
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 23/09

Manh Tuan Hoang and Matthias Ehrhardt

A general class of second-order L-stable explicit
numerical methods for stiff problems

July 5, 2023

http://www.imacm.uni-wuppertal.de



A general class of second-order L-stable explicit

numerical methods for stiff problems

Manh Tuan Hoanga,∗, Matthias Ehrhardtb,∗∗

aDepartment of Mathematics, FPT University, Hoa Lac Hi-Tech Park,
Km29 Thang Long Blvd, Hanoi, Viet Nam

bUniversity of Wuppertal, Chair of Applied and Computational Mathematics,
Gaußstrasse 20, 42119 Wuppertal, Germany

Abstract

In this paper, we propose a simple approach to the construction of a gen-
eral class of L-stable explicit second-order one-step methods for solving stiff
problems. These methods are nonlinear and derive from a novel approxima-
tion for the right-hand side functions of differential equations inspired by the
nonstandard finite difference methodology introduced by Mickens. Through
rigorous mathematical analysis, it is proved that the proposed numerical
methods are not only explicit and L-stable, but also convergent of order two.
Therefore, they are suitable and efficient to solve stiff problems.

The proposed numerical methods generalize and improve a nonstandard
explicit integration scheme for initial value problems formulated by Ramos
in [Applied Mathematics and Computation 189 (2007), 710-718]. Moreover,
the present approach can be extended to construct A-stable and L-stable
high-order explicit one-step methods for differential equations.

Finally, the theoretical findings and advantages of the developed numer-
ical methods are supported and illustrated by a series of numerical experi-
ments in which stiff problems are considered.
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1. Introduction

We begin by considering general initial value problems (IVPs) of the
following form

y′ = f(t, y), y(0) = y0 ∈ R, t ∈ [0, T ]. (1)

It is assumed that f(t, y) satisfies suitable conditions that ensure that (1)
has a unique solution. It should be emphasized that it is very difficult, even5

impossible, to solve the IVP (1) exactly. In most real-world situations, it is
almost inevitable to find approximate solutions. For this reason, numerical
methods for differential equations have become one of the most fundamental
and practically important research tasks [1, 3, 4].

It is well known that the effective solution of stiff problems requires10

numerical methods possessing exceptional stability properties, such as A-
stability and L-stability [1, 3, 4]. However, the construction of such numerical
methods is not a trivial task. It has been proved that explicit Runge-Kutta
methods cannot be A-stable and L-stable because their stability regions are
bounded. Meanwhile, implicit Runge-Kutta methods can be A-stable and15

L-stable, but they are not as convenient as explicit methods because the so-
lution of systems of nonlinear equations is required [1, 3, 4]. In [14], Nevan-
linna and Sipila state a nonexistence theorem for A-stable explicit methods,
which states that there are no A-stable explicit methods in a general class of
”linear” methods. This class contains many well-known one-step and multi-20

step numerical methods, such as Runge-Kutta and linear multistep methods,
predictor-corrector methods, cyclic multistep methods, and linear multistep
methods with higher derivatives.

With the goal of efficiently constructing explicit numerical methods for
unconventional problems such as stiff problems or singular IVPs, nonlinear25

methods have been designed and developed by many researchers (see e.g.
[2, 6, 7, 8, 17, 18, 19, 20, 21]). In [19], van Niekerk proposed a one-step first-
order nonlinear method for IVPs based on a representation of the solution
by the inverse of a polynomial. Then, in [17], Ramos further developed the
ideas of [19] to construct an explicit nonstandard integration method for the30

IVP (1) in the form:

yn+1 = yn +
2hf 2

n

2fn − hf ′
n

, (2)
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where yn = y(tn), yn+1 ≈ y(tn+1), fn = f(tn, yn), h = T/N (N ∈ N+) denotes
the step size of the uniform grid {tn = nh |n = 0, 1, . . . , N} and

f ′
n =

∂f

∂t
(tn, yn) +

∂f

∂y
(tn, yn).

It is assumed that y, f ∈ R. In [17] it was proved that the numerical method
(2) is of second order and A-stable with stability function R(z) = 2+z

2−z
. It is

important to note that the nonlinear methods presented in [16, 18, 21] are
only A-stable.35

Motivated and inspired by the A-stable second-order explicit nonlinear
method constructed in [17], we present in this paper a simple approach to
construct a general class of L-stable second-order explicit one-step methods
for IVPs of the form (1). These methods are nonlinear and derive from
a novel approximation for the function f on the right-hand side, inspired40

by the nonstandard finite difference method proposed by Mickens [9, 10,
11, 12, 13]. More precisely, we use a novel nonlocal approximation with
weights to discretize the function on the right-hand side, and then impose
suitable conditions such that the proposed methods are not only explicit and
L-stable, but also convergent of order two. An important consequence is that45

our methods are suitable and efficient to solve stiff problems. Moreover, they
also generalize and improve the one-step nonlinear method (2).

The plan of this work is as follows: In Section 2, second-order L-stable
explicit numerical methods are constructed and analyzed. Numerical exam-
ples are reported in section 3. Concluding remarks and some open problems50

are discussed in Section 4.

2. Second-order L-stable explicit numerical methods

In this section, second-order L-stable explicit numerical methods are con-
structed and analyzed. First, we discretize the first derivative in (1) by the
standard finite difference forward formula55

y′(tn) ≈
yn+1 − yn

h
. (3)

Next, the right-hand side function is approximated as follows:

f
(
tn, y(tn)

)
= f

(
tn, y(tn)

)
+
(
−y(tn)A

(
tn, y(tn)

)
+ y(tn)A

(
tn, y(tn)

))
≈ f(tn, yn)− αynA(tn, yn) + αyn+1A(tn, yn) + βhB

(
tn, y(tn)

)
, (4)
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where A(t, y) and B(t, y) are functions to be determined later; α, β ∈ R play
a role as weights in the discretization of the zero function, namely 0 can be
approximated by

0 = −y(tn)A
(
tn, y(tn)

)
+y(tn)A

(
tn, y(tn)

)
≈ −αynA(tn, yn)+αyn+1A(tn, yn),

and
0 ≈ βhB

(
tn, y(tn)

)
.

Remark 1. This approximation allows us to construct L-stable second order
explicit methods. If B = 0 or β = 0, i.e., the term βhB

(
tn, y(tn) does not

occur, our methods cannot be L-stable.

Following the Mickens method [9, 10, 11, 12, 13], the above approxima-
tions can be considered as nonlocal approximations of the zero function. The60

approximations (3) and (4) lead to the family of finite difference methods

yn+1 − yn
h

= f(tn, yn)− αynA(tn, yn) + αyn+1A(tn, yn) + hβB(tn, yn). (5)

The scheme (5) can be rewritten in the fully explicit form

yn+1 =
yn + hfn − hαynAn

1− hαAn − h2βBn

= yn +
hfn + h2βynBn

1− hαAn − h2βBn

, (6)

where
fn := f(tn, yn), An := A(tn, yn), Bn := B(tn, yn).

Note that 1− hαAn − h2βBn ̸= 0 provided that h is sufficiently small.

Theorem 1. The truncation error of the one-step method (5) is O(h3) if
and only if the following relation is satisfied65

2βBnyn + 2αAnfn =
∂f

∂t
(tn, yn) +

∂f

∂y
f(tn, yn) := f ′

n. (7)

Proof. First, it follows from the Taylor expansion of the function y(t) that

y(tn+1) = y(tn) + hf
(
tn, y(tn)

)
+

h2

2
f ′(tn, y(tn))+O(h3). (8)

Let us denote by fD(t, y, h) the right-hand side function of (6), that is,

fD(t, y, h) = y +
hf(t, y) + h2βB(t, y)y

1− hαA(t, y)− h2βB(t, y)
.
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Then, we have

fD(t, y, 0) = y,
∂fD
∂h

(t, y, 0) = f(t, y),
∂2fD
∂h2

= 2αA(t, y)f(t, y)+2βB(t, y)y,

and combining it with the Taylor’s expansion, we obtain

yn+1 = fd(tn, yn, h) = yn + hf(tn, yn)

+
h2

2

(
2αA(tn, yn)f(tn, yn) + 2βB(tn, yn)yn

)
+O(h3).

(9)

Hence, we deduce from (8) and (9) that

y(tn+1)− yn+1 = O(h3)

if and only if (7) holds. This is desired conclusion, the proof is complete.

Remark 2. Since the one-step method (11) is consistent of order two, we
can use the approaches in [1, 3, 4] to conclude that it is also convergent of70

order two.

We now give conditions for the method (5) to be L-stable. First, we
consider a special case of the method (6), namely when β does not appear
(β = 0). Then the condition (7) reduces to

An =
f ′
n

2αfn
. (10)

Consequently, the method (6) becomes the scheme of Ramos (2). Therefore,75

it is only A-stable (see [17]).
Let us assume that β ̸= 0 and α ̸= 0. Then, it follows from (7) that

Bn =
f ′
n − 2αAnfn

2βyn
. (11)

Next, thanks to (11), we represent the method (6) in the fully explicit form

yn+1 =
2y2n + 2hynfn − 2hαy2nAn

2yn − 2hαAnyn − h2f ′
n + 2h2αAnfn

, (12)

which is convergent of order two.
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Since A(t, y) is arbitrary, to obtain L-stable methods, we first choose80

A(t, y) = fy(t, y) =
∂f

∂y
(t, y). (13)

Then, applying the method (12)-(13) to the Dahlquist’s test equation y′ = λy
(Reλ < 0) yields

yn+1 = R(z)yn, z := λh, R(z) :=
2 + (2− 2α)z

2− 2αz + (2α− 1)z2
. (14)

Here, R(z) is called the stability function of the method (12)-(13) (see [3]).

Theorem 2. The following assertions are true

(i) The method (12)-(13) is A-stable if α ≥ 1
2
.85

(ii) limz→−∞R(z) = 0 if and only if α ̸= 1
2
.

Proof. First, it is easy to prove that the inequality |R(z)| ≤ 1 is equivalent
to

(16a− 8)(Reλ)2+(2a− 1)2
[
(Reλ)4+(Imλ)4

]
− 8Reλ− 4a(2a− 1)(Reλ)3

+ (4a− 8a2)(Reλ)(Imλ)2 + 2(2a− 1)2(Reλ)2(Imλ)2 ≥ 0. (15)

Note that 16a − 8 ≥ 0, 4a(2a − 1) ≥ 0 and 4a − 8a2 ≤ 0 since a ≥ 1/2.
Consequently, the inequality (15) holds if Reλ ≤ 0, which implies that the
stability region S satisfies

S := {z ∈ C| |R(z)| ≤ 1} ⊃ C− := {z ∈ C|Re(z) ≤ 0}.

Consequently, the method (12)-(13) is A-stable.
The second part of this theorem results from the direct use of the formula

for R(z). Here we note that lim
z→−∞

R(z) = −1 if α = 1/2. This completes the

proof.90

Combining Theorems 1 and 2, we obtain the following assertion.

Theorem 3. The following nonlinear one-step method

yn+1 =
2y2n + 2hynfn − 2hαy2nfy,n

2yn − 2hαfy,nyn − h2f ′
n + 2h2αfy,nfn

, fy,n :=
∂f

∂y
(tn, yn) (16)

is L-stable and convergent of order two if α > 1
2
. And if α = 1

2
, then it is

convergent of order two, but only A-stable.
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In the sequel we briefly summarize our findings:95

(i) The stability function R(z) given in (14) differs from the ones of implicit
Runge-Kutta methods presented in [1, 4]. In particular, when α = 1,
(16) reduces to

yn+1 =
2y2n + 2hynfn − 2hy2nfy,n

2yn − 2hfy,nyn − h2f ′
n + 2h2fy,nfn

.

Its stability function R(z) is given by

R(z) =
1

1− z + z2/2
.

The stability region in this case is sketched in Figure 1. It is clear that
the stability region contains the left half complex plane. Consequently,
the L-stability is confirmed.

(ii) The method (2) can be obtained from the method (5); thus, it is just
a special case of (5). However, the approach used to construct (5)100

is different from that used to construct (2). The derivation of (5) is
explained using nonlocal approximations for differential equations.

(iii) The nonlocal approximations of the zero function given in (4) extend the
parameter space of the method (5). This is an important and crucial
point in the construction of L-stable second order explicit methods.105

This strategy was used in our recent work [5] and can be extended to
construct L-stable higher order explicit methods.

(iv) The method (16) can be applied to IVPs associated with systems of
differential equations using component-wise implementations.

(v) Although the method (16) is only convergent of order two, it is sim-110

pler than an L-stable third-order explicit one-step method presented by
Qureshi and Ramos in [15]. On the other hand, it is easy to improve
its accuracy by variable step strategies or extrapolation techniques.
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Figure 1: The stability region S of the method (12)-(13) when α = 1, which is the part
outside the blue curve (|R(z)| = 1).

3. Numerical experiments

In this section, we perform some illustrative numerical experiments to115

support the theoretical analysis.

Example 1 (The decay equation). Let us consider the well-known decay
equation of the following form as a test problem.

y′ = λy, λ < 0, y(0) = 1. (17)

Its exact solution is given by y(t) = eλt. The larger |λ| is, the faster y
decreases.120

We now apply the new L-stable second-order nonlinear explicit methods
(16) (LENM2) with α = 0.55 and the A-stable second-order explicit nonlinear
method (2) (AENM2) to solve the decay equation (17), and then enter their
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absolute errors in Table 1. In this table, errend and errmax are the absolute
errors at the end of the time interval (T = 1) and the maximum of the125

absolute errors calculated at all grid points tn ∈ [0, 1], n = 0, 1, . . . , N ,
respectively.

Table 1: Absolute errors for y′ = −2023y, y(0) = 1, t ∈ [0, 1].

h LENM2 errmax LENM2 errend AENM2 errmax AENM2 errend
0.5 0.0088 7.7131e-005 0.9961 0.9921
0.25 0.0173 9.0379e-008 0.9921 0.9689
0.2 0.0215 4.6304e-009 0.9902 0.9518
0.1 0.0417 1.5942e-014 0.9804 0.8206
0.05 0.0783 7.5965e-023 0.9612 0.4534
0.01 0.2487 3.6305e-061 0.8201 2.4250e-009
0.005 0.3042 4.0551e-104 0.6699 1.5596e-035

From the data presented in Table 1, it can be seen that the errors of the
LENM2 scheme are better thanks to its L-stability.

Example 2 (A stiff problem). Consider the following IVP130

y′ = y2 − e−2000t − 1002e−1000t − 1, y(0) = 2. (18)

The exact solution of (18) is given by y(t) = e−1000t + 1. Thus, the
solution drops very rapidly for a short time near 0 and then approaches the
stable position y∗ = 1. This is a typical feature of stiff problems. The errors
obtained with the LENM2 with α = 0.6 and the AENM2 are given in Table 2.
It is clear that the LENM2 scheme gives better results.135

Table 2: Absolute errors for (18) with t ∈ [0, 0.1].

h LENM2 errmax LENM2 errend AENM2 errmax AENM2 errend
10−1 0.9608 0.9608 0.9608 0.9608
10−2 0.7471 0.7471 0.7475 0.7475
10−3 0.0345 0.0097 0.0661 0.0661
10−4 2.3750e-004 1.5534e-004 9.6796e-004 9.6796e-004
10−5 2.2882e-006 1.6234e-006 1.0117e-005 1.0117e-005
10−6 2.2797e-008 1.6307e-008 1.0163e-007 1.0163e-007
10−7 2.2790e-010 1.4093e-010 1.0396e-009 1.0396e-009
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Example 3 (A system of differential equations). Consider the following sys-
tem of differential equations

y′1 = −1999y1 − y22, y1(0) = 1.0,

y′2 = y1 − y2(1000 + y2), y2(0) = 1.0.
(19)

The exact solution is given by (y1(t), y2(t)) =
(
e−2000t, e−1000t

)
. Thus,

the equation (19) models a very stiff problem. The errors obtained with the
LENM2 with α = 0.55 and the AENM2 are given in the Tables 3 and 4.140

Similar to the Examples 1 and 2, the errors provided by the LENM2 scheme
are better.

Table 3: Absolute errors generated by the LENM2 with t ∈ [0, 0.1] in Example 3.

h errmax(y1) errend(y1) errmax(y2) errend(y2)
10−1 0.0424 0.0424 0.0774 0.0774
10−2 0.2511 9.5879e-007 0.3003 6.4413e-006
10−3 0.0921 1.3839e-087 0.0239 3.7159e-044
10−4 8.6724e-004 5.3884e-088 2.1422e-004 2.1147e-045
10−5 8.6096e-006 6.7118e-090 2.1370e-006 2.1698e-047
10−6 8.6061e-008 6.7248e-092 2.1366e-008 2.1700e-049

Table 4: Absolute errors provided by the AENM2 with t ∈ [0, 0.1] in Example 3.

h errmax(y1) errend(y1) errmax(y2) errend(y2)
10−1 0.9802 0.9802 0.9608 0.9608
10−2 0.8182 0.1343 0.6667 0.0182
10−3 0.1353 1.3839e-087 0.0345 3.7199e-044
10−4 0.0012 6.9837e-088 3.0733e-004 2.9789e-045
10−5 1.2265e-005 9.5519e-090 3.0705e-006 3.0990e-047
10−6 1.2265e-007 9.5834e-092 3.0705e-008 3.1002e-049

4. Concluding remarks and open problems

In this work, we have proposed and analyzed a general class of L-stable
explicit second-order one-step methods for solving stiff problems. The con-145

structed methods are nonlinear and are derived from the novel approximation
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(4) for the function f on the right-hand side of the IVPs, which is inspired by
the nonstandard finite difference method introduced by Mickens. The main
result is that we have obtained a general class of nonlinear one-step methods
which are not only explicit and L-stable, but also convergent of order two.150

Therefore, they are suitable and efficient for solving stiff problems.
The proposed numerical methods generalize and improve the nonstandard

explicit integration scheme (2) formulated by Ramos in [17]. Moreover, the
present approach can be extended to construct high-order explicit one-step
schemes that exhibit exceptional stability properties such as A-stable and155

L-stable.
Moreover, in Section 3 we have carried out a series of numerical experi-

ments in which stiff problems are considered. As an important consequence,
the advantages and superiority of the constructed methods are shown in all
numerical examples considered.160

Our future work will focus on applications of the constructed methods in
solving differential equations arising in real situations. On the other hand, we
intend to extend the findings and the present approach in this work to study
the construction of explicit high-order one-step methods for stiff problems
and singular problems.165
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