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1. Introduction1

Many practical problems, e.g. in quantitative finance, stochastic con-2

trol and quantum physics, can be modeled by partial differential equations3

(PDEs) which in most cases do not admit analytical solutions. Thus, it4

is inevitable to approximate the solutions of the PDEs by numerical meth-5

ods, such as finite differences, finite elements, finite volumes, radial basis6

functions, etc. Besides stability issues, the user is also concerned with the7

efficiency of the numerical method, i.e. the relation of achieved accuracy to8

the required computation time.9

In recent years, there has been an increased interest in solving PDEs us-10

ing Deep Learning, see e.g. [1, 2, 3, 4, 5, 6, 7]. This interest was mainly due11

to the availability of new generations of computers and a major challenge12

that applies to all grid-based solution methods: the curse of dimensional-13

ity, which very often occurs e.g in portfolio optimization, where the spatial14

dimension corresponds to the number of assets. We refer the reader to [2]15

for further information on deep neural networks (DNNs) methods for solving16

PDEs in high-dimensions. On the other hand, DNN-based PDE solvers gen-17

erally cannot compete with classical numerical solution techniques in lower18

dimensions - since solving the highly nonlinear optimization problems in the19

training phase is too costly.20

In addition, neural networks have a compositional structure that provides21

new approximations for highly nonlinear functions, and that in some ways22

complements conventional linear, additive forms of basis functions, e.g., in23

finite element methods. However, exactly this flexibility of DNNs as a uni-24

versal approximation method comes at the expense of a large number of25

parameters (’hyperparameters’) that need to be determined during the su-26

pervised learning phase. Also, often machine learning based solver still lack27

mathematical foundations, e.g. a detailed error analysis that exists for most28

of the classical numerical schemes.29

Consequently, in this direction, current research has focused on the hy-30

bridization of methods, i.e. the combination of traditional numerical methods31

and DNNs-based approaches in order to further enhance the classical schemes32

with respect to their efficiency. Let us briefly review some recent develop-33

ments in the field of numerical solution of linear and nonlinear PDEs using34

machine learning techniques.35

Sirignano and Spiliopoulos [8] proposed a combination of Galerkin meth-36

ods and DNNs, which they call ”Deep Galerkin Method (DGM)”, to solve37
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high-dimensional PDEs. The DGM algorithm is meshfree to cope with the38

curse of dimensionality and is somewhat similar to Galerkin methods, with39

the solution approximated by a neural network instead of a linear combina-40

tion of basis functions. In this direction, E and Yu [9] presented the ”Deep41

Ritz Method (DRM)” for numerically solving variational problems in high42

dimensions. Also, He, Li, Xu and Zheng [10] theoretically analyzed the re-43

lationship between DNN with rectified linear unit (ReLU) function as the44

activation function and the finite element method (FEM). For the proper45

treatment of the boundary conditions, see [11].46

In 2019, Raissi, Perdikaris, and Karniadakis [3] introduced ”physics-47

informed neural networks (PINNs)”, a deep-learning framework for syner-48

gistically combining mathematical models and data that has found a variety49

of applications to date. PINNs compute approximate solutions to PDEs by50

training a neural network to minimize a loss function consisting of terms51

representing the mismatch of initial and boundary conditions and the PDE52

residual at chosen points in the interior domain. Later in 2021 Ramabathiran53

and Ramachandran [12] proposed the ”sparse, physics-based, and partially54

interpretable neural network (SPINN)” model for solving PDEs, which is a55

new class of hybrid algorithms between PINNs and traditional mesh-free nu-56

merical methods. The authors also proposed a hybrid finite difference and57

SPINN method called FD-SPINN, where the (explicit or implicit) tempo-58

ral discretization is done using conventional finite difference methods and59

the spatial discretization is implemented at each time step using the SPINN60

approach, i.e. the spatial derivatives are handled exactly by automatic dif-61

ferentiation [13].62

Long, Lu and Dong [14] proposed PDE-Net to predict the dynamics of63

complex systems. The underlying PDEs can be discovered from the ob-64

servational data by making the connections between convolution kernels in65

convolutional neural networks (CNNs) and differential operators. Based on66

the integral form of the underlying dynamical system, Qin, Wu, and Xiu67

[15] considered the ResNet block as a single-stage method and the recurrent68

ResNet and recursive ResNet as multi-stage methods. Wu and Xiu [16] ap-69

proximated the evolution operator by a ResNet to solve and recover unknown70

time-dependent PDEs.71

Wang, Shen, Long and Dong [17] used reinforcement learning to empower72

Weighted Essentially Non-Oscillatory (WENO) schemes to solve 1D scalar73

conservation laws. In the works [18, 19, 20], the authors have presented74

a machine learning based approach to further improve the WENO method75
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leading to better approximations of numerical solutions with shocks.76

This motivates us to propose new finite difference methods (FDMs) in77

combination with DNNs. We refer to the new method as the deep finite78

difference methods (DFDMs). Like some other DNN models, DFDM also79

learns its representation through supervised pre-training. After the neural80

network is satisfactorily trained, it is post-processed to predict the solution81

of the PDE. Let us emphasize that we explicitly capture information about82

the local truncation error of the FDM instead of directly approaching the83

solution of the PDE. To the best of our knowledge, this is the first work84

in which Deep Learning is used to approximate the discretization error in85

solving PDEs.86

In [21] Shen, Cheng and Liang propose a Deep Learning-based algorithm87

for solving ordinary differential equations (ODEs) based on an approximation88

of the local truncation error of the Euler scheme, see also [22, 23] for related89

hypersolver approaches. The basic idea of this method is to augment an90

ODE solver with a neural network in order to achieve higher accuracy with91

respect to the time discretization.92

While the approximation of the local truncation error is also the core of93

our method, our approach has several significant differences to [21], which94

we briefly summarize in the sequel. First, unlike [21], we use the idea of ap-95

proximating the local truncation error for solving PDEs rather than ODEs.96

Moreover, we use a different neural network structure, namely a very small97

CNN, to ensure time efficiency. In [21], a multi-layer fully connected neural98

network with 8 layers and 80 neurons is used. In our approach, the neu-99

ral network is trained for a class of PDE problems. The trained method is100

then applicable to a range of different initial conditions and PDE parame-101

terizations. In [21], the neural network is trained only for a particular ODE102

problem with a fixed initial condition and for different discretizations. We103

show that our method generalizes well to different discretizations without104

the need for retraining. Finally, in [21], the input to the neural network is105

formed by solving the standard Euler method from the previous time step106

and using the points that define the time discretization. While we also use107

the solution from the previous time step as input, we always compute it dur-108

ing the training step, taking into account the influence of the neural network109

itself. By using CNN, the spatial neighborhood from the previous time step110

is also part of the input.111

The main advantages of the proposed scheme are that the scheme remains112

convergent and consistent. Although we improve the standard finite differ-113
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ence method (FDM) and compact finite difference method (CFDM), this114

approach can be easily extended to any traditional numerical scheme. The115

method is straightforward and very easy to implement. Finally, as a proof116

of concept, we present some examples and show that the method remains117

time efficient in most cases despite the addition of the rather small neural118

network.119

The paper is organized as follows. In Section 2, we present the stan-120

dard FDM approach in detail and explain our deep learning approach that121

improves the FDM. In Section 3, we introduce the compact FDM and ap-122

ply our deep learning algorithm to it. In Section 4, we explain the training123

procedure. Then, in Section 5, we present our numerical results, which are124

illustrated with tables and figures. Finally, we conclude our work in Section 6.125

2. Finite Difference Schemes126

Let us consider a (parabolic) PDE of the form127

∂u

∂t
=

d∑
i,j=1

αij(x)
∂2u

∂xi∂xj

+
d∑

i=1

βi(x)
∂u

∂xi

+ γ(x)u, (x, t) ∈ Ωd × [0, T ],

u(x, 0) = u0(x),

(1)

with the coefficients αij, βi, γ : Ωd ⊆ Rd → R, i, j = 1, . . . , d, where x =128

(x1, . . . , xd) ∈ Ωd and d denotes the space dimension. We start with the129

simple one-dimensional case where the PDE (1) reduces to130

∂u

∂t
= α(x)

∂2u

∂x2
+ β(x)

∂u

∂x
+ γ(x)u, (x, t) ∈ Ω1 × [0, T ],

u(x, 0) = u0(x).
(2)

We select the 1D spatial domain Ω1 = [a, b] and introduce a uniform grid131

defined by the points xi = x0 + i∆x, i = 0, 1, . . . , I. The time domain [0, T ]132

is discretized uniformly by the points tn = t0 + n∆t, n = 0, 1, . . . , N . Let us133

emphasize that uniform grids are considered for simplicity only, our approach134

can also be applied to nonuniform grids. Let un
i = u(xi, tn) be the value of135

the exact solution at the grid point (xi, tn) and ûn
i be the corresponding136

numerical approximation.137

The simplest numerical approximation of un
i can be performed by the138

finite difference method. The well-known second order central approximation139
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to the second derivative is given by140

∂2u

∂x2

∣∣∣
xi

=
u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

∆x2
− ∆x2

12

∂4u

∂x4

∣∣∣
xi

+O(∆x3), (3)

for u ∈ C4(Ω1) and the central approximation to the first derivative reads

∂u

∂x

∣∣∣
xi

=
u(xi+1, t)− u(xi−1, t)

2∆x
− ∆x2

6

∂3u

∂x3

∣∣∣
xi

+O(∆x3), (4)

for u ∈ C3(Ω1). It can be seen, that the local discretization error ϵ2 =141

O(∆x2) and ϵ1 = O(∆x2) is of the second order for both schemes (3) and142

(4), respectively.143

In our work, we propose a deep learning algorithm to improve the accu-144

racy of the above finite difference approximations. To this end, we introduce145

a neural network trained to approximate the local discretization error ϵ1 and146

ϵ2 such that the final numerical approximation ûn
i is improved. Let us ab-147

breviate our resulting new deep learning finite difference method as DFDM.148

The further details of this method will be discussed in the next section.149

Deep Learning used to approximate the FDM discretization error150

To ensure the spatial invariance of the proposed scheme and because of151

its computational efficiency, we use the convolutional neural network (CNN).152

Let F (·), G(·) : R2k+1 → R be the functions of the CNN, where 2k + 1 is the153

size of the receptive field (RF) of the CNN. The RF represents the region of154

the input that affects a particular single element of an output of the CNN155

[24].156

For the temporal discretization, we consider for simplicity the forward157

Euler scheme, but any other method for solving ODEs could also be used.158

Now, we discretize the PDE (2) using (3), (4) and adding the neural network159

function terms F (ūn
i ), G(ūn

i ). This leads to the following deep FDM ansatz160

ûn+1
i = ûn

i +∆t
[
α(xi)

( ûn
i+1 − 2ûn

i + ûn
i−1

∆x2
+∆x2F (ūn

i )
)

+ β(xi)
( ûn

i+1 − ûn
i−1

2∆x
+∆x2G(ūn

i )
)
+ γ(xi) û

n
i

]
,

(5)

where ūn
i = ūn(x̄i) = (ûn(xi−k), . . . , û

n(xi+k)) = (ûn
i−k, . . . , û

n
i+k) is the input161

to the neural network. When applying a CNN kernel to compute F (ūn
i )162

and G(ūn
i ), under the RF we understand the local neighborhood of ûn(xi)163
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representing input for this computation. For example, if the kernel size of164

the input CNN layer is 3, the RF of the output of that layer is 3 and k = 1165

in this case.166

Let us note that the functions F (ūn
i ) and G(ūn

i ) can share some layers or
be represented by the same CNN with two outputs. We train the CNN to
fulfill the following approximations:

F (ūn
i ) ≈

1

∆x2
ϵ2, G(ūn

i ) ≈
1

∆x2
ϵ1.

and
F (ūn

i ) = G(ūn
i ) = O(1).

The convergence and consistency properties of the standard FDM are pre-167

served. This is ensured due to multiplication of the neural network functions168

with the step size ∆x2 as in (5). Moreover, the values of the neural network169

functions have to be bounded, which we will ensure using bounded activation170

function (such as tanh) in the last CNN layer.171

The lowest order terms of discretization errors of (3), (4) can be elimi-172

nated by using appropriate difference quotients for these error terms without173

enlarging the underlying stencil of the scheme. The resulting FDMs of this174

approach are called ’compact’ and will be the topic of the next section.175

3. Compact Finite Difference Schemes176

Let us consider as benchmark a heat equation of the form177

∂u

∂t
= α

∂2u

∂x2
(x, t) ∈ Ω1 × [0, T ],

u(x, 0) = u0(x),
(6)

with α > 0. We select again the spatial domain Ω1 = [a, b] with a uniform178

grid defined by the points xi = x0 + i∆x, i = 0, 1, . . . , I. The time domain179

[0, T ] is discretized uniformly by the points tn = t0 + n∆t, n = 0, 1, . . . , N .180

To approximate the solution un
i we consider now compact finite difference181

methods (CFDMs). The basic idea of these schemes is to further improve182

the accuracy of traditional FDMs by approximating the lowest order error183

term by an appropriate difference quotient, without enlarging the stencil184
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dimensions, cf. [25]. For example, the second derivative can be implicitly185

computed using the fourth-order compact scheme186

1

10
u

′′

i+1 + u
′′

i +
1

10
u

′′

i−1 =
1

∆x2

(6
5
ui+1 −

12

5
ui +

6

5
ui−1

)
+O(∆x4). (7)

Here, the discretization error fulfills ϵ = O(∆x4) for u ∈ C6(Ω1).187

Deep Learning used to approximate the CFDM discretization error188

We describe in this section how our proposed algorithm can be easily189

generalized to any other standard numerical scheme. We again consider the190

CNN and add properly the neural network function term to the discretization191

of the PDE (6). Here, we use for the time discretization the trapezoidal rule,192

which is second order in time:193

ûn+1 − ûn

∆t
=

1

2
α
(
û

′′n+1 + û
′′n
)
+∆x4F (ûn), (8)

where F (ûn) is a vector with elements F (ûn)i = F (ūn
i ) with ūn

i = ūn(x̄i) =
(ûn(xi−k), . . . , û

n(xi+k)) = (ûn
i−k, . . . , û

n
i+k) being the input to the CNN with

the size of a receptive field 2k + 1. The factor ∆x4 will be explained at the
end of this section. Then, using the discretization scheme (7) and defining
the matrices A, B as

A =



1 1
10

0 · · · · · · · · · · · · 0
1
10

1 1
10

. . .
...

0 1
10

1 1
10

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . 1

10
1 1

10
0

...
. . . 1

10
1 1

10

0 · · · · · · · · · · · · 0 1
10

1


, B = 1

∆x2



−12
5

6
5

0 · · · · · · · · · · · · 0
6
5
−12

5
6
5

. . .
...

0 6
5
−12

5
6
5

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . 6

5
−12

5
6
5

0
...

. . . 6
5
−12

5
6
5

0 · · · · · · · · · · · · 0 6
5
−12

5


we obtain194

2ûn+1−α∆tA−1(Bûn+1+c) = 2ûn+α∆tA−1(Bûn+d)+2∆x4∆tF (ûn), (9)

where the vectors c and d represent the boundary conditions for the time195

steps n+ 1 and n respectively. Using basic matrix operations we obtain196

(2A− α∆tB)ûn+1 = (2A+ α∆tB)ûn + α∆t(c+ d) + 2A∆x4∆tF (ûn). (10)
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In this case the neural network function is trained to approximate the dis-
cretization error of the method such that it holds

F (ūn
i ) ≈

1

∆x4
ϵ and F (ūn

i ) = O(1).

Again, the multiplication of the neural network function F (·) with ∆x4 en-197

sures the fourth order of the enhanced compact scheme, assuming that the198

neural network output is bounded. This will be again ensured using bounded199

activation functions in the last CNN layer. Accordingly, we abbreviate our200

deep learning compact finite difference method as DCFDM.201

4. Training procedure202

In this section, we describe how the training of the CNN is performed. In203

our experiments, we use the CNN with only two layers, the input layer and204

the output layer. The kernel size and the number of channels can be found205

in Figure 1. This small neural network with a small number of channels206

ensures numerical efficiency of the resulting hybrid scheme. In a case where207

the equation contains both a diffusion and a convection term, we use the208

same neural network to compute the functions F (ūi) and G(ūi) from (5).209

These are then represented as two output channels of the neural network,210

where the first output channel represents the correction of a diffusion term211

and the second output channel represents the correction of a convection term.212

In the two-dimensional example, a two-dimensional CNN is used.213

At the beginning of the training procedure, the weights of the CNN are214

initialized randomly. Then, a problem is randomly selected from the dataset.215

The discrete computational domain is divided into I×N steps (I×J×N for216

two-dimensional problems), where I, J are the number of space steps in x,217

y direction and N is the number of time steps. We compute the solution up218

to a fixed final time T . After each time step n, we predict the discretization219

error, compute the loss and its gradient with respect to the weights of the220

CNN, update the weights, and proceed to the next time level n+ 1. At this221

new time step, a new updated solution according to (5) is the input to the222

CNN. For the optimization of the loss function we use the Adam optimizer223

[26], where the learning rate is set separately for each PDE. For the training224

procedure, we use the mean squared error loss function, defined as225

LOSSMSE(u) =
1

I

I∑
i=0

(ûn
i − un,ref

i )2, (11)
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where ûn
i is a numerical approximation of u(xi, tn) obtained using DFDM,226

resp. DCFDM and un,ref
i denotes the corresponding reference solution. If the227

exact solution is available, this is used as the reference solution. Otherwise,228

the reference solution is calculated on a very fine grid. For the implemen-229

tation we use Python with the library PyTorch [27]. We summarize the230

training procedure and the implementation of DFDM in Algorithm 1. The231

training procedure results in a new numerical scheme, which is then generally232

applicable for a wide class of PDEs.233

Algorithm 1 DFDM training procedure

for l← 0 to L do ▷ L: the total number of training cycles
⋄ choose a new problem from a data set with randomly generated initial

condition parameters and/or randomly generated PDE coefficients
⋄ use fixed final time T , spatial and temporal discretization
for n← 0 to N do ▷ N: the total number of time steps
⋄ Input: Solution ûn at time tn
⋄ evaluation of CNN: Output: discretization error approximation

F (ûn) or approximations F (ûn), G(ûn)
⋄ use the equations (5), resp. (10) and compute the solution ap-

proximation ûn+1 at time tn+1

⋄ compute loss using equation (11)
⋄ compute loss gradient with respects to the weights of CNN
⋄ update weights using chosen optimizer

end for
⋄ testing on validation problems

end for

5. Numerical Examples234

In this section we present our results on a few numerical examples. We235

provide a detailed comparison of our method with the standard FDM on236

tables and figures. In all provided tables, we denote as “ratio” the error of237

the FDM divided by the error of DFDM (rounded to 2 decimal points).238

5.1. One-dimensional heat equation239

As an introductory example we use the one-dimensional heat equation240

ut = uxx, u(x, 0) = c+ a sin(bπx), −π ≤ x ≤ π, 0 ≤ t ≤ T. (12)
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The exact solution for this example is241

u(x, t) = c+ a e(−b2π2t) sin(bπx) (13)

and we take the boundary conditions from the exact solution for this case.242

We proceed during the training as described in Section 4 and specify the243

learning rate for the Adam optimizer as lr = 0.00001. In a point, where a244

new problem from a data set should be chosen, we generate the parameters245

a, b and c randomly such that246

a ∈ U [1, 2], b ∈ U [0.3, 0.5], c ∈ U [0, 0.25]. (14)

We fix the final time T = 0.25 for each training cycle. As training cycle we247

denote a sequence of training steps performed on a solution for an unique248

problem with randomly chosen parameters a, b and c until the final time249

T . Then we test the trained model on a validation set, which contains the250

problems with the parameters not included in the training set. During the251

training we fix the spatial discretization and divide the spatial domain into252

I = 100 steps. For the temporal discretization we use the relation ∆t =253

0.5∆x2, i.e. the parabolic mesh ration λ = ∆t/∆x2 is set to 0.5.254

We show the evolution of the loss function on the validation set in Fig-255

ure 2. We run the training for 800 training cycles. Experimentally we found256

out that the additional training would not improve results anymore. We257

performed 10 independent trainings and present the results of the training258

showing the best performance on the validation set. However, let us note,259

that all trainings have led to a very similar loss evolution. We rescale the260

loss values for each validation problem to be in the interval [0, 1] using the261

relation262

LOSSadjusted =
LOSSl

MSE(u)

maxj(LOSSl
MSE(u))

, l = 0, . . . , L, (15)

where L denotes the total number of training cycles.263

We see that for some initial-value problems the method performs signifi-264

cantly better than for another ones. We choose our model based on validation265

set of problem. For each of these problems we compute after each training266

cycle a standard FDM solution and the improvement ratio, defined as the267

error of the FDM divided by the error of the DFDM. Finally, we choose the268

model from the training cycle in which the 30% quantile across the improve-269

ment ratios of validation problems reaches its maximum. In our case, we took270

12
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Figure 2: The values of (15) for different validation problems at different training cycles
for Example 5.1.

a model obtained after the 685. training cycle and by getting rid of a few271

problems with a poor improvement we ensure that 70% validation problems272

have the improvement ratio 3.27 or bigger. Let us note, that in all presented273

examples, the same decision rule based on 30% quantile will be used.274

We present the numerical results on problems from the test set for various275

final times T . These were neither in the training set, nor in the validation set.276

The Figure 3 illustrates the solution for two different initial value parameters277

choices. We see, that the method performs well also on the set of parameters278

a, b, c outside of the training interval. In Table 1 we can see the significant279

improvement on the errors.280

Furthermore, we analyze the computational cost of our method and com-281

pare it in Figures 4. We see, that on 7 of 10 examples the DFDM outperforms282

the standard method. Let us emphasize, that we did not retrain the method283

for different spatial discretizations.284

Next we retrain the neural network for the following diffusion-convection285

equation286

ut = αuxx − βux, u(x, 0) = c+ a sin(bπx), 0 ≤ x ≤ 2π, 0 ≤ t ≤ T,
(16)

where in addition to parameters from (14) also the parameters α ∈ U [1, 2]287

and β ∈ U [1, 2] are chosen randomly during the training and testing. The288

training is performed as described before and we choose the learning rate289

lr = 0.0001. The CNN structure can be found in Figure 1b and we run290

the training for 4000 training cycles. We present in Table 2 the results for291
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parameters L∞ L2

a b c FDM DFDM ratio FDM DFDM ratio

1.88 0.32 0.12 0.000245 0.000353 0.69 0.000433 0.000577 0.75
1.31 0.4 0.12 0.000362 0.000033 11.01 0.000579 0.000049 11.73
1.15 0.43 0.15 0.000398 0.000075 5.31 0.000616 0.000104 5.92
1.95 0.42 0.16 0.000628 0.000179 3.51 0.000981 0.000208 4.71
1.74 0.38 0.02 0.000406 0.000090 4.52 0.000669 0.000151 4.44
1.32 0.41 0.17 0.000394 0.000034 11.74 0.000623 0.000035 17.73
1.43 0.35 0.21 0.000254 0.000239 1.06 0.000435 0.000357 1.22
1.83 0.48 0.078 0.000880 0.000467 1.88 0.001330 0.000688 1.93
1.56 0.39 0.14 0.000396 0.000073 5.47 0.000644 0.000096 6.71
1.53 0.43 0.018 0.000530 0.000151 3.50 0.000820 0.000216 3.79

(a) T = 0.25

parameters L∞ L2

a b c FDM DFDM ratio FDM DFDM ratio

1.88 0.32 0.12 0.000380 0.000577 0.66 0.000673 0.000956 0.70
1.31 0.4 0.12 0.000496 0.000072 6.89 0.000817 0.000107 7.65
1.15 0.43 0.15 0.000515 0.000082 6.28 0.000816 0.000121 6.76
1.95 0.42 0.16 0.000828 0.000175 4.74 0.001330 0.000219 6.07
1.74 0.38 0.02 0.000578 0.000190 3.04 0.000975 0.000294 3.32
1.32 0.41 0.17 0.000530 0.000025 21.15 0.000863 0.000034 25.05
1.43 0.35 0.21 0.000379 0.000385 0.98 0.000658 0.000579 1.14
1.83 0.48 0.078 0.001015 0.000535 1.90 0.001518 0.000751 2.02
1.56 0.39 0.14 0.000555 0.000114 4.86 0.000925 0.000173 5.36
1.53 0.43 0.018 0.000685 0.000230 2.98 0.001085 0.000316 3.44

(b) T = 0.5

Table 1: Comparison of L∞ and L2 error of FDM and DFDM methods for the solution of
the heat equation with various parameters a, b, c and T , I = 100.

different parametrizations of the PDE and the initial condition (16).292

5.2. European Call Option293

We apply our method also to a problem from computational finance,294

namely to the option pricing problem. Let us consider the Black-Scholes295

equation296

Vt +
1

2
σ2S2VSS + rSVS − rV = 0, S ∈ [0,∞), t ∈ [0, T ], (17)

where S is the price of an underlying asset at time t, r > 0 is the riskless297

interest rate and σ2 is the volatility. In this paper, we solve the European call298

14



3 2 1 0 1 2 3
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u
FDM
DFDM
exact sol.

(a) Initial condition with a = 1.32, b = 0.41,
c = 0.17. (Parameters in the training interval.)

3 2 1 0 1 2 3
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

FDM
DFDM
exact sol.

(b) Initial condition with a = 2.2, b = 0.7,
c = 0.3. (Parameters outside of the training
interval.)

Figure 3: Comparison of the FDM and DFDM methods for the solution of the heat
equation, I = 100, T = 0.25.

option pricing problem with the following terminal and boundary conditions:299

V (S, T ) = max{0, S −K} =: (S −K)+,

V (S, t)→ 0, for S → 0, V (S, t)→ S −Ke−r(T−t), for S →∞,

(18)

with K being the strike price. We use the following transformation of vari-300

ables that exploits the Euler structure of the spatial operator in (17) and301

also reverses the time direction:302

S = Kex, τ = T − t, V (S, t) = Ku(x, τ) (19)

and substitute this into (17) and (18). Then we obtain the (forward-in-time)303

PDE:304

uτ =
σ2

2
uxx +

(
r − σ2

2

)
ux − ru, x ∈ R, 0 ≤ τ ≤ T. (20)

For the training, we generate randomly the parameters305

σ ∈ U [0.4, 0.6], r ∈ U [0.1, 0.3]. (21)

Further, we set K = 80, T = 1 and divide the computational domain306

[xL, xR] = [−2, 1.5] into 50 space steps and use the temporal step size307

∆τ = 0.8∆x2/σ2.308
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Figure 4: Comparison of computational cost against L2-error of the solution of the heat
equation with various parameters a, b and c according to Table 1. T = 0.25.

During training we use the neural network structure as in Figure 1b.309

We use the learning rate lr = 0.0001 and run the training for 4000 training310

cycles with fixed final time T = 1. Figure 5 shows the evolution of the loss311

function. Using the same decision rule for the best model as in Example 5.1312

we choose the model obtained after the 1532. training cycle. Numerical313

results on problems from the test set can be found in Table 3.314

5.3. Two-dimensional heat equation315

Here we extend the example from the Section 5.1 to two space dimensions.
We solve the following two-dimensional heat equation

ut = uxx + uyy,

u(x, 0) = c+ a sin(bπx) + d sin(eπy), −π ≤ x, y ≤ π, 0 ≤ t ≤ T.
(22)
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parameters L∞ L2

α β a b c FDM DFDM ratio FDM DFDM ratio

1.05 1.12 1.08 0.36 0.15 0.000297 0.000123 2.41 0.000465 0.000168 2.76
1.17 1.51 1.12 0.48 0.04 0.000692 0.000200 3.47 0.001043 0.000292 3.57
1.24 1.46 1.51 0.35 0.05 0.000507 0.000160 3.18 0.000774 0.000197 3.92
1.32 1.17 1.69 0.48 0.18 0.000789 0.000324 2.44 0.001243 0.000523 2.38
1.48 1.81 1.78 0.34 0.04 0.000673 0.000203 3.31 0.000991 0.000264 3.75
1.51 1.68 1.21 0.47 0.1 0.000667 0.000188 3.55 0.001033 0.000308 3.35
1.6 1.72 1.75 0.39 0.08 0.000709 0.000047 15.01 0.001112 0.000061 18.16
1.72 1.24 1.9 0.45 0.16 0.000751 0.000210 3.58 0.001222 0.000342 3.58
1.84 1.36 1.32 0.38 0.21 0.000378 0.000108 3.51 0.000560 0.000166 3.37
1.96 1.91 1.41 0.43 0.17 0.000633 0.000107 5.93 0.001009 0.000159 6.33

Table 2: Comparison of L∞ and L2 error of FDM and DFDM methods for the solution
of the diffusion-convection equation (16) with various parameters α, β, a, b, c, I = 100,
T = 0.25.

For a training we again generate randomly the following parameters

a ∈ U [1, 2], b ∈ U [0.3, 0.5], c ∈ U [0, 0.25] d ∈ U [1, 2], e ∈ U [0.3, 0.5]

and fix the final time T = 0.25 and the uniform spatial discretization I×J =316

50 × 50 for each training cycle. In this case we use two-dimensional CNN317

with the parameters which can be found in Figure 1c. As one can see, we318

only use very small CNNs with only one input layer and output layer and319

with only one channel in each layer. We set the learning rate for the Adam320

optimizer lr = 0.00005. Training is performed as described before in the one-321

dimensional example and we run it for 3000 training cycles. We again choose322

the model with the best performance on the validation set as described in323

Example 5.1 and present the numerical results on problems from the test set324

in Table 4 and in Figure 6.325

5.4. One-dimensional heat equation with deep compact finite difference method326

In the last example we apply the DCFDM to the 1D heat equation327

ut = αuxx, u(x, 0) = c+ a sin(bπx), −π ≤ x ≤ π, 0 ≤ t ≤ T. (23)

During training and testing the parameters α, a, b and c are chosen randomly328

such that329

α ∈ U [1, 2], a ∈ U [1, 2], b ∈ U [0.3, 0.5], c ∈ U [0, 0.25]. (24)
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Figure 5: The values of (15) for different validation problems at different training cycles
for Example 5.2.

parameters L∞ L2

σ r FDM DFDM ratio FDM DFDM ratio

0.48 0.17 0.000682 0.000138 4.95 0.000655 0.000128 5.13
0.59 0.21 0.000629 0.000590 1.07 0.000664 0.000291 2.28
0.49 0.19 0.000707 0.000157 4.50 0.000705 0.000141 5.00
0.55 0.18 0.000611 0.000324 1.89 0.000607 0.000179 3.39
0.41 0.10 0.000632 0.000280 2.26 0.000503 0.000202 2.49
0.43 0.26 0.000977 0.000318 3.08 0.001089 0.000260 4.20
0.45 0.15 0.000680 0.000136 4.99 0.000622 0.000136 4.56
0.52 0.22 0.000740 0.000200 3.70 0.000767 0.000185 4.14
0.54 0.14 0.000544 0.000346 1.57 0.000510 0.000165 3.10
0.46 0.24 0.000880 0.000251 3.51 0.000944 0.000207 4.55

Table 3: Comparison of L∞ and L2 error of FDM and DFDM methods for the solution of
the Black-Scholes equation (16) with various parameters σ and r, I = 50, T = 1.

Further, for the training we set T = 0.25, divide the computational domain330

into 25 space steps and for the temporal step size use ∆t = ∆x2, i.e. λ = 1.331

The neural network structure is used as in the Figure 1a. We select the332

learning rate lr = 0.0001 and run the training for 2000 training cycles. We333

choose the final model according to the rule in the Example 5.1 and present334

the results in Table 5.335

We see, that the neural network can improve the CFDM very well. Due to336

the implicitness of the method, the time complexity which is added through337

CNN is not that big compared to the time complexity of the classical finite338

difference method. As illustrated in Figure 7, the DCFDM remains time339

effective in most of the cases. We note, that we did not retrain the method340
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parameters L∞ L2

a b c d e FDM DFDM ratio FDM DFDM ratio

1 0.41 0 1.2 0.4 0.000611 0.000159 3.85 0.000250 0.000059 4.26
1.7 0.42 0.05 1.2 0.45 0.000994 0.000430 2.31 0.000395 0.000166 2.38
1.02 0.35 0 1.51 0.4 0.000580 0.000148 3.93 0.000259 0.000060 4.34
1.98 0.45 0.1 1.02 0.38 0.000996 0.000408 2.44 0.000444 0.000217 2.05
1.63 0.4 0.1 1.1 0.5 0.001014 0.000493 2.06 0.000407 0.000221 1.85
1.42 0.37 0.06 1.01 0.43 0.000634 0.000169 3.74 0.000261 0.000077 3.39
1.52 0.36 0.15 1.6 0.48 0.001034 0.000553 1.87 0.000446 0.000256 1.75
1.12 0.4 0.24 1.83 0.31 0.000505 0.000388 1.30 0.000220 0.000174 1.26
1.21 0.32 0.18 1.8 0.38 0.000559 0.000194 2.87 0.000263 0.000095 2.76
1.91 0.44 0.03 1.79 0.44 0.001337 0.000655 2.04 0.000525 0.000244 2.15

(a) T = 0.25

parameters L∞ L2

a b c d e FDM DFDM ratio FDM DFDM ratio

1 0.41 0 1.2 0.4 0.000818 0.000209 3.92 0.000333 0.000078 4.30
1.7 0.42 0.05 1.2 0.45 0.001258 0.000525 2.40 0.000495 0.000203 2.44
1.02 0.35 0 1.51 0.4 0.000800 0.000213 3.76 0.000353 0.000083 4.24
1.98 0.45 0.1 1.02 0.38 0.001256 0.000520 2.41 0.000540 0.000258 2.09
1.63 0.4 0.1 1.1 0.5 0.001217 0.000575 2.12 0.000470 0.000229 2.05
1.42 0.37 0.06 1.01 0.43 0.000850 0.000225 3.77 0.000348 0.000098 3.56
1.52 0.36 0.15 1.6 0.48 0.001259 0.000676 1.86 0.000512 0.000282 1.81
1.12 0.4 0.24 1.83 0.31 0.000717 0.000611 1.17 0.000308 0.000269 1.15
1.21 0.32 0.18 1.8 0.38 0.000796 0.000317 2.51 0.000369 0.000150 2.46
1.91 0.44 0.03 1.79 0.44 0.001670 0.000787 2.12 0.000646 0.000296 2.18

(b) T = 0.5

Table 4: Comparison of L∞ and L2 error of FDM and DFDM methods for the solution of
two-dimensional heat equation with various parameters a, b, c, d, e and T . I×J = 50×50.

for different spatial discretizations.341

6. Conclusion342

In this work we developed a new deep-learning based finite difference343

scheme for solving PDEs. This numerical scheme is based on an approxima-344

tion of the local discretization error and remains consistent and convergent.345

We have shown that this approach can easily be extended to other numerical346

methods, e.g. compact FDMs. This scheme is easy to use and provides im-347

proved numerical results which are demonstrated on the presented examples.348

We show that the method is able to generalize well, i.e. it yields good results349

for parameters outside the training region, and remains time efficient even350
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Figure 6: Solution of two-dimensional heat equation (22) with parameters a = 1.7, b =
0.42, c = 0.05, d = 1.2, e = 0.45. I × J = 50× 50, T = 0.25.

parameters L∞ L2

α a b c CFDM DCFDM ratio CFDM DCFDM ratio

1.59 1.88 0.32 0.12 0.000026 0.000021 1.26 0.000046 0.000035 1.30
1.17 1.31 0.4 0.12 0.000026 0.000010 2.56 0.000041 0.000016 2.51
1.71 1.15 0.43 0.15 0.000081 0.000058 1.39 0.000127 0.000088 1.44
1.09 1.95 0.42 0.16 0.000040 0.000004 9.40 0.000063 0.000007 9.03
1.33 1.74 0.38 0.02 0.000037 0.000009 4.28 0.000061 0.000012 4.99
1.41 1.32 0.41 0.17 0.000047 0.000017 2.82 0.000075 0.000024 3.06
1.63 1.43 0.35 0.21 0.000034 0.000006 5.65 0.000058 0.000009 6.55
1.91 1.83 0.48 0.078 0.000257 0.000232 1.11 0.000386 0.000345 1.12
1.80 1.56 0.39 0.14 0.000079 0.000046 1.72 0.000132 0.000076 1.74
1.21 1.53 0.43 0.018 0.000047 0.000014 3.34 0.000072 0.000017 4.28

Table 5: Comparison of L∞ and L2 error of CFDM and DCFDM methods for the solution
of the heat equation with various parameters α, a, b, c, T = 0.25, I = 50.

though the small neural network part is added.351

Finally, let us note that this paper can be seen as a proof of concept that352

the deep learning can be easily used to approximate the local discretization353

error of the numerical scheme for solving PDEs. In our future work we354

will further investigate this approach in more detail by applying it to more355

innovative numerical schemes and facing more challenging examples.356
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[19] T. Kossaczká, M. Ehrhardt, M. Günther, A neural network enhanced408

weighted essentially non-oscillatory method for nonlinear degenerate409

parabolic equations, Physics of Fluids 34 (2022) 026604.410
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