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Abstract. In this work, we consider a compartmental model to describe the

immune response to SARS-CoV-2. The model considers the primary cells

involved in the body’s immune response, antigen-presenting cells, CD4+ and
CD8+ T cells, B cells, IgM and IgG antibodies, proinflammatory cytokines,

and infected cells of the immune system. The resulting system consists of 15

ordinary differential equations (ODEs) with 38 parameters.
For the numerical solution of this rather large ODE system, we develop a

special non-standard finite difference (NSFD) scheme that preserves the posi-

tivity of the solutions.

1. Introduction

The first case of the coronavirus disease (COVID-19) was detected in Wuhan,
China, in December 2019. The virus rapidly spread, and by February 2020, there
were cases of this new disease in 8 countries. Deeply concerned about the alarm-
ing spread of the disease, its severity, and the lack of action, the World Health
Organization (WHO) declared COVID-19 a global pandemic in March 2020 [43].

By December 22, 2022, COVID-19 had already infected more than 655 million
people worldwide, 244 million in Europe, 100 million only in the United States of
America, and 36 million in Brazil, as shown in Figure 2A. On the other hand, the
number of worldwide deaths at the same time was more than 6.67 million, 2 million
in Europe, 1.09 million in the United States of America, and 692,652 in Brazil,
as shown in Figure 2B. Even after the first dose of vaccine was administered in
December 2020 [31], more than 3 million people died from COVID-19 infection.
Figure 1 illustrates the relationship between the population size of each country,
the number of infected people, and the number of deaths.

Even though the pandemic started more than three years ago, there are still
open questions regarding COVID-19. Some of these questions can be answered with
the help of mathematical models and in silico trials. The numerical results obtained
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Figure 1. Choropleth map showing the incidence of COVID-19
around the globe. Panel A presents the number of COVID-19 cases
compared with the total population, while Panel B presents the
number of deaths as complications of COVID-19 compared with
the total population. Crosshatched black and grey areas identify
locations where no data is available.

from these trials might reveal information that may lead the scientific community to
understand this disease. A considerable amount of work makes use of mathematical
and computational modeling to understand how the human immune system (HIS)
works by different means, such as ordinary differential equations (ODEs) [24, 1,
7, 42, 18, 2, 30], partial differential equations (PDEs) [25, 40, 13, 27, 10], and
stochastic methods [8, 44].

This work uses a mathematical model to represent the immune response against
SARS-CoV-2 [30]. This model considers the primary cells involved in the body’s
immune response, antigen-presenting cells, CD4+ and CD8+ T cells, B cells, IgM
and IgG antibodies, pro-inflammatory cytokines, and infected immune system cells.
The model is composed of 15 ODEs and has 38 parameters. In this work, we
adjusted and validated the model using a new set of cohort data [46] referring to
CD4+ (Effector T Helper Cells), CD8+ (Effector T Killer Cells), and the viremia
obtained from COVID-19 patients. Differential Evolution (DE) [39] was used to
adjust the model parameters.
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Figure 2. Evolution of cumulative confirmed COVID-19 cases
(A) and confirmed COVID-19 deaths (B). A) Due to limited test-
ing, the number of confirmed cases is lower than the true number
of COVID-19 infections [31]. B) Due to varying protocols and
challenges in defining the cause of death, the number of confirmed
deaths may not accurately represent the true death toll of COVID-
19.

Additionally, sensitivity analysis via Sobol main indexes [37] made it possible to
gather further information on the immune response to SARS-CoV-2. Furthermore,
we employ the Non-Standard Finite Difference (NSFD) approach to designing a
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numerical method specially designed for our system. To the best of our knowledge,
this type of numerical scheme has not been used to solve large ODEs systems such
as this one. So, this study is interested in demonstrating whether this numerical
scheme is able to solve large systems of ODEs.

This work is organized as follows. Section 2 presents a brief introduction to
the Immunological System to help achieve a better understanding of the matter at
hand. Section 3 presents the mathematical model (3.1), which was solved using
the NSFD Scheme presented in Section 3.2, adjusted to the data extracted as in
Section 3.3 with the use of DE (Section 3.4), understood with the help of Sensitivity
Analysis presented in Section 3.5. Section 4 presents the results obtained from our
study, which we delve into further in Section 5. Finally, the last section presents
our conclusions and plans for future work.

2. Immunological Background

The human immune system (HIS) consists of several mechanisms that work
together to ensure the health of the human body. Some of its elements act directly
on the immunological response to antigens, such as T-killer cells (CD8+). With
the help of antigen-presenting cells (APCs) and cytokines, these cells can recognize
and eliminate various threats that enter our bodies, such as viruses and bacteria.

The HIS defense against antigens is made up of two main parts: the innate
and the adaptive immune systems. The innate system acts as the first layer of
defense against any type of pathogen, while the adaptive system is tailored to deal
with specific types of antigens, including viruses. The adaptive defense system can
evolve throughout our lives to protect us against almost any invader.

When APCs and other stimuli activate T helper cells, a cascade of events is
triggered, leading to the activation of B and T-killer cells. The functions of T-killer
cells include identifying and destroying virus-infected cells. A distinct strategy to
kill viruses involves the production of antibodies. Antibodies opzonize and prepare
viruses to be eliminated by phagocytes. Mature B cells are responsible for specific
antibody production. Thus, the receptors on the various B cells are so diverse that
our B cells can probably recognize any organic molecule that exists and produce
specific antibodies for it. After the infection is under control, some B cells dif-
ferentiate into memory B cells to maintain information about how to repel future
invasions of the same antigen. The necessary amount of memory B cells is stored
for this purpose. These memory B cells can be reactivated faster to produce specific
antibodies against the same invader.

In this work, we focus on the adaptive immune system, working on a model that
describes antigen-presenting cells, the T cells, and some types of antibodies (IgG
and IgM) besides the virus and the cytokines. The original model [3] was adapted
to describe the specific response to coronavirus infection [30]. A difference is that
this paper includes CD4+ and CD8+ data [46] to adjust and analyze the results
of the in silico experiments. The focus on this population can be explained by the
T cells’ role in understanding the severity of COVID-19 cases since lymphopenia is
an indicator of SARS-CoV-2 infection and a predictive of disease progression.

3. Material and Methods

3.1. Mathematical Model. In this work, we use a model composed of 15
ODE [30]s, where each one represents an element involved in the immune system



A NSFD SCHEME FOR A MODEL OF THE IMMUNE RESPONSE AGAINST COVID-19 5

response to SARS-CoV-2 infection: virus (I); naive (Thn) and effector (The) T
helper (CD4+) cells; naive (Tkn) and effector (Tke) T Killer (CD8+) cells; B cells
(B); short- (Ps) and long-lived (Pl) plasma cells; B memory cells (Bm); IgM (IgM )
and IgG (IgG) antibodies, and cytokines (C).

The first equation represents SARS-CoV-2 (V ) usage of the cell machinery to
replicate itself and spread to other cells, as well as its interaction with the immune
system [6, 16, 35]. The first term of Eq. (3.16a), πvV , expresses the replication of
the virus since piv represents the growth rate of the SARS-CoV-2. The other terms
of Eq. (3.16a) indicate the elimination rate of the virus by the immune system. The
antibodies can opsonize the virus to facilitate the binding of the virus to receptor
molecules present in phagocytes [23]. This phenomenon is denoted by the second
and the third terms of Eq. (3.16a): the term kv1V IgG illustrates the death of the
virus due to its opsonization by IgG, and the term kv1V IgM due to its opsonization
by IgM , respectively, being kv1 the rate at which an antibody opsonizes a virus.
The term kv2V Tke, where kv2 is the clearance rate, represents viral clearance due
to the induction of apoptosis of cells infected by the SARS-CoV-2 virus. Finally,
kv3V Apmdepicts the viral clearance by mature APCs, such as macrophages, where
the term kv3 is the clearance rate.

(3.1)
d

dt
V = πvV − kv1V IgG − kv1V IgM − kv2V Tke − kv3V Apm.

Antigen-presenting cells (APC) are found in two stages, naive and mature [22].
The second and third equations represent these two stages of the APCs, naive (Ap)
and mature (Apm). APCs are those cells specialized in presenting an antigen to a
T-cell. Distinct immune cells can act as APC. In this work, we consider that the
main APCs are macrophages. In Eq. (3.2), the naive APCs’ homeostasis and acti-
vation are described by the first and second terms, respectively. Pro-inflammatory
cytokines influence the homeostatic balance of the APCs [22], and, for this reason,
in the first term, αap(C + 1)(Ap0 − Ap), αap represents the homeostasis rate and
(C + 1) represents the influence of pro-inflammatory cytokines in the homeostasis.

The term βapAp
cap1V
cap2+V denotes the conversion of immature APCs into mature ones

which explains why the same term appears in Eq. (3.3) with a positive sign. More-
over, this last term uses a function to model growth combined with the saturation
phenomenon [14].

(3.2)
d

dt
Ap = αap(C + 1)(Ap0 −Ap)− βapAp

cap1V

cap2 + V
.

In Eq. (3.3), which represents mature APCs, βapmApmV denotes Apm infection
by the SARS-CoV-2 virus, where βapm is the infection rate. In other words, this
term considers the hypothesis that SARS-CoV-2 also infects immune cells [15, 9],
thus causing the production of several pro-inflammatory cytokines (mainly IL-6),
which may cause a Cytokine Release Syndrome (CRS) or cytokine storm. The third
term, δapmApm, means the natural decay of the mature APCs, where δapm is the
decay rate.

(3.3)
d

dt
Apm = βapAp

cap1V

cap2 + V
− βapmApmV − δapmApm.
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The dynamics of the infected immune system cells are represented by Eq. (3.4).
The first term, βapmApmV , representsApm infection, and the second term, βtkeTkeV ,
represents CD8+ T cell infection. The infection rates are, respectively, βapm and
βtk. Infected cells die with a rate δapm.

(3.4)
d

dt
I = βapmApmV + βtkeTkeV − δapmI.

Eq. (3.5) represents the population of naive CD4+ T cells (Thn). The term
αth(Thn0 − Thn) represents the homeostasis of CD4+ T cells, where αth is the
homeostasis rate. APCs are responsible for activating naive CD4+ T cells [22].
The term βthApmThn denotes the activation of naive CD4+ T cells, where βth is
the activation rate.

(3.5)
d

dt
Thn = αth(Thn0 − Thn)− βthApmThn.

Eq. (3.6) represents the effector CD4+ T cell population (The). The term
πthApmThe represents the proliferation of effector CD4+ T cells, where πth is the
proliferation rate. The term δthThe represents the natural death of these cells, with
δth representing its death rate.

(3.6)
d

dt
The = βthApmThn + πthApmThe − δthThe.

Eqs. (3.7) and (3.8) represent the population of naive (Tkn) and effector (Tke)
CD8+ T cells, respectively. In Eq. (3.7), the naive CD8+ T cell’s homeostasis
and activation are described by the first and second terms, respectively. In the
first term, αtk(C + 1)(Tkn0 − Tkn), αtk represents the homeostasis rate. The term
βtk(C + 1)ApmTkn denotes the activation of naive CD8+ T cells, where βtk is
the activation rate. As one can see, pro-inflammatory cytokines (C) influence the
homeostatic balance and activation of naive CD8+ T cells.

(3.7)
d

dt
Tkn = αtk(C + 1)(Tkn0 − Tkn)− βtk(C + 1)ApmTkn.

In Eq. (3.8), the term πtkApmTke represents the proliferation of effector CD8+
T cells. The terms βtkeTkeV and δtkTke represent the infection and death of effector
CD8+ T cells, respectively.

(3.8)
d

dt
Tke = βtk(C + 1)ApmTkn + πtkApmTke − βtkeTkeV − δtkTke.

Eq. (3.9) represents both naive and effector B cells (B). These populations were
considered together in order to simplify the model. The term αb(B0−B) represents
the B cell’s homeostasis, where αb is the homeostasis rate. The terms πb1V B and
πb2TheB represent the proliferation of B cells activated by the T-cell independent
and T-cell dependent mechanisms [38], respectively. The terms βpsApmB, βplTheB
and βbmTheB denote the differentiation of active B cells into short-lived plasma
cells, long-lived plasma cells, and memory B cells, respectively. The activation
rates are respectively given by βps, βpl and βbm.
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d

dt
B = αb(B0 −B) + πb1V B + πb2TheB − βpsApmB

−βplTheB − βbmTheB.
(3.9)

The dynamics of memory B Cells (Bm) is depicted by Eq. (3.10). The logistic

growth of memory B cells is represented by the term πbm1Bm

(
1− Bm

πbm2

)
, i.e., there

is a limit to this growth [4], being πbm1 the limits of the growth rate, and pibm2 of
the growth per se.

(3.10)
d

dt
Bm = βbmTheB + πbm1Bm

(
1− Bm

πbm2

)
− γbmBm.

Eq. (3.11) represents the short-lived plasma cells (Ps) [38]. The term δpsPs
denotes the natural decay of short-lived plasma cells, where δps is the decay rate.

(3.11)
d

dt
Ps = βpsApmB − δpsPs.

Long-lived plasma cells (Pl) are represented by Eq. (3.12). The second term,
δplPl, describes the natural decay of long-lived plasma cells, where δpl is the decay
rate. The term γbmBm depicts the replenishing of Pl by memory B cells, with γbm
representing the production rate.

(3.12)
d

dt
Pl = βplTheB − δplPl + γbmBm.

Eqs. (3.13) and (3.14) describe the generation of antibodies. The first term of
each equation, πpsPs and πplPl, represent the production of antibodies by their cor-
respondent plasma cells, short-lived and long-lived, respectively. Both πps and πpl
denote the production rates, respectively. The second terms, δamIgM and δagIgG,
describe the natural decay of IgM and IgG antibodies, respectively, with δam and
δag representing the decay rate.

(3.13)
d

dt
IgM = πpsPs − δamIgM .

(3.14)
d

dt
IgG = πplPl − δagIgG.

Finally, the pro-inflammatory cytokine dynamics are described by Eq. (3.15).
The first term of this equation, πcapm

Apm, depicts the production of cytokines by
Apm, being πcapm

the rate of production. The next term describes the cytokine
production by infected immune cells, with πci representing the production rate.
The term πctke

Tke represents the cytokine production by Tke cells, where πctke

denotes the production rate. The last term depicts the natural decay of cytokines,
with δc describing the decay rate.

(3.15)
d

dt
C = πcapm

Apm + πciI + πctke
Tke − δcC.
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For simplification purposes, the model used in this work [30] did not include
infected and non-infected epithelial cells, as it would have more constants to adjust
and without the availability of data to validate these cell populations over time. The
quality of the results, especially those related to the virus population, is unaffected
by the use of implicit antigen replication, as previous works have demonstrated [4,
29, 3, 26]. It is also assumed that the virus is located in the tissue, where it
can infect matured immune cells. The naive cells are activated in the bloodstream
(APCs), lymph nodes (CD4 and CD8), or after leaving both [22, 23, 38]. It is also
assumed that virus is mainly produced by the epithelial tissue, despite some pieces
of evidence showing that infected alveolar macrophages can also assist in virus
replication [15]. The phagocytic activity by infected cells is assumed to be null in
this model. The model used in this work considers that infected cells continue the
production of pro-inflammatory cytokines. Finally, the model implicitly accounts
for the effects of different pro-inflammatory cytokines.

3.2. The Nonstandard Scheme. In addition to properties such as stability
and consistency, qualitative properties, such as the preservation of positivity, are
also important for biological models like the one described in this work. This is
exactly where nonstandard finite difference (NSFD) methods come into play to
meet these requirements.

NSFD schemes for the numerical integration of ODEs were pioneered by Mick-
ens [20]. This section presents an NSFD method to solve the resulting ODE system
presented in Eq. (3.16). These specialized schemes can be regarded as discrete mod-
els of the ODE systems. In this direction, they are designed in order to preserve
certain properties such as the positivity of the analytic solution of the ODE system.
These schemes can be reformulated in an efficient explicit way, and as a byproduct
of the positivity preserving property, the NSFD methods are stable.

For ease of presentation, we rewrite the equations described so far in one ODE
system, as shown below.

d

dt
V = πvV − kv1V IgG − kv1V IgM − kv2V Tke − kv3V Apm,(3.16a)

d

dt
Ap = αap(C + 1)(Ap0 −Ap)− βapAp

cap1V

cap2 + V
,(3.16b)

d

dt
Apm = βapAp

cap1V

cap2 + V
− βapmApmV − δapmApm,(3.16c)

d

dt
I = βapmApmV + βtkeV Tke − δapmI,(3.16d)

d

dt
Thn = αth(Thn0 − Thn)− βthApmThn,(3.16e)

d

dt
The = βthApmThn + πthApmThe − δthThe,(3.16f)

d

dt
Tkn = αtk(C + 1)(Tkn0 − Tkn)− βtk(C + 1)ApmTkn,(3.16g)

d

dt
Tke = βtk(C + 1)ApmTkn + πtkApmTke − βtkeV Tke − δtkTke,(3.16h)

d

dt
B = αb(B0 −B) + πb1V B + πb2TheB − βpsApmB
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− βplTheB − βbmTheB,(3.16i)

d

dt
Ps = βpsApmB − δpsPs,(3.16j)

d

dt
Bm = βbmTheB + πbm1Bm

(
1− Bm

πbm2

)
− γbmBm,(3.16k)

d

dt
Pl = βplTheB − δplPl + γbmBm,(3.16l)

d

dt
IgM = πpsPs − δamIgM ,(3.16m)

d

dt
IgG = πplPl − δagIgG,(3.16n)

d

dt
C = πcapm

Apm + πciI + πctke
Tke − δcC.(3.16o)

One can easily observe that, for positive parameters and positive initial data,
the solution of Eq.(3.16) remains positive all the time. We will call this the “posi-
tivity property”.

NSFD schemes go back to a paper by Mickens published in 1989 [21]. Their
structural properties come from investigations of special groups of ODEs for which
no exact finite difference schemes are available. In contrast to conventional finite
difference methods, NSFD schemes consider not only stability and consistency or-
der, but also pay attention to qualitative properties, i.e., how well does the discrete
model (the NSFD scheme) model the most important properties of the underlying
continuous model?

We introduce a time step h > 0 and consider temporal grid points tn := nh, n =
0, 1, . . . . In the sequel, we denote by V n the approximation of V at the grid point tn,
and similarly for the other components in Eq. (3.16). In NSFD schemes, derivatives
have to be modeled by proper discrete analogs, i.e. nonstandard difference quotients
of the form, cf. [20]

(3.17)
d

dt
V (tn)→ V n+1 − ψ(h)V n

φ(h)
,

where ψ(h) = 1 + O(h) and the denominator function φ(h) = h + O(h2). Using
this rather general time discretization in NSFD schemes, our aim is to preserve
the positivity of the solution, which is the most important structural property. We
choose here ψ(h) = 1 and φ(h) = h and focus on the discretization of the right-hand
side of the ODE system given by Eq. (3.16).

In an NSFD scheme, the nonlinear terms are approximated in a non-local
way, e.g. by a suitable function of several grid points, like V 2(tn) ≈ V nV n+1 or
V 3(tn) ≈ (V n)2V n+1. First, we write down the nonstandard discretization of the
15 components of the ODE system:

V n+1 − V n

Φ(h)
= ΠvV

n+1 − kv1I
n
gGV

n+1 − kv1I
n
gMV

n+1 − kv2T
n
keV

n+1

− kv3A
n
pmV

n+1,(3.18a)

An+1
p −Anp

Φ(h)
= αap(C + 1)

(
Ap0 −An+1

p

)
− βap

cap1V
n+1

cap2 + V n+1
An+1
p ,(3.18b)
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An+1
pm −Anpm

Φ(h)
= βap

cap1V
n+1

cap2 + V n+1
An+1
p − βapmV n+1An+1

pm − δapmAn+1
pm ,(3.18c)

In+1 − In

Φ(h)
= βapmA

n+1
pm V n+1 + βtkeT

n
keV

n+1 − δapmIn+1,(3.18d)

Tn+1
hn − Tnhn

Φ(h)
= αth(Thn0 − Tn+1

hn )− βthAn+1
pm Tn+1

hn ,(3.18e)

Tn+1
he − Tnhe

Φ(h)
= βthA

n+1
pm Tn+1

hn + ΠthA
n+1
pm Tn+1

he − δthTn+1
he ,(3.18f)

Tn+1
kn − Tnkn

Φ(h)
= αtk(C + 1)

(
Tkn0 − Tn+1

kn

)
− βtk(C + 1)An+1

pm Tn+1
kn ,(3.18g)

Tn+1
ke − Tnke

Φ(h)
= βtkA

n+1
pm Tn+1

kn + ΠtkA
n+1
pm Tn+1

ke − βtkeV n+1Tn+1
ke

− δtkTn+1
ke ,(3.18h)

Bn+1 −Bn

Φ(h)
= αb(B0 −Bn+1) + Πb1V

n+1Bn+1 + Πb2T
n+1
he Bn+1

− βpsAn+1
pm Bn+1 − βplTn+1

he Bn+1 − βpmTn+1
he Bn+1,(3.18i)

Pn+1
s − Pns

Φ(h)
= βpsA

n+1
pm Bn+1 − δpsPn+1

s ,(3.18j)

Bn+1
m −Bnm

Φ(h)
= βbmT

n+1
he Bn+1 + Πbm1B

n+1
m

(
1− Bnm

Πbm2

)
− γbmBn+1

m ,(3.18k)

Pn+1
l − Pnl

Φ(h)
= βpeT

n+1
he Bn+1 − δplPn+1

l + γbmB
n+1
m ,(3.18l)

In+1
gM − IngM

Φ(h)
= ΠpsP

n+1
s − δamIn+1

gM ,(3.18m)

In+1
gG − IngG

Φ(h)
= ΠplP

n+1
l − δagIn+1

gG ,(3.18n)

Cn+1 − Cn

Φ(h)
= ΠcapmA

n+1
pm + ΠciI

n+1 + Πctke
Tn+1
ke − δcCn+1,(3.18o)

for n = 0, 1, . . . and a denominator function φ(h) = h. We briefly comment on
the chosen discretizations of the nonlinear terms. For example, in the first line of
Eq. (3.18), we have discretized the quadratic term Apm(t)V (t) by AnpmV

n+1 rather

than, say, AnpmV
n or An+1

pm V n+1. The rule is that exactly one factor of the variable
appearing in the time derivative (here V ) must be taken at the new time level n+1.
This is needed to obtain the positivity-preserving property. In order to not destroy
the explicit sequential evaluation, all other variables are taken from the previous
time level, unless they are already known from a previous step, like V n+1An+1

pm in
the third line of Eq. (3.18).

While the NSFD discretization presented in Eq. (3.18) of the ODE system
defined in Eq. (3.16) is formally implicit, it can be easily rearranged to obtain a
scheme that can be evaluated sequentially in an explicit and thus efficient way:

V n+1 =
V n

1 + Φ(h)
[
kv1IngG + kv1IngM + kv2Tnke + kv3Anpm −Πv

] ,(3.19a)
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An+1
p =

Anp + Φ(h)αap(C + 1)Ap0

1 + Φ(h)
[
αap(C + 1) + βap

cap1V n+1

cap2+V n+1

] ,(3.19b)

An+1
pm =

Anpm + Φ(h)βap
cap1V

n+1

cap2+V n+1A
n+1
p

1 + Φ(h)
[
βapmV n+1 + δapm

] ,(3.19c)

In+1 =
In + Φ(h)

[
βapmA

n+1
pm + βtkeT

n
ke

]
V n+1

1 + Φ(h)δapm
,(3.19d)

Tn+1
hn =

Tnhn + Φ(h)αthThn0

1 + Φ(h)
[
αth + βthA

n+1
pm

] ,(3.19e)

Tn+1
he =

Tnhe + Φ(h)βthA
n+1
pm Tn+1

hn

1 + Φ(h)
[
δth −ΠthA

n+1
pm

] ,(3.19f)

Tn+1
kn =

Tnkn + Φ(h)αtk(C + 1)Tkn0

1 + Φ(h)(C + 1)
[
αtk + βtkA

n+1
pm

] ,(3.19g)

Tn+1
ke =

Tnke + Φ(h)βtkA
n+1
pm Tn+1

kn

1 + Φ(h)
[
δtk + βtkeV n+1 −ΠtkA

n+1
pm

] ,(3.19h)

Bn+1 =
Bn + Φ(h)αbB0

1 + Φ(h)
[
αb −Πb1V n+1 + βpsA

n+1
pm + (βpl + βpm −Πb2)Tn+1

he

] ,(3.19i)

Pn+1
s =

Pns + Φ(h)βpsA
n+1
pm Bn+1

1 + Φ(h)δps
,(3.19j)

Bn+1
m =

Bnm + Φ(h)βbmT
n+1
he Bn+1

1 + Φ(h)
[
γbm −Πbm1

(
1− Bn

m

Πbm2

)] ,(3.19k)

Pn+1
l =

Pnl + Φ(h)
[
βpeT

n+1
he Bn+1 + γbmB

n+1
m

]
1 + Φ(h)δpl

,(3.19l)

In+1
gM =

IngM + Φ(h)ΠpsP
n+1
s

1 + Φ(h)δam
,(3.19m)

In+1
gG =

IngG + Φ(h)ΠplP
n+1
l

1 + Φ(h)δag
,(3.19n)

Cn+1 =
Cn + Φ(h)

[
ΠcapmA

n+1
pm + ΠciI

n+1 + Πctke
Tn+1
ke

]
1 + Φ(h)δc

,(3.19o)

for n = 0, 1, . . .
The NSFD scheme presented in Eq. (3.19) is positivity-preserving, i.e., it always

produces non-negative solutions for positive data if the step size h is sufficiently
small since all parameters and the denominator function are non-negative. Thus,
negative values for the solution are avoided, and as a byproduct, stability with
respect to the maximum norm is guaranteed, cf. [11].

For an application example where exactly this problem occurs and the numer-
ical solution of the standard solver becomes negative, we refer the reader to the
literature [19].

3.3. Data Extraction. Studies available in the scientific literature on indi-
viduals infected with SARS-CoV-2 were used to evaluate the mathematical model
and its numerical implementation with the NSFD scheme. In our case, viremia and
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CD4+ and CD8+ levels of patients who survived or died due to COVID-19 were
manually extracted from the graphs on CD4+ (The) and CD8+ (Tke) in Figures 2-b
and 2-c of Zhang et al. [46] and the viral load of Sars-CoV-2 from Figure 2 of To et
al. [41]. This manual process was supported by a tool hosted on WebPlotDigitizer

website [32]. After uploading a target figure to the website, the tool requires some
settings regarding axis positions and scale. Then, the desired point data on the
figure can be selected to convert it into raw data. The result is a CSV file with
comma-separated values containing the x- and y-axis values of each assigned point.

Once we have a coarse grid of extracted point data, we use a first-degree La-
grange interpolation polynomial to approximate the intermediate values [5].

3.4. Differential Evolution. Differential Evolution (DE) is a stochastic heu-
ristic algorithm that is considered a robust strategy for global optimization [28].
The algorithm is inspired by natural evolution in that it features generations, se-
lections, and mutations to better represent an individual’s ability to survive in an
environment. DE is thus an evolutionary algorithm and a parallel direct search
method. It works in generations and represents a population with a given number
of individuals, using vectors of parameters to represent each generation. In addi-
tion, each vector has a corresponding mutation rate that takes into account the
synonym phenomenon occurring in nature, where some positions of the vector are
generated randomly. In this way, the offspring of the population is always com-
posed of individuals resulting from the cross between two other individuals of the
previous population, also taking into account any mutation that might occur in one
of the new individuals. The generation of the offspring continues until convergence,
or the maximum number of iterations is reached.

In this work, we attempted to minimize the error between the CD4+, CD8+,
and viremia model solution and the corresponding values from the extracted cohort
data. To measure the difference between the cohort (λ) and the approximated data

(λ̂), we use the relative error (RE), as follows:

(3.20) RE =
||λ− λ̂||2
||λ̂||2

.

To achieve the parameter estimation with DE, we use an objective function. Thus,
in this work, the difference between the model results and the cohort data was
minimized using the equation that takes into account not only the relative error
between the approximated values of virus (V ), CD4+(The) and CD8+(Tke) but also
the weight attributed to w1, w2 and w3, respectively. DE thus performs a search for
the values of the p parameters that better fit the curves considering the following
objective function:

(3.21) min
p

(
w1RE(V, V̂ ) + w2RE(The, T̂he) + w3RE(Tke, T̂ke)

)
.

During our study, the algorithm was improved with the results of each run, and
adjusting the weight of each relative error in the objective function was a crucial
factor in obtaining the best results. In the end, we found that w1 = 1, w2 = 1, and
w3 = 2 were the proper values for matching the model results with the cohort data.

3.5. Sensitivity Analysis. One method of quantifying the influence of pa-
rameters in the model is to perform what is called a sensitivity analysis [17]. Once
applying DE to 38 parameters in a set of 15 ordinary differential equations is no
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longer practical, we use Sobol main indices to understand which parameters have
a greater impact on the equation we are trying to fit and include them in the
optimization process performed via DE [36, 37].

The method of Sobol main indices requires as input a statistical distribution
of each of the parameters to be analyzed. The result of the method indicates
the influence of each parameter in the selected time point, ranging from 0 (lowest
value) to 1 (highest value). Moreover, once the influence of each parameter has been
evaluated relatively, the sum of all parameter indices in the selected time point is
equal to 1. Thus, this type of analysis can be used to quantify the influence of an
uncertain input pi on the model.

Considering a general model and its parameters:

(3.22) G = f(p1, . . . , pn),

where the output G is a scalar and the input or parameters are independent vari-
ables that are also randomized and described by probability density function (PDF)
distributions since they represent the uncertainty of the system. The main idea is
to decompose the variation to relate it to the contribution of each parameter.

To perform the sensitivity analysis, we use the parameters as uniform PDF dis-
tributions in the range of [0.6pi, 1.4pi] for the CD4+ population and [0.01pi, 100pi]
for CD8+. Thus, we evaluate the influence of a particular pi parameter at a par-
ticular moment of the model solution compared to the others.

4. Results

This section presents the results of the COVID-19 model used, which was fitted
to viremia data of SARS-CoV-2, CD4+ (effector T helper cells), and CD8+ (effector
T killer cells) in patients with COVID-19.

4.1. Software Specifications. The fitting was done by minimizing the error
between the cohort data and numerical results using the DE method. The method
differential evolution [33] from the scipy [34] package was used to perform
the DE method. In addition, sensitivity analysis using the Sobol index method
provides the quantitative influence of the parameters on the model results, which
is valuable information for model fitting. The Sobol analysis was performed using
the Chaospy tool [12]. All simulations were performed using Python 3.9.1. The
initial conditions of each population are presented in Tab. 1, while the values if the
parameters used to solve the system of ODEs are presented in Tab. 2.

4.2. Influence of parameters in the model. Figure 3 presents the results
of the Sobol main indices for both effector T helper and T killer cells. Figure 3A
shows that for the population of effector helper T cells, the parameters that had the
greatest impact on the simulation result of CD4+ cells were cap1, βtk, βtke, δapm,
αth and πtk. Figure 3B shows that cap2, δapm, βap, πv, βtk have a smaller influence
on the simulation result of CD8+ cells. Considering this information, most of these
parameters are included in the DE variables, where cap1 and βtke belong to the
parameters that enter a wider range of the search space (bounds) input for DE.

4.3. Model Adjustment. As shown in Figure 4A, the response to COVID-
19 infection in patients with severe cases causes a decline in CD4+ around day
30. After a few days of growth, the CD4+ population begins to decline and halves
within approximately 10 days. The model results were able to qualitatively capture
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Pop Value Unit

Ap 106 (cells/mL)
Apm 0 (cells/mL)
I 0 (cells/mL)
Thn 106 (cells/mL)
The 0 (cells/mL)
Tke 500.0× 103 (cells/mL)
B 0 (cells/mL)
Ps 250.0× 103 (cells/mL)
Pl 0 (cells/mL)
Bm 0 (cells/mL)
IgG 0 S/CO
IgM 0 S/CO
C 0 (pg/mL)

Table 1. The initial values of each population.

this behavior. Furthermore, when the standard deviation of the cohort data is
considered, the model results fit within the range of the overall simulation.

Figure 4B shows the model results together with cohort data from the CD8+
population in severe cases of COVID-19. The data show a stable state after 40 days
of COVID-19 infection. Similar to the cohort data, the fitted model results show
qualitatively the same behavior. We can highlight that the CD8+ emerges after
decay, but when we consider the standard deviation of the cohort data, the model
results fit within the range of the whole simulation.

5. Discussion

As can be seen in Figure 4, the obtained results show that the curves are
qualitatively similar and correspond to the standard deviation of the cohort data.

The insights derived from the sensitivity analysis results guide the fitting of the
model in the right direction once the application of DE to so many variables (38
parameters) is ineffective in a large system of ODEs. Performing the Sobol index
method followed by DE could provide us with valuable information on whether
the parameters should be included in DE. Moreover, each population (CD4+ and
CD8+) has its own set of parameters affecting its curves, which explains the differ-
ent sets of parameters used in each of the Sobol index results shown in Figure 3.

The behavior of CD4+ and CD8+ cells is similar to the cohort data (see 4),
whereas their population decreases after the first symptoms of COVID-19. This be-
havior is justified in the scientific literature when one of the features of SARS-CoV-
2 infection is a decreased number of white cells in the blood or lymphocytopenia,
which is seen in both the simulation and cohort data.

Moreover, the model results presented in this study were obtained by solving
the COVID-19 model using a newly developed NSFD scheme, which favors our
hypothesis regarding the convergence of the method, apart from the considerable
number of equations in the ODE system.
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Parameter Value Unit

πv 6.3482× 10−1 (day−1)

kv1 0.0098 (day−1(mlU/ml)−1)

kv2 2.8469× 10−5 (day−1(cells/mL)−1)

kv3 0.06452 (day−1(cells/mL)−1)

αap 1 (day−1(pg/mL)−1)

βap 3.8486x10−1 (day−1(copies/mL)−1)
cap1 2.4393× 105 (copies/mL)
cap2 1.1730× 1012 (copies/mL)

δapm 7.0824× 10−02 (day−1)

βapm 1.9534× 10−02 (day−1(copies/mL)−1)

βtke 2.2884× 10−05 (day−1(copies/mL)−1)

αth 1.629510−04 (day−1)

βth 1.7124× 10−05 (day−1(cells/mL)−1)

πth 10−8 (day−1(cells/mL)−1)

δth 1.0518× 10−01 (day−1)

αtk 1 (day−1(pg/mL)−1)

βtk 1.3354× 10−05 (day−1(pg/mL)−1(cell/mL)−1)

πtk 10−8 (day−1(cells/mL)−1)

δtk 5.6691× 10−02 (day−1)

αb 3.5782 (day−1)

πb1 8.98× 10−5 (day−1(copies/mL)−1)

πb2 1.27× 10−8 (day−1(cells/mL)−1)

βps 6.00× 10−6 (day−1(cells/mL)−1)

βpl 5.00× 10−6 (day−1(cells/mL)−1)

βbm 1.00× 10−6 (day−1(cells/mL)−1)

δps 2.5 (day−1)

δpl 0.35 (day−1)

γbm 0.0009 (day−1)

πbm1 1.00× 105 (day−1)
πbm2 2500.00 (cells/mL)

πps 0.087 (day−1(cells/mL)−1(S/CO))

πpl 0.001 (day−1(cells/mL)−1(S/CO))

δam 0.07 (day−1)

δag 0.07 (day−1)

πcapm 328.0626434 (day−1(pg/mL)(cell/mL)−1)

πci 0.0064 (day−1(pg/mL)(cell/mL)−1)

πctke 0.01783 (day−1(pg/mL)(cell/mL)−1)
δc 704.2259 (cells/mL)

V 1.7662× 102 (day−1)

Table 2. The values of the parameters used to solve the system.

6. Conclusions and Future Work

The results obtained in this study show that the mathematical model used in
the numerical experiments is suitable to capture cohort data on CD4+, CD8+,
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Figure 3. The curves in this figure illustrate the influence of each
parameter included in the sensitivity analysis on the CD4+ and
CD8+ populations. The vertical axis shows the relative influence
of each variable on the analysis versus the influence of all included
parameters on the Sobol index method. The horizontal axis repre-
sents the simulation time such that the overall picture shows the
relative influence of each parameter at each time step over 35 days
of SARS-CoV-2 infection.

and viremia behavior in severe cases of COVID-19. Moreover, to our knowledge,
no NSFD scheme has ever been proposed for such a large ODE system with 15
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Figure 4. The numerical result presented in this figure shows the
time variations of the concentrations of CD4+ and CD8+ cells, A
and B, respectively. The solution curve, referred to as the “Model”
shows the result of solving the ODE system, while the “Cohort
Data” curve represents the values obtained from the literature [45].
The values of the parameters used to solve the system are given in
Table 2, and the initial values can be found in Table 1.

components and 38 parameters. Thus, this work presents evidence for using NFSD
schemes for a large system of equations.

Future work will investigate the robustness of this model for various HIS cells
that play key roles in SARS-CoV-2 infections.
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