

+ T + V , (8)

respectively:
i) the termA )

)xU, which accounts for derivatives normal
to the boundary,

ii) T , which includes spatial derivatives in transversal
directions,

iii) V , which includes viscous contributions.
The explicit form for these terms reads

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ux � 0 0
T̃
� ux 0 c2s
0 0 ux 0

0 T̃
c2s

0 ux

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− )(�uy)
)y

−uy
)ux
)y

− 1�
)(�T̃ )
)y − uy

)uy
)y

− 1
c2s

)(T̃ uy)
)y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Initialize:
populations fi

Collide: Evaluate
right hand

side of Eq. (1)
Stream: Assign

result to left hand
side of Eq. (1)

Apply BC:
Set missing

post-streaming
populations

Update
macroscopic fields

using Eq. (2)

Figure 2: Flowchart describing the basic LBM algorithm.

x,4

x,3

x,2

x,1

computational domain

x

y

Figure 3: Two dimensional rectangular computational domain,
with an outlet at a right hand side x-boundary (i.e., ux > 0),
and an example for the orientation of the characteristic waves
amplitude variation x,i.

and

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
�Δux
�Δuy

�cp
Pr c2s

ΔT̃ + �
c2s

(

(

)ux
)x −

)uy
)y

)2
+
(

)ux
)y +

)uy
)x

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

In the above expressions, a rescaled temperature T̃ → T c2s isintroduced to ensure that the reference temperature is T0 = 1in lattice units.
A diagonalization of the matrix A results in A = S−1ΛS
with Λ = diag

(

ux, ux, ux −
√

2T̃ , ux +
√

2T̃
)

. The matri-
ces S and S−1 are given by

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− T̃
2�c2s

0 0 1
2

0 0 1 0

T̃
4�c2s

−
√

T̃
8c4s

0 1
4

T̃
4�cs

√

T̃
8c4s

0 1
4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

S−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− �c2s
T̃ 0

�c2S
T̃

�c2s
T̃

0 0 −
√

2c4s
T̃

√

2c4s
T̃

0 1 0 0
1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The explicit terms for the three-dimensional case are pro-
vided in Appendix A.

With this, the vector of wave amplitude variations for waves
crossing the right hand side boundary is defined as

x =
(

x,1, x,2, x,3, x,4
)⊤ = ΛS )U

)x
.

The explicit form of this equation is

⎛

⎜

⎜

⎜

⎜

⎝

x,1
x,2
x,3
x,4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ux
(

T̃
2�c2s

)�
)x −

1
2c2s

)T̃
)x

)

ux
)uy
)x

(

ux −
√

2T̃
)

(

T̃
4�c2s

)�
)x −

√

T̃
8c4s

)ux
)x +

1
4c2s

)T̃
)x

)

(

ux +
√

2T̃
)

(

T̃
4�c2s

)�
)x +

√

T̃
8c4s

)ux
)x +

1
4c2s

)T̃
)x

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(9)
The orientation of x,i is given by the sign of the corre-
sponding eigenvalue Λii, that is, waves propagating along
(opposite) the x−direction correspond to positive (negative)
eigenvalues (see again Fig. 3 for an example). Now, the out-
ward pointing waves are determined by the bulk dynamics
and can thus be computed from Eq. (9) whereas the inward
pointing waves encode information injected into the system
from outside of the computational domain and need to be
specified. Hence, we need to replace x with a vector ̄x tomodulate inward pointing wave amplitudes (a few possible
choices are discussed in Sec. 3.2).
Observe that by discarding transversal and viscous terms at
the boundary Eq. (8) reduces to

)U
)t

= −S−1̄x, (10)

which coincides with the LODI approximation.
The CBC approach [8, 27], instead, aims at including the ef-
fect of transversal and viscous contributions at the boundary
to the time evolution of U by solving

)U
)t

= −S−1̄x + T + V . (11)

3.2. Choices for incoming wave amplitudes
In this section, we revise possible strategies for the treatment
of incoming wave amplitudes for a CBC.
A) Annihilation. A common approach consists choosing
incoming wave amplitudes such that their contribution to

F. Klass, A. Gabbana, A. Bartel: Preprint submitted to Elsevier Page 4 of 16
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the time evolution of U vanishes [1, 2]. In other words, this
means no information enters the bulk and the influence of
external dynamics on the domain of interest is completely
suppressed.
In the LODI approximation (Eq. (10)), this translates to
setting incoming wave amplitude variations to zero, i.e., we
substitute x with a vector ̄x, whose i−th component is
defined as

̄x,i =

{

x,i for an outgoing wave i,
0 for an incoming wave i. (12)

By contrast, in the CBC approach, setting incoming wave
amplitudes to zero will not guarantee that no information
will travel from the boundary to the bulk domain for cases
where transversal and viscous contributions are relevant to
the dynamic. This can be seen by casting Eq. (11) in the
following form:

)U
)t

= −S−1̄x + T + V = −S−1
(

̄x − x − x
)

,

where x = ST , x = SV .As a remedy, the contributions x and x can be absorbed
in the unknown wave amplitude variation ̄x,i as proposedin Ref. [27]:

̄x,i = x,i + x,i. (13)
This strategy of completely annihilating incoming waves
theoretically leads to a perfectly non-reflecting BC. In prac-
tice, however, due to discretization errors and the fact that
wave amplitudes get computed from an approximate system,
reflection waves are generally still present.
B) Relaxation toward target quantities. As observed in
the previous paragraph, posing a perfectly non-reflecting BC
gives no control over themacroscopic values at the boundary
since their time evolution strongly depends on the outgoing
waves. On the other hand, imposing desired target values
by means of a Dirichlet BC generally leads to significant
reflection waves. As a trade-off between these two cases, a
relaxation towards a target macroscopic value can be incor-
porated in the incoming wave amplitude variations [3, 38].
A general expression for the unknown wave amplitudes in
conjunction with the CBC approach was proposed in Ref. [8]
and reads as:

̄x,i = x,i + x,i + �( exx,i − x,i) + �(Z −Z∞), (14)
where a chosen macroscopic quantity Z (e.g. the pressure),
and transversal waves  exx,i , are relaxed towards target values
Z∞ and  exx,i at rates � and �, respectively. This strategy has
been reported to increase numerical stability and accuracy
[8]. However, the relaxation coefficients pose additional
degrees of freedom that have to be determined.
Let us remark that the same strategy can be applied to the
LODI approach (10), i.e.,

̄x,i = �( exx,i − x,i) + �(Z −Z∞). (15)

3.3. Realization of characteristic BC in the LBM
In the previous sections, we described how to obtain target
values at the macroscopic level. We now describe how to
pose these target values in a multi-speed LBM to implement
a characteristic BC.
The general procedure [24, 26, 27] is summarized in Fig. 4.
The starting points are themacroscopic flow fields computed
by the LBM algorithm (see Sec. 2) at a generic time t. The
task of the boundary condition is to define the lattice popu-
lations left undefined at the boundary of the computational
domain. To this aim, we perform a spatial discretization,
replacing the spatial derivatives with finite differences and
enabling the computation of the discrete analog of the vector
of manipulated wave amplitudes ̄x given by Eq. (9). Next,
we plug this vector into the corresponding macroscopic
evolution and perform a time integration, delivering the
macroscopic target values for the next time step t + Δt.
Finally, the computed target values are supplied to the LBM
by means of a mesoscopic Dirichlet BC, thus specifying the
missing populations at time t + Δt.
In the remaining part of this section, we provide details
on the implementation of CBC for multi-speed stencils,
corner treatment and possible choices for space and time
discretization.
Multi-speed LBM. For multi-speed LBM, M layers of
boundary nodes exhibit missing populations, whereM is the
maximum displacement of the underlying velocity stencil.
In this work, we consider the D2Q17 and D2Q37 velocity
stencils (Fig. 1), both having maximum displacementM =
3. Let us label the boundary nodes at the right hand side
boundary, for a fixed y, as xb,j = (xb,j , y), j = 1,… ,M ,
where xb,1 is adjacent to the rightmost fluid node xf =
(xf , y) and xb,M is the outermost boundary node (see Fig. 5).
The characteristic analysis is conducted for each layer of
boundary nodes. As explained in Sec. 3.1, waves crossing the
j−th layer of boundary nodes are identified by the sign of the
corresponding eigenvalue and the incoming wave amplitude
variations are posed on xb,j . Note that the resulting target
values may differ for the various layers forming the bound-
ary. Finally, the macroscopic equation describing the time
evolution ofU on the boundary is solved numerically. Details
on the numerical solution are reported in the paragraphs
below.
Spatial discretization and corner treatment. The spatial
derivatives of macroscopic quantities U on a boundary node
xb,j at a fixed time t are approximated with second order
finite differences. Dropping the fixed time t for the sake of a
compact notation, we denote a spatial discretization step in
x−direction by ex = (Δx, 0)⊤. For xb,M (outer most layer),
we use one-sided differences for the spatial derivatives:
)Ui(xb,M )

)x
≈ 1

2

(

3Ui(xb,M )−4Ui(xb,M−1) + Ui(xb,M−2)
)

.

(16)

F. Klass, A. Gabbana, A. Bartel: Preprint submitted to Elsevier Page 5 of 16
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LBM iteration
Macroscopic

fields U at new
time step t

Spatial
discretization
and corner
treatment

compute
̄x from (9)
together

with one of
(12) - (15)

Obtain U at
time t + Δt
by time

integration
of Eq. (10)
or (11)

Pose U in LBM
via mesoscopic
Dirichlet BC

Figure 4: Flowchart of the conceptual steps required to pose a CBC in the LBM.

v

xf xb,1 xb,2 xb,3

Figure 5: Schematic boundary geometry for multi-speed ve-
locity stencils with a displacement of M = 3. Filled (hollow)
symbols denote boundary (bulk) nodes. To pose a character-
istic BC, finite differences are applied to approximate spatial
derivatives in the boundary nodes. The square node is used
to calculate the target macroscopic quantities for all corner
nodes in the dashed rectangle. In this case, spatial derivatives
are evaluated along the inward diagonal v indicated by the
arrow.

For inner boundary nodes xb,j , j = 1, 2,… ,M − 1, we use
central finite differences for the derivatives:
)Ui(xb,j)
)x

≈ 1
2

(

Ui(xb,j + ex) − Ui(xb,j − ex)
)

. (17)
Spatial derivatives in y−direction are evaluated analogously.
Corners between two open boundaries are treated using
the LODI approach. That is, target macroscopic values are
obtained from plugging Eq. (12) in the LODI approach (10).
Spatial derivatives are computed in the direction of the
inward facing diagonal, e.g. for the top right corner it is along
the direction v = (−1,−1)⊤, see Fig. 5. This is only done for
the innermost corner node (square node in Fig. 5) and the
obtained target values are posed on all nodes forming the
corner (dashed box in Fig. 5).
Evaluation of viscous terms. Using the CBC approach
described in this work (see Tab. 1), we aim to reconstruct
the Navier-Stokes-Fourier equations on the boundary. This
should be contrasted with the recent implementation of
characteristic BCs for multi-speed LBMgiven in [32], where
the focus was on acoustic problems and thus the viscous
terms where discarded.

Name Macroscopic Eq. Incoming amplitude
LODI (10) (12)

LODI-RELAX (10) (15)
CBC (11) (13)

CBC-RELAX (11) (14)
Table 1
Summary of the characteristic based BC considered in this
work.

To ensure consistency in the coupling of mesoscopic and
macroscopic scales at the boundary, we make use of the
link between the scales provided by the Chapman-Enskog
expansion. This multiscale expansion offers expressions for
the viscous terms on the macroscopic scale in terms of the
mesoscopic distribution.
That is, the Laplacian of velocity appearing in Eq. (7) is
approximated as [33]

�)jjuk ≈ ∇j ⋅

(

−
(

1 − 1
2�

)

q
∑

i=1
ci,jci,kf

neq
i

)

, (18)

where the derivatives of the non-equilibrium part f neqi =
f eqi − fi are evaluated in xf – i.e. in the fluid node adjacent
to the boundary (see Fig. 5) – using the finite differences (16)
and (17) (along y). Furthermore, making use of Eq. (3), the
Laplacian of the temperature is restated as

−�)jjT = div(q) = ∇ ⋅
1
2

q
∑

i=1
fi|ci−u|2

(

ci − u
)

. (19)

For a sufficiently high order quadrature, which allows re-
covery of the third order moment of the distribution, it is
then possible to compute the above quantity and to then
approximate the first order spatial derivatives of q using
finite differences (e.g. (16) or (17)).
To conclude, in Table 1 we summarize the different CBC
schemes which will be evaluated in numerical simulations
in the upcoming sections.
Time integration. The implementation of a characteristic
BC requires time integration of either Eq. (10) or Eq. (11).
As pointed out in Ref. [32], a simple explicit Euler scheme is
not a viable option in this case since the coupling with LBM
leads to the violation of the CFL condition for the FD solver.
Therefore, we make use of a fourth order Runge-Kutta

F. Klass, A. Gabbana, A. Bartel: Preprint submitted to Elsevier Page 6 of 16
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scheme (RK4) [39], which requires derivative information
at time t + Δt

2 approximated using the second order finite
differences shown above. Macroscopic quantities located on
fluid nodes at this intermediate stage are obtained by linear
interpolation in time.
For the time integration of the CBC scheme, we keep the
viscous terms (18) and (19) at time t, as on a boundary node,
no populations at future time steps are known.
Mesoscopic BC. After the target values U for time t + Δt
have been obtained, they are enforced in the LBM by means
of a Dirichlet BC. In this work, two simple ways to do this
are considered: i) the equilibrium BC, where all populations
on xb,j are set according to the discrete expansion of the
equilibrium distribution chosen, e.g. according to Eq. (5) or
Eq. (6) and ii) the constant non-equilibrium extrapolation
BC (NEEP), where the non-equilibrium part of the fluid
node xf adjacent to the boundary is added to the equilibrium
computed on the boundary nodes. That is, populations on the
boundary node xb,j are computed as (see Fig. 5 for notation
xf and xb,j)
f (xb,j ,t + Δt)

= f eq(xb,j , t + Δt)) + f neq(xf , t + Δt)), (20)
where j = 1,… ,M and

f neq(xf , t + Δt)) = f (xf , t + Δt) − f eq(xf , t + Δt).

4. Numerical Results
In this section, we benchmark accuracy and stability of the
characteristic boundary condition described in the previous
section. We consider three different numerical experiments.
In Sec. 4.1, we take into consideration the one-dimensional
dynamics of shock waves originated by a smoothed tem-
perature step. In Sec. 4.2, we consider the propagation of
a vortex out of the computational domain. In this bench-
mark, transversal information becomes relevant also at the
boundary and thus, there is a significant deviation from the
locally one-dimensional assumption used to calculate the
outgoing wave amplitude variations in the LODI approxi-
mation. Finally, in Sec. 4.3, we inspect the interaction of
an planar oblique wave with the boundary at various angles
and measure the reflection. In this setup, the importance
of transversal terms can be controlled by the initial angle
between the wave front and the y−axis.
For all the cases above, we compare the performance of
different LODI and CBC realizations against the results pro-
vided by a simple zero gradient BC (ZG), where populations
at the boundary nodes xb,j , j = 1,… ,M are set with the
values from the nearest the fluid node xf :

fi(xb,j , t + Δt) = fi(xf , t + Δt), i = 1, … , q. (21)
The accuracy of the BCs is quantified as follows: For the first
two benchmark problems, reference fields Zref are obtained
from a fully periodic LBM simulation on an extended grid

for Z ∈ {�, ux, T }. The extended grid has been chosen
sufficiently large, such that no interaction takes place be-
tween the boundaries and the bulk dynamics in the region of
interest. We then compute i) global relativeL2-errors eZ and
ii) pointwise relative errors ẽZ with respect to the reference
fields. They are defined as

eZ =
⎛

⎜

⎜

⎝

∑

(x,y)∈Lx×Ly

(

|Z(x, y) −Z ref(x, y)|
|Z ref(x, y)|

)2⎞
⎟

⎟

⎠

1
2

,

ẽZ (x, y) =
|Z(x, y) −Z ref(x, y)|

|Z ref(x, y)|
.

4.1. 1D temperature step
We consider a 2D bounded rectangular domain with an
initial homogeneous density �0, a homogeneous background
velocity u0 (parallel to the x-axis) and a smooth temperature
step (parallel to the x-axis, for temperature T0 to T1 and backto T0 ). Formally:

�(x, y) = �0, u(x, y) = u0,

T (x, y) = T1 +
T1 − T0
2

(tanh
(

s ⋅
(

x − Lx
2

))

− 1).

The initial conditions and the corresponding dynamic is
sketched in Fig. 6. The specific numerical values are found
in the caption of Fig. 6.
The left- and right-hand side boundaries of the rectangular
domain are equipped with artificial BC. The upper and lower
boundaries are taken to be periodic. For this flow, the LODI
approximation underlying the computation of the wave am-
plitude variations is well justified: the flow is globally one
dimensional and only viscous terms are discarded in the
approximation.
Numerical simulations have been conducted using theD2Q17
stencil on a grid of sizeLx×Ly = 200×20 and the relaxationtime used in simulation was � = 0.9 in numerical units.
Fig. 6 depicts the reference simulation (for T ref and urefx ) in
the region of interest at selected times (from t0 initial valuetill t3, where the system almost reaches a resting state).
In Fig. 7, we present the time evolution of the global relative
L2-errors eZ . Evidently, any characteristic BC reduces the
value of eZ for all macroscopic quantities taken into con-
sideration by two or more orders of magnitude on average.
Since transversal terms are negligible for this benchmark,
the only difference between the LODI and CBC implemen-
tations is the incorporation of viscous terms. It is observed
that the CBC scheme leads to slightly larger errors for the
first 400 iterations (i.e., before significant interaction with
the boundary sets in), see Fig. 7. As explained in Sec. 3.3,
this difference comes from the fact that in the RK4-scheme
used for time integration of Eq. (11), no value for the heat-
flux is available at the intermediate time t + Δt

2 and the old
value from time t is used instead. As the impinging wave
starts interacting with the boundary, the error levels obtained
with the CBC coincide with those of the LODI schemes in
e� and eT and improve in eux .
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T0

T1

0 1
x
Lx

umin
x

u0
x

umax
x

t = t0
t = t1

t = t2
t = t3

Figure 6: Temperature and stream-wise velocity profiles of
the reference simulation at selected time steps, plotted along
the horizontal centerline y = Lx

2
. The initial configuration at

t = t0 is obtained with the following parameters: �0 = T0 =
1, T1 = 1.0005, u0 =

(

Ma ⋅ cs, 0
)⊤ , s = 0.5. The times t1 and

t2 correspond to iterations shortly before and during the pulses
interaction with the artificial boundary posed at x = Lx in
the simulation on the truncated grid. At t = t3, the system is
almost completely at rest (see also Fig. 7 for the localization
of the time instances ti).

10 9

10 7

10 5

10 3

e

t1 t2 t3

ZG LODI CBC
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10 3

e u
x
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0 1000 2000 3000 4000
Iteration

10 9

10 7

10 5

10 3

e T

t1 t2 t3

Figure 7: Evolution of eZ in the thermal step benchmark with
� = 0.9. The vertical dotted lines correspond to the times t1, t2
and t3 in Fig. 6.

In Fig. 8, the pointwise relative errors ẽZ along the hori-
zontal midplane y = Ly

2 are shown at time t2. Consistent
to the global L2-errors, the ZG produces pointwise errors
almost three orders of magnitude higher in all the points
considered when compared to the characteristic schemes. In
particular, the usage of the ZG scheme has a larger impact
on the bulk dynamics than any characteristic based BC; we
note that also the accuracy in the center of the computational

domain, away from inlet and outlet, is degraded. The LODI
and CBC schemes yield very similar pointwise errors that
are maximized close to the outlet, where small oscillations
are introduced.

10 10

10 7

10 4

e

10 10

10 7

10 4

e u
x

ZG LODI CBC

0 1
x
Lx

10 10

10 7

10 4

e T

Figure 8: Pointwise relative errors ẽZ at time t2 along the slice
y = Ly

2
.

4.2. Propagating Vortex
We consider the propagation of a thermal vortex in a rectan-
gular computational domain of size Lx × Ly = 150 × 150.The initialization of the problem is described in normalized
spatial coordinates (x̂, ŷ) ∈ [−1, 1]2:

x̂ =
2(x − 1)
Lx − 1

− 1, ŷ =
2(y − 1)
Ly − 1

− 1.

The initial center of the vortex is defined by:
(x̂0, ŷ0) = (

K
Lx−1

, 0),

where the parameter K defines x−position of the vortex on
the horizontal center line. The thermal vortex is formed by a
perturbation of the temperature T around T0 within a circle
at (x̂0, 0) with radius r̂ against a uniform background flow.
We use the following initial macroscopic fields:
�(x, y) = �0,

u(x, y) = u0 +
{

0 if (x̂ − x̂0)2 + ŷ2 ≥ r̂2

v(x̂ − x̂0, ŷ) otherwise,

T (x, y) = T0 +

{

0 if (x̂ − x̂0)2 + ŷ2 ≥ r̂2

�(x̂ − x̂0, ŷ) otherwise,
the vortex strength in terms of the initial perturbations is
given in terms of a parameter b as

v(x, y) =
5csMa
2

2−
x2+y2

b2

(

y

−x

)

,
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�(x, y) =
5csMa
2

2−
x2+y2

b2 . (22)
The setup is illustrated in Fig. 9. The Eckert number corre-
sponding to the simulation parameters is Ec ≈ 0.02.
For the evaluation of the ZG BC, all boundary nodes are
subjected to Eq. (21). The various characteristic based BCs
summarized in Table 1 are applied at the right hand side
boundary, while the LODI scheme is used for the other
straight boundaries. Corner nodes are treated as discussed
in Sec. 3.3.
Contrary to the previous benchmark, this test exhibits fully
two-dimensional dynamics. Therefore, it is more challeng-
ing with respect to the BC.

Tmin

T0

Tmax

Figure 9: Initial setup for thermal vortex benchmark in the
computational domain. Temperature T (x, y) (heat map) varies
around T0 = 1 in a circle with center (x̂0, ŷ0) with radius
r̂ = 0.7 and strength b = 3

20
, see (22). The initial velocity field

(streamlines) is the superposition with a global background
velocity u0 =

(Ma ⋅ cs, 0
)⊤

and the vortex. Here, we use
Ma = 0.1.

At the outlet (right-hand side boundary), we need to specify
the wave amplitude ̄x,3 (see Fig. 3). The schemes with
relaxation given by Eqns. (14) and (15) require the definition
of the two relaxation parameters � and �. Following Ref. [8],
we set � = Ma, � = 0, and  exx,3 = 0. This choice
of parameters implies that transversal waves vanish at the
steady state.
We start by considering a numerical viscosity of � = 0.1,
corresponding to Knudsen number Kn = �

csLx
≈ 0.0011.

The corresponding evolution of eZ for the various BC is
shown in Fig. 10. It can be seen that in comparison with the
LODI scheme, incorporating a relaxation of the transversal
wave in the incoming wave amplitude reduces global errors
by about one order of magnitude in the time range going
between 400 to 1000 iterations. Their similar error levels
indicate that at least for this benchmark, encoding external
information in the incoming wave amplitude is much more

10 6

10 5

10 4

e

10 5

10 4

10 3

10 2

e u
x

ZG
LODI

LODI-RELAX
CBC-RELAX

200 400 600 800 1000 1200 1400
Iteration

10 6

10 5

10 4

e T

Figure 10: Evolution of relative L2-errors in macroscopic fields
at � = 0.1.

important than accounting for transversal information in the
macroscopic system at the boundary. We remark that, in
general, it is not known how to chose the optimal values
for the relaxation parameters. For this specific benchmark,
we have performed a parameter scan in � for values around
� = Ma and found that the average values of eZ can be
reduced by about 33 percent for � = 2

3Ma.
The ZG BC gives similar results as the characteristic based
BCs in the first 200 iterations. Apart from the iterations
between 700 and 1100, where the value of eux is smaller
than its LODI-counterpart, it gives the largest global errors
among all the BC considered. In Figs. 11 and 12, we
provide snapshots of pointwise relative errors (with respect
to the reference solution) for the downstream velocity and
temperature at selected time steps. For all the BC, small
scale errors in both temperature and downstream velocity
are observed at the boundaries after 100 iterations (first
selected time step), as an initial spherical pressure pulse
interacts with the boundaries. The vortex interaction with
the boundary soon becomes the dominant source of error. As
can be seen from the right-most columns in both figures, the
vortex reaches the boundary after about 400 iterations. From
this point inwards, the relaxation approach gives a significant
advantage over both the LODI and ZG BC. During the
vortex-boundary interaction, here exemplified at 800 and
1200 iterations, the ZG is systematically outperformed. We
observe that characteristic based schemes allow to better
capture the interaction with the boundary, and moreover the
bulk region is significantly less polluted. In this benchmark,
we have used the CBC-RELAX scheme in combination with
the equilibrium BC (5) which under these settings provide
similar results to the NEEP BC (20).
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t=
10

0
t

ZG LODI LODI-RELAX CBC-RELAX uref
x

t=
40

0
t

t=
80

0
t

t=
12

00
t

1.0e-04 1.0e-03 1.0e-02
Pointwise relative error eux

Figure 11: Heat maps of relative errors for the downstream
velocity for various versions of the BC conditions (vortex
example). The right column give our reference solution. In the
rows, we have snap shots at t = 100Δt (initial phase), t = 400Δt
(the vortex has reached about the boundary), t = 800Δt (center
of the vortex is on the boundary), t = 1200Δt (late phase,
where the vortex has almost left the domain of interest).

Treatment of viscous terms. We found the evaluation of
viscous terms from Eqns (18) and (19) crucial to ensure
numerical stability over a broad range of numerical viscosity
�. To illustrate this, simulations at various values of � have
been conducted comparing with a CBC formulation where
the Laplacian of temperature and velocity are approximated
using second order finite differences. In particular, we use
the backward formula for j =M
)2Ui(xb,M , t)

)2x
≈ 2Ui(xb,M , t) − 5Ui(xb,M − ex, t)

+ 4Ui(xb,M − 2ex, t) − Ui(xb,M − 3ex, t)

and central formula for j = 1, 2,… ,M − 1

)2Ui(xb,j , t)
)2x
≈ Ui(xb,j + ex, t) − 2Ui(xb,j , t) + Ui(xb,j − ex, t).

The resulting scheme is referred to with the suffix -FD. Note
that this scheme can be used when working with stencils
which do not allow to implement high order quadrature.
In the first two rows of Fig. 13, we show the heat maps of
ẽT after 1200 iterations for several different values of the
kinematic viscosity. For � = 0.1, we observe that the two
methods yield very similar temperature fields. In the last row
of this figure, we report the time evolution of the Laplacian
of T evaluated at pointP = (x0, y0) in proximity of the outlet
(cf. top left panel in Fig. 13). The mesoscopic evaluation
of this quantity is closely following the evolution of ground

t=
10

0
t

ZG LODI LODI-RELAX CBC-RELAX Tref

t=
40

0
t

t=
80

0
t

t=
12

00
t

1.0e-06 1.0e-05 1.0e-04
Pointwise relative error eT

Figure 12: Heat maps of relative errors in temperature and
reference solution on the right column (vortex example). In the
rows, we have snap shots at t = 100Δt (initial phase), t = 400Δt
(the vortex has reached about the boundary), t = 800Δt (center
of the vortex is on the boundary), t = 1200Δt (late phase,
where the vortex has almost left the domain of interest).

truth, whereas its finite difference counterpart exhibit larger
and larger discrepancies, which become more evident as
the viscosity is increased, eventually leading to numerical
instabilities at � = 0.3.
Effect of the underlying velocity stencil. The character-
istic BC developed in this work can be applied to any LBM
stencil, provided that the macroscopic target values returned
by the artificial boundary are supplied at the mesoscopic
layer with a suitable Dirichlet BC. As an example, in this
section, we compare the results from simulations employing
the D2Q37 velocity stencil. In Table 2, we report the arith-
metic means, maximum value (over time) and the empirical
standard deviation s of error quantity eZ (Z ∈ {�, ux, T }).For a simple read out, errors are normalized with respect to
the D2Q17 simulation using the ZG BC.
The overall behavior of errors is similar for both stencils.
Switching from a ZG BC to LODI, the global errors in � and
T decrease by roughly a factor of two, while the velocity
fields are not significantly improved. However, tuning the
relaxation parameters in the inward pointing wave amplitude
allows to further decrease the errors in the velocity field.
Switching the macroscopic equation that is solved on the
boundary give further small improvements in accuracy.
The errors for � and T are approximately same for the two
different stencils.
4.3. Angular Wave
In this section, we consider an impinging plane wave that
approaches the boundary at an angle � with respect to the
vertical line (x = xb, left boundary); i.e., � = 0 states
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Figure 13: Upper and middle panels show heat maps of the relative errors in temperature T after 1200 iterations at various
numerical viscosity ranging from � = 0.1 (first column) to � = 0.3 (right column). The lower panel shows the time evolution of the
quantity )2T

)x2
computed at P = (x0, y0) marked in red in the top left panel. It can be seen that increasing the numerical viscosity,

the coupling between the macroscopic solver on the boundary and the LBM gives rise to an instability when the Laplacian is
evaluated directly at the macroscopic level rather than at the mesoscopic one.

that the plane wave propagates in the direction normal to the
boundary. In this setup, as the value of � is increased, the
transversal contributions become more and more important,
in turn departing from the LODI approximation.
We evaluate the BCs ability to absorb outgoing information
by computing a reflection coefficient. To this end, we calcu-
late wave amplitudes before and after the interaction with the
boundary takes place (from simulation data) and compute
their ratio along the horizontal midplane.
The initial setup at time t0 reads

�(x, y) = �0, u(x, y) = u0,

T (x, y) = T0 +
1
10
exp

(

−x̂(x, y)2

2s2

)

,

where the shifted coordinates

x̂(x, y) =

(

cos(� �
180 )

sin(� �
180 )

)

⋅

(

x

y

)

t = t0 t = t1 t = t2

T0

Tmax

Figure 14: Temperature fields obtained using the LODI BC
at various time steps. The left panel depicts the initial state
at time t0 with initial conditions given by �0 = T0 = 1, u0 =
(

0, 0
)⊤

and s = 1
50
. The times t1 and t2 correspond to before

and after waves interacted with the left hand side boundary at
height y = Ly

2
respectively.

are used. The upper and lower boundaries are periodic, while
artificial boundaries are set at the left and right hand side of
the domain. We chose a numerical viscosity of � = 0.1 and
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ZG
avg ± SEM max

e17� 6.4⋅10−5 ± 4.8⋅10−6 1.3⋅10−4

e37� 7.5⋅10−5 ± 7.0⋅10−6 1.6⋅10−4

e17ux 2.5⋅10−3 ± 2.1⋅10−4 6.3⋅10−3

e37ux 3.0⋅10−3 ± 3.0⋅10−4 7.4⋅10−3

e17T 6.3⋅10−5 ± 4.8⋅10−6 1.3⋅10−4

e37T 7.4⋅10−5 ± 6.9⋅10−6 1.6⋅10−4

LODI LODI-RELAX CBC-RELAX
avg max avg max avg max

e17� 0.32 0.37 0.18 0.32 0.16 0.27

e37� 0.33 0.36 0.18 0.35 0.18 0.32

e17ux 0.82 0.75 0.22 0.23 0.18 0.19

e37ux 0.78 0.77 0.22 0.22 0.18 0.18

e17T 0.32 0.37 0.17 0.33 0.15 0.28

e37T 0.34 0.37 0.18 0.36 0.17 0.32

Table 2
Comparison of the obtained accuracy the vortex benchmark using D2Q17 and D2Q37 velocity stencils: We compare arithmetic
mean of the sampled global errors eZ , the corresponding standard error of the mean (SEM) and their maximum value (over time).
Results are normalized with respect to the values obtained for the ZG BC and the respective stencil (left table). The SEM has
been omitted from the right hand side table as it scales similarly to the average error.

conducted simulations on a Lx × Ly = 200 × 700 grid. Thedomain is chosen to be sufficiently large to ensure that the
measurements at the horizontal centerline are not polluted
by artifacts stemming from the periodicity of the upper and
lower boundaries. We perform simulations at various angles
�, tracking wave amplitudes for the macroscopic quantities
Z ∈ {�, ux, T } along the horizontal slice y = Ly

2 . The mea-
surements are taken at a time t1 and t2, respectively shortly
before and right after the interaction with the boundaries (cf.
Fig. 14). The reflection coefficient is then computed as

RZ =
IZ (t2)
IZ (t1)

.

Snapshots of the temperature profiles at times t0, t1, t2 are
shown in Fig. 14 showing the initial state and the state
before and after the boundary interaction of the angular
wave. In Fig. 15, we report the reflection coefficient R� over

0 5 10 15 20 25 30 35 40
Angle of incidence [°]

0

2

4

R
[%

] ZG
LODI
CBC

Figure 15: Angular dependency of the reflection coefficient R�

along the horizontal slice y = Ly
2
, on a Lx × Ly = 200 × 700

grid.

a range of values for the angle �. The reflection coefficients
for temperature and streamwise velocity gives very similar
results and are hence omitted here. We observe that the ZG
BC gives rise to reflected waves with about four percent
of the impinging waves amplitude. For small angles � <
15◦, the usage of the (perfectly non-reflecting) CBC reduces
reflections by roughly one order of magnitude. As � is
increased further, we observe a growth in reflections caused
by the characteristic based schemes. This can be attributed
to two factors. First, as already mentioned, for non-zero

values of � the dynamic starts departing from the LODI
approximation. Second, waves impinging at large values of
� interact with the boundary for longer time with respect to
waves at smaller angles, putting further stress on the BC.
Nevertheless, the advantage of CBC over the ZG BC is
still retained at a 40◦ angle, where reflection coefficient is
reduced by a factor of about three.
As already discussed in Sec. 4.1, the reincorporation of
transversal terms in the CBC scheme gives rise to small
oscillations close to the outlet. This leads to slightly higher
reflection coefficients at angles � < 25◦ when compared
to the LODI scheme. However, at angles � > 25◦, the error
in discarding transversal information becomes dominant and
the LODI scheme gives rise to larger reflection coefficients
than the CBC.
4.4. Corners and multi-speed models
In previous sections, we have discussed implementation and
numerical results for characteristic based BC applied to
multi-speed thermal LBM. These models require the appli-
cation of BC to several layers of nodes, which can lead to
small oscillations at the interface between the boundary and
the bulk domain (see again Fig. 8), although such spurious
effects can be mitigated resorting to a mesoscopic evaluation
of the partial derivatives for velocity and temperature field
(Fig. 13). The complexities associated to handling multiple
boundary layers are emphasized when dealing with corner
nodes (see Fig. 5).While there exist compatibility conditions
[10] to be posed at overlapping boundaries, their application
to corners formed by several nodes in a multi-speed setting is
not immediately obvious. For this reason, we have relied on
a simple LODI approximation for the treatment of corners
of the computational domain. In order to assess the impact
of corners in simulation results, in this section, we consider
simulations for the propagation of a iso-thermal vortex.
The numerical setup is exactly the same as for the thermal
flow discussed in Sec. 4.2 with the only difference that we
start now from a uniform temperature profile, whose time
evolution is suppressed. This allows to compare the results
of simulations from multi-speed models with those given
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by the single-speed D2Q9 model. Details on all the stencils
used are given in Appendix B. In Fig. 16, we show heat
maps for both quantities ẽ� and ẽux . As was done in Sec. 4.2,the CBC-RELAX scheme, with � = Ma , � = 0, and
 exx,3 = 0 was used. In order to allow for a direct comparison
between the different numerical scheme, we show results
at the re-scaled time t∗ = ⌊150c17s ∕c

q
s ⌋ q ∈ {9, 17, 37},

where cqs is the speed of sound in the lattice for the differentstencils (see Appendix B). Such a value is chosen in order to
analyze a time frame where reflections caused at the outlet
and lateral boundaries are interacting with each other close
to the corners of the computational domain, which is putting
under stress the corner boundary. From the results, we can
observe that the dynamic obtained with the D2Q9 stencil is
qualitatively and quantitatively matching that provided by
multi-speed stencils. Therefore, we can conclude that the
potentially extra source of inaccuracy given by the corner
treatment in multi-speed stencils is negligible, at least for
the benchmark here considered.

e

D2Q9 D2Q17 D2Q37

e u
x

1.0e-06

5.0e-06
1.0e-05
2.0e-05

1.0e-05

5.0e-05
1.0e-04

Figure 16: Comparison of pointwise relative errors obtained
in the simulation of an iso-thermal vortex using the D2Q9,
D2Q17 and D2Q37 velocity stencil.

5. Conclusion
In this work, we have presented a non-reflecting BC for ther-
mal LBM, applying the concept of characteristic boundary
conditions to flows governed by the Navier-Stokes-Fourier
system. The procedure allows to compute outgoing wave
amplitude variations from a hyperbolic system using the
LODI approximation, and aims at modulating the amplitude
of incoming waves in order to minimize their impact on the
bulk dynamics. By constraining the amplitude of incoming
waves (annihilation, relaxation towards target values), it is
possible to compute the macroscopic fields at the boundary
layer, which are then translated at the mesoscopic level into
lattice populations.
While the procedure is general and can be applied to any
of the different possible approaches for the simulation of
thermal flows in LBM, we have focused our analysis on
high order models based on multi-speed stencils. We have
shown that this approach offers the advantage that the eval-
uation of the Laplacian for temperature and velocity can
be established exploiting the exact calculation of the higher

Temperature step: CBC Vortex: CBC-RELAX
avg max avg max

e� 0.007 0.009 0.16 0.27
eux 0.001 0.002 0.18 0.19
eT 0.006 0.009 0.15 0.28

Table 3
Summary of the gains in accuracy normalize with respect to the
global relative errors eZ obtained using the D2Q17 stencil and
the ZG BC. Shown are the arithmetic mean of the sampled
global errors eZ and their maximum value (over time). The
SEM has been omitted as it scales very similar to the average
error.

order moments of the particle distribution function, hence
on the same mesoscopic footstep as LBM, in turn avoiding
the need of finite difference approximations. Our numerical
results highlight that this approach leads to more accurate
results as well as enhanced stability at increasingly large
values of the kinematic viscosity. Moreover, we have com-
pared several CBC schemes against a zero-gradient BC,
a commonly adopted strategy for the implementation of
artificial boundary in literature. Table 3 provides a summary
of our findings, showing that for flows with a strongly 1 − d
propagation direction, i.e., where the LODI approximation
fully applies, the CBC outperforms the ZG BC by 2 to 3
order of magnitudes. This gap is reduced to about one order
of magnitude when investigating flows with a significant
transversal component. In the second case, further improve-
ment can be obtained by relaxing the macroscopic fields to
desired target values, although this generally requires tuning
of extra parameters, for which the optimal value is not known
a priori.
In future works, we plan to evaluate CBC, possibly in
combination with the perfectly matched layer approach, in
more involved kinematic regimes e.g. at large values for
the Reynolds and Rayleigh number. Investigating proper
compatibility conditions for the corner and flux-splitting
methods appear to be further important and promising di-
rections for future research.

Appendix
A. CBC and LODI for Navier-Stokes-Fourier in
d = 3 spatial dimensions
In this appending section, we provide the ingredients nec-
essary to extend the implementation of the characteristic
based BC for the Navier-Stokes-Fourier in d = 3 spatial
dimensions. We follow the same procedure discussed in the
main text, and consider as an example the case of a right
hand side boundary. Here, the macroscopic velocity is given
as u = (ux, uy, uz)⊤ and the transversal directions are ut =
(uy, uz)⊤ (for a boundary x = xb constant). Furthermore, we
denote the spatial gradient in the transversal directions as
∇t = (

)
)y ,

)
)z )

⊤.
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The specific heat quantities read
cv =

d
2
= 3
2
, cp =

d
2
+ 1 = 5

2

with ratio  = cp
cv
= 5

3 .Following the same matrix representation from (8), we have
here

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ux � 0 0 0
T̃
� ux 0 0 c2s
0 0 ux 0 0
0 0 0 ux 0

0 T̃
c2s cv

0 0 ux

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− )(�uy)
)y − )(�uz)

)z
−ut ⋅

(

∇t ux
)

− 1�
)(�T̃ )
)y − ut ⋅

(

∇t uy
)

− 1�
)(�T̃ )
)z − ut ⋅

(

∇t uz
)

− T̃
c2s cv

∇t ⋅ ut −
1
c2s
ut ⋅ ∇tT̃

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

�
(

Δux +
1
3
)
)xdiv u

)

�
(

Δuy +
1
3
)
)ydiv u

)

�
(

Δuz +
1
3
)
)zdiv u

)

�
Pr c2s

ΔT̃ + �
cvc2s

(

V1 +
2
3V2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where
V1 =

(

)ux
)y

+
)uy
)x

)2

+
(

)ux
)z

+
)uz
)x

)2
+
()uy
)z

+
)uz
)y

)2

V2 =
(

)ux
)x

−
)uy
)y

)2

+
(

)ux
)x

−
)uz
)z

)2
+
()uy
)y

−
)uz
)z

)2

.

The diagonalization of A gives A = S−1ΛS with
Λ =diag

(

ux, ux, ux, ux −
√

T̃ , ux +
√

T̃
)

,

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 2T̃
5�c2s

0 0 0 3
5

0 0 0 1 0
0 0 1 0 0

T̃
5�c2s

−
√

T̃
15c4s

0 0 1
5

T̃
5�c2s

√

T̃
15c4s

0 0 1
5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

S−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− �c2s
T̃ 0 0 3�c2s

2T̃
3�c2s
2T̃

0 0 0 −
√

15c4s
4T̃

√

15c4s
4T̃

0 0 1 0 0
0 1 0 0 0
1 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

indices i velocities ci weights !i
1 (0, 0) 4

9
2 − 5 (1, 0) 1

9
6 − 9 (1, 1) 1

36

Table 4
Discrete velocity set for the D2Q9 stencil. The stencil speed
of sound is cs =

1
√

3
.

indices i velocities ci weights !i
1 (0, 0) 0.40200514690911

2 − 5 (1, 0) 0.11615486649778
6 − 9 (1, 1) 0.03300635362298
10 − 13 (2, 2) 0.00007907860216
14 − 17 (3, 0) 0.00025841454978

Table 5
Discrete velocity set for the D2Q17 stencil. The stencil speed
of sound is cs ≈ 0.60848325122252.

indices i velocities ci weights !i
1 (0, 0) 0.23315066913235

2 − 5 (1, 0) 0.10730609154221
6 − 9 (1, 1) 0.05766785988879
10 − 13 (2, 0) 0.01420821615845
14 − 21 (2, 1) 0.00535304900051
22 − 25 (2, 2) 0.00101193759267
26 − 29 (3, 0) 0.00024530102775
30 − 37 (3, 1) 0.00028341425299

Table 6
Discrete velocity set for the D2Q37 stencil. The stencil speed
of sound is cs ≈ 0.83543600713620.

The macroscopic fields at the boundary can be then cal-
culated using the CBC approach by solving Eq. (11), or
Eq. (10) for LODI.
B. Data on velocity stencils
In this appendix section we provide details on the velocity
stencils, quadrature weights and speed of sound in the lattice
cs, used to implement the high order LBM models used in
simulations in the main text. For the sake of completeness,
we also provide details for the single-speed D2Q9 lattice
used in Sec. 4.4.
The information for the D2Q9 is provided in Tab. 4. Data for
the multi-speed D2Q17 is given in Tab. 5, while in Tab. 6
we give the data for the D2Q37. In all tables, each row
is associated to a different fully symmetric set of discrete
velocities, where the following notation is implied: e.g.
(1, 1) = {(−1,−1), (−1, 1), (1,−1), (1, 1)}.
In order to implement CBC for thermal LBM simulation
in d = 3 spatial dimensions one can make use e.g. of
the D3Q39 and the D3Q103 stencils, for which details on
quadrature data can be found in Ref. [35].
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