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Abstract

Discrete time stochastic optimal control problems and Markov decision processes (MDPs),
respectively, serve as fundamental models for problems that involve sequential decision mak-
ing under uncertainty and as such constitute the theoretical foundation of reinforcement
learning. In this article we study the numerical approximation of MDPs with infinite time
horizon, finite control set, and general state spaces. Our set-up in particular covers infinite-
horizon optimal stopping problems of discrete time Markov processes. A key tool to solve
MDPs are Bellman equations which characterize the value functions of the MDPs and de-
termine the optimal control strategies. By combining ideas from the full-history recursive
multilevel Picard approximation method, which was recently introduced to solve certain
nonlinear partial differential equations, and ideas from Q-learning we introduce a class of
suitable nonlinear Monte Carlo methods and prove that the proposed methods do overcome
the curse of dimensionality in the numerical approximation of the solutions of Bellman
equations and the associated discrete time stochastic optimal control problems.
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1 Introduction

Reinforcement learning is an active research field in machine learning and has important appli-
cations in many areas which involve sequential decision making such as economics, engineering,
finance, healthcare, logistics, and robotics (see, e.g., Sutton & Barto , Bertsekas |11], and
Bertsekas & Tistsiklis for overviews of the field and its application areas). In particular
the combination of deep neural networks and reinforcement learning, i.e., deep reinforcement
learning, has achieved remarkable success in complex decision-making problems during recent
years (see, e.g., Li , Francois-Lavet et al. , and Arulkumaran et al. |2 for survey articles).
The mathematical foundations of reinforcement learning are provided by the theory of stochas-
tic optimal control and, in particular, Markov decision processes (MDPs; see, e.g., Bertsekas &
Shreve [12], Powell [41], and Puterman [42]).

The basis of many reinforcement learning algorithms such as temporal difference learning (see,
e.g., Sutton [47]), Q-learning (see, e.g., Watkins [51] and Watkins & Dayan [52]), and the SARSA
algorithm (see, e.g., Rummery & Niranjan [44]) is formed by the stochastic dynamic program-
ming principle. It reduces the problem of making the optimal decision at a given state to solving
a particular functional equation — the so-called Bellman equation. The approximative solution
of Bellman equations in high dimensional state spaces is a notoriously difficult challenge due to
the curse of dimensionality (cf., e.g., Bellman [9], Novak & Wozniakowski [40, Chapter 1|, and
Novak & Ritter [39]).

In this work we introduce nonlinear Monte Carlo methods for MDPs with infinite time horizon
and finite control set that are polynomially tractable in the sense that the computational effort
of the algorithm to approximatively compute the solution of the Bellman equation grows at
most polynomially in the reciprocal 1/¢ of the prescribed approximation accuracy € € (0, 1] and
the dimension d € N = {1,2,3,...} of the underlying state space. In particular, the proposed
methods overcome the curse of dimensionality in the numerical approximation of solutions of
Bellman equations.

More formally, we consider MDPs that are specified by a measurable space (X, X) (typically
(R4, B(R?Y)) with d € N but our framework also covers discrete state spaces), a finite control set
A, a discount factor 6 € (0, 1), transition kernels r,: X x X — [0,1], a € A, and a measurable
and bounded reward function g: X x A — R. The set of strategies A consists of all measurable



functions a: X — A (under appropriate assumptions the restriction to such non-randomized,
stationary strategies is without loss of generality, see, e.g., [12, Chapter 9]). Every o € A defines
a Markov process X = (X2)ken, on a filtered probability space (2, F, (Fi)ren,, P) with state
space (X, X) such that P[Xp,, € B|F,] = kaxe) (B, X) for all k € N, B € X. The expected
gain of a strategy a € A when starting in = € X is

J(z,a) =E

> 8 g(XE, (X)) X5 = ] . (1)
k=0

The value function v: X — R is given by v(z) = sup,c 4 J(z, ), x € X. The dynamic program-
ming principle ensures that under appropriate conditions v satisfies for all x € X that

o(z) = max {g(z,a) + SE[o(X*)]} )

where it holds for all x € X, a € A that the random variable X*%: ) — X has distribution
Ko(z,-) (see, e.g., |12, Chapter 9| for a proof). An important subclass of these MDPs is given
by optimal stopping problems in discrete time with infinite time horizon. For such problems the
control set A consists of the two elements “stop” and “continue” and once the control “stop” is
taken the Markov process jumps to a hold state from which it cannot leave and generates no
further gains.

There is a large number of numerical approximation methods for Bellman equations of the form
that have been proposed and analyzed in the scientific literature. Deterministic numerical
approximation methods for Bellman equations suffer in general from the curse of dimensionality.
Indeed, Chow & Tsitsiklis [17,18] show for all d € N that in the case where the state space X
is given by the d-dimensional unit cube [0, 1]¢ deterministic numerical approximation methods
need at least O(e~2?) computational operations to approximate the solution of the Bellman
equation with precision € € (0,1]. Rust [45] shows that under certain assumptions it is possible
to overcome this curse of dimensionality by allowing for randomized algorithms. Rust’s method
consists of randomly sampling grid points in the state space and performing value iteration
on this stochastic grid. The method is model-based as it requires explicit knowledge of the
transition density. In the companion paper [46] Rust points out that convergence of his method
might break down in situations where the transition density has spikes. Also Kristensen et
al. [36] report a dramatic rise in the method’s variance as the state dimension increases. This
is theoretically confirmed by Bray [14] who proves that Rust’s method only overcomes the
curse of dimensionality in the special case where the MDP is equivalent to an MDP where
all but a vanishingly small fraction of state variables behave like history-independent uniform
random variables. Variants of Rust’s method for optimal stopping problems are designed by
Broadie & Glasserman in [15] and [16]. The literature on optimal stopping comprises a variety
of further randomized algorithms. We refer, for example, to [38], [49], and [50] for regression-
based algorithms for optimal stopping problems, we refer, for example, to [43|, [1], [26], |19],
and [10] for duality-based algorithms for optimal stopping problems, and we refer, for example
to [7], [8], and |25] for deep learning-based algorithms for optimal stopping problems.

In this paper we introduce nonlinear Monte Carlo algorithms that overcome the curse of di-
mensionality in the approximation of Bellman equations, that require only very weak regularity
assumptions and that are model-free in the sense that they do not use explicit knowledge of the
transition kernel x but only need access to independent realizations of the one step transitions
X% for arbitrary actions a € A and states x € X. Our approach combines ideas from Q-learning
and the recently introduced full-history recursive multilevel Picard (MLP) approximations which
have been proven to overcome the curse of dimensionality in the numerical approximation of cer-
tain semilinear partial differential equations (PDEs) (see, e.g., [3-6,20,21},24,29-33]). Q-learning
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is based on the idea to switch the order of expectation and maximization in . Formally, the
Q-function satisfies for all z € X, a € A that Q(z,a) = g(z,a) + I E[v(X**)]. This together
with (2)) implies for all x € X that v(z) = max,c4 Q(z,a) and, hence, that for all z € X, a € A
it holds that

Qle.a) = gla.a) + OB [ Qx| 3)

Under appropriate conditions one can show that () is the unique solution of this fixed-point
equation and that the sequence of fixed-point iterates @),,: X x A — R, n € Ny, which satisfies
for alln € N, z € X, a € A that Qo(x,a) = g(x,a) and

Qulaa) = o) + O @1 (7%, 1) (@)

converges to (). We next employ a central idea of MLP approximations and decompose the
iterates into multilevels to obtain for all n € Ny, z € X, a € A that

i KmaXQz (X b)) — In(l) (I&%Qz—l(X”““,b)m . (5)

=0

Qn(z,a) =g(z,a)+ 0

In this telescope expansion, we apply a fundamental idea of Heinrich [27,28] and Giles [23] and
approximate the expected values by Monte Carlo averages with different degrees of accuracy at
different levels [ € {1,...,n}. The convergence of (Q;);en ensures that for large l € {1,...,n} the
difference between @; and @);_; is small and hence we use for large [ € {1,...,n} less Monte Carlo
samples to approximate the expected value E [(maxyeq Qi(X®% b)) — (maxpes Q1—1(X 5, b))]
than for small I € {1,...,n}. More specifically, we fix M € N and use M"' independent
Monte Carlo samples to approximate the expected value at level [ € {1,...,n} which leads to
the full-history recursive multilevel fixed-point (MLFP) approximation scheme in @ below.
To briefly sketch the contribution of this article within this introductory section, we now present
in the following result, Theorem below, a special case of Theorem [4.1], the main result of this
article. Below Theorem we explain in words the statement of Theorem as well as the
mathematical objects appearing in Theorem [1.1]

Theorem 1.1. Let A be a nonempty set, for every d € N let g5: R x A — R be (B(RY) ®

24)/B(R)-measurable, assume supyey SUPyerd SUPge 4 |9a(T, a)| < 00, let (Q, F,P) be a probability
space, let © = U,enZ™, for every d € N let F§ C F, 0 € O, be independent sub-sigma-algebras
of F, for every d € N let X9 = (XM“( ))(w,mw) rixaxo:  REX AxQ — R e 0O, be iid.
random fields which satisfy for alld € N, 6 € © that X§ is (B(R?) ®2A®.7:3)/B(Rd)—measurable,
for every d € N let 64 € [0,1), Rq € [0,00), let M € NN [supyen(4|A|*(1 — 64)72), 00|, for every
dENletQZ’n:RdxAXQ—)R,nGNO,96@, satisfy for allm € Ny, 0 € ©, r € R4, a € A
that

Qin(, a) = gd(w a)

n— Mt
+Z

Z [max {Q (6,1 1) 9 A i),a:,a7 b)} _ HN max {Qilemalxz{l , 0}(X(9 A i),:c,a’ b)} : (6)
and for every d € N let Cq,, € [0,00), n € Ny, satisfy for all n € Ny that

n—1

Can < Z M (Rd + Caj + Camax{i—1,0} ILN(Z))- (7)
1=0

Then



(i) it holds for all d € N that there exists a unique bounded (B(R?) ® 2)/B(R)-measurable
Qq: RY x A — R which satisfies for all x € R, a € A that

Qulr, ) = ga(.a) + &,E [mAx Qu(x2%, b)} ®)

and

(ii) there exist N: (0,1] — N and ¢ € R such that for all d € N, € € (0,1] it holds that
Cin. < CcRge™¢ and

o (& maiQute) - ] ) < )

zERA ac

Theorem is an immediate consequence from Corollary in Section [ below. Corollary
in turn, follows from Theorem which is the main result of this article. In the following we
add some comments on the mathematical objects appearing in Theorem [I.1] above.

In Theorem |1.1| we introduce in @ a Monte Carlo-type approximation algorithm for a sequence
of MDPs indexed by the dimension d € N of the state space. To formulate the proposed Monte
Carlo-type approximation algorithm in @ we need, roughly speaking, sufficiently many inde-
pendent random variables which are indexed over a sufficiently large index set. This sufficiently
large index set is provided through the set © = U,cyZ" introduced in Theorem The triple
(Q, F,P) in Theorem is the probability space on which the random variables are defined. In
Theorem we consider for every d € N an MDP with state space (RY, B(R?)). We assume
that all elements of the sequence of MDPs have a common control set A. For every d € N,
r € R a € A the one-step transition of the controlled Markov chain of the MDP with state
space (R?, B(R?)) is given by the random variable X3"*: Q — R® TIn the language of MDPs
for every d € N, a € A the transition kernel kq,: R? x B(R?) — [0, 1] is thus determined by the
distribution of Xg"’a. For every d € N the function g;: R? x A — R introduced in the first line
of Theorem [1.1]is the reward function of the MDP with state space (R?, B(R?)). In Theorem
we assume that the functions g4, d € N, are uniformly bounded in d € N. For every d € N the
real number 04 € [0, 1) introduced in Theorem [1.1]is the discount factor of the MDP with state
space (R, B(R?)).

Item (i) in Theorem establishes the essentially well-known result that under the above as-
sumptions for every d € N the Bellman equation for the @-function associated to the MDP
with state space (R%, B(RY)) has a unique solution Q4: R x A — R.

In @ in Theorem we specify the MLFP approximation scheme which we propose to ap-
proximate the solution of the Bellman equation (2)). The MLFP approximations ng, d e N,
n € Ny, # € O, are indexed by the dimension d € N, by the number n € Ny of fixed-point iterates
and by a parameter # € © which is different for different appearences of MLFP approximations
in @ As random input sources the MLFP approximation scheme proposed in @ employs
the random variables Xj”’“: QO —- R e O\{0},de N, zeR aec A Note that for
every § € ©\ {0}, d € N, z € R?, a € A the random variable X7"*: Q — R? which is used
as random input source of the MLFP approximation scheme proposed in @ and the random
variable Xg’x’a: ) — R? which is used to formulate the Bellman equation are identically
distributed. The parameter # € © ensures that different appearances of MLFP approximations
in @ are independent and this ensures that @ can be implemented with recursive function
calls. The natural number M € NN [supgen(4]A[*(1 — d4) %), 00 in Theorem [1.1| determines the
number of Monte Carlo samples used in the definition of the MLFP approximation Qfl’n, d e N,
n € Ny, § € © in @ The assumption that the natural number M is an element of the set
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N N [supgen(4]A|*(1 — 84)72), 00] ensures that supyen(4]A|*(1 — 84)7?) < oo. This implies that
the control set A is finite and that the sequence (d4)qeny C [0,1) is bounded away from 1 in the
sense that sup,cydq < 1. Note that by a suitable identification this framework also covers the
case where for each d € N there is an individual control set A, such that sup,cy |A4| < o0.

For every d € N the nonnegative real number R, € [0, 00) in Theorem is understood as an
upper bound of the computational cost to compute one realization of any of the random variables
X0 Q0 = (R4, 0 € ©, x € RL The real numbers Cy,, € [0,00), d € N, n € N, in in
Theorem model the computational costs of the MLFP approximation scheme in @ More
specifically, for every d € N, n € Ny the real number Cg4,, € [0, 00) represents an upper bound of
the computational costs to compute the realizations of all random variables Xg’mz Q — (R4,
0 € O, x € R? required to compute one realization of Q27n(0, 9 Q — RA

Item (ii) in Theorem proves that the solutions of the Bellman equations in can be
approximated by means of the MLFP approximation scheme in @ with a computational cost
which grows at most polynomially in the reciprocal 1/¢ of the prescribed approximation accuracy
e € (0,1] and linearly in the computational cost R4 to compute one realization of any of the
random variables XS’JC: Q — (RH4, 0 € ©, 2 € RY, where d € N is the dimension of the state
space of the associated MDP. In particular, if the computational cost to compute one realization
of any of the random variables Xg’x: Q — (RH1, 0 € ©, 2 € R?, grows at most polynomially
in the dimension d € N of the state space of the associated MDP (as it is often the case in
practical applications), then the MLFP approximation scheme in @ overcomes the curse of
dimensionality for the approximation of the solutions of the Bellman equations in . However,
we would like to point out that the constant ¢ € R appearing in item (ii) in Theorem may
become arbitrary large if sup,cy dq is close to 1. Thus the computational cost of the nonlinear
Monte Carlo methods in (@ may become impractical even so the methods in @ provably
overcome the curse of dimensionality.

In the following we also add some comments on generalizations and variants of Theorem
presented in this article. While Theorem considers a sequence of MDPs indexed by the
dimension d € N of the Euclidean state spaces (R B(R?)), Corollary considers a family of
MDPs with general index set © and general measurable state spaces (X4, Xy), d € ©. While The-
orem [L.1] considers MDPs with bounded reward functions, Corollary .2] allows for unbounded
reward functions. While Theorem and Corollary consider Bellman equations of MDPs,
Theorem considers more general functional fixed-point equations (we refer to in Theo-
rem E for details). Corollary proves that a variant of the MLFP approximation scheme (see
@ for details) overcomes the curse of dimensionality for the approximation of the solutions
of Bellman equations for optimal stopping problems (see for details).

The remainder of this article is organized as follows. In Section [2| below we establish existence,
uniqueness, and integrability properties for solutions of functional fixed-point equations. In Sec-
tion 3| below we introduce MLFP approximations for solutions of functional fixed-point equations,
we study measurability, distributional, and integrability properties for the introduced MLFP ap-
proximations and we establish recursive and subsequently non-recursive upper bounds for the
L?-distances between the exact solutions of the considered functional fixed-point equations and
the proposed MLFP approximations. In Section [f] we combine the existence, uniqueness, and
regularity properties for solutions of functional fixed-point equations, which we have established
in Section [2| with the error analysis for MLFP approximations for functional fixed-point equa-
tions, which we have established in Section [3], to obtain a computational complexity analysis for
MLFP approximations for functional fixed-point equations and for Bellman equations of MDPs
and optimal stopping problems.




2 Existence and uniqueness of solutions of functional fixed-
point equations

Definition 2.1. Let (X, X), (Y,)) be a nonempty measurable spaces, let A be a nonempty set,
and let k,: Xx Y — [0,1], a € A, satisfy forall a € A, M € Y that X 5 x +— r(z, M) € [0, 1] is
X /B([0, 1])-measurable and for all z € X, a € A that ¥ 5 M — k4(z, M) € [0,1] is a probability
measure on (Y,)). Then we say that (k4)eca is a family of stochastic kernels from (X, X') to
(Y, ).

Lemma 2.2. Let ¢, L € [0,00) with cL < 1, let (X, X) be a nonempty measurable space, let A be
a nonempty countable set, let k = (Kq)aca be a family of stochastic kernels from (X, X) to (X, X),
let RA = {r: A — R} let A= Qs BR), let f: X xR = R be (X ® A)/B(R)-measurable,
let w: X — (0,00)* be X/, B((0,00))-measurable, let

W = {(u X — R : w is X/ A-measurable, ( S)1€1§><A [ (o(2)) (@)] [ (u(2))(a)]] < oo}, (10)

assume for all v € X, a € A, r,s € R4 that |f(z,r) — f(x s)| < LsupbeA Ir(b) — s(b)],
] <

Jisuppea (0()) (0)ka(z, dy) < c(w(2))(a), and supgpexxall () (0) 7" fx |f(y, 0)|ro(t, dy)
00. Then there exists a unique v € W which satisfies for all x € X, a € A that

/If Y, v(y))|ka(, dy) < and /f y,v(y))Kalz, dy). (11)

Proof of Lemma. Let ||| : 20 — [0, oo) satisfy for all u € 20 that ||u|| = sup, 4 exxa ||(($((2))))((‘;))|‘.

Note that ||-|| is a norm on 20 and (20, ||-||) is a Banach space. The assumption that for all z € X,
r,s € R4 it holds that |f(z,7) — f(x,s)| < Lsup,c, |r(a) — s(a)| and the assumption that for all
z €X, a € Ait holds that [, sup,cy (w(y))(b)ra(z, dy) < c(w(2))(a), yield that for all u € 20,
r € X, a € A it holds that

/f Y, u(y)) ka2 dy)‘
1
/ :000) = £, 0o ) + s / 1, 0)l (e, dy)

)
L 1
< @ /Xizﬁl<“<y>><b>lﬁa<wjdy> b [0t

= #/Sup{wu y) b (m(y))(l))}/{a(xady)_‘_;/ |f<y70)|'%a(xady)
g%"a/sup@y)mxdy /|fy, ol )

1
< Lol + (o / !f(y,O)lf-@a(x,dy)- (12)

The assumption that sup(, ,exxa [ (w(2)) (@)~ [i ‘f(x, O)’/ia(l', dy)] < oo demonstrates that
for all u € U it holds that

sup
(x,a)EXxA

))Ka(T dy)’

<cLjull +  sup W / F(.0)lka(z,dy) <00 (13)

(z,0)eXx A



|35, Lemma 14.20] ensures that for all u € 20 it holds that the map X 3 z — [4 3 a —

Ji [y, u(y)ka(z,dy) € R] € R* is X / A-measurable. Let ®: 20 — 20 be the function which
satisfies for all u € 20, (z,a) € X x A that

[©( /f Y, u(y))ka(z, dy). (14)

The assumption that for all z € X, r, s € R4 it holds that |f(x,r) — f(z,s)] < Lsup,c4 |r(a) —
s(a)|, the assumption that sup(, ,ex.a [|(w0(2)) (@)™ [i | f(2,0)|ra(z dy | < oo, and the as-
sumption that for all (z,a) € X x A it holds that [, sup,e, (0(y))(b)ka(z,dy) < c(w(2))(a),
ensure that for all u,v € 20, (x,a) € X x A it holds that

/ F(y,u (v, 0(9))|Fal, dy)
< W / sup| (u(y)) (6) — (v(1)) (b) Fa(x, dy)

beA

L @@ 0) — (v(1) (©)] o

a (m(:c))(a) /Xbeg{ (m(y))(b) (m(y))(b)} o(7, dy)
—LHU — su Ko (T

S (I‘O(Z')) (CL) /X bef&) (m(y>) (b) a( 9 dy)

< cLfu—vl. (15)

This in turn proves that for all u,v € 27 it holds that
|®(u) — @(v)|| < cLllu —v]. (16)

The assumption that ¢L < 1 shows that ® is a contraction. Hence Banach’s fixed-point theorem
proves that there exists a unique function v € 20 such that v = ®(v). The fact that v € 20
ensures that for all (z,a) € X x A it holds that [, |f(y,v(y))|ka(z,dy) < oo. The proof of
Lemma [2.2] is thus completed. O

Corollary 2.3. Let ¢, L € [0,00) with cL < 1, let (X, X) be a nonempty measurable space, let
(Q F,P) be a probability space, let A be a nonempty countable set, let RA = {r: A — R}, let

A = ®a€A B< ) let XA {q A= X} let X ® GAX let X = (Xﬂ?a( ))Z‘GX a€A, weQ’ X X

Q = XA be (X @ F)/X-measurable, let f: X x R — R be (X @ A)/B(R)-measurable, let
: X — (0,00)* be X/ Q.4 B((0,00))-measurable, let

W= {(u: X = R :u is X/ A-measurable,  sup [1(t(2)) (@) (u(z)) (a)]] < oo},

(z,a)eXxA

assume that for all (z,a) € X x A, r,s € R* it holds that |f(x,r) — f(x,s)| < Lsupyey |7(b) —

s(0)], Efsupyen (0(X™))(0)] < c(ro(x))(a), and sup(, yexxa [|(0(y)) (0)TE[|f(X**,0)]] < oo.
Then there ezists a unique function v € 20 which satisfies for all (x,a) € X x A that

E[lf(X®*0(X")|]] <oo, and (v(z))(a)=E[f(X v(X")]. (17)



Proof of Corollary (2.3 Let r,: X x X — [0,1], a € A, satisfy for all (z,a) € X x A, M € X,
that rg(z, M) = P[X™% € M]. The fact that X is (X ® F)/X-measurable ensures that for
all (z,a) € X x A it holds that X**: Q — X is F/X-measurable. This implies that for all
(r,a) € X x A it holds that X > M — k,(z, M) = PX** € M] € [0,1] is a probability
measure on (X, X). The fact that X is (X ® F)/X-measurable and [35, Theorem 14.16] imply
that for all @ € A, M € X it holds that X 3 z — k,(z, M) = P[X"* € M] is X/B([0,1])-
measurable. Hence it holds that (k4).ca is a familiy of stochastic kernels form (X, X) to (X, X).
The assumptions that for all (z,a) € X x A it holds that E[ sup,e 4 (0(X®))(b)] < ¢(w(2))(a),
and sup, yexx4 [[((y)) ()| 'E[| f(X¥*,0)]]] < oo, prove that for all (z,a) € X x A it holds
that

/X sup (w(y)) (b)a(z, dy) = /X sup (to(y)) (b) (X™(P)) (dy) = E[sup (w(X™))(b)] < ¢(w())(a),

beA beA beA
(18)
and
R B _w o(p
e L0 = s [0 )
= sup E[|f(X¥*,0)]] < oco. (19)

(y,b)eXx A (m(y))( )

Lemma implies that there exists a unique function v € 20 such that for all (z,a) € X x A it
holds that

Bl (e o x| = [ 1ol @) ) = [ 17w om)ld) <. @)

and

- /X F (. 0(y))alz, dy) = / £, 0(y)) (X24(B)) (dy) = E[F(X*,0(X*)]. (1)

The proof of Corollary [2.3]is thus completed. O

Lemma 2.4. Let ¢f,cn, L € [0,00) with ¢ L < 1, let (X, X) be a nonempty measurable space,
let (€2, F, ) be a probability space, let A be a nonempty countable set, let RA = {r: A — R}, let

AZ@EAB(R) let XA ={q: A= X}, let X = Quen X, let X = (X5 (w ))meXaeAwEQ X x
Q — XA be (X @ F)/X-measurable, let f: X x RY = R be (X ® A)/B(R R)-measurable, let
: X — (0,00)* be X/ @, B((0,00))-measurable, let v: X — R* be X | A-measurable, as-
sume that for all (r,a) € Xx A, r,s € R4 it holds that | f(z,7) — f(x,8)| < Lsupyey |7(b) —s(b)],
SUD(y b)exXx A [|( ro(y ))( )|~ 1|(U(y))(b)” < o0, (E[SupbeA (m(Xx’a))(b)}QD% < cm(m(x))(a),
(E[If(X™,0)] ])% < cp(w(2))(a), and (v(z))(a) = E[f(X*, v(X®))]. Then it holds that

[NIES

~—

wp L@@ B[ OO OP]) e

(wajexxa (W(z))(a) ~ 1— ol (z,0)EXX A (ro(z))(a) ~1—cul’
(22)

Proof of Lemma [2.4. Jensen’s inequality, the triangle inequality, and the assumption that for
all z € X, r, s € R it holds that |f(x,r) — f(x,8)] < Lsup,c4 |r(a) — s(a)| prove that for all
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(z,a) € X x A it holds that

(x*
(0(@)(a) (0(@) (@) <= ( >)<
(

sup

< ¢l sup {
(y,b)eXx A

}+q. (23)

Combining this, the assumption that sup, ,ex.all(0(2))(a)| 7" (v(2))(a)]] < oo, and the as-
sumption that ¢, L < 1 shows that

|(U<$))(a)| Cr
(x,c;s)lelng (v(2))(a) S1C col (24)

This and the assumption that for all (z,a) € X x A it holds that E[| sup,e 4 (10(X*?)) (b)ﬂé <
¢ (w(2)) (a) imply that for all (z,a) € X x A it holds that

S
=

(E[supyeq | (v(X))(0)[’]) () O] E[supreq (0(X™)) (0)°]* _  erew

< | sup

(to(2))(a) wieixa (0(y)) (D) (ro(x)) (a) =1 _col

(25)

Taking the supremum over X x A yields
1
(E[supyen |[(0(X™))O)P])* _  crew
sup < : (26)
(z,0)EXx A (ro(z))(a) 1—cwl
This completes the proof of Lemma [2.4] O

3 Full-history recursive multilevel fixed-point (MLFP) ap-
proximations

3.1 Mathematical description of MLFP approximations

Setting 3.1. Let M € N, let © = [,y Z", let (X, X) be a nonempty measurable space, let
(Q, F,P) be a probability space, let A be a nonempty set, let R = {r: A — R}, let A =
Q,ca BR), let [|-]| : R — [0, 00] satisfy for all r € R that ||r||,, = supgeq |7(a)], let XA =
{qg: A = X}, let X = Qca X, let f: X xR =R be (X ® A) /B(R)-measurable, let (F%)geo,
with FO C F, 0 € O, be independent o-algebras, let X9 = (Xe"’”’“( ))xex 2eA we: c X x Q — X4,

10



0 € O, be i.i.d. random fields, such that for all 6 € © it holds that X? is (X @ F?)/ X -measurable,
let VI: X xQ —RA neNy, 0 €0, satisfy for alln € Ny, § € 0, x € X, a € A that

n—1 1 Ml '
(Ve (:L‘)) (a, = i |: 9 i i),x,a, ‘/l(evlvl) (X(@,l,i),x,a))

=0 =1

o ]].N(l)f(X(e JLi),,a Véix{llz ) O}(X(Q,l,i),a:,a))] ) (27)
3.2 Measurability and distributional properties for MLFP approxima-
tions

Lemma 3.2. Assume Setting. It holds for alln € Ny, 0 € © that V? is (X®o(U,co FOmY)/A-
measurable and it holds for all n € Ny, 60,9 € O that

Xx Q5 (z,w)— [A3a— f(XP"wW), V(X" (w),w)) € R] € R? (28)

is (X ®0(U,eco FOm g F)) ) A-measurable.

Proof of Lemma [3.9. Note that implies that for all 6 € O, x € X, a € A~it holds that
(Vi(z))(a) = 0. Hence for all § € © it holds that V{ is (¥ ® U(UnE@ Fm))/ A-measurable.

Fix n € N and assume for all [ € {0,1,...,n — 1}, § € © that VY is (¥ ® J(Unee]:(a’”)))/j—
measurable. Observe that for all [ € {0,1,...,n — 1}, 8 € © it holds that

X x Q3 (r,w) — (2, V(z,w) € X x R? (29)

is (X®o( U,eco }"(9’”)))/(X@j()—measurable. Since for all § € © it holds that X? is (X ® F?)/X-
measurable it follows that for all § € ©, a € A it holds that X x Q > (z,w) — X%®%(w) € X
is (X ® FY)/X-measurable. This implies that for all #,9 € ©, a € A it holds that X x
Q> (r,w) — (X0 (w ),w) € XxQis (X ®o(Ueo Fon) | }""))/(X ® 0 (U,eo F'M))-
measurable. This and (29) ensure that for all [ € {0,1,...,n—1}, 6,9 € ©, a € A it holds that
XxQ3 (z,w) —~ (X““( ), V(X0 (w),w)) € XxRA is (X®U(Un€@ FONYF)) /(X @ A)-
measurable. Therefore for alll € {0,1,...,n—1}, 0,9 € O, a € A it holds that XxQ 3 (z,w) —
F(XOm(w), VI (X" (w),w)) € Ris (X @0 U,eo FW@myF?))/B(R)-measurable. This implies
that for all € {0,1,...,n — 1}, 6,9 € © it holds that

Xx Q5 (z,w)— [A3am f(X7W), (X" (w),w)) € R] € RY (30)

is (X®o( U,co F W) Ufe))/ﬂ—measurable. Note that for alll € {0,1,...,n—1},1 € N, 0 € ©
it holds that (U, co F@"" U F@)) C 0(U,co F@7) and (U, F @47 U FO) C
0<Une® F®m). This and ensure that for all € © it holds that V/: X x Q — R4 is
(X ® U(Unee F(e’")))/z—measurable. Induction hence proves that for all n € Ny, § € © it
holds that V! is (X @ o Uyeo F ©m)y)/ A-measurable. This and imply that for all n € Ny,
0,9 € © it holds that X x Q2 3 (z,w) = [A 3 a— f(X?"(w), V(X" (w),w)) € R] € R is
(X ®o(U,co F@m U F?))/ A-measurable. The proof of Lemma [3.2]is thus completed. O

Lemma 3.3. Assume Setting . Then for all n € Ny it holds that V!, 6 € ©, are identically
distributed random fields.

11



Proof of Lemma . For all § € ©, (z,a) € X x A it holds that (V{(z))(a) = 0. Therefore
VP,0 € ©, are identically distributed random fields. Fix n € N and assume that for all [ €
{0,1,...,n — 1} it holds that V), § € ©, are identically distributed random fields. Lemma
and [5, Lemma 2.6] ensure for all [ € {0,1,...,n — 1}, i € N, § € © that X x Q > (z,w) —

(VO (2, w), Vi D) oy (@, w) € RAXRA and XxQ 3 (z,w) = (V) (2,w), VG, ) (z,w) €

R4 x R4 are identically distributed random fields. This ensures that for all I € {0,1,...,n—1},
i €N, 0 € 0 it holds that X x Q3 (z,w) = f(z, ;" (2,w)) — In() f(z, Vior i) ) (@) €
R and X x Q 3 (z,w) — f(x,Vl(O’l’i)(a;,w)) — ILN(l)f(:r;,Vlfl(:):{ll’?ljo}(x,w)) € R are identically
distributed random fields. Combining this, the assumption that for all § € © it holds that X7 is

(X ® F?)/X-measurable, and |5, Lemma 2.5] establishes that for all I € {0,1,...,n—1},i € N,
6 € O it holds that

XxAxQ3(z,a,w)— f(X(g’l’i)’gc’a(w), V(a’l’i) (X(e’l’i)’m’“(w),w))
— Ln(l) f(XOED e () VOO L (XOMDmaw) w)) R (31)
and
XxAxN3 (z,a,w) — f(X(O’l’i)’r’“(w), Vl(o’l’i) (X(O’l’i)’r’“(w),w))
— In(l) f(XOED e (), VO (XOMmaw) w)) R (32)

are identically distributed random fields. This implies that for all [ € {0,1,...,n — 1}, i € N,
0 € O it holds that

Xx Q3 (z,w)— [A Sar f(X(GJ’i)’x’a(w), Vl(g’l’i) (X(e’l’i)’x’“(w),w))

— In() f(XOEDmagyy yOold L (xOldeay) o)) e R} e R (33)

> " max{l—1,0}
and
Xx Q5 (z,w) [A 5 a s f(XOWDa () VO (X Oldway) )

— Ln(F (XO020), Vi, o (XO029(w), w)) € R| € R* (34)

> " max{l—1,0}
are identically distributed random fields. Let gi: (R4)* — R4, k € N, satisfy for all k € N,
..., € RA that gp(ry,...,m) = 25:1 r;. Note that for all £ € N it holds that g is
A®k | A-measurable. Let U XxQ—RY1€{0,1,....,n—1},i €N, 0 € O, satisty for all
1€{0,1,....n—1},i €N, 0 € O, (z,w) € X x  that
Ufi(x,w) = [A 3 ars f(XED20 (), IO (X O (), w))
— In() f (X Oz () YO0 (XOMeaw) w)) eR].  (35)

max{l—1,0}

Lemma demonstrates that for all [ € {0,1,...,n — 1}, i € N, § € © it holds that Ufi
s (X ®o(U,eo FOLim)  FO.~Lin) | FOL)))/ Ameasurable. Note that ensures for all

(x,w) € X x Q, 0 €0 that V(z,w) = 377 = S0 Uf(w,w). Let M = 3" | M7 € N, let
Y9 X x Q— (RYM 0 € 0O, satisfy for all § € © that
9 L e 9 L o 0 9 Lo
Yn = <WUO’1,M7LUO27.' MnU Mny Mn lUl 1 Mn 1U12,...,WU1,M7171,...
1 1
) MUg—l,la MUE—I,% MUg 1 M) (36)
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Observe that for all (z,w) € X x Q, 6 € O it holds that

n—

g5 (Y, (2,w)) =

Mn l Z Ulz z w) Vne(x7w) (37)

1
=0

The fact that for alll € {0,1,...,n—1},7 € N, § € O it holds that Ufi is (X®J(Un€@ FOLimy
FO-~Lin) y FOL)Y)) / A-measurable, the assumption that (F?)pee are independent o-algebras,
and |5, Lemma 2.6] prove for all § € © that Y,Y and Y;? are identically distributed random fields.
This implies for all § € © that V! and V! are identically distributed random fields. Induction
and the fact that V, § € ©, are identically distributed random fields prove that for all n € Ny
it holds that V?, 6 € ©, are identically distributed random fields. This completes the proof of
Lemma [3.3 O

3.3 Integrability properties for MLFP approximations

Lemma 3.4. Assume Setting [3.1, assume A is finite, let L € [0,00), let w: X — (0,00) be
X /B((0,00))-measurable, assume that for all (x,a) € X x A, r,s € R it holds that |f(x,r) —
f(z,s)] < Lmaxpea |r(b) —s(b)], and (E[|f(X"*0)[>+ | (X%*)|?])2 < Lro(x). Then it holds
for all n € Ny that sup,cx (E[ maxqea ’(V,?(x))(a)}z] o(z)|7?) < 0.

Proof of Lemma . For all (z,a) € X x A, § € © it holds that (V{(x))(a) = 0. Hence it holds
that sup,cx(E|||VZ (2)]1% | |ro(z)]~ 2) < oo. Fix n € N and assume for all [ € {0,1,...,n — 1}
that sup,x(E[|[V2(2)||% | [w(x)|72) < co. Note that for all m € N it holds that
E[|[V?° 2 El| (VY VO 2
IBOIE) 5 KRNI 5 ECRD ] g

sex  [W(@)P 7 aex vt o (z) £ vex [to(x)|?

Lemma [3.3] and Jensen’s inequality prove that for all m € N, (z,a) € X x A, # € © it holds that

— I[N(l)f(X(Gll)xa A (X(e,z,i),x,a))ﬂ

» " max{l—1,0}

m—1 Mmfl

E [|f(X(9,l,i),x,a’ Vl(e,z,i) (X(‘)J,i),:v,a)) ]

E[|f(x@tme y Ot (XOLDway)2], (39)

The triangle inequality, Jensen’s inequality, the assumption that for all z € X, r, s € R4 it holds
that | f(x,7) — f(z,s)| < Lmaxgea |r(a) — s(a)|, and the assumption that for all (z,a) € X x A

it holds that (E[|f(X%%% 0)?])® < Lw(x) ensure that for all m € Ny, (z,a) € X x A, 0,9 € ©
it holds that

]EUJC(XH’I’G, anz(XG,z,a)) |2} S 2E[|f(X0"T’a, V£<X0,x,a)) . f(Xe’:C’a, O)|2} + 2E [|f(X9’$’a, O)|2]
< 2L2E[I£1£4X |(V2(XP5)) (b)[?] + 2L%|vo(z) . (40)
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Lemma ensures for all m € N, ¥ € © that VY and V2 are identically distributed. Combining
this and the assumption that A is finite demonstrates that for all m € N, 9 € © it holds that
X x Q3 (v,w) = [[V2(z,w)||% € [0,00) and X x 2 > (z,w) = [|[Vo(z,w)||* € [0,00) are
identically distributed. This, Lemma E 3.2, the assumption that for all # € © it holds that X?
is (X ® F?)/X-measurable, the assumption that the o-algebras F?, 0 € O, are independent,
and [31, Lemma 2.2] imply that for all m € Ny, (z,a) € X x A, 0,9 € © with 0 ¢ U, co{(V,n)}
it holds that

E[IVACC=IE] = [ BNV (X @) d)
— [ BV (X)) (), (41)

N[

This, , the assumption that for all (z,a) € X x A it holds that (E[|ro(X%")[?])2 < Lw(x),
and the assumption that for all { € {0,1,...,n—1} it holds that sup,x (E[[|V,’(z)]|%] o ()] 72) <
oo prove for all [ € {0,1,...,n — 1}, (z,a) € X x A, 0,9 € © with 0 € |J,o{(¥,n)} that

E Uf(XG,ac,a, ‘/Eﬂ(XG,:p,a)) |2}
o () [?

< o BV WI] (X0 @) dy) + 217
< sz(SupEHM%y)Hzo}) (E[|m<x°vw>|2}) o

o (y)[? o ()[?
B[V ()%]
< 2L4(sup —OO) + 217 42
2 i) 2
This ensures that for all [ € {0,1,...,n—1}, 0,9 € © with 6 & |, o{(?,n)} that

B[If (X0 VO] 2L4( upE[HVlO(?/)HiJ) AP oo (43)

S
yex  [(y)]?

This and (39 . ) demonstrate for all a 6 A that sup,x (E ](VT?( ))(a)|*]|w(x)]7%) < oo. This, the
assumption that A is finite, and show that sup,cx (E[||V,(2)]/% ]|m )|7%) < oco. Induction
hence proves that for all n € Ny 1t holds that sup,ex (E[ maxaea [(V2(2))(a)]?]ro(z)][7?) < oco.
The proof of Lemma is thus completed. O

sup
(z,0)EXX A |m(l’)|2

Lemma 3.5. Assume Setting [3.1, assume A is finite, let L € [0,00), let w: X — (0,00) be
X /B((0,00))-measurable, assume that for all (x,a) € X x A, r,s € R it holds that |f(x,r) —

f(z,s)] < Lmaxyea [r(b) — s(b)|, (E[|f(X0)* + |ro(X0=e)? D% < Lw(z). Then it holds
for alln €N, (z,a) € Xx A, 0 € © that E[|f(X*™, VL (XO=))| 4+ [(V(2))(a)]] < oo and
E[(V7(2))(a)] = E[f(X%e, ngl(X()’x’a))] :

Proof of Lemma . The assumption that for all + € X, r,s € R? it holds that |f(x,7) —
f(x,s)] < Lmaxsea|r(a) — s(a)|, Lemma [3.3, Lemma @, the fact that 0 ¢ UJ,o{(0,7)}, the

assumption that (E [|f(X %", 0)|2])% < Lto(z), and |31, Lemma 2.2| prove that for all n € N,
(z,a) € XxA, 6 € O it holds that E[| f(X % V2 (X0%)) 24| (V,!(x)) (a)[]*] < oo. This ensures
for all n €N, (z,a) € X x A4, § € O that E[|f(X%>, V.0, (X%*))| + [(V,!(2))(a)|] < oo. This,
Lemma the assumption that X%, 6 € ©, are i.i.d. random fields, Lemma and |31}, Lemma,
2.2| demonstrate that for all n € Ny, (z,a) € X x A4, 0,9 € © with 0 € J, o{(¥,n)} it holds
that

B[ (X0, V(X)) = B[ (X0, V(X)) (44)
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This establishes for all n € N, (z,a) € X x A, § € O that

n—1 M=l
B[ @)(@)] = 3 g 2 E[F (X070, 100 xesnme))]
=0 i=1
— In(YE[f (X OLDmay 05 (X))
n—1

E[f(X%, V(X" ] = In(OELf (X Vi 1,0 (X559) ]

1=0
= E[f (X" VL (XP7)]. (45)
The proof of Lemma is thus completed. O

3.4 Recursive error bounds for MLFP approximations

Lemma 3.6. Assume Settmg assume A is finite, let ¢, L € [0,00), let w: X — (0,00)
be X /B((0,00))-meaurable, let v: X — RA be X /A-measurable, assume that for all (x,a) €
X x A, r,s € RA it holds that |f(x,r) — f(x,8)] < Lmaxpeqa |r(b) — s(b)], ( [|f(X0“ 0)]2 +

|o(XO®@)||2, + |m(XO’x’“)]2])% < av(z), and (v(z))(a) = E[f (X", v(X%))]. Then it holds
foralln € N, (z,a) € X x A, 0 € O that

[(v(®) (@) = B[V @) @)]] < L (B[o(x°=) — Vo (xo=o)| ] ). (46)

Proof of Lemma . The assumption that for all (z,a) € X x A it holds that (v(z))(a) =
E[f(X%®, v(X%%%))], Lemma , the assumption that for all z € X, r,s € R4 it holds that
|f(z,r) — f(z,s)] < Lmaxeeqa|r(a)—s(a)|, Lemma .4 and the Cauchy-Schwarz inequality
imply that for all n € N, (z,a) € X x A, 0 € O it holds that

o) (@) — B[V (@)(0)]| < E[|f (X0, o(x0w0)) — f(XO2, VO, (x0w))]]
< LE | [o(x®) = v, (x°=)]| ]

1
2

< L(E[HU(XOW) - Vf_l(xo’w»“)u;}) .

The proof of Lemma [3.0]is thus completed. O

(47)

Lemma 3.7. Assume Settz'ng assume A is finite, let ¢, L € [0,00), let w: X — (0,00)
be X /B((0,00))-measurable, let v: X — RA be X/ A-measurable, assume that for all (z,a) €
X x A, r,s € R* it holds that |f(z,r) — f(z,s)] < Lmaxyea |[r(b) — s(b)|, (E[|f(X%>,0)* +
|o(X%9) |2, + |m(XO"”’“)|2})% < co(z), and (v(z))(a) = E[f(XO™, v(X""))]. Then it holds
foralln € N, (z,a) e X x A, 0 € © that

1

(Var [(Vi/ (@) (@)])*
1

< <= (BOACEO00F]) + T () 2= (B[, (X0 — w(xP )]
+ Ll S B )+ 3 D fcone) oot o
=1
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Proof ofLemma. Lemmaensures foralln € N, (z,a) € XxA, 6 € O that Var [(V,!(z))(a)] <
0. Lemma yields that for all [,7 € Ny, (z,a) € X x A, 6 € O it holds that
0 S W Jc(‘XP(G,l,i),z,a(W)7 Vi(al’i) (X(G,l,i),x,a<w)7 w))
— In() f(X O (), VO L (XODma () w)) R (49)

is 0 (U, o F M UFE-Limy FOLD) [B(R)-measurable. This demonstrates that for all n € Ny,
(z,a) € X x A it holds that

n— M=l

1
4),x,a 0,l,i i) ,x,a
Var[ Mnl ZVar[ 9””,Vl( )(X((”) ))
=0 ;

. -ﬂN(l)f<X(9l7, T, V (0,—1,3) (X(G,l,i),x,a)>:| ) (50)

max{l 1,0}

Lemma [3.2) Lemma [3.3] and [5, Lemma 2.6| ensure that for all /,i € Ny, § € © it holds that

X x Q3 (z,0) = (V' (@,w), Vi o (2,0) € RY xR and
X' x 0 > (wi) = (V}O(wi)v Vmax{lfl,O}(xuw)) € RA X RA' (51)
are identically distributed random fields. This and the fact that f is (X ® A)/B(R)-measurable
show that for all [,7 € Ny, # € © it holds that
X x Q3 (2,w) = @,V (2,0) = () (@, Vi g (@w) €R and
Xx Q3 (z,w) = flo,V(2,w)) = In() f (2, Vpaxgr-1.0y (2, w)) € R (52)
are identically distributed random fields. |5, Lemma 2.5] proves that for all I,i € Ny, 6 € O it
holds that
XxAxQ3 (r,a,w)— f(X(e’l’i)’gc’a(w), Vl(a’l’i)(X(G’l’i)’z’“(w),w))
— (1) f(XOED e () O LD (X OMDm0(y) w)) € R and
XxAx Q3 (x,a,w)— f(XO’m’”’(w),VlO(XO’x’“( ),w))
— In() f (X" (W), Vaxga-1,0y (X" (W), w)) € R (53)

are identically distributed random fields. This implies for all ;i € Ny, (z,a) € X x A, § € ©
that
Var [f(X(G,l,i),x,a7‘/2(97l,i)(X(6,l,i),a:,a)> _ ILN(l)f(X(Q“)“ (Ot (X(G,l,i),x,a))}

max{l 1,0}

= Var [£(X0 VI(X0%)) — Ty() (X0, Voo 0 (X05)) (54)

This and ensure that for all n € N, (z,a) € X x A, 6 € O it holds that

n—1 1

Var[V(z)(a)] =

(]

Ty Var [f(XO’””’“, VOAXOm)) — Ayl f (X Vi aepior0p (X w))}
=0

n—1 1
< 30 B[ 70 VX)) (X0, Vi (X)) [ (55)
=0
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Combining this, the fact that for all (z,a) € Xx A it holds that (V{(z))(a) = 0, and the fact that
for all n € N, rq,79,...,7, € [0,00) it holds that \/ri +ro+ -+ 17, < /11 + T2+ -+ /Tn
prove that for all n € N, (z,a) € X x A, § € © it holds that

(Var [(V!(2))(0)])*
< 2 ]\;nl (E[!f(xo,x,a,vp(xo,x,a)) — In() f (X5 Ve 10}(Xo,m,a))’2Dé
= j_ll ]\;nl <E[‘f(X0,x,a7 VZO(XO,x,a)) — HN(l)f(XO,m,a’ VZI,I(XO’I"‘)) |2] )5
! \/%@“f(Xo’z’a’O)m%- (56)

The assumption that for all € X, r, s € R? it holds that | f(z,r) — f(z,s)| < L maxaea |r(a) —
s(a)| and the triangle inequality imply that for all n € N, (z,a) € X x A, 0 € O it holds that

(Var [(V/(2))(a)])?

1 < “f(XOxa 0) ) 1 + n_l ]\f[/nl (E[”VEO(XOJ’Q) - ‘/21_1(X0’x’a)Hio}>%
<3 [ B[V —u(X0=) L)) + E[flo(x") - mlocovxva)nio})ﬂ
sl

The fact that for all [ € Ny, (7,a) € X x A it holds that Q 3 w — V?(X%*%(w),w) € R4 and
Q3w VHX%(w),w) € R are identically distributed ensures for all [ € Ny, (x,a) € X x A
that Q 5> w — [[u( X% (w)) — V(X% (w),w)||%, € [0,00) and Q 3 w — [Jo(X*®(w)) —
VHX%"%(w),w)||% € [0,00) are identically distributed. This and establish that for all
neN, (z,a) € Xx A, 6 € O it holds that

(Var [(V!(2))(a)])?
— L
<
Mnfl

(B (x0=,0)])

—_

[(E[HW(XW) — o(X0m9)|2])? + (B[[lo(XO7) — V2, (X012 ])?

=1

I

+
Mn

= (Bl 0)7]) + Y e (BIVOX) — o 2]
=1

n—2 L /—M
P ‘/Mn—l

= (B[ 0P]) + 1 ()

Mn
L) S (B2 +

+ (BIVX0=) —o(X0=)])

B[V, (X% — U(Xo,x,a)HgOD%

X L(1 4 vM)
A /Mn—l
The proof of Lemma is thus completed. O

(B[IV2(X07e) — p(XO=0)[2)2. (58)

L
\/_M
>
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3.5 Non-recursive error bounds for MLFP approximations

Proposition 3.8. Assume Settmg assume A is finite, let cf, ¢y, Cw, L € [0,00), let w: X —

(0,00) be X/B((0, 00))-measurable, let v: X — R4 be X /| A-measurable, let ¢ = 3 max {g—;, co L+

Cf,%}, assume that for all (z,a) € X x A, r,s € R4 it holds that |f(x,r) — f(z,5)] <
1 1

Lmasses[r(®) — s®)],  (E[F(X%0,0P])} < epm(e),  (E[lo(x=n)L])} < cmla)

(EHm(XO’I’“MZ])% < cpo(z), and (v(z))(a) = E[f(X%% v(X*"))]. Then it holds for all
n €N, x € X that

(E[Hv(w) ~Vi(@)|2] )1/2< ew LA 30073 (em 1A 2 008 ten 2R ga-n |

C .
o ()2 ?

(59)

Proof of Proposition [3.8 The triangle inequality, Lemma [3.4] and the assumption that A is
finite ensure that for all n € N, x € X, 6 € O it holds that

(Bl - 12 @I2])" = (B[l - ERZ@)] + B @] - @)
(E [l -Em@IIL])" + ([Iwe - Em@lIL])
e +Z(EW o) B[V W]F])’

a€A

— [Jo(@) —E[VI@)]|| + 3 (Var[V/(z) (@) 2. (60)

acA

IA

The assumption that X%: X x Q — X4 is (X ® F°)/X-measurable, the assumption that the
o-algebras F?, 6 € O, are independent, the assumption that A is finite, Lemma, , and the
disintegration theorem |31, Lemma 2.2| prove that for all I € N, (z,a) € X x A it holds that

B[V (X") — (X)) = /XE[HVzO(y) —v()[5] (X)) (dy)
E[IV () —v@)I%]\ » 2
< (Sup EIE )cm|m(x)| . (61)

yeX |
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This, Lemma , Lemma and imply that for all n € N, x € X it holds that
(Elllv(2) =V (@)]1%])?
E - Vo 2
—— o) = VA ) .

()|

+ 1[2,w><n>%(E[||U(X°’“"““)I|io])5 + L) (1) Cmt;(Mx)L (sup E[llv(y) — Vn—21(y)||oo] )2

yeX ‘m(y)‘
32 el /) ) IR
(cp + 1[2700)(71)CUL\/M)

D=

E[lf(X*",0)]*])

N

\/ o (y)|?
() = VO ) I12]\? | |Al(z)
SC“""(”L(%‘; Ok ) A
cwlAlLwo(@) [ E[lo(y) = Vi W] )
VM (p (y)]? )

+ ewo@]AIL(1 + VAN Y L l(yeXE[||v<y|>m—(;l’2<y>||oo})2' o

+ 10y (1)

For all n € N let

(o Ellv@) - VI@IRINE
F”_(xe%i’ ()P ) 4 an=MzEy. (63)

Lemma ensures that for all n € Ny it holds that a,, F,, € [0,00). Note that shows for
all n € NN [2,00) that

n 1 1 E _VO 2 %
Fo A (e + e, L0 + o1+ A1) (s [lo(y) n—21<y>lloo}>

yex [ (y)]
n—2 1
1 n- Elllv(y) = V' W)lI3] \ 2
+ e AIL(1 + M2) M2l(sup o0 )
? ; yex [ (y)[?
= [AIM ™% (¢; + c,LM?) + e L(1 + |A]M™2) Fy 1 + e |A|L(1 ZM’*F,. (64)

This implies for all n € NN [2,00) that

n—2
an < [Al(cs + e, LM?) + co MEL(L+ |AIM™2)M™F Fy_y + colAIL(L+ M2) Y M= F,
=1

n—2
= |Al(cs + ¢, LM?) + e L(M?= + |A])ay—1 + el AIL(L+ M2) ) . (65)
=1
Moreover it holds that
E 27\ 2 v a
_ R — (Sup [Hv(y)ll;o]) _ g @)@ (66)
yeX ‘m(y” (y,a)EXXA ’m<y)’
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The assumption that for all (z,a) € X x A it holds that (v(z))(a) = E[f(X*™, v(X""))],

Jensen’s inequality, the triangle inequality, the assumption that for all z € X, r, s € R4 it holds

that |f(x,r)— f(z,s)| < Lmax,ea |r(a) —s(a)|, and the assumption that for all (z,a) € X x A it
1 1

holds that (E[|f(X%"* 0/?])2 < ¢pwo(x) and (E[[Jo(X*")[|%)2 < eyto(z) prove for all (z,a) €

X x A that

|(v(@)(a)] 1 0wa yy0mayy] ()3 < L 0 0mayy |23
wiol = wiy (B o@D [)? < oos (B[l (X0 o(X ) [])
1 2 3 0,z,a 2 3
< o (2) [L(E[§1615|U(X0,x,a)(b)| })2 + (Eﬂf(X w0 ()] Dg} <c,L+ ¢y (67)

|A|M_%cf) < ewLMz(coL + ¢5) + |Ales. Moreover (65) ensures ay < |A|(c; + c,LMz) +
CoL(M?2 4 |A])ar. Let (€2)neng: (bn)nen, C R satisfy for all n € Ny that

This and ensure that ap < ¢,L + ¢;. Note that 1) implies that a1 < M 3 (cmLao +

|Alcy
Cro| A|L + 1
by = |A|LM2(cy — cobo), bpsz =0, & = cwLM2by+ |Alcy,

bO = 50 - max{cc_vacUL + Cr, }7 bl = |A|Cf - (Cm|A|L + 1)b07
1o

n

Entr = |Al(cs + uLM?) + e L(M? + A& + el AIL(L+ M2) )& (68)

=1

Combining (62)), (65), (68), and induction establishes for all n € Ny that a, < &,. Observe that
ensures that for all n € Ny it holds that

&o="0bo, & =b1+ (CmL(M% + |A]) + 1)&,
Envar = bopo + (CoL(MZ + |A]) + 1)énir + cwLM2 (|A] = 1), (69)

Let 1, x5 € R satisfy

o LM 4 |A) + 1= /(o LM +A]) + 1) + deg LM3 (4] - 1)

X = 9 )
coL(Mz + |A]) +1 + \/(cmL(M% +A]) + 1) + e LMz (|A] - 1) o)
To = .
2

Note that for all « € {1,2} it holds that z? = (cmL(M% + |A]) + D)x; + cw LMz (|A] — 1).
Moreover note that the assumption that A is nonempty yields that ¢, L(M2 4 |A])+1 > 1 and
¢wLMz(|A] — 1) > 0. This ensures that 2o > 0 > z;. This and imply that |zo| > |z41].
Hence it holds that

|l‘2| ’$1|

<1 and

1
_ < - 71
’1’2—271‘ o ‘$2—$1| -2 ( )

This, the fact that |z;| < |xo|, and the triangle inequality prove that for all n € Ny it holds that

n+1 n+1

xh — ] 2|n-§-1 1|n-i-1

|2 |1 3
< 5 < —wy. 72
To — I T Ty — I To — X1 X9 — X1 xg—x1$2_2$2 ( )

|z To
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The discrete Gronwall-type two-step recursion in , Lemma 2.1| (applied with k < ¢, L(M 24

[A]) + 1, A« coLMz(JA] = 1), (a)ren, < (Ee)renos (be)rene < (Dr)renys T1j2 < @12 in the
notation of Lemma 2.1]) demonstrates that for all n € Ny it holds that

1 maxyn— max{n—
£ = (Bo(astt = 230 4 byl — @) + by(ay ™ =g O) ()

To — T

Note that ensures that b; < 0 and by < 0. This, the fact that x5 > 1, and the fact that for
all n € Ny it holds that a, < &, proves that for all n € Ny it holds that

n+1 n+1
an < by "1 (74)
To — Iq
Combining this and implies that for all n € Ny it holds that
3 1 \n
Fn S §b0(M_§l’2) . (75)

Furthermore, observe that

eo LM 4 A]) + 14 1/ (o L(M? + [A]) +1)° + dew LM (|A] - 1))
2

M 23y = M2 (

wL (14 [AM3) + M5 1/ (cnL (1 + [AM3) + M=) 4 de LM3(|A] - 1)

2
(76)
This, (63)), and prove that for all x € X, n € N it holds that
E[[lv(z) = Vi (@)lI5] ) 2
(77)
o ()2

§ col (14 |A|M~2)+ M2 + \/(cmL(l FAIM=2) + M~2)* 4 deg LM 2 (JA| — 1)
<c 5 .
The proof of Proposition [3.8]is thus completed. ]

Corollary 3.9. Assume Setting assume A is finite, let cf, ¢y, ¢, L € [0,00) with cpL < 1,
let M > (14 coL(2[A] — 1))2(1 — cuL)72, let w: X — (0,00) be X/B((0,00))-measurable,
let v: X — RA be X/ A-measurable, assume for all (ac a) € Xx A, rs€RA that |f(z,r) —
fla s)| < Lmaxiea |r(b) = s(B)], (E[|/(X",0) ’])? < epo(a), (E[Jo(X0)2])* < eomo(a),
(EHm(XO’”C’“)m)i < cpo(z), and (v(z))(a) = E[f (X% 0(X"*))]. Then it holds that

E — VIR ]\ ?
lim sup [sup( [lv(z) — Vo ()5 }> } =0. (78)
n—00 zeX ’ ((E)’
Proof of C’omllary . Let ¢ € [0, 00) satisfy ¢ = % max {f—r’;, coL +cy, %}. Proposition
establishes that forall n € N, x € X it holds that
(<o) — ) ) )
()2

) (cmm +AIM 2)+ M2 + \/(cmL(l +AIM™2) + M~2)* 4 deg LM (|A| — 1))”
C .
= 2
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Observe that the assumption that M > (1 + cpL(2|A| — 1))2(1 — ¢ L)~ implies M2 < (1 —
cwL)(1 + cn L(2|A| — 1)), This proves that

L ewL(A] = D(1 - col)
1+ coL(2[A]— 1)

L(JA| - 1)M

LAl =D - CmL))

- (cmL+ 1+ cwL(2|A| — 1) — coL(JA| — 1

:1—<cmL—|—(1—cmL)—Cm

1—culL
)) 1+ e L(2]A] — 1)>

_ <L+ (1+ culA[L)— L Cwk ))

1+ cwL(2|A| —
<1— (cwl+ (1+ colAILYM™2) = 1 — (co L(1+ |A|M~2) + M~2). (80)
The assumption that A is nonempty ensures that |A| < 2|A| — 1. This and the assumption that

M > (14 coL(2|A] = 1))%(1 — e L)% yield M > (1 + ¢ L|A])*(1 — ¢ L)™2. Therefore it holds
that ¢ L(1+ [A|M™2)+ M2 = ¢ L+ (1 +cp|A|L)M~2 < 1 < 2. This and (80)) establish that

1 1 1 12 1
cmL(1+|A\M_?)+M_’2+\/(cmL(1+\A\M_?)+M_?) Flew LM~ 2 (JA]-1)
2

1 1 1 _1\2 1 1
e LOAFAIM ™) 1M 2 4/ (cw LOHAIM ™ 2)+M 3 ) 44—4 (en LOHAM ™ 2)4M7)
2

_1 _1 _1 _1\2
e LOAHAIM ™ 2)+M 3 4/ (2—cow LA+ AIM = 3)+ M3 )

= . ~1. (81)
Combining and implies that
E[lv(z) — Vi) (@)II%] H
lim sup | su - = =0. 82
The proof of Corollary [3.9]is thus completed. O

4 Computational complexity analysis for MLFP approxi-
mations

4.1 MLFP approximations for functional fixed-point equations

Theorem 4.1. Let M € N, let © = |J,.yZ", let A be a finite nonempty set, let k € [0,00),
let © be a nonempty set, let Ny, Lg, Ry € [0,00), d € D, let (2, F,P) be a probability space,
let (Xy4,Xy), d € D, be nonempty measurable spaces, for every d € ®© let wy: Xy — (0,00) be
Xy/B((0, 00))-measurable, for every d € D let fu: Xg x R* = R, be (X ® (Quea BR)))/B(R)-
measurable, for every d € D let (F9)pco be independent sub-o-algebras of F, for every d € D
let X9:XyxQ — X4, 0 € O, be ii.d. random fields which satisfy for all d € D, 0 €
O that X§ is (X @ F3)/(Q,ca Xa)-measurable, assume for all d € D, (v,a) € Xy x A,
r,s € RY that |fao(v,7) — fa(z,s)| < Lagmaxyea |r(d) — ()|, (E[|f2(Xy7%0)2])? < rtog(x),
) 3 Supge o AaLa)(2]A|-1))
(EUmd(Xg’ )12])? < Aatva(), supyep ALy < 1, assume M > (1+((1 p‘(fuid:@d)\)gd)l) ik , for ev-

eryd €D letVrf’d: Xgx Q= RA neNy, 0 €0, satisfy for alln € Ny, (z,a) € Xy x A, § € ©
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that

n—1 Ml
1 0.00) .0 (0.04) < (0,1,0),3.0
(Via@)) (@) = 3~ 25 D fa XS0 GG e 0ee)
1=0 i=1
0,0,i),z,a 0,—1,i 0,0,i),z,a
_ILN(Z)fd(Xc(l : 7Vn(1&x{l—)1,0},d(Xc(l ) ))7 (83)

and let €, 4 € [0,00), n € Ny, d € D, satisfy for alln € Ny, d € D that

—_

n—

Cha < M (Ra+ €ra+ In() Cmaxfi—1,01.4) - (84)
]

Il
o

Then the following holds:

(i) For every d € ® there ewists a unique function vg: Xq — RA which is X/ (@ yen BR))-
measurable and satisfies for all (x,a) € Xgx A that  sup,cx, ”U;é(dy(y”)oo < o0,
E[\fd(XS’x’“,vd(XS’“’““))H < 00, and

(va(2)) (a) = E[fa(Xg™", va(Xg™ )] (85)

(1) There exist N: (0,1] — N and ¢ € R such that for all d € ©, € € (0,1] it holds that
Q:Ng,d, < Rqe™¢ and

D=

sup
zeXy

(86)

(E[Hvd(x) — ViLa(@)l%] )

[roq(z)[?

Proof of Theorem[{.1 Let o, 8,7 € RU {oo} satisfy

]_ 1 1
a=Zsup [)\de(l LAY 4 M7H (L1 + [AIM=3) + M3)? AN A Ly(|A] - 1)],
de®

_ In(3M) 3 K KA gL |Alk
ﬁ_ln(a—l)’ and 7—5225 (max{ } .

S L 87
1—ala' 1—aLa O MJA[Lg+ 1 (87)

Let N: (0,1] — N U {oo} satisfy for all € € (0,1] that N. = min({n € N : va" < ¢} U {o0}).
The assumption that supyen AaLg < 1 ensures that v € [0, 00). The triangle inequality yields

1 1 1 1 1 1
a = 5 sup [Adeu FIAMTE) + M7 \/()\de(l +AIM7E) + M=3)" 4 AM =3 M Ly(|A] — 1)],

de®

1 1 1

< - [(sup AaLa)(L+ |AIM™2)+ M2

2| 4ed

+ \/((Sup AaLa)(1+ [AIM=3) + M%) + AM 3 (sup \aLa)(|A] — 1)]. (88)
de® de®
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The assumption that M 1< T +(51;isu§§€di$(i([£|2|—l) ensures that
S

1 — ((sup AaLq)(1 + |A|M™2) + M’%) =1 — (sup AgLq) — (1 + |A|(sup AgLq)) M2
deD deD deD
1— (Supdeg )\de)
T+ (SUbycn AaLa) 1A~ 1)
1 — (Supgep Aala)
Supgen Aala)(2[A] — 1)

> (1-— (sup MLqg)) — (1+ ]A\(Sgg AiLq))

( (sup MaLLa) (21| ~ 1) = (|A](sup AaLa) + 1)) T
B 1 — (Supgeo AaLa)

= (a1~ ) S =

> (sup AaLa)(JA| = 1)M 2. (89)

de®

The assumption that A is nonempty implies that |A| < 2|A| — 1. Hence in holds that M >
2 2
(Heuaen AL CIALDE o UHAGWer Mla)” g ogtablishes that

(1=(supge o AaLa))? = (1—(supgeo AaLd))?
(sup AgLq) + (JA|(sup A\gLg) + l)M_% < 1. (90)
deD deD

Combining this, (88)), and demonstrates that

1 1 1
a< - {(sup AaLa)(1+ |[AIM™2)+ M2
2| dem

+ \/((sup AaLq)(1+ ]A\M’%) + M”) +4M~ (sup AaLq)(|A] — 1)}
deD

1
< = [(sup AaLaq)(1+ |A|M_%) + M
2| dem

o Jlp ) (-4 1AM MY (0 Gap ()1 1A 0075

de®

1 1 1 1 1
= [<sup AaLa)(1+ |AM™3) + M~5 + \/ (2= ((sup AaLa) (1 + |A|M—2) + M‘Q)ﬂ
2| ded de®

=1. (91)

This and ensure that a € [M~2,1). The assumption that M > {FPeen AaL)@AIZ1))”

(1= (supgep AaLa))?
implies that M > 1. Hence it holds that [M~2,1) # . The fact that o € (0,1) demon-
strates that for all ¢ € (0,1] it holds that N. € N. The fact that o € [M~2,1) and the
fact that M > 1 ensure that 8 € (2,00). Corollary [2.3] yields that for all d € D there ex-
ists a unique function vy: X; — R4 which is X,/(Q),. 4 B(R))-measurable and satisfies for

all d € ©, (z,a) € Xy x A that supyede < 00, E[[fd(Xg’x’avd(Xg’x’“))H < 00, and

w4 (y)

va(r,a) = E[fa(X77% va(Xy"?)]. This proves item (7). Lemma implies for all d € D,

(x,a) € Xz x A that (IEI[Hvd(Xg’x’a)HC%OD5 < 1_”,\’\ddemd(IB)- Proposition establishes for all
neN, de®, xreXythat

T,a \T,a l
(Bl i) )
g (x)[?
<~ (md(uA|M-%>+M-%+%(Ade(1+|A|M—%>+M—%>2+4AdeM-%<|A|—1)>n
i 2 .
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This demonstrates for all n € N, d € ® that

E[llva(x) — V2] \E
< )<

[roq()[?

sup
reXy

Note that |3, Lemma 3.14] (applied with M <+ M, o < Ry + €4, B Ry, (Ch) + (&,4) for
d € ® in the notation of |3, Lemma 3.14]) proves that for all n € N, d € © it holds that
Ry+ € Rq+ €
€y < ( d+Cat+Ng+ Coyq
2
This, (93)), and [3, Lemma 3.15] (applied with m < 1, @ < «, 8 = 3M, k1 + 7, Ky < Ry,
N < N for d € © in the notation of |3, Lemma 3.15]) implies for all d € ©, ¢ € (0, 1] that

1

(93)

)(3]\/[)” = R (3M)" (94)

E[[lva(z) = V0a(@)lI3] ) 2 1
n, > < d €y 4 <3MNR 1,y =. 95
(S ) Se md GnaSMRmn{P S ()
Let ¢ = max{3,3M max{1,v}?}. Hence it holds for all d € D, ¢ € (0,1] that €x_4 < Rye°.
This completes the proof of Theorem [£.1] O

4.2 MLFP approximations for Bellman equations of optimal control
problems

Corollary 4.2. Let M € N, k € [0,00), © = {J,,cnZ", let A be a finite nonempty set, let
D be a nonempty set, let (2, F,P) be a probability space, let \g,04,Rq € [0,00), d € D, let
(X4, Xy), d € D, be nonempty measurable spaces, for every d € D let vo4: X; — (0,00) be
X,;/B((0,00))-measurable, for every d € D let gq: Xg x A — R be (X; @ 24)/B(R)-measurable,
for every d € D let (F9)geo be independent sub-o-algebras of F, for every d € ® let X§ =
(ng’a(w))xexd,aeA, veq: Xax AxQ — X, 0 €0, beiid random fields which satisfy for all

de®D, e 0 that XJ is (X; ® 24 @ F9)/Xs-measurable, assume M > (H((SEC(ISEUQE):did))\gg');1))2,
€

assume for all d € D, (z,a) € Xy x A that maxpea |ga(z,b)| < krw4(z), (E] |md(X3’x’a) 2})% <
Adt0g(2), SUP,ep Auby < 1, for every d € © let Q%d: Xax AxQ =R, 0e0,neNy, satisfy
for alln € Ny, (z,a) € Xy x A, 0 € O that

n—1 5
0 J(w,a) = ga(r,a) + d

max { Q% (X" b)) (96)

— D) max { QUi gy (X770,

and let €, 4 € [0,00), n € Ny, d € ®, satisfy for alln € Ny, d € © that

i
L

Cha < Ml (Ra + €+ In() Cmaxfi—1,0}.4) - (97)

N
i
o

Then the following holds:

(i) For every d € D there exists a unique function Qq: Xq x A — R which is (X; ® 24)/B(R)-
max|Qa(y,b)|
cA

measurable and satisfies for all (x,a) € Xgx A that Supyexdme < 00,
EH maxXpe A Qd(Xg’x’“,b)H < 00, and
Qa(z,a) = ga(x,a) + (5dE[II§1€aAX Qa(Xy ™, b)]. (98)

25



(17) There exist N: (0,1] — N and ¢ € R such that for all d € ©, ¢ € (0,1] it holds that
€Ng,d < Rge ¢ and

sup
xeXd

(E[maxaeA Qu(w, @) — Qb a(w,0)] )5 - (99)

[roq () ?
Proof of Corollary . Note that for every d € ® it holds that the function Xy x R4 3 (z,7) —
damaxaea {g4(x,a) +r(a)} € Ris (Xg ® (Q,ea B(R)))/B(R)-measurable. Moreover, for all
de®D, z € Xy, r,s € R4 it holds that

|64 max {94(z,a) +r(a)} — b4 max {94(z,a) + s(a)} | < &4 max |r(a) — s(a)|. (100)

The assumption that for all d € ®©, (z,a) € X x A it holds that maxye 4 |g4(z,b)| < Krog(z),
1
E| |t’od(Xél]’:'3’a)‘2])5 < Aatog(x), and sup,cp Audy, < 1 yields for all d € ©, (z,a) € Xy x A that

(E

For every d € © let Rf ;: Xy x A = R, 0 € ©, n € Ny, satisfy for all n € Ny, (z,a) € Xy x A,
6 € O that

2] ) 2 < b4k (E [|md(X§,x,a)\2D% < SgrAarog(r) < krog(x). (101)

0amax {ga(X3",b)}

n—1

n—1 M
5d 2 : Blz ),x,a (0,1,3) 0,l,1),z,a
=1

— In(l) max {gd(X(‘”“’“ )+ Rt oy a (XS0, 0) b (102)

T
=

This and Theorem (applied with M «+ M, © «+ ©, A <« A k + k, (O, F,P) «
(F,P), DD, (A)ieo + (Aa)aen, (La)ien  (0a)ien; (Ra)aco < (Ra)aen, (Xa, Xi)den
(Xa, Xa)aeo, (Wa)aen < (Wa)aco, (fa)aco + (Xa X R 2 (z,7) = dgmaxaea {ga(z,a) +r(a)} €
R)ien, (F])aeo, oco < (F3)aem, 0co, (X)ien, oco  (X§)deo, 0co, (€na)nens, deo < (€na)neny, ded,
(Vrf’d)neNO’ deD, 90 — (Rz,d)neNo, de®, oeo in the notation of Theorem yield the that

(1) for every d € D there exists a unique function Ry: Xy x A — R which is (X; ® 24)/B(R)-
measurable and satisfies for all (7,a) € Xy x A that sup,, mapealRalyb)l o oo,

104 (y)
E[ |maxges {9a(X7b) + Ra(X7",b) }| ] < oo,
Ry(z,a) = 5dE[Iz?e%1X {gd(Xg’z’a, b) + Ry (Xg’z’a, b)}]. (103)

and

(2) there exist N: (0,1] — N and ¢ € R such that for all d € ©, ¢ € (0,1] it holds that
Cn.a < Rge ¢ and

sup
zeXy

(E[maxaeA |Ra(x,a) — R?Vg,d(x’ a)|2] ) 2 <e. (104)

[roq () ?
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For every d € D let Qq: Xq X A — R satisfy for all (z,a) € Xy x A that Qu(z,a) = ga(z,a) +
Ry(z,a). This and item (1) ensure for all d € D, (z,a) € Xy X A that

Qa(z,a) = ga(z,a) + Ra(z,a) = ga(r,a) + 04K [Iileax {gd(XS””“, b) + Ra( X", b)}

= ga(x,a) + 04E max {Qd(Xg’x’a, b)}] . (105)

Moreover, note that the assumption that for all d € ®, z € X; it holds that
maxgea |ga(z,a)] < kwgy(z) and item (1) demonstrate that for all d € ©, (z,a) € Xy x A
it holds that sup,cx, %@;ﬂyb)' < oo and E HmaxbeA {Qd(Xg’x’“,b)}H < 00. Furthermore,

for every d € ® let Sy: Xy x A — R be (X; ® 24)/B(R)-measurable and satisfy for all d €

D, (z,a) € Xy x A that SUPyexd%w < oo, E HmaxbeA {Sd(Xg’x’a,b)}H < 00, and

Si(z,a) = ga(z,a) + 04E [maxpes {Sd(Xg’I’a, b)}]. It holds for all d € D, (z,a) € Xy x A that
. _ 0,z,a
Sa(z,a) — ga(z,a) = 6,4E |:I£166PAX{Sd(Xd ,b)}

= §,E |:Igl€%4x {ga(X77,b) + Sa(XJ™,b) — ga( X5, b)}] . (106)

Item (1) implies that for all d € © it holds that Sy — gq = R4. This establishes for all d € © that
Sa = Qg. This proves item (i). Note that induction and demonstrate that for all d € ©,
n € Ny, (z,a) € X x A, § € © it holds that Qfl,d(x,a) = gq(z,a) + Rz?d(x,a). Combining this
and item (2) implies for all d € D, ¢ € (0, 1] that

1

1 1
sup (E[maxaeA |Qd(z,a)fQ9\,s7d(:v,a)\2] ) 2 — sup (E[maxagA |Rd(:r,a)fR?\,Eyd(x,a)|2} > 2 <e. (107)

s s s s (@)
This proves item (7i). The proof of Corollary is thus completed. ]

4.3 MLFP approximations for Bellman equations of optimal stopping
problems

Corollary 4.3. Let M € N, let © = |J,, oy Z", let (2, F,P) be a probability space, let © be a
nonempty set, let 04, Ry € [0,00), d € D, let (X4, Xy), d € D, be nonempty Borel spaces, for every
deD let gq: Xg— R and Gy: Xg — R be Xy/B(R)-measurable, for every d € D let (F9)peo be
independent sub-o-algebras of F, for everyd € © let X9 = (Xg’w(w))x@gm weq: XgxQ — Xy, 0 €

O, be i.i.d. random fields which satisfy for alld € ®, 0 € © that XY is (X; @ FJ)/Xa-measurable,
su 2
assume Supeq 0q < 1, assume M > %, assume Supgen (SUP,ex, [94(2)] + |Ga(2)]) <

00, for every d € ® let qud: XgxQ =R, neNy, 0 €0, satisfy for alln € Ny, v € Xy, 6 € ©
that

Zad (1’) e gd(x) + max {Gd (Xée,l,i),x) ’ Q§Zl,l) (Xée,l,’i)7l‘> } (108)

0,0,i),x 0,~L,i 0.1,i),x
— In(l) max{Gd(XC(l ) )’Qr(nax{lll,O},d(X(g : )}
and let €, 4 € [0,00), n € Ny, d € D, satisfy for alln € Ny, d € D that

n—1

Cha < Z M (Ra+ €g + In(D)Cmaxfi—1,04.4) - (109)
1=0
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Then the following holds:

(1) For every d € © there exists a unique function Qg: X4 — R which is X;/B(R)-measurable
and satisfies for all v € Xq that sup,cx, |Qa(y)| < oo, and

Qa(w) = ga(w) + 04E [max {Ga(Xy™"), Qu(Xg")}] - (110)

(13) There exist N: (0,1] — N and ¢ € R such that for all d € ©, € € (0,1] it holds that
Q:Ng,d < fRge" ¢ and

N|—=

sup (IE [!Qd(a:) - Q(])Vs’d(x)fD <e. (111)

IEXd

Proof of Corollary[{.3 Let Y4, d € ©, be nonempty sets which satisfy that there exists T €
Nieo Ya, and that for all d € ® it holds that Y4\ {Y} = Xy, for every d € ® let V; = oy, (Xy),

for every d € D, 0 € © let Y) = (Yde’y’“(w))yeym acfo1}, wea: Yg % {0,1} x Q = Y, satisfy for all
de®,0e€0, (y,a) € Ygx{0,1}, w € Q that

T N § (y=7T)V (a=0),
it = {Xﬁ%) Ay #£T)Afa=1). (112)

Note that for all d € D it holds that Y, § € ©, are i.i.d. random fields and that for every
d € ®, 0 € O it holds that Y is (V; ® 20" @ F¥)/)V,;-measurable. For every d € D let
hg: Yq x {0,1} — R satisfy for all d € D, (y,a) € Yq x {0,1} that

0 cy=T,
hd(y7a> - gd(y> Y 7£ Tu a = ]-7 (113)
Galy) y#7, a=0.

Note that for all d € D it holds that g is (Va®2{%1) /B(R)-measurable. Moreover, for all d € D,

(y,a) € Xgx{0, 1} it holds that |ha(y, a)] < max{|ga(y)],|Ga(y)|} < suP,ecp (SuDsex, |gu(2)] + |Gu(2)]).
For every d € © let qz’d: Yy x {0,1} x Q — Yy, 0 € ©, n € Ny, satisfy for all n € Ny, 0 € ©,

(y,a) € Yq x {0,1} that

Mnl

0 6, z) 49 l,i),y,a
Qn,d<y7 - hd ya § Mn ATn—1 E bG{O 1} {q b)} (114)
(6,—1,3) (0,1,3),y,a
- HN(Z) bgg}f} { max{l 1,0}, d(Y ! ) b)}

Corollary (applied with A < {0,1}, kK < Supges (Supmexd lga(z)| + |Gd(a:)\), ga < hg,
(Xq, X)) «— (Ya, Va), Q%d — qz,d for d € © in the notation of Corollary establishes the
following;:

(1) For every d € © there exists a unique function ¢;: Y4 x {0,1} — R which is (V; ®
2{0.1}) /B(R)-measurable and satisfies for all (y, a) € Y4x{0, 1} that SUD (. pyev,x{0,1} 194(2, D)| <
oo and

0,y,a
qa(y,a) = ha(y,a) + 5dE[bgg’>1<} qa(Y,;", ). (115)
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(2) There exist N: (0,1] — N and ¢ € R such that for all d € ©, ¢ € (0,1] it holds that
Q:Ng,d S Cfﬁdéc and

1

2

sup (& ma aat0) = s atm ] ) <= (116)

y€Yq ac{0,1

Note that for alld € D, (y,a) € Y \{T} x {0, 1} it holds that ¢4(T,a) = 0 and ¢4(y,0) = G4(y).
Moreover, for all d € ®, y € Y, \ {T} it holds that

qa(y, 1) = ha(y,1) + 5dIE[maX {qd(YdO’y’l, 0), qd(YdO’y’l, 1)}]
= ga(y) + 64E [max {Ga(X3"), qa(Xg", 1) }] . (117)

This and item (1) demonstrate for all d € © that there exists a unique function Qg: Xy — R
which is Ay/B(R)-measurable and satisfies for all z € Xy that sup,cx, [Qa(y)| < oo and

Qa(x) = ga(x) + 64E [max {Gd(Xg’m), Qd(Xg’x)H ) (118)

This proves item (i). Furthermore, note that for all d € ©, 6 € O, (y,a) € Y4\ {Y} x {0,1}
it holds P-a.s. that qg,d(T, a) =0, qg’d(y, 0) = Gq4(y), and qg’d(y, 1) = ga(y). This and induction
yield that for alld € ®, 60 € ©, n € Ny, (y,a) € Yo\{T}x{0,1} it holds P-a.s. that ¢/ ,(T,a) = 0
and qz’d(y, 0) = Gy4(y). Combining this, (112)), , and demonstrates that for all d € ©,
€0, neNy yeYy\{Y} =X, it holds P-a.s. that

DO

n—1
5 oL
o) = halp )+ 5 S e Lo o )

(0,—1,3) (6,1,9),y,1
o HN(Z) bgg}f} {qmax{lfl,o},d(yd Y 7b)}

0,1,4), 0,1 0,1,4),
= max{Gd<X; ), gD (x Py, 1)} (119)

0,17, 0,—1,i 0,14,
= () max { (X[, 0, ) (XY 1) )

This and (108)) yield for all d € ©, 0 € ©, n € Ny, y € Y4\ {T} = X, it holds P-a.s. that
qﬁ,d(y, 1) = i,d(y)~ (120)
Combining this and (116)) implies that for all d € ©, € € (0, 1] it holds that

1
2

sup (E[‘Qd(:c) — Q?\,&d(m)fbé < sup (E[ maX} |qd(y,a) - q?vsjd(y,a)ﬂ) <e. (121)

reXy yeYy aE{O,l
This establishes item (i7). The proof of Corollary is thus completed. O]
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