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Abstract

In this paper, we consider a general Rosenzweig-MacArthur predator-prey
model with logistic intrinsic growth of the prey population. We develop
the Mickens’ method to construct a dynamically consistent second-order
nonstandard finite difference (NSFD) scheme for the general Rosenzweig-
MacArthur predator-prey model. The second-order NSFD method is based
on a novel nonlocal approximation using right-hand side function weights
and nonstandard denominator functions.

Through rigorous mathematical analysis, we show that the NSFD method
not only preserves two important and prominent dynamical properties of the
continuous model, namely positivity and asymptotic stability independent
of the values of the step size, but also is convergent of order 2. Therefore,
it provides a solution to the contradiction between the dynamic consistency
and high-order accuracy of NSFD methods.

The proposed NSFD method improves positive and elementary stable
nonstandard numerical schemes constructed in a previous work of Dimitrov
and Kojouharov, [Journal of Computational and Applied Mathematics 189
(2006) 98-108]. Moreover, the present approach can be extended to construct
second-order NSFD methods for some classes of nonlinear dynamical systems.
Finally, the theoretical insights and advantages of the constructed NSFD

∗Corresponding author
∗∗Corresponding author
Email addresses: tuanhm14@fe.edu.vn; hmtuan01121990@gmail.com (Manh Tuan

Hoang), ehrhardt@uni-wuppertal.de (Matthias Ehrhardt)

Preprint submitted to Journal of Computational and Applied Mathematics June 12, 2023



scheme are supported by some illustrative numerical simulations.
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1. Introduction

In the 1980s, Mickens proposed nonstandard finite difference methods
(NSFD) to overcome a serious drawback of standard numerical methods,
the so-called ”numerical instability” [31, 32, 33, 34, 35, 36, 40, 41]. One of
the outstanding and prominent advantages of NSFD methods over standard5

methods is their dynamic consistency, i.e., they can correctly preserve the
dynamic properties of differential equations for all values of the step size.
NSFD methods have been intensively studied in the last decades and have
become powerful and efficient numerical methods for differential equations.

However, most of the existing dynamically consistent NSFD methods are10

convergent only up to the first order (see, e.g., [8, 15, 16, 19, 20, 21, 22, 28,
39, 45]), which can be considered as an inherent drawback of NSFD methods.
For this reason, the problem of improving the accuracy of NSFD methods has
attracted the attention of many researchers, and consequently, higher-order
NSFD methods have been proposed for some classes of nonlinear dynamical15

systems using different approaches (see, for example, [7, 10, 18, 23, 24, 27,
29, 30]). More recently, some classes of second-order NSFD methods for
general one-dimensional autonomous dynamical systems were presented in
[18, 19, 27]. However, higher-order NSFD methods for nonlinear dynamical
systems are still an important unsolved problem.20

Motivated and inspired by the above reason, in this paper we consider a
general Rosenzweig-MacArthur predator-prey model with a logistic intrinsic
growth of the prey population (see [6, p. 182]) of the form

dx

dt
= f1(x, y) := bx(1− x)− ag(x)xy, x(0) = x0 ≥ 0,

dy

dt
= f2(x, y) := g(x)xy − dy, y(0) = y0 ≥ 0,

(1)

where

• x and y stand for the prey and predator population sizes, respectively;25
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• b > 0 is the intrinsic growth rate of the prey;

• a > 0 represents the capturing rate;

• d > 0 is the predator death rate;

• the function g(x) is assumed to satisfy xg(x) is bounded as x → ∞ and

g(x) ≥ 0, g′(x) ≤ 0, [xg(x)]′ ≥ 0.

We refer readers to [6] for more details of the model (1). It is easy to see
that the model (1) admits the set R+

2 = {(x, y) ∈ R2|x, y ≥ 0} as a positive30

invariant set. On the other hand, the equilibria of the model (1) and their
local asymptotic stability (or linear stability) in [12] were given as follows

(i) A trivial equilibrium point E0 = (0, 0) always exists, and it is also
always unstable.

(ii) A boundary equilibrium point E1 = (1, 0) always exists, and it is locally35

asymptotically stable if g(1) < d and is unstable if g(1) > d.

(iii) A unique positive (interior) equilibrium point E∗ = (x∗, y∗) exists if
and only if g(1) > d, where

x∗g(x∗) = d, y∗ =
bx∗(1− x∗)

ad
.

Furthermore, it is locally asymptotically stable if b+ ay∗g′(x∗) > 0 and
is unstable when b+ ay∗g′(x∗) < 0.

Dimitrov and Kojouharov [12] constructed positive and elementary stable
nonstandard (PESN) schemes for the model (1) in the following form40

xk+1 − xk

ϕ(∆t)
= b xk − b xk+1 xk − a g(xk)xk+1 yk,

yk+1 − yk
ϕ(∆t)

= g(xk)xk yk − d yk+1,
(2)

where ∆t is the step size, ϕ(∆t) = ∆t+O(∆t2) as ∆t → 0 and 0 < ϕ(∆t) < 1
for ∆t > 0, xk and yk are the approximations of x(tk) resp. y(tk) for k ≥ 1.
Then, easily verifiable conditions for the denominator function ϕ(∆t) are
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determined so that the NSFD method (2) is PESN (see [12, Section 3]). The
NSFD method (2) can be viewed as a special case of a general class of NSFD45

methods introduced in [8]. Therefore, it is easy to show that it is convergent
only of order one (see [8, Theorem 5.2] and [8, Appendix B]).

In this work, we introduce a simple approach, different from the ap-
proaches to formulate higher-order NSFD methods used in the above works,
to construct a second-order NSFD method that preserves the positivity and50

asymptotic stability of the model (1). First, a novel nonlocal approximation
with weights for the right-hand side functions is used. Then, conditions for
the dynamic consistency of the NSFD method are imposed on the weights.
Finally, the nonstandard denominator functions in the discretization of the
first-order derivatives are renormalized to ensure that the NSFD method is55

convergent of order two. Thus, a dynamically consistent second-order NSFD
method is obtained. The proposed NSFD method improves the PESN meth-
ods constructed in [12], and in particular, the present approach can be very
useful in constructing higher-order NSFD methods for some classes of non-
linear dynamical systems.60

The plan for this work is as follows. In Section 3, some preliminary
remarks and auxiliary results are presented. The second-order NSFD method
is proposed and analyzed in Section 3. In Section 4 we report a set of
illustrative numerical experiments. Some remarks on generalized versions
of the constructed NSFD method are given in Section 5. Finally, concluding65

remarks and some open problems are discussed in the last section.

2. Preliminaries and auxiliary results

Consider an initial value problem for an autonomous differential equation

dy

dt
= f(y), y(0) = y0 ∈ Rn, (3)

where the right hand side f(y) satisfies a Lipschitz condition (with the Lips-
chitz constant LC) in order to guarantee a unique solution. For solving (3) we70

consider a general one-step numerical method that approximates solutions of
(3) in the form

D∆t(yk) = F∆t(f ; yk), (4)

where ∆t > 0 is the step size, yk is the approximation of y(tk), tk = k∆t, k ≥
0. D∆t and F∆t denote the approximations of dy/dt and f(y), respectively.
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Since any non-autonomous system can be written as an autonomous system,75

we can restrict ourselves to f(y) here for simplicity.
The following concept of an NSFD scheme is derived from Mickens’

methodology [31, 32, 33, 34, 35, 36].

Definition 1 ([2, 14]). The finite difference scheme (4) is called an NSFD
scheme if at least one of the following conditions is satisfied:80

• D∆t(yk) =
yk+1 − yk
ϕ(∆t)

, where ϕ(∆t) = ∆t + O(∆t2) is a non-negative

function and is called a nonstandard denominator function;

• F∆t(f ; yk) = g(yk, yk+1,∆t), where g(yk, yk+1,∆t) is a nonlocal approx-
imation of the right-hand side of the system (3).

Next, we define the notion of dynamically consistent scheme.85

Definition 2 ([2, 3, 36]). Let us consider the differential equation dy/dt =
f(y). Let a finite difference scheme for this equation be yk+1 = F (yk; ∆t). Let
the differential equation and/or its solutions have the property P. The dis-
crete model equation is dynamically consistent with the differential equation
if it and/or its solutions also have the property P.90

In practice, these aforementioned properties P are diverse, e.g. positiv-
ity, equilibria and their stability, boundedness, conservation laws, physical
properties, periodicity, etc.

Before ending this section, we present some results on the stability of
equilibria of time-continuous and discrete-time dynamical systems.95

Definition 3 ([26, 44]). The equilibrium point y∗ = 0 of (3) is said to be:

• stable, if, for each ϵ > 0, there is δ = δ(ϵ) such that

∥y(0)∥ < δ implies that ∥y(t)∥ < ϵ, ∀t ≥ 0;

• unstable if it is not stable;

• (locally) asymptotically stable if it is stable and δ can be chosen such
that

∥y(0)∥ < δ implies that lim
t→∞

y(t) = 0.
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Let us consider general discrete-time dynamical systems defined by first-
order difference equations of the form

Yk+1 = F (Yk), Y0 ∈ Rn. (5)

The stability concepts for equilibria of discrete-time dynamical systems are100

defined in the same way as in Definition 3.
First, we give a well-known characterization of locally asymptotically sta-

ble equilibria.

Theorem 1 ([17, 44]). Let F ∈ C2(Rn,Rn). Then a fixed point Y ∗ of the
system (5) is locally asymptotically stable if the eigenvalues of the Jacobian105

matrix dF (Y ∗) are strictly inside the unit circle. If one of the eigenvalues
lies outside the unit circle, the fixed point is unstable.

The following result is a direct consequence of the Jury conditions or
Schur-Cohn criteria (see [1, Theorem 2.13]). It is very useful in the analy-
sis of the asymptotic stability of equilibria of discrete-time two-dimensional110

dynamical systems.

Theorem 2. Given the polynomial

p(λ) = λ2 + a1λ+ a2,

where a1 and a2 are real numbers. Then, the solutions λ1 and λ2 of the
equation p(λ) = 0 satisfy |λi| < 1 if and only if

|a1| < 1 + a2 < 2.

3. Construction of the second-order NSFD method

We now construct a second-order NSFD scheme for the model (1) and
discuss its properties. First, we apply Mickens’ method [31, 33, 34, 35] to
discretize the differential equation model (1) as follows115

dx(t)

dt

∣∣∣
t=tk

≈ xk+1 − xk

ϕ1(∆t, xk, yk)
,

dy(t)

dt

∣∣∣
t=tk

≈ yk+1 − yk
ϕ2(∆t, xk, yk)

(6)

and

b x(tk) (1− x(tk))− a g(x(tk))x(tk) y(tk)

≈ b xk − b xk+1 xk − a g(xk)xk+1 yk + w1 xk − w1 xk+1,

g(x(tk))x(tk) y(tk)− d y(tk) ≈ g(xk)xk yk − d yk+1 + w2 yk − w2 yk+1,

(7)
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with the denominator functions ϕi(∆t, x, y) : R3
+ → R+, i = 1, 2 satisfying

ϕi(∆t, x, y) = ∆t+O(∆t2) as ∆t → 0, ϕi(∆t, x, y) > 0 for ∆t > 0, x, y ≥ 0.

In the nonstandard discretization of the right-hand side (7) w1, w2 ∈ R play
a role as weights in the discretization of the zero function, namely, 0 can be
discretized as 0 = z − z → wzk − wzk+1.

In summary, the discretizations (6) and (7) lead to the following NSFD120

model

xk+1 − xk

ϕ1(∆t, xk, yk)
= b xk − b xk+1 xk − a g(xk)xk+1 yk + w1 xk − w1 xk+1,

yk+1 − yk
ϕ2(∆t, xk, yk)

= g(xk)xk yk − d yk+1 + w2 yk − w2 yk+1.
(8)

Remark 1. A key difference between the NSFD method (8) and most NSFD
methods constructed in previous works, including the NSFD model (2), is
that the nonstandard denominator functions ϕi depend not only on ∆t but
also on the solution (xk, yk) and the appearance of the weights w1 and w2.125

As will be seen later, the denominator functions will ensure the conver-
gence of order 2 while the weights guarantee the dynamic consistency of the
NSFD method (7).

Remark 2. The NSFD model (2) is a special case of (8) with w1 = w2 = 0
and ϕ1(∆t, xk, yk) = ϕ2(∆t, xk, yk) = ϕ(∆t).130

The price one has to pay for the higher order is usually different denom-
inator functions, so that one loses a possibly existing conservation property
of the overall system, which can be quite important in some applications and
also directly provides the stability of the scheme.

Next, we show that the proposed scheme yields positive solutions for135

positive initial data.

Theorem 3 (Positivity of the NSFD method). Let w1, w2 ∈ R satisfying
w1, w2 ≥ 0. Then, the NSFD model (8) is dynamically consistent with respect
to the positivity of the model (1) for all the values of the step size ∆t, that
is, xk, yk ≥ 0 for all k ≥ 1 whenever x0, y0 ≥ 0.140
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Proof. This theorem is proved by mathematical induction. Namely, the sys-
tem (8) can be transformed into the explicit form

xk+1 =
xk + ϕ1(∆t, xk, yk)bxk + ϕ1(∆t, xk, yk)w1xk

1 + ϕ1(∆t, xk, yk)(bxk + ag(xk)yk) + ϕ1(∆t, xk, yk)w1

,

yk+1 =
yk + ϕ2(∆t, xk, yk)g(xk)xkyk + ϕ2(∆t, xk, yk)w2yk

1 + ϕ2(∆t, xk, yk)d+ ϕ2(∆t, xk, yk)w2

.

(9)

Hence, we deduce that if xk ≥ 0 and yk ≥ 0 then xk+1 ≥ 0 and yk+1 ≥ 0.
This concludes the proof.

We now analyze the asymptotic stability of the NSFD model (8). Note145

that the system (9) can be rewritten in the form

xk+1 = xk + ϕ1(∆t, xk, yk)
f1(xk, yk)

1 + ϕ1(∆t, xk, yk)(bxk + ag(xk)yk) + ϕ1(∆t, xk, yk)w1

,

yk+1 = yk + ϕ2(∆t, xk, yk)
f2(xk, yk)

1 + ϕ2(∆t, xk, yk)d+ ϕ2(∆t, xk, yk)w2

,

(10)

which implies that the sets of equilibria of the NSFD model (8) and the
continuous model (1) are identical. On the other hand, if E0 = (x∗

0, y
∗
0) is

an equilibrium point of the model (8), then it follows from (10) that the
Jacobian matrix of (8) evaluating at E0 is given by150

J
D

(E0) =


1 +

ϕ1(∆t, x∗
0 , y

∗
0 )JC

11(E0)

1 + ϕ1(∆t, x∗
0 , y

∗
0 )(bx∗

0 + ag(x∗
0)y

∗
0 ) + ϕ1(∆t, x∗

0 , y
∗
0 )w1

ϕ1(∆t, x∗
0 , y

∗
0 )JC

12(E0)

1 + ϕ1(∆t, x∗
0 , y

∗
0 )(bx∗

0 + ag(x∗
0)y

∗
0 ) + ϕ1(∆t, x∗

0 , y
∗
0 )w1

ϕ2(∆t, x∗
0 , y

∗
0 )JC

21(E0)

1 + ϕ2(∆t, x∗
0 , y

∗
0 )d + ϕ2(∆t, x∗

0 , y
∗
0 )w2

1 +
ϕ2(∆t, x∗

0 , y
∗
0 )JC

22(E0)

1 + ϕ2(∆t, x∗
0 , y

∗
0 )d + ϕ2(∆t, x∗

0 , y
∗
0 )w2

 ,

(11)

where JC = (JC
ij ) is the Jacobian of the continuous system (1) at the equi-

librium E0, that is,

JC(E0) =

b− 2bx∗
0 − ay∗0

(
x∗
0g

′(x∗
0) + g(x∗

0)
)

−ag(x∗
0)y

∗
0

y0
(
x∗
0g

′(x∗
0) + g(x∗

0)
)

g(x∗
0)x

∗
0 − d

 .

In this section, we always assume positive weights: w1, w2 ≥ 0. The
stability properties of the equilibrium points of the NSFD model (8) are
determined as follows.

Theorem 4 (Stability analysis for the equilibria of the discrete system).
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(i) The trivial equilibrium point E0 = (0, 0) is always unstable.155

(ii) If g(1) > d, then the boundary equilibrium point E1 = (1, 0) is unstable.

(iii) If g(1) < d, then the boundary equilibrium point E1 = (1, 0) is locally
asymptotically stable.

(iv) Suppose that the equilibrium point E∗ exists and b+ ay∗g′(x∗) > 0. Let
w1 and w2 be real numbers satisfying160

w1 ≥ w∗
1 := x∗ b+ ay∗g′(x∗)

2
,

w2 ≥ w∗
2 :=

ag(x∗)y∗(g(x∗) + x∗g′(x∗))

b+ ay∗g′(x∗)
.

(12)

Then, E∗ is locally asymptotically stable.

(v) If the equilibrium point E∗ exists and b + ay∗g′(x∗) < 0, then it is
unstable.

Proof. Proof of Part (i): We deduce from (11) that the Jacobian matrix
of the system (8) evaluated at trivial equilibrium point E0 = (0, 0) reads

JD(E0) =

(
1 + bϕ1(∆t, 0, 0) 0

0 1− dϕ2(∆t, 0, 0)

)
.

Consequently, JD(E0) has two eigenvalues λ1 = 1 + bϕ1(∆t, 0, 0) > 1 and
λ2 = 1− dϕ2(∆t, 0, 0). This implies that E0 is unstable.165

Proof of Part (ii): The Jacobian matrix of the system (8) JD evaluated
at E1 is given by

JD(E1) =


1− bϕ1(∆t, 1, 0)

1 + ϕ1(∆t, 1, 0)b+ ϕ1(∆t, 1, 0)w1
− ag(1)ϕ1(∆t, 1, 0)

1 + ϕ1(∆t, 1, 0)b+ ϕ1(∆t, 1, 0)w1

0 1 +
ϕ2(∆t, 1, 0)(g(1)− d)

1 + ϕ2(∆t, 1, 0)d+ ϕ2(∆t, 1, 0)w2

 .

Hence, two eigenvalues of JD(E1) are

λ1 = 1− bϕ1(∆t, 1, 0)

1 + ϕ1(∆t, 1, 0)b+ ϕ1(∆t, 1, 0)w1

,

λ2 = 1 +
ϕ2(∆t, 1, 0)(g(1)− d)

1 + ϕ2(∆t, 1, 0)d+ ϕ2(∆t, 1, 0)w2

.
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Hence, if g(1) > d then λ2 > 1, which implies that E1 is unstable.
Proof of Part (iii): It is easy to see that the first eigenvalue of JD(E1)
always satisfies λ1 ∈ (−1, 1). On the other hand, it follows from g(1) ≥ 0
and g(1)− d < 0 that λ2 ∈ (−1, 1). Thus, E1 is a stable equilibrium point.
Proof of Part (iv): We recall that the unique positive equilibrium point170

E∗ exists if and only if g(1) > d. The Jacobian matrix of the system (8) JD

at E∗ reads

J
D

(E
∗
) =


1 −

ϕ∗
1(∆t)x∗(b + ay∗g′(x∗))

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

−
ϕ∗
1(∆t)ag(x∗)x∗

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

ϕ∗
2(∆t)y∗(g(x∗) + x∗g′(x∗))

1 + ϕ∗
2(∆t)d + ϕ∗

2(∆t)w2

1

 , (13)

where ϕ∗
i (∆t) = ϕi(∆t, x∗, y∗) for i = 1, 2. The characteristic polynomial of

JD(E∗) is given by
λ2 − Tr(JD)λ+ det(JD). (14)

Next, by using Theorem 2, we conclude that E∗ is an asymptotically stable175

equilibrium point if

det(JD) < 1, 1−Tr(JD)+det(JD) > 0, 1+Tr(JD)+det(JD) > 0. (15)

We now show that all the conditions of (15) are satisfied. Indeed, it is easy
to see that for the determinant and the trace we have

det(JD) = 1− ϕ∗
1(∆t)x∗(b+ ay∗g′(x∗))

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

+
ϕ∗
1(∆t)ag(x∗)x∗

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

ϕ∗
2(∆t)y∗(g(x∗) + x∗g′(x∗))

1 + ϕ∗
2(∆t)d+ ϕ∗

2(∆t)w2

Tr(JD) = 2− ϕ∗
1(∆t)x∗(b+ ay∗g′(x∗))

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

.

(16)

Hence,

det(JD)− 1 = − ϕ∗
1(∆t)x∗(b+ ay∗g′(x∗))

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

+
ϕ∗
1(∆t)ag(x∗)x∗

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

ϕ∗
2(∆t)y∗(g(x∗) + x∗g′(x∗))

1 + ϕ∗
2(∆t)d+ ϕ∗

2(∆t)w2

,

(17)
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which implies that det(JD)− 1 < 0 if180

−w2x
∗(b+ ay∗g′(x∗)) + ax∗g(x∗)y∗(g(x∗) + x∗g′(x∗)) ≤ 0. (18)

It is clear that the inequality (18) is satisfied if

w2 ≥
ag(x∗)y∗(g(x∗) + x∗g′(x∗))

b+ ay∗g′(x∗)
. (19)

Next, by using (16) we obtain

1− Tr(JD) + det(JD)

=
ϕ∗
1(∆t)ag(x∗)x∗

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

ϕ∗
2(∆t)y∗(g(x∗) + x∗g′(x∗))

1 + ϕ∗
2(∆t)d+ ϕ∗

2(∆t)w2

> 0.

Lastly, since

1 + Tr(JD) + det(JD) = 4− 2
ϕ∗
1(∆t)x∗(b+ ay∗g′(x∗))

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

+
ϕ∗
1(∆t)ag(x∗)x∗

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

ϕ∗
2(∆t)y∗(g(x∗) + x∗g′(x∗))

1 + ϕ∗
2(∆t)d+ ϕ∗

2(∆t)w2

,

we deduce that 1 + Tr(JD) + det(JD) > 0 if

4− 2
ϕ∗
1(∆t)x∗(b+ ay∗g′(x∗))

1 + ϕ∗
1(∆t)(bx∗ + ag(x∗)y∗) + ϕ∗

1(∆t)w1

≥ 0. (20)

The above inequality (20) will be satisfied if

4w1 − 2x∗(b+ ay∗g′(x∗)) ≥ 0,

or equivalently,

w1 ≥ x∗ b+ ay∗g′(x∗)

2
. (21)

Combining (19) and (21), we conclude that if (12) holds then (15) is satisfied.
Consequently, we obtain the stability of E∗, which is the desired conclusion.185

Proof of part (v): We see from (17) that det(JD)−1 > 0 if b+ay∗g′(x∗) > 0,
or equivalently, det(JD) > 1. This implies that E∗ is unstable.
The proof is completed.
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Remark 3. From Theorem 4, we obtain the conditions for the NSFD model
(8) to be dynamically consistent with respect to the stability of the model (1).190

We now determine the conditions such that the NSFD scheme (8) is
convergent of order 2.

Theorem 5. Let ϕ1(∆t, x, y) and ϕ2(∆t, x, y) be functions satisfying the fol-
lowing conditions

∂2ϕ1

∂∆t2
(0, x, y) = 2(bx+ ag(x)y + w1) +

∂f1(x, y)

∂x
+

∂f1(x, y)

∂y

f2(x, y)

f1(x, y)
,

∂2ϕ2

∂∆t2
(0, x, y) = 2(d+ w2) +

∂f2(x, y)

∂x

f1(x, y)

f2(x, y)
+

∂f2(x, y)

∂y

(22)

for all (x, y) ≥ R2
+ and fi(x, y) ̸= 0 (i = 1, 2), where (f1(x, y), f2(x, y))

⊤ is195

the right-hand side function of the model (1). Then, the truncation error of
the NSFD method (8) is O(∆t3), i.e. the scheme is consistent of order 2.

Proof. First, using the Taylor’s expansion for the solution components x(t)
and y(t) we obtain

x(tk+1) = x(tk) + ∆tx′(tk) +
∆t2

2
x′′(tk) +O(∆t3)

= x(tk) + ∆tf1(x(tk), y(tk)) +
∆t2

2

∂f1(x(tk), y(tk))

∂t
+O(∆t3),

y(tk+1) = y(tk) + ∆ty′(tk) +
∆t2

2
y′′(tk) +O(∆t3)

= y(tk) + ∆tf2(x(tk), y(tk)) +
∆t2

2

∂f2(x(tk), y(tk))

∂t
+O(∆t3).

(23)

Let us denote by
(
F1(∆t, xk, yk), F2(∆t, xk, yk))

⊤ the right-side function of
the model (9) (or also (10)). It follows from (10) that

F1(0, x, y) = x,
∂F1(0, x, y)

∂∆t
= f1(x, y), (24)

∂2F1(0, x, y)

∂∆t2
= f1(x, y)

[
∂2ϕ1(0, x, y)

∂∆t2
− 2(bx+ ag(x)y + w1)

]
, (25)

F2(0, x, y) = y,
∂F2(0, x, y)

∂∆t
= f2(x, y), (26)

∂2F2(0, x, y)

∂∆t2
= f2(x, y)

[
∂2ϕ2(0, x, y)

∂∆t2
− 2(d+ w1)

]
. (27)
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Combining (24) with the Taylor expansion, we have that200

xk+1 = F1(∆t, xk, yk) = F1(0, x, y) + ∆t
∂F1(0, x, y)

∂∆t
+

∆t2

2

∂2F1(0, x, y)

∂∆t2
+O(∆t3),

= xk +∆tf1(xk, yk) +
∆t2

2
f1(xk, yk)[

∂2ϕ1(0, xk, yk)

∂∆t2
− 2(bxk + ag(xk)yk + w1)

]
+O(∆t3),

yk+1 = F2(∆t, xk, yk) = F2(0, x, y) + ∆t
∂F2(0, x, y)

∂∆t
+

∆t2

2

∂2F2(0, x, y)

∂∆t2
+O(∆t3),

= yk +∆tf2(xk, yk) +
∆t2

2
f2(xk, yk)

[
∂2ϕ2(0, xk, yk)

∂∆t2
− 2(d+ w2)

]
+O(∆t3).

(28)

Hence, we deduce from (23) and (28) that

xk+1 − x(tk+1) = O(∆t3), yk+1 − y(tk+1) = O(∆t3)

if (22) holds. This is the desired conclusion and the proof is complete.

The consistency is a local property of a one-step scheme like the NSFD
method (8). The following theorem that for one-step schemes the convergence
order follows from the consistency order is well-known.

Theorem 6. Let (x(t), y(t))⊤ be the solution of the initial value problem (1)205

with continuous right hand side f . Let a Lipschitz condition hold for the
second argument of the incremental function Φ∥∥∥Φ(t,(x1

y1

))
−Φ
(
t,

(
x2

y2

))∥∥∥ ≤ LD
∥∥∥(x1

y1

)
−
(
x2

y2

)∥∥∥, for all

(
x1

y1

)
,

(
x2

y2

)
∈ R2

+

(29)
where the incremental function Φ can be read from the NSFD scheme (10)

Φ
(
t,

(
x

y

))
=

( f1(x,y)
1+ϕ1(∆t,x,y)(bx+ag(x)y)+ϕ1(∆t,x,y)w1

f2(x,y)
1+ϕ2(∆t,x,y)d+ϕ2(∆t,x,y)w2

.

)
(30)

Then the convergence of the NSFD method (8) follows from its consistency
and the order of convergence equals the consistency order.210
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Remark 4. The system of conditions (22) can be expressed as follows

∂2ϕ1

∂∆t2
(0, x, y) = τ1(x, y) := ag(x)y + 2w1 + b− axyg′(x)− ag(x)(g(x)xy − dy)

b− bx− ag(x)y
,

∂2ϕ2

∂∆t2
(0, x, y) = τ2(x, y) := d+ 2w2 + xg(x)

+
(g(x) + xg′(x))(bx− bx2 − ag(x)xy)

xg(x)− d
.

(31)

Therefore, candidate functions ϕi can be chosen in the form

ϕi(∆t, x, y) =


eτi(x,y)∆t − 1

τi(x, y)
if τi(x, y) ̸= 0,

∆t if τi(x, y) = 0.

(32)

The functions ϕi in (32) satisfy not only (31) but also ϕi(∆t, x, y) = ∆t2 +
O(∆t2) as ∆t → 0 and ϕi(∆t, x, y) > 0 for all ∆t > 0, x ≥ 0, y ≥ 0.

Summarizing the results in this section, we obtain a second-order NSFD215

method that is dynamically consistent with the positivity and stability of the
continuous model (1).

Remark 5. Similarly to the arguments used in the proof of [8, Theorem 5.2]
(see [8, Appendix B]), we can prove that the NSFD method (8) under the
conditions of Theorem 5 is convergent of order 2.220

4. Numerical simulations

In this section, we report some illustrative numerical simulations to sup-
port the theoretical findings and demonstrate the advantages of the con-
structed NSFDmethod (8). To this end, as in [12], we consider the Rosenzweig-
MacArthur predator-prey system (1) with a Holling-type II predator func-225

tional response of the form xg(x) = x/(c + x). Consequently, the model (1)
becomes

dx

dt
= bx(1− x)− axy

c+ x
,

dy

dt
=

xy

c+ x
− dy.

(33)
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As shown in the numerical examples in [12, Section 5], the standard ex-
plicit Euler and Runge-Kutta second-order methods, as well as the modified
Patankar-Euler scheme, cannot preserve the positivity and stability of the230

model (33). In the following numerical examples, the NSFD method (8) is
directly compared with the methods constructed in [12] and [46] to show its
advantages.

Example 1 (The case g(1) < d). Let us consider the system (33) with the
following set of the parameters (see [12])

a = 2.0, b = 1.0, c = 0.5, d = 6.0, (x(0), y(0)) = (5, 2).

Since g(1) < d, the unique interior equilibrium point E∗ does not exists
and the boundary equilibrium point E1 = (1, 0) is asymptotically stable.235

We now apply the second-order NSFD (2ndNSFD) method (8) for solving
the system (33) and then, compute absolute errors at the time t = 1 and
estimate the rates of convergence by the formulas (see [4])

error = |x(tN)− xN |+ |y(tN)− yN |, N =
1

∆t
, tN = 1,

rate := log(∆t1/∆t2)

(
error(∆t1)

error(∆t2)

)
.

Since it is possible to find the exact solution in close form, we admit the nu-
merical solution obtained using a higher-order Runge-Kutta method, namely
the classical four-stage Runge-Kutta method with step size ∆t = 10−5, as
the reference solution. The errors and convergence rates of the 2ndNSFD
method (8) using w1 = w2 = 0, the PESN method [12, scheme (11)], and the240

NSFD method in [46] (1stNSFD method) are given in Table 1. In particular,
the errors of the models over the time interval [0, 1] with ∆t = 0, 1 are shown
in Figure 1.
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Figure 1: The errors versus time of the NSFD methods with ∆t = 0.1.

From the results in Table 1 and Figure 1, the 2ndNSFD method is conver-
gent with order 2, while the PESN method in [12] and the 1stNSFD method245

in [46] are convergent only with order 1. This is evidence supporting the
theoretical claims presented in Section 3.

Next, the 2ndNSFD method is used to simulate the model (1) over
a long time period, namely t ∈ [0, 100], and show its dynamical consis-
tency. Numerical solutions generated by the 2ndNSFD method using ∆t ∈250

{1.0, 0.1, 0.001} are sketched in Figures 2-4. In these figures, each blue
curve represents a phase plane corresponding to a particular initial value,
the green circle indicates the position of the boundary equilibrium point,
and the red arrows show the evolution of the predator-prey system. From
these figures, it is clear that the NSFD method preserves the dynamics of255

the predator-prey system regardless of the step sizes chosen. This is in com-
plete agreement with the theoretical results on the dynamic properties of the
NSFD method presented in Section 3.
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Figure 2: The phase planes generated by the second-order NSFD method using ∆t = 1.0.
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Figure 3: The phase planes generated by the second-order NSFD method using ∆t = 0.1.
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Figure 4: The phase planes generated by the second-order NSFD method using ∆t = 0.001.

Example 2 (The case when g(1) > d). In this example, we consider the
system (33) with the following set of the parameters (see [12])

a = 2.0, b = 1.0, c = 1.0, d = 0.2.

In this case, the model has a unique interior equilibrium point E∗ =
(1/4, 15/32), which is also asymptotically stable. We now apply the second-
order NSFD method (8) to solve the model (33) over the interval time [0, 100],
where the weights w1 and w2 are given by

w1 = 0.1 > w∗
1 := 0.05, w2 = 1.25 > w∗

2 := 1.20.

The obtained numerical results are presented in Figures 5-7, respectively. It
is clear the NSFD method correctly preserves the dynamics of the continuous260

model.
It is important to note that in both Examples 1 and 2, the behaviour

of the numerical solutions generated by the NSFD method is dependent of
the chosen step sizes. So, the dynamic consistency of the constructed NSFD
method is supported.265
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Figure 5: The phase planes in Example 2 provided by the second-order NSFD method
using ∆t = 1.0.
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Figure 6: The phase planes in Example 2 provided by the second-order NSFD method
using ∆t = 0.1.
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Figure 7: The phase planes in Example 2 provided by the second-order NSFD method
using ∆t = 0.001.

5. Remarks on generalized versions of the constructed NSFDmethod

In this section, we make some remarks on generalized versions of the
constructed NSFD method (8).

Dynamically consistent NSFD methods for predator-prey systems mod-
eled by two-dimensional dynamical systems have been intensively studied270

in recent decades due to the importance of mathematical models describing
predator-prey interactions (see, e.g. [5, 11, 12, 13, 38, 42]). In the following
paragraphs, we will show that the approach used to construct the second-
order NSFD method (8) can be extended for some classes of nonlinear dy-
namical systems.275

To describe how the NSFD method (8) can be extended for predator-
prey systems, we first consider a general predator-prey model with a general
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functional response of the form (see [13])

dx

dt
= p(x)− af(x, y)y, x(0) ≥ 0,

dy

dt
= f(x, y)y − µ(y), y(0) ≥ 0,

(34)

where

• x and y stand for the prey and predator population sizes, respectively;280

• p(x) and µ(y) describe the intrinsic growth rate of the prey and the
mortality rate of the predator, respectively;

• the function f(x, y) is called functional response” and represents the
per capita predator ”feeding rate” per unit time;

• a > 0 is the transformation rate constant, which represents the assim-285

ilation efficiency of the predator.

It is important to note that most of the scientific literature on predator-prey
models assumes that µ(y) = dy, where d > 0 (see [13]). Further details on the
model (34) can be found in [13]. It is worth noting that (34) is a generalization
of (1). Dimitrov and Kojouharov [13] have proposed and analyzed positive290

and elementary stable nonstandard (PESN) finite difference methods for the
model (34) in the case µ(y) = dy. These NSFD methods are of the form

xk+1 − xk

ϕ(∆t)
= p(xk)− ag(xk, yk)xk+1yk,

yk+1 − yk
ϕ(∆t)

= f(xk, yk)yk − dyk+1,
(35)

where g(x, y) = f(x, y)/x. However, it is easy to verify that the scheme (35)
is only convergent of order one.

Now, applying the approach used in Section 3, we obtain the following295

new NSFD model for (34)

xk+1 − xk

ϕ1(∆t, xk, yk)
= p(xk)− ag(xk, yk)xk+1yk + w1xk − w1xk+1,

yk+1 − yk
ϕ2(∆t, xk, yk)

= f(xk, yk)yk − dyk+1 + w2yk − w2yk+1.
(36)
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It is clear that (36) is a generalization of (35).
Using the techniques used in Section 3, it is possible to specify conditions

for the denominator functions ϕi and w1 and w2 such that the NSFD method
(36) is dynamically consistent and convergent of order 2, where the conditions300

for dynamic consistency and convergence of order 2 are set on (w1, w2) and
ϕi, respectively.

More generally, we consider a general class of two-dimensional differential
equations involving several models of population dynamics of the form (see
[8])305

dx

dt
= x(f+(x, y)− f−(x, y)), x(0) ≥ 0,

dy

dt
= y(g+(x, y)− g−(x, y)), y(0) ≥ 0,

(37)

where f+, f− and g+, g− are positive for all (x, y) ∈ R+×R+ and of class C1.
Cresson and Pierret [8] proposed the following first-order and dynamically
consistent NSFD method for (37)

xk+1 − xk

ϕ(∆t)
= xkf+(xk, yk)− xk+1f−(xk, yk),

yk+1 − yk
ϕ(∆t)

= ykg+(xk, yk)− yk+1g−(xk, yk).
(38)

Using the approach in Section 3, we obtain the following NSFD method for
(37)310

xk+1 − xk

ϕ1(∆t, xk, yk)
= xkf+(xk, yk)− xk+1f−(xk, yk) + w1xk − w2xk+1,

yk+1 − yk
ϕ2(∆t, xk, yk)

= ykg+(xk, yk)− yk+1g−(xk, yk) + w2yk − w2yk+1.
(39)

The NSFD method (39) not only generalizes (38), but can also be dynami-
cally consistent and convergent of order 2.

Before ending this section, we consider general autonomous dynamical
systems of the following form

dyi(t)

dt
= Fi(y1(t), y2(t), . . . , yn(t)), yi(0) = yi,0 ≥ 0, 1 ≤ i ≤ n (40)
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under the hypothesis that the model (40) admits the set Rn
+ as a positively315

invariant set, i.e., yi(t) ≥ 0 for all t > 0 if yi,0 ≥ 0 for i = 1, 2, . . . , n. This is
equivalent to (see [25, Lemma 1] or [43, Proposition B.7])

Fi(y1, y2, . . . , yi−1, 0, yi+1, . . . , yn) ≥ 0, i = 1, 2, . . . , n, (41)

for all y1, y2, . . . , yi−1, yi+1, . . . , yn ≥ 0. It follows from the condition (41) that
the model (40) can be always represented in the form (see [9, 37])

dyi(t)

dt
= fi(y(t))− yigi(y(t)), 1 ≤ i ≤ n, (42)

where y = (y1, y2, . . . , yn) and fi and gi are functions satisfy fi(y), gi(y) ≥ 0320

for all y ≥ 0.
By extending the NSFD method (8), we propose the following NSFD

method for (42)

yi,k+1 − yi,k
ϕi(∆t, yk)

= fi(yk)− yi,k+1gi(yk) + wiyi,k − wiyi,k+1, (43)

where ϕi are denominator functions; wi are weights and yi,k ≈ yi(tk). Then,
a dynamically consistent NSFD method of second-order for (42) can be ob-325

tained by determining suitable conditions for ϕi and wi in (43).

6. Concluding remarks and discussions

As the main conclusion of this work, we have presented a simple ap-
proach to construct a dynamically consistent second-order NSFD method
for a general Rosenzweig-MacArthur predator-prey model with logistic in-330

trinsic growth of the prey population. The second-order NSFD method was
constructed based on a novel nonlocal approximation using right-hand side
function weights and nonstandard denominator functions.

We have also shown that the NSFD method not only preserves two impor-
tant and prominent dynamical properties of the continuous model, namely335

positivity and asymptotic stability independent of the values of the step size,
but also is convergent of order 2. Therefore, it provides a solution to the
contradiction between the dynamic consistency and high-order accuracy of
NSFD methods.

The proposed NSFD method improves the non-standard numerical meth-340

ods constructed in [13]. Moreover, the present approach can be extended to
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construct second-order NSFD methods for some classes of nonlinear dynam-
ical systems encountered in real applications.

In the near future, we will extend the approach and the results obtained to
study the construction of dynamically consistent higher-order NSFD methods345

for differential equations. In particular, generalized versions of the second-
order NSFD method (8), discussed in Section 5, will be intensively studied.
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