
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 22/24

Fabian Heldmann, Sarah Berkhahn, Matthias Ehrhardt,
and Kathrin Klamroth

PINN Training using Biobjective Optimization:
The Trade-off between Data Loss and Residual Loss

(This is an updated/corrected version of Preprint 22/13)

December 11, 2022

http://www.imacm.uni-wuppertal.de



PINN Training using Biobjective Optimization:
The Trade-off between Data Loss and Residual Loss

Fabian Heldmannb, Sarah Berkhahna, Matthias Ehrhardta, Kathrin
Klamrothb

aUniversity of Wuppertal, Chair of Applied and Computational Mathematics,
Gaußstrasse 20, 42119 Wuppertal, Germany

bUniversity of Wuppertal, Chair of Optimization, Gaußstrasse 20, 42119 Wuppertal,
Germany

Abstract

Physics informed neural networks (PINNs) have proven to be an efficient

tool to represent problems for which measured data are available and for which

the dynamics in the data are expected to follow some physical laws. In this

paper, we suggest a multiobjective perspective on the training of PINNs by

treating the data loss and the residual loss as two individual objective functions

in a truly biobjective optimization approach.

As a showcase example, we consider COVID-19 predictions in Germany and

built an extended susceptibles-infected-recovered (SIR) model with additionally

considered leaky-vaccinated and hospitalized populations (SVIHR model) to

model the transition rates and to predict future infections. SIR-type models are

expressed by systems of ordinary differential equations (ODEs). We investigate

the suitability of the generated PINN for COVID-19 predictions and compare

the resulting predicted curves with those obtained by applying the method of

non-standard finite differences to the system of ODEs and initial data.

The approach is applicable to various systems of ODEs that define dynamical

regimes. Those regimes do not need to be SIR-type models, and the correspond-

ing underlying data sets do not have to be associated with COVID-19.
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1. Introduction

Physics informed neural networks (PINNs) [1, 2], also called theory-inspired

machine learning [3], have recently become a popular method for solving dif-

ferential equations. By incorporating the residual of the differential equation

into the loss function of a neural network-based surrogate model, PINNs can

seamlessly combine measured data with physical constraints given by differential

equations. PINNs can also be viewed as a surrogate model for solving differen-

tial equations by incorporating additional data or as a data-driven correction

(or even discovery) of the underlying physical system.

By the end of the year 2022, we had experienced several waves of the COVID-

19 pandemic with different variants of the virus prevailing at different time inter-

vals. Various levels of interventions and protective measures were implemented

to counteract the uncontrolled spreading of the disease. We focus exemplarily

on the time until the fourth wave (i.e., the omicron wave) of the COVID-19

pandemic in Germany that had its peak in February and March 2022.

The B.1.617.2 (delta) variant of SARS-CoV-2, which is characterized by a

higher contagiosity than the previous B.1.1.7 (alpha), B.1.351 (beta) and P.1

(gamma) variants, has been observed in Germany since March 2021 and was

the predominant variant in Germany during several months in the year 2021

[4]. In the autumn of 2021, the new omicron variant was detected and classified

as concerning by the World Health Organization. Three sublines (BA.1, BA.2,

BA.3) and a transmission advantage with respect to the delta variant were

attributed to the omicron variant at the end of November 2021 [4]. The omicron

variant quickly spread worldwide. Three recombinations of the omicron and

delta variant (XD, XE, XF) had already been registered as sublines [4].

Local peaks during the fourth COVID-19 wave in Germany were reached on

November 28th 2021 with 693, February 14th 2022 with 2,434 and March 20th
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2022 with 2,619 daily infections per 1 million people. All of these peaks were

larger than the global peaks of the three previous waves experienced in spring

2020 (69 on April 2nd 2020), winter 2020/2021 (305 on December 22nd 2020)

and spring 2021 (257 on April 25th 2021) [5].

The mathematical model used in this work to describe the population dy-

namics of COVID-19 is the susceptible-vaccinated-infected-hospitalized-recovered

(SVIHR) model. Here, pre-symptomatic individuals are merged with symp-

tomatic people in the infected compartment, so that we have a single infected

compartment of people not hospitalized.

The contribution of our work consists of two large parts: Firstly, we estab-

lish the SVIHR model and build upon this a Physics-Informed Neural Network

(PINN). The PINN method uses certain physics-informed constraints, expressed

e.g. by differential equations, as part of the loss function of a corresponding deep

neural network. Thus, the system of ODEs plays a crucial role in the training

(i.e., the optimization) of the neural network.

PINNs were first introduced in the work of Raissi et al. and since then used to

solve different forward and inverse problems [1]. The PINN approach trades off

between the data-based and physical loss functions in the training process. This

steers the search for reasonable solutions towards those that satisfy a ’physical

law’ to some degree, i.e., an SVIHR compartmental model in this case. The

loss function of the PINN is based on reported data of recent infection events

(data loss part), and a system of ODEs inheriting transition and transmission

dynamics, from which so-called residual networks are computed using automatic

differentiation (residual loss part). The data loss makes PINNs a data-driven

technique. Here, we distinguish between training data covering the time since

the outbreak of the pandemic in Germany (long-term predictions) and training

data involving exclusively one peak (short-term predictions).

The PINN involves several fixed model parameters, from which transition

parameters are computed. A unique feature of our approach is that we estimate

the parameters that are crucial to the dynamics of the system using a nonstan-

dard finite difference (NSFD) method. In other words, we augment the PINN
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with a numerical approach to the ODE system to better estimate the crucial

parameters inside the residual loss function. While NSFD solutions generally

do not provide good approximations to the data, , they can be used to better

estimate model parameters like, e.g., the transmission rates before and after

vaccination.

The second contribution of our work is the optimization of the parameter

weighting the relation between the data and residual loss part. In situations

where the physical model can only partially represent the measured data, as is

the case when predicting COVID-19 infection rates, data loss and residual loss

are in real conflict. While the main goal is to reproduce the measured data well,

the residual loss serves more as a regularization term that helps overcome noise

and outliers in the data and better predict the underlying dynamics. Choos-

ing a reasonable weighting for these two training objectives is far from trivial.

To achieve this, we interpret the training process as a biobjective optimization

problem, where the residual loss and the data loss are considered as two inde-

pendent objective functions. Rather than combining these two objectives with

a pre-determined and fixed weighting parameter, we identify suitable weight-

ing parameters by generating a (rough) approximation of the Pareto front. For

the training process, we adopt a scalarization-based approach that transforms

the biobjective problem into a series of weighted-sum scalarizations. Favorable

solutions are identified by repeated training runs with adaptively selected scalar-

ization parameters. The resulting approximation of the Pareto front provides

valuable information on the trade-off between data loss and residual loss. On

one hand, this information can be used to assess the suitability of the employed

physical model. On the other hand, a thorough analysis of the (approximated)

Pareto front supports an informed selection of a suitable compromise, focusing

more on the data or more on the physical model depending on the application

background and on the decision makers preferences and beliefs.
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1.1. Related Research

Since the outbreak of the COVID-19 pandemic, a variety of compartmental

models have been introduced as enhanced susceptible-infected-recovered (SIR)

compartment models to study various aspects of the spread of SARS-CoV-2.

PINNs have been applied to compartment models and studied in the context of

the COVID-19 pandemic as well.

For instance, Malinzi et al. applied a PINN to a susceptible-infected-recovered-

deceased (SIRD) model in order to identify the behavioural dynamics of COVID-

19 in the Kingdom of Eswatini between March 2020 and September 2021. They

found that their PINN outperformed all other data analysis models even when

given minimal quantities of training data [6].

Kharazmi et al. [7] considered different integer-order, fractional-order and

time-delay models expressed as systems of ODEs. With the aim of analyzing

the past dynamics of COVID-19 in New York City, Rhode Island and Michigan

states as well as Italy, they used PINNs that were reported capable of performing

parameter inference and simulation of the observed and unobserved dynamics

simultaneously. Their results showed that purely statistical approaches were

generally not well suited for long-term predictions of epidemiological dynamics,

and integer-order models seemed to be more robust than fractional-order mod-

els, that were first developed by Pang et al. [8]. Moreover, they stated that no

model could accurately capture all the dynamics that play out during an ex-

tended pandemic, but models with the ability to adjust key parameters during

training could lead to more useful predictions [7].

Cai, Karniadakis and Li calibrated the unknown model parameters of a

susceptible-exposed-infected-removed (SEIR) model using the novel fractional

physics-informed neural networks (fPINNs) deep learning framework in order

to obtain reliable short-term predictions of the COVID-19 dynamics caused by

the Omicron variant [9]. Data from the National Health Commission of the

People’s Republic of China covering the time from 27th February 2022 to the

end of April 2022 were used. For instance, predictions were able to capture

sudden changes of the tendency for the new infected cases.
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On the other hand, concerning the general PINN approach, the multiob-

jective nature of PINN training was recognized in several recent publications.

Rohrhofer et al. [10] analyze the impact of different weights in a weighted sum

objective of data loss and model loss by scanning the weight interval. Also Jin

et al. [11, Section 4.4.] studied the influence of weights in an experiment for

turbulent channel flow, by manually tuning the weight in order to improve the

results. Finally, Wang et al. [12, Algorithm 2.1] proposed an adaptive rule,

called ’learning rate annealing for PINNS’, for choosing the weights online dur-

ing the training process. The basic idea behind this is to automatically tune the

weights by using the back-propagated gradient statistics during model training

to properly balance all terms in the loss function. Their numerical results on

diffusion equations and Navier-Stokes equations, respectively, impressively show

the impact of the weight selection on the training success. Indeed, suboptimal

results are obtained for several training runs, thus leaving room for improved

multiobjective training approaches. When the physical model and the data are

in good correspondence (this is, for example, the case when the data is artifi-

cially generated from the model at hand), an ‘ideal’ solution that simultaneously

minimizes data and model loss can be sought.

Maddu et al. [13] suggest a multiobjective descent method that adaptively

updates the weights using an inverse Dirichlet strategy to avoid premature ter-

mination. While they do not discuss convergence guarantees, their numerical

results show a good performance in comparison with recent adaptations of mul-

tiobjective descent methods [14, 15] to PINN training [16]. Stochastic multiob-

jective gradient descent algorithms were introduced for general NN training in

[17]. We also refer to self-adaptive PINNs [18] and to PINN training in which

the loss weights are regarded as hyperparameters [19].

In a more general setting, multiobjective training approaches were suggested

in [20] to trade off between data loss and regularization terms in the context

of image recognition. The different characteristics (slope and curvature) of

the considered training goals are addressed by enhancing the stochastic multi-

gradient descent approach [17] with pruning strategies, and by combining adap-
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tive weighted-sum scalarizations with interval bisection. The latter supports

the identification of favorable knee solutions on the Pareto front.

This paper is organized as follows: In Section 2, the compartment model

for COVID-19 predictions is introduced. Firstly, the SIR model is explained in

Section 2.1 to provide an insight into the basics of epidemic modelling. Then

the system of ODEs of our compartment model, the SVIHR model, is defined

along with the used transition rates and transmission rate in Section 2.2. All

model parameters are listed in Table 1.

Section 3 is devoted to the methodological developments. The Nonstandard

Finite Difference (NSFD) method is introduced in Section 3.1, where the con-

cept of the scheme is explained, the so-called denominator function is derived

and the NSFD scheme for the SVIHR model is established. Section 3.2 provides

an introduction to physics-informed neural networks (PINNs) with a focus on

the loss function and the suggested neural network structure. Section 3.3 intro-

duces some aspects of biobjective optimization needed to examine the Pareto

front that is obtained by biobjective PINN training approaches. Finally, in

Section 3.4, we introduce a dichotomic search scheme aiming to quickly find

near-ideal Pareto optimal solutions and supporting an informed decision on the

preferable trade-off between the data loss and the residual loss.

We present our numerical results in Section 4. In Section 4.1, we perform a

short-term prediction of infection data, using data generated during the delta-

variant wave as training data to predict the first omicron wave. In Section 4.2,

we continue with the application of the dichotomic search scheme to discuss its

ability to approximate a Pareto front, and identify reasonable trade-off solutions.

Finally, in Section 4.3, we perform a long-term prediction using most of our

available data as training data to predict the delta wave. We use the dichotomic

search to find a low cost weighting parameter for both objective functions. A

conclusion is drawn and an outlook to future work is given in Section 5.
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2. A Compartment Model for COVID-19 Predictions

The compartment model used to compute the residual loss during PINN

training in this paper is the susceptible-vaccinated-infected-hospitalized-recovered

(SVIHR) model, which was proposed by Treibert and Ehrhardt in [21]. It is

briefly derived in Section 2.2 again for the sake of completeness. Building upon

the basic susceptible-infectious-recovered (SIR) model introduced by Kermack

and McKendrick in 1927 [22], the SVIHR model enhances the SIR model to

include a vaccinated and a hospitalized compartment. A general short intro-

duction to SIR models in mathematical epidemiology is provided in Section 2.1.

In [21], a comparison between a data-driven PINN approach that takes into

account a distinct training data set, and an NSFD method that approximates

the SVIHR model was made with regard of the respective prediction qualities

for infection and hospitalization numbers.

Treibert, Brunner and Ehrhardt [23] put the focus on the performance of

the NSFD scheme for a susceptible-vaccinated-infected-intensive care-deceased-

recovered (SVICDR) model. Here, the impact of modifications parameter bounds

on the predicted prevalence was investigated, taking into account data from the

pandemic in Germany and an exponentially increasing vaccination rate in the

considered time window as well as trigonometric contact and quarantine rate

functions. The results showed that the NSFD methods can predict a global

peak solely based on the mathematical model and the defined parameters, but

independently of a previously observed behavior of the infectious disease.

In this paper, we build on the SVIHR model of [21]. A novel PINN ap-

proach is presented based on updated data from [24, 25, 26] that incorporates

both short-term and long-term data for the predictions. An improved network

architecture is complemented by a dynamics-based parameter estimation that

combines NSFD and PINN methods. Characteristic for the considered appli-

cation is the often significant deviation of the measured data from the model

predictions: While the SVIHR model captures the dynamics of COVID-19 in-

fection, it cannot reflect fluctuations in the data that may have a variety of dif-
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ferent causes. We address this challenge with an adaptive approach to analyze

the trade-off between data loss and residual loss in the training process. This

biobjective perspective on PINN training enables semi-automatic and problem-

specific identification of optimized weighting parameters.

As determining the proportion of asymptomatic individuals in the total in-

fected population is not our goal at this point, we do not incorporate a separate

compartment of asymptomatic infected individuals, but assume at least very

mild symptoms in infected individuals. The degree of infectivity of infected

individuals can be regulated by adjusting the transmission rate in the model.

Our model is adaptable to different vaccination and transmission scenarios.

2.1. The SIR Model in Mathematical Epidemiology

The basic SIR model consists of three compartments of susceptible (S),

infected (I), and recovered (R) individuals. We denote with K(t) the size of

a compartment K ∈ {S, I,R} at time t, where a time unit equals a week.

Susceptible individuals have not yet become infected but may become ill. In

the basic SIR model, infected individuals may infect susceptible persons, i.e.

they are assumed to be infectious (without any delay) and may or may not have

symptoms. Recovered individuals have overcome the disease and are assumed

to be neither infectious nor ill.

The total size of the population at time t is denoted byN(t). The satisfaction

of the equation

N(t) = S(t) + I(t) +R(t) with N : [0, T ]→ N,

means that the number of individuals in the system is the sum of the compart-

ment sizes at each considered time point t ∈ [0, T ]. The system (2) must have

initial conditions S0 = S(0), I0 = I(0), R0 = R(0) = 0 to be well-defined [27,

p. 11]. The population size N(t) is assumed to be constant, i.e. N(t) = N , and

the derivative of N(t) is zero, which means that the system does not consider a

recruitment rate Λ nor a natural death rate.
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Let p be the probability that a contact with a susceptible individual results

in a transmission, and let ζ be the per capita contact rate, i.e. the number of

contacts made by one infectious individual. Then ζ N is the number of contacts

per unit of time this infectious individual makes, and ζ N S
N denotes the number

of contacts with susceptible individuals that one infectious individual makes per

unit of time. Moreover, we define a transmission rate constant β [27, p. 10] as

β = p ζ . (1)

For a more detailed discussion of the transmission rate and of related parameters

including, among others, time dependent models, we refer to [23].

If I(t) stands for the number of infected individuals at time t (prevalence),

then β S I denotes the number of individuals who become infected per unit of

time (incidence). If ωI is the recovery rate, we obtain the following system of

ODEs, that describes the SIR model [27, p. 11]:

dS(t)

dt
= −β I(t)S(t),

dI(t)

dt
= β I(t)S(t)− ωI I(t),

dR(t)

dt
= ωI I(t).

(2)

For the model in Equation (2), the maximum number of infected individuals

that can be reached in the regarded epidemic is bounded by

Imax = −ωI

β
+
ωI

β
ln
(ωI

β

)
+ S0 + I0 −

ωI

β
ln
(
S0

)
. (3)

Let

F (t) = 1− e−ωIt, t ≥ 0 (4)

be the probability of recovering/leaving the infectious compartment in the time

interval [0, t) [27, p. 11]. The function F (t), with F (t) = 0 for t < 0, is a

probability distribution. Then f(t) = dF (t)
dt is the respective probability density

function:

f(t) = ωI e
−ωIt for t > 0, and f(t) = 0 for t ≤ 0. (5)
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If X denotes the average time spent in the infectious compartment, then the

mean time spent in the infectious compartment can be computed as the first

moment

E
[
X
]
=

∫ ∞

−∞
t f(t) dt =

∫ ∞

0

t ωI e
−ωIt dt =

1

ωI
. (6)

For SARS-CoV-2, the mean time of infectiousness is not clearly defined. With

a mild or moderate course of the disease, contagiousness clearly declines within

the ten days after symptom occurrence. Contagiousness has to be distinguished

from positive test results, that can occur several weeks after catching the infec-

tion, although the infectiousness is usually on a very low level then [28].

In this basic form of the SIR model, the population is assumed to be closed

so that no individual enters or leaves a compartment from the outside, and re-

covered individuals are completely immune so that they can never be reinfected

[27, p. 13].

2.2. The SVIHR Model

The SIR model was enhanced by a compartment of hospitalized individuals

H and a compartment of fully, i.e. at least twice, vaccinated individuals V in

[21]. Data was obtained from the Robert Koch-Institute (RKI) [24, 25] and

the German COVID-19 Vaccination Dashboard [26], based on which parameter

values and compartment sizes, referred to as reported compartment sizes or

reported data in the sequel, were computed.

Infected individuals remain infected for TI days until they recover, where

a proportion ξ of all individuals transiting from the infected individuals are

hospitalized. The exact daily or weekly number of infectious individuals among

the infected individuals is not known. The number of infections registered by

the Robert Koch-Institute (RKI) is used to compute the reported size of the

compartment I for all considered calendar weeks in this paper. This number

is based on the number of infected individuals who are infectious enough so

that the virus is usually verifiable via a rapid antigen test. Infectious and not

infectious infected people are merged within the compartment I. The general
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degree of infectiousness of the individuals in I depends on the transmissibility

of the virus and is included in the transmission rate.

According to the RKI, the concrete time period of contagiosity is not clearly

defined, but infectiousness is highest right before and after the presence of first

symptoms and drastically declines after at most 10 days after the very first

symptoms occur (assuming a mild or moderate course of disease) [28]. We set

TI = 1.2 weeks, i.e. 8.4 days, to adopt for a small time span of 1-2 days between

the first showing of symptoms and getting tested. The parameter ω1 is the rate

at which individuals per unit time (week) pass from compartment I to R. It is

defined as

ω1 =
1− ξ
TI

. (7)

The rate η at which individuals reach the compartment H per unit of time is

defined as

η =
ξ

TI
. (8)

Thus, we assume that ω1 I(t) people recover and η I(t) individuals are hospital-

ized within week t. It is assumed here that hospitalized individuals cannot infect

susceptible individuals because they are isolated. They are assumed to remain

infected TH days from the time of their hospitalization. In a German academic

survey with 1,426 COVID-19 patients with an acute respiratory disease, an av-

erage duration of hospital stay of 10 days was observed [28]. Accordingly, we

set TH = 1.5 weeks, i.e. 10.5 days. ω2 is the transition rate at which persons

per unit time pass from compartment H to R.

The vaccinated compartment V contains all susceptible individuals who have

received a COVID-19 vaccination. It is reached from the compartment S at a

rate V. If vaccination does not guarantee complete immunity to infection, we

speak of a leaky vaccination. Due to the assumed leakiness, all vaccinated in-

dividuals have a lower probability of contracting the infection than susceptible

individuals in compartment S. If an all-or-nothing vaccine was assumed, vac-

cinated people would be completely protected from the infection to a specific

portion of the susceptible class per unit time t, whereas the other susceptible
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individuals did not gain any protection. Let κ denote the residual probability

of infection after vaccination. The rate at which vaccinated individuals reach

the infected compartment I is then κβI(t).

Furthermore, we incorporate a constant system inflow, the so-called recruit-

ment rate Λ (e.g. birth of new individuals that can get infected), and the natural

mortality rate µ. The recruitment and natural death rate are set to zero as they

are regarded as equal in both [21] and in this paper, but are still included in the

system of ODEs for the purpose of properly deriving the denominator function

in the NSFD scheme, see Section 3.1. The total population size is kept constant

like this. The corresponding system of ODEs has the following form:

dS(t)

dt
= Λ−βI(t)S(t)− (V + µ)S(t),

dV (t)

dt
= V S(t)−κβI(t)S(t)− µV (t),

dI(t)

dt
= (1 + κ)βI(t)S(t)−

(
η + ω1 + µ

)
I(t),

dH(t)

dt
= η I(t)− (ω2 + µ)H(t),

dR(t)

dt
= ω1 I(t) + ω2H(t)− µR(t).

(9)

The system (9) extends the simple system (2) by the differential equations for

V (t) and H(t), describing the inflow into and the outflow from the compartment

V or H, respectively, as well as the recruitment rate Λ and the natural death

rate µ. Note that the equation for V (t) in (9) can only approximate the ac-

tual dynamics, since vaccinated individuals remain vaccinated even when they

become infected. We approximate the respective rates of change by using the

compartment of susceptible individuals as a reference in the term κβI(t)S(t).

Preliminary numerical tests, using both the NSFD scheme and the PINN ap-

proach, show that the use of κβI(t)V (t) does not significantly affect the quality

of the predictions.

One can easily show that for positive parameters and positive initial data,

the solution of (9) remains positive for all times. We call this the ”positivity

property”. If we now set Λ = µ = 0 and add all compartments in (9), we find

that the total population is a quantity conserved over time. We will return to
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this ”conservation property” later when we discuss the NSFD scheme. This

setting is an acceptable simplification because the time scale of human births

and deaths is much longer than that of a COVID-19 epidemic wave.

Figure 1 shows the dynamical system described by (9). Blue arrows from one

compartment to another indicate a transition. Table 1 lists the model parameter

S I H

R

V

V
βI(t)

κβI(t)

ω1 ω2

η

µ µ µ

µ

µ

Λ

Figure 1: Illustration of the compartments and their interrelation in the SVIHR model

definitions and used values. We note that the parameter values for the SVIHR

model used in this paper stated in Table 1 differ from the ones used in [21].

3. Finding Optimized Weights in PINN Approaches

We implement a physics informed neural network (PINN) that is trained

both w.r.t. German COVID-19 data and w.r.t. the SVHIR model introduced in

Section 2.2 above. This technique is validated using error computations with

regard to reported data. The method and structure of PINNs is explained in

Section 3.2. Moreover, scenarios generated using the PINN are compared to

those produced using the technique of nonstandard finite difference (NSFD)

schemes. A short introduction to NSFD schemes and the application on the

SVIHR model are outlined in Section 3.1.

Since the PINN is trained w.r.t. two loss terms, we take a biobjective ap-

proach to investigate the influence of weighting parameters on each loss term.
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We consider the two losses as independent objective functions and want to find

weighting parameters to achieve an approximation of the Pareto front. We

therefore first introduce certain aspects of bicriteria optimization in Section 3.3

and then introduce a dichotomic search scheme to efficiently approximate the

Pareto front in Section 3.4.

3.1. Nonstandard Finite Difference Schemes

NSFD schemes go back to a paper by Mickens published in 1989 [30]. Their

structural properties originate from investigations of special groups of differen-

tial equations for which exact finite difference schemes are not available. For

the sake of completeness, the NSFD scheme for the SVIHR model is described

again here. It has already been derived in a similar way in [21].

In NSFD schemes, derivatives have to be modelled by proper discrete ana-

logues, i.e. nonstandard difference quotients of the form, cf. [31]

du(t)

dt
→ un+1 − ψ(h)un

ϕ(h)
, (10)

where tn = nh, un is the approximation of u(tn), and ψ(h) = 1 + O(h). ϕ(h)

is a denominator function, which is explained in more detail below. Using this

rather general time discretization (10) in NSFD schemes our aim is to model

the asymptotic long-time behaviour of the solution. A numerical scheme for a

system of first-order differential equations is called NSFD scheme if at least one

of the following conditions hold [31]:

• Discrete representations for derivatives must, in general, have nontrivial

denominator functions. Here, the first-order derivatives in the system

are approximated by the generalized forward difference method dun

dt ≈
un+1−un

ϕ(h) , where un ≈ u(tn) and ϕ ≡ ϕ(h) > 0 is the so-called denominator

function such that ϕ(h) = h+O(h2), with h the step size.

• The consistency orders of the finite difference quotients should be equal

to the orders of the corresponding derivatives appearing in the differential

equations.
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• The nonlinear terms are approximated by non-local discrete representa-

tions, for instance by a suitable function of several points of a mesh, like

u2(tn) ≈ unun+1 or u3(tn) ≈ u2nun+1.

• Special conditions that hold for either the ODE and/or its solutions should

also hold for the difference equation model and/or its solution, e.g. the

equilibrium points of the underlying ODE system.

In contrast to conventional difference methods, NSFD schemes focus not

only on stability and convergence order, but also on qualitative properties, i.e.,

how well the discrete model (the NSFD scheme) reproduces the most important

properties of the underlying continuous model. NSFD schemes preserve the

positivity property and satisfy the conservation law for Λ = µ = 0 yielding the

stability of the scheme. The equilibrium points of the ODE model (9) appear

in the proposed NSFD-scheme as well.

In the sequel, we will derive an appropriate denominator function ϕ(h) for

the NSFD discretization of the system (9). This function is chosen such that

the numerical solution exhibits the same asymptotic behaviour as the analytic

solution. To do so, we consider the total population N = S + V + I +H + R

of the ODE system (9). Adding the equations of (9), a differential equation

describing the dynamics of the total population N is obtained as

dN(t)

dt
= Λ− µN(t) , (11)

which is solved by

N(t) =
Λ

µ
+
(
N(0)− Λ

µ

)
e−µt = N(0) +

(
N(0)− Λ

µ

)
(e−µt − 1), (12)

where N(0) = S(0) + V (0) + I(0) + H(0) + R(0). Similar to (11), adding the

equations of an NSFD discretization of (9) yields the equation

Nn+1 −Nn

ϕ(h)
= Λ− µNn+1, (13)
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i.e.

Nn+1 =
Nn + ϕ(h)Λ

1 + ϕ(h)µ
= Nn −

(
Nn − Λ

µ

) ϕ(h)µ

1 + ϕ(h)µ

= Nn +
(
Nn − Λ

µ

)( 1

1 + ϕ(h)µ
− 1

)
.

(14)

The denominator function can be derived by comparing Equation (13) with the

discretized version of Equation (12), that is

Nn+1 = Nn +
(
Nn − Λ

µ

)
(e−µh − 1), h = ∆t, (15)

such that the (positive) denominator function is defined by

1

1 + ϕ(h)µ
= e−µt, (16)

i.e.

ϕ(h) =
eµh − 1

µ
=

1 + µh+ 1
2µ

2h2 + . . .− 1

µ
= h+

µh2

2
+. . . = h+O(h2). (17)

Now, making use of the denominator function in (10), the NSFD discretiza-

tion can be established. The implicit form of this discretization is provided in

Equation (18). Here, ϕ(h) is given by (17)

Sn+1 − Sn

ϕ(h)
= Λ− β In Sn+1 − (V + µ)Sn+1,

V n+1 − V n

ϕ(h)
= V Sn+1 − β κ In Sn+1 − µV n+1,

In+1 − In

ϕ(h)
= β (1 + κ) In+1 Sn+1 − (η + ω1 + µ) In+1,

Hn+1 −Hn

ϕ(h)
= η In+1 − (ω2 + µ)Hn+1,

Rn+1 −Rn

ϕ(h)
= ω1 I

n+1 + ω2H
n+1 − µRn+1 .

(18)

We can rewrite the scheme in order to obtain an explicit variant of it, as to be

found in (19). From the explicit representation we can deduce that this scheme
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preserves the positivity.

Sn+1 =
Sn + ϕ(h)Λ

1 + ϕ(h) (β In + V + µ)
,

V n+1 =
V n + ϕ(h)Sn+1 (V − β κ In)

1 + ϕ(h)µ
,

In+1 =
In

1 + ϕ (η + ω1 + µ− β (1 + κ)Sn+1)
,

Hn+1 =
ϕ(h) η In+1 +Hn

1 + ϕ (ω2 + µ)
,

Rn+1 =
Rn + ϕ(h) (ω1 I

n+1 + ω2H
n+1)

1 + ϕ(h)µ
.

(19)

The calculation must be implemented in exactly this order. All parameters

appearing in these type of epidemic models are always non-negative.

Remark 1. Looking at the third equation of (18), one might wonder why one

does not use the time discretization InSn+1 instead of In+1Sn+1. Here two

arguments meet in this discussion, and there is no clear right or wrong. With

this ”new” version, one has the exact conservation property on the discrete

level. With the ”old” version In+1Sn+1 (implicitly only in In+1, Sn+1 is already

calculated in the first line), on the other hand, one gets positivity conservation

and thus also the stability property, which is more important. So we have chosen

the first variant and have to cope with a small perturbation of the conservation

of the total population.

For an actual application, where a standard solver gives false negative solu-

tion and this problem can be solved by a NSFD scheme we refer to [32].

3.2. Physics-informed Neural Networks for Compartment Models

Physics-informed neural networks (PINN) are neural networks that include

the laws of dynamical systems into a deep learning framework. Machine learning

has emerged as an alternative to numerical discretization in high-dimensional

problems governed by partial differential equations. Nonetheless, a sufficient

amount of data as required for training deep neural networks is not necessar-

ily available. In such cases, missing data can be substituted by incorporating
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additional information obtained from enforcing the physical laws of dynamical

systems [33]. Such laws can be described by partial or ordinary differential

equations. One example where dynamical systems can be used are populations

undergoing transitions between different infected or uninfected states during an

epidemic, as considered in this paper.

PINNs can approximate the solutions of differential equations by training a

loss function incorporating the initial and boundary conditions and the residual

at so-called collocation points [34]. Instead of approximating solutions of differ-

ential equations, PINNs can use a system of differential equations describing a

certain real-world process along with time-series data sets describing the past

course of such a process for the purpose of generating predicitions for future

progressions.

The loss function of a corresponding neural network includes not solely the

so-called data error related to the difference between the output of the network

and the reported data used, but also the so-called residual error related to the

ODEs or PDEs.

Olumoyin et al. [35] refer to a type of feedforward neural network including

epidemiological dynamics such as lockdown into their loss function by using the

term Epidemiology-Informed Neural Network (EINN). EINNs extend PINNs

for epidemiology models and are able to capture the dynamics of the spread

of the disease and the influence of the mitigation measure. The loss function

is enhanced to include time-varying rates using epidemiology facts about the

infectious disease [35].

Shaier, Raissi and Seshaiyer [36] describe a type of PINN-based neural

network that can be applied to increasingly complex systems of differential

equations describing various known infectious diseases with the term Disease-

Informed Neural Networks (DINN). DINNs can be systematically applied to

increasingly complex governing systems of differential equations describing in-

fectious diseases. They are able to effectively learn the dynamics of the disease

and forecast its progression a month into the future from real-life data [36].

The neural network established and applied in this paper can be described
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as a special type of EINN or DINN based on a special kind of epidemic compart-

ment model called SVIHR model regarding the susceptible, vaccinated, infected,

hospitalized and recovered part of the population. We focus on the German pop-

ulation in this paper, using data provided by the Robert Koch-Institute [24, 25]

and the German COVID-19 Vaccination Dashboard [26]. The model parameters

included in (9) can be comprised in a vector ϑ:

ϑ = [β,V, κ, ξ, TI , TH ,M, TH ]⊤ . (20)

This vector is partitioned into fixed parameters pf , which can be estimated

directly from the observed data, and learnable parameters p, which are crucial

for the dynamics of the compartment variables:

pf := [V, ξ, TI , TH ,M, TH ]⊤,

p := [β, κ]⊤ .
(21)

We use NSFD predictions to improve the estimates for the parameters that

govern the dynamics, i.e., the transmission risk β and the residual transmission

probability after vaccination κ. Their values are estimated using NSFD pre-

dictions fitted to the observed data so that the predicted and observed peak

values have the same magnitude. This approach aims to combine the benefits

from both worlds: The numerical predictions that follow a physical model, and

the PINN predictions that rely heavily on the observed data. Since the NSFD

predictions can be computed very efficiently, the parameter values can be easily

adapted to different virus variants and to different pandemic waves.

We describe our PINN approach for a general compartmental model with n

compartments. In the SVIHR model (9), we have n = 5. Let

K̂(t) = [K̂1(t), . . . , K̂n(t)]⊤

be the normalized data vector of reported compartment sizes for l time points,

i.e. t ∈ {t1, . . . , tl}. In the application considered here, ti+1− ti is constant (and

corresponds to one week) for all i = 1, . . . , l − 1. Let T denote an upper bound

for the time window under consideration, and let Kp : [0, T ] → Rn denote the
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vector valued function reflecting the compartment sizes Kp(t) over time. Then

we express the vector of right-hand-sides values of (9) by

F (Kp) = [F 1(Kp), . . . , F
n(Kp)]

⊤ .

The subscript p stands for the learnable model parameters that the system of

ODEs depends on, cf. (21), and thus the solution will depend on, too. The

system of ODEs in (9) can then be discretized as

dKp(t)

dt
− F (Kp) = 0, t ∈ {t1, . . . , tl} . (22)

Our PINN

PINNW
p : [0, T ]→ Rn

is used to approximate the solution Kp : [0, 1] → Rn of the system of ODEs

(9) by performing error minimization during training [37]. The superscript W

represents the weights used during the forward and backward propagation in the

neural network. At time instance t, t ∈ {t1, . . . , tl}, the solution is expressed as

Kp(t) = [K1
p(t), . . . ,Kn

p (t)]
⊤ ,

where Kj
p(t) is the output of the PINN for the jth compartment at time t and

depends on the parameter p given by equation (21). The parameters W are

optimized during the backpropagation process of the neural network such that

PINNW
p fits the reported data K̂ in a least-squares sense [37]. In the ith time

step ti, i ∈ {1, . . . , l}, with PINN output PINNW
p (ti), we compute the usual

data error defined as

MSEU = MSEU (W ) :=
1

l

l∑
i=1

∥PINNW
p (ti)− K̂p(ti)∥2 , (23)

where we employed in (23) the Euclidian norm in Rn.

Next, let us extend the loss function of the PINN by the additional term

Fp(PINNW
p , ti) :=

dPINNW
p (t)

dt

∣∣∣
t=ti
− Fp

(
PINNW

p (ti)
)
, (24)

where

Fp(PINNW
p , ti) = 0 for all t ∈ {t1, . . . , tl} (25)
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means that the PINN solves the given ODE system more reliably by enforcing

additional constraints. The computation of the time derivative of the neural

network output
dPINNW

p (t)

dt

∣∣∣
t=ti

can be performed using automatic differenti-

ation [38]. Then the physics-informed part of the loss function, the residual

error, is given by

MSEF = MSEF (W ) :=
1

l

l∑
i=1

∥Fp(PINNW
p , ti)∥2 . (26)

We introduce a hyperparameter and weighting factor α ∈ [0, 1] weighting

the data loss and residual loss in the loss function. We define the overall loss

function as

Lα = Lα(W ) := α MSEU +(1− α) MSEF (27)

and the minimization problem of the neural network as

min
W

(
Lα

)
. (28)

We want to note briefly that small values of the residual loss MSEF do not

necessarily mean that the obtained solution is close to the exact solution of (9).

For this, one additionally needs the well-posedness of the problem (9) and the

stability of the scheme used.

For all implementations, the programming language Python and the deep-

learning framework of PyTorch are used. We used a standard network architec-

ture with three fully connected hidden layers, each with 30 neurons, see Figure 2

for illustration. For each time point t ∈ [0, T ], the network returns values for all

five compartment sizes in the vector Kp(t) ∈ R5. The network architecture was

inspired by Ben Moseley’s harmonic oscillator PINN, see [39], and represents a

reasonable compromise in terms of network complexity.

We used hyperbolic tangent activation functions and the Adam optimizer for

the training. We refer to [40] for a survey of descent methods in machine learn-

ing. We also used a learning rate schedule that significantly reduces the learning

rate after about 50% of training iterations. More specifically, the learning rate
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Figure 2: Network architecture of the proposed PINN. Each hidden layer consists of 30 neu-

rons.

t(κ) in iteration κ ∈ {1, . . . , κmax} is given by

t(κ) = −(tstart − tend)
exp

(
κ−0.5·κmax

0.08·κmax

)
exp

(
κ−0.5·κmax

0.08·κmax

)
+ 1

+ tstart, (29)

where tstart and tend denote the initial and final learning rates, respectively. In

our experiments, we used tstart = 0.003 and tend = 0.00015. Figure 3 shows the

learning rate schedule for κmax = 1000 iterations.

Figure 3: Our employed learning rate schedule reducing the learning rate over 1000 epochs.

The data loss was evaluated with data sets obtained from the RKI [24, 25]

and the German Vaccination Dashboard [26]. These data were preprocessed

and rescaled to unit intervals before calculating the data loss MSEU . Since this

leads to a corresponding rescaling of the PINN predictions Kp, the corresponding
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scaling factors were also included in the ODE system (9) when evaluating MSEF .

The data refers to the calendar weeks 10 in 2020 to 14 in 2022. Weekly

case-hospitalization, case-fatality and vaccination rates were computed based

on the given data sets. The RKI registers deceased individuals, in whom the

SARS-CoV-2 pathogen was detected, as people who died from COVID-19.

The weighted loss function Lα = αMSEU +(1 − α)MSEF consists of the

data loss and the residual loss term. As stated in [33], training using the data

loss (i.e., measurements, physics-uninformed) is considered supervised learning,

while training with the residual loss using the governing differential equation

(physics-informed) is considered unsupervised learning.

3.3. Conflicting Training Goals: Pareto Front and Trade-Off Analysis

In this paper, we take a biobjective perspective on the optimization problem

described in (27). This is the basis for a thorough trade-off analysis regarding

the two loss terms MSEU and MSEF . Rather than considering a weighted sum

of these two training goals with a fixed weighting parameter α ∈ [0, 1], we

consider both optimization goals independently and comprise them in a vector-

valued objective function L that maps every feasible solution vector (W,p) to a

two-dimensional outcome vector y = L(W,p) ∈ R2:

min
W
Lα(W ) = min

W

(
MSEU (W ),MSEF (W )

)
. (30)

As before, W denotes the neural network weights. To analyze the biobjective

optimization problem (30), we first review some basic concepts from the field

of multiobjective optimization. For a more detailed introduction into this field

see, e.g., [41].

Towards this end, we denote by Y the outcome set of problem (30) that

includes all possible outcome vectors y = Lα(W ) ∈ R2. A solution Ŵ (i.e., a

set of NN-weights Ŵ resulting from the training) is called efficient or Pareto

optimal if there exists no other solution W (i.e., no other set of NN-weights

W ) such that MSEU (W ) ≤ MSEU (Ŵ ) and MSEF (W ) ≤ MSEF (Ŵ ), where at
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least on of these two inequalities is strict. If Ŵ is Pareto optimal, then the cor-

responding outcome vector y =(MSEU (Ŵ ),MSEF (Ŵ )) is called nondominated

point. Hence, Pareto optimal solutions are those solutions (i.e., NN weights)

that can not be improved in one loss function without deterioration in the other

loss function. The set of all Pareto optimal solutions (nondominated points,

respectively) is denoted by XE (YN , respectively). Note that YN is also often

referred to as Pareto front. The ultimate goal is the efficient, i.e., fast approx-

imation of so-called knee solutions that provide near-optimal values for both

data loss and residual loss. This is realized by a dichotomic search strategy

specifically tailored to NN training.

An approximation of the Pareto front yields an approximation of the knee

solution. It can be found by solving a series of parametric single-objective sub-

problems, so-called scalarizations (see again, e.g., [41]). To keep these subprob-

lems simple, we use a weighted sum approach that leads to the single-objective

optimization problem (28) with the objective function (27), i.e.,

min
W

(
Lα(W )

)
= min

W

{
α MSEU (W ) + (1− α) MSEF (W )

}
(28)

It is a well-known fact [41] that for all weighting parameters α ∈ (0, 1), an

optimal solution of (28) is always part of YN . However, the converse statement

is only true under convexity assumptions. Indeed, the complete set YN can be

generated by varying the weighting parameter α ∈ (0, 1) whenever the set Y is

R2
≥-convex, a property that can generally not be guaranteed in neural network

training. We recall that Pareto optimal solutions Ŵ ∈ XE are called supported

if there is some α ∈ (0, 1) such that Ŵ ∈ XE is an optimal solution of (28).

The sets of all supported efficient solutions and supported nondominated points

are denoted XsE and YsN , respectively. Note that all supported nondominated

points are located on the boundary of the convex hull of Y (see, e.g., [42]).

Figure 4 shows an example of a set of supported nondominated points YsN

within a set of outcome vectors Y in R2 as well as an unsupported nondominated

point.

The choice of the weighting parameter α in (28) is both a crucial and highly
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Figure 4: Schematic illustration of a potential set of outcome vectors (MSEF ,MSEU ) ob-

tained from NN training, Points belonging to YsN are depicted in orange, the unsupported

nondominated point is shown in red. The dashed line outlines the convex hull of the set of

outcome vectors Y + R2
≥.

challenging task. While a too large value of α overemphasizes data loss and

therefore often leads to overfitting, a too small value of α may give too much

priority to a possibly only approximate physical model. When trying to approx-

imate the Pareto front by scanning over potential weights α ∈ (0, 1), even for

biobjective and convex problems predefined weighting parameters may lead to

very un-evenly distributed points on the Pareto front, see, e.g., [43]. Moreover,

this approach does not scale well to higher-dimensional problems that include

more than two training objectives. Indeed, when searching through all rea-

sonable weights, the required number of weighting vectors α (and hence the

individual NN training with respect to a weighted sum objective (28)) grows

exponentially with the number of objective functions.

In the next section we present an efficient approach that supports an adap-

tive selection of weighting parameters to identify knee solutions for the case of

two optimization goals (the data loss and the residual loss in our case). We

emphasize that our approach can be generalized to more than two objective

functions (e.g. for the PINN solution of PDEs) and thus has the potential to
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significantly reduce the number of individual NN trainings required to identify

near-ideal NN weights.

3.4. Dichotomic Search for Adaptive Pareto Front Approximations

Near-ideal NN-solutions can be identified by adapting the scalarization-

based dichotomic search algorithm described in [42]. The idea is to compute

adaptively weighting parameters α that refine the current approximation of the

Pareto front in the most promising regions. This approach aims at an automatic

adaptation to the curvature and scaling of the problem in order to quickly find a

diverse set of solutions, and to quickly identify near-ideal knee solutions. More-

over, dichotomic search can be easily integrated in an interactive procedure that

allows to zoom in into specific parts of the Pareto front that are most interesting

to the decision maker, see, e.g., [44].

The following ideas can be found in [42]. In the biobjective case, the di-

chotomic search comes down to solving a sequence of weighted sum scalariza-

tions (28) with α ∈ (0, 1) and makes use of the fact that in the two-dimensional

case, for two nondominated points yr and ys it holds that yr1 < ys1 implies

yr2 > ys2. A weighted sum scalarization (28) with α = (yr2 − ys2)/c > 0 and

1−α = (ys1 − yr1)/c > 0, where c = yr2 − ys2 + ys1 − yr1, is then solved to find new

supported points between yr and ys. The weighting parameter α hence defines

a normal vector to the line segment connecting yr and ys since

(
yr − ys

)⊤  α

1− α

 =
(
yr1 − ys1, yr2 − ys2

) α

1− α


= c ·

(
−(1− α), α

) α

1− α

 = 0.

This is illustrated in the left of Figure 5. Solving the weighted sum problem

with the new weighting parameter α leads to a nondominated point yt (if the

problem is solved to global optimality) for which two cases can occur:

1. If (α, 1−α)⊤yt < (α, 1−α)⊤yr, then yt is a new supported nondominated

point. Two new subproblems are generated, one of which is defined by yr
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and yt while the other one is defined by yt and ys. This case is illustrated

in the right of Figure 5.

2. If (α, 1 − α)⊤yt = (α, 1 − α)⊤yr = (α, 1 − α)⊤ys, then yt lies on the line

segment connecting yr and ys and the search can stop in this interval.

The dichotomic search progresses in levels, where level 1 contains the outcome

vectors of the weighted sum scalarization with the two initial weights α1 and α2,

α1 < α2, and one dichotomy step (see the left part of Figure 5 for an illustration

of the associated weighting parameter). In level 2, weighted sum scalarizations

are solved for all weights defined by the line segments comprising the convex hull

of the current approximation of the Pareto front (see the right part of Figure 5

for an illustration). The search is repeated until a predefined number of levels

has been evaluated, or until no new subproblems have been generated.

yr

ys

MSEF

M
S
E
U

yr

ys
yt

MSEF

M
S
E
U

Figure 5: On the left: The connecting line segment between yr and ys is perpendicular to

the vector (α, 1−α)⊤ that is here multiplied with a negative scalar to show the minimization

direction. On the right: Since (α, 1−α)⊤yt < (α, 1−α)⊤yr, the new point yt is nondominated

and two new subproblems are generated, see [42, p. 7] (own illustration).

Algorithm 1 summarizes the implementation of the bisection enhanced di-

chotomic search (BEDS) that enhances the dichotomic search scheme by an

occasional bisection step. It is based on [20] and considers the fact that NN

training with a certain weight parameter α may yield a local minimum, i.e., the

training (here the Adam optimizer) may terminate in a local minimum and not

in a global minimum as assumed in the general dichotomic search procedure.
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Algorithm 1: Bisection Enhanced Dichotomic Search (BEDS)

Data: Training data, hyperparameter settings for Adam solver, depth

of the search (levels), initial weighting parameters

α1, α2 ∈ (0, 1), α1 < α2, to approximate extremal solutions

focusing on MSEU and MSEF , respectively (see (27))

Result: Approximation of the Pareto front and corresponding PINN

parameters

1 Λ← {α1, α2};

2 cand← ∅;

3 for l = 1, . . . , levels do

4 for α ∈ Λ do

5 train with weighted sum objective Lα;

6 add objective vector (MSEU ,MSEF ) to cand;

7 delete all dominated points in cand;

8 sort cand by second objective function (in increasing order);

9 if l < levels then

10 for i ∈ {2, . . . , |cand|} do

11 diff← cand(i)− cand(i− 1);

12 αnew ←
{

-diff1

diff2−diff1

}
;

13 if (0.999− αnew) < 0.001 or αnew < 0.8 then // failed

weight setting

14 αnew ← (succ(α) + pred(α))/2;

// replace unsucc. α by bisecting parent

interval;

15 Λ← Λ ∪ αnew;

16 resort Λ increasingly

17 Return nondominated points from cand to illustrate trade-offs;

To overcome the numerical difficulties arising from this fact, the dichotomic

scheme is enhanced by bisection steps that generate new - and promising -
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weighting parameters α when needed. The bisection step occurs whenever the

newly found weight falls outside the original search interval [α1, α2]. This can

happen if the calculated slope of the dichotomic search becomes too small,

leading to numerical problems. Algorithm 1 performs several full training runs,

resetting the weights of the network after line 6. The variable cand is initialized

with an empty set and stores all objective vectors y = (MSEU ,MSEF ) generated

during training for different weighting parameters α of the loss function Lα.

4. Results

This section is subdivided into three parts. In Section 4.1, our PINN is

validated. We first use the data generated during the delta variant (85th to

100th considered week or week 41/2021 to week 4/2022) and predict the first

omicron wave (100th to 104th considered week or week 4/2022 to week 8/2022).

We use the NSFD scheme to determine fitting parameter values for β and κ.

In Section 4.2, we present the results of dichotomic search to investigate the

impact of the weighting parameter α on the training objective (27). We discuss

the ability of dichotomic search to approximate a Pareto front, which can help

in finding reasonable trade-off solutions.

Finally, in Section 4.3, we present a result using a long training dataset,

starting from the beginning of the pandemic in January 2020. The differences

between the results obtained with the two training datasets are discussed. Thus,

we distinguish between training datasets that cover the time since the outbreak

of the pandemic in Germany, which we refer to as long-term training data, and

training datasets that contain only data from a particular wave or even a peak

reached during the pandemic, which we refer to as short-term training data.

4.1. Validation of Scenarios Generated with Short-Term Training Data

In this part, we use short-term training data and use it to predict the infected

compartment I for the following weeks. The reason we use short-term data is

that our physical model is built to describe the behavior of exactly one wave
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of infection with one maximum. Since there were many waves of different virus

variants described by different infection parameters in the COVID-19 pandemic,

using only one wave for training to predict the next wave is a more realistic

approach to incorporate our model. Nevertheless, we will present results with

a longer training period of training data for comparison in Section 4.3. It is

important to note that data covering the increase in infection rates due to

omicron spread must be included in the training data to predict the further

increase. The PINN adjusts its trained parameters to the underlying data set.

We first use the NSFD scheme to determine appropriate parameter values

for the infection rates β and κ. Figure 6 shows (normalized) infected data in the

time frame we use to train and validate our PINN, along with the predictions

we obtained using the NSFD scheme (see Eq. (19)) with the parameters in the

right column of Table 1, i.e., β = 0.00000001476 and κ = 0.001.

Figure 6: Normalized infection numbers from the 85th considered week to the 104th considered

week and the normalized infected part of the NSFD scheme.

We see that this parameter choice reproduces well both the initial slope of

the delta wave and the maximum of the omicron wave. The NSFD scheme with

a constant transmission risk obviously predicts one maximum in the course of

one wave. We note that the inclusion of a time-varying transmission rate in the

NSFD approach would facilitate the prediction of multiple peaks within a wave,

as shown in [21]. For simplicity, we have not included a time-varying rate in the

PINN or NSFD scheme used in this work; this is left for future research.
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Figure 7 shows the results of a short-term prediction in which the PINN was

trained on data ranging from the 85th week under consideration to the 100th

week under consideration and used to predict the following four weeks (weeks

101 − 104). We used three different values for the weighting parameter α ∈

{1.0, 0.995, 0.99}, see Eq. (27). Each training run included 100000 iterations.

We note that the weighting parameter α plays an important role in the

quality of the prediction. In Figure 7(a), α = 1 was chosen, so the loss only

considered MSEU . In this case, PINN succeeds in fitting the training data

almost perfectly, but it fails to predict the decline in infection numbers in the

following weeks because it has no information about the physical properties of

the system, leading to overfitting. Figure 7(b) shows that using α = 0.995

leads to a slightly less perfect fit to the training data, but a good prediction of

the infection numbers in the following four weeks. Finally, Figure 7(c) shows

that overweighting MSEF again leads to suboptimal predictions, which can be

explained by the fact that the PINN has learned the physical parameters of the

delta wave, which are different from those of the omicron wave. It can therefore

be observed that the data loss must be weighted much higher than the residual

loss to obtain a good prediction in applications where the physical model only

partially explains the true dynamics.

However, complete neglect of residual loss still does not lead to the best

performance of our PINN. Although no mathematical model can optimally de-

scribe an infectious disease because not every epidemiological detail relevant

to transmission is known, we can use residual loss to incorporate systematic

knowledge about the spread and transmission dynamics of the disease into our

neural network. Since α = 1 does not yield the smallest errors in our valida-

tion runs, the inclusion of the residual error is still justified and reasonable. In

general, predictions of future pandemic dynamics due to unknown mutational

variants are subject to many uncertainties, changing intervention measures or

compliance of the population and new vaccination strategies.

Table 2 shows the mean squared error between the infected compartment

of our PINN prediction K3
p(ti) and the reported infection data K̂3

p(ti) in the
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(a) Perfect fit of training data, weak prediction.

(b) Good fit of training data, good prediction.

(c) The prediction gets worse if MSEF is weighted too heavily.

Figure 7: Infection numbers obtained from the reported data (black) or the training of the

PINN with the loss terms MSEU and MSEF (blue) from the 85th considered week to the

104th week for three different assignments of the weighting parameter α. The training data

set covers the calendar weeks 41 in 2021 to 4 in 2022 (85th to 100th considered week).
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Value of α 1.0 0.999 0.998 0.997 0.996 0.995 0.994

MSEval 0.0961 0.0553 0.0505 0.0031 0.0012 0.0003 0.0024

Value of α 0.993 0.992 0.991 0.99 0.95 0.9 0.8

MSEval 0.0016 0.0097 0.0109 0.0104 0.0772 0.0853 0.1030

Table 2: Mean squared errors between the reported infection data and the PINN results using

the 85th to 104th considered week, depending on the weighting parameter α. This can be

considered a validation because it includes the error for the prediction for weeks 100 to 104

in addition to the data used for training (weeks 85 to 100).

weeks 85 to 104 considered (i.e., for the entire time frame for which data were

available, not just the time frame used for training), where the mean squared

error is calculated as follows

MSEval :=
1

l

l∑
i=1

∥K3
p(ti)− K̂3

p(ti)∥2 . (31)

To create Table 2, we manually modified the weighting parameter α ∈

(0.8, 1). It is remarkable that the smallest error is achieved with α = 0.995

(among the considered parameter values.) With α = 0.996, the error becomes

four times as large and with α = 0.994 it becomes eight times as large. Note,

however, that the individual training runs do not necessarily terminate with a

(globally) optimal solution; so the reported error values can only approximate

the best possible error for the respective choices of weighting parameters. Nev-

ertheless, we can observe clear reductions in the performance of the network

when setting α = 0.9 or α = 1.0. For instance, we obtain an approximate eight-

fold increase of MSEval if the weighting parameter α is decreased from α = 0.99

to α = 0.9.

The above discussion shows that the choice of the weighting parameter α

plays an important role in the prediction quality. Note that the prediction

quality here is measured by comparisons with the real data. It is therefore

not surprising that the prediction quality is higher when the data loss MSEU

is highly weighted in the weighted sum training objective (27). However, the

results also show that the residual loss MSEF should not be ignored. This
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motivates a more detailed analysis of the trade-off between data loss and residual

loss using dichotomic search in the following section.

4.2. Results of the Dichotomic Search

In this section, we present the results of dichotomic search using Algorithm 1.

Based on the discussion in the previous sections, we focus on short-term training

data from calendar week 41 in 2021 to 4 in 2022 (85th to 100th considered

week). See Section 4.1 and Figure 7 for comparison. Four levels of Pareto front

approximations (based on three, five, nine and 13 training runs, respectively) are

shown in in Figure 8. Each training run was performed with 100000 epochs and

the Adam optimizer with a learning rate schedule as defined in equation (29)

with tstart = 0.003 and tend = 0.00015. The search was initiated with α1 = 0.9

and α2 = 1.0. Other search windows can be used depending on preferences or if

additional information is available. In addition, the search window can be used

to zoom into a specific part of the Pareto front.

The results confirm that a pronounced Pareto front with a diverse set of

outcome vectors and a clear knee solution was approximated after only a few

training runs. Indeed, level 2 based on five training runs (see Figure 8(b))

already provides a rough approximation of the Pareto front. At level 3 (Fig-

ure 8(c)), after nine training runs, we already have a very good approximation

of the Pareto front. The final level 4 is based on 13 training runs (Figure 8(d)).

On a machine with an AMD Ryzen 7 3700X 8-Core Processor and NVIDIA

GeForce RTX 3060 graphic card, each training run took about 3 minutes, so

the final level needed a computation time of about 39 minutes. The computa-

tion time of each training run is of course dependent on the specific problem

and network, however, the goal here was to show that one can gain insight into

the complete Pareto front of the problem with rather few training runs.

This shows that the dichotomic search scheme was successful in obtaining

a diverse set of solutions with only very few training runs necessary, allowing

the decision maker insight into the effect of changing the weighting parameter

α that reflects the importance of each loss function.
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(a) Level 1: Lexicographic optimization and

one weighted sum (three training runs)

(b) Level 2: Five training runs, bisection

used

(c) Level 3: Nine training runs (d) Level 4: Final Level with 13 training runs

Figure 8: Pareto front approximation using dichotomic search with a starting learning rate of

0.003 and learning rate schedule with starting weights α1 = 0.9 and α2 = 0.999. Favorable

trade-offs can be identified starting from Level 3.
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The results also show that it is possible to significantly improve the loss with

respect to MSEF without losing much in the MSEU part of the loss function.

While with α = 1 we obtain MSEF = 0.2176 and MSEU = 7.495 · 10−5, α =

0.994 leads to MSEF = 0.0471 and MSEU = 7.599 · 10−5. We can therefore use

the BEDS algorithm to quickly and automatically identify favorable trade-offs

in the parameter weighting of PINN loss functions.

Overall, it can be seen that the variation of α has a large impact on the

relative importance of data loss and residual loss.

4.3. Validation of Scenarios Generated with Long-Term Training Data

Finally, we want to use our results to make a long-term prediction using most

of our available data. We use the 1st to 89th week under consideration (week

10/2020 to week 45/2021) as our training data and let the PINN predict the

following delta wave (89th to 95th week under consideration or week 45/2021 to

week 51/2021). First, we reapply the NSFD scheme to reevaluate the parameter

values for β and κ. Figure 9 shows the results of this procedure.

Figure 9: Normalized infection numbers from the 1st considered week to the 95th considered

week and the normalized infected part of the NSFD scheme.

We choose β = 0.00000001314 and κ = 0.001. With these values, we start

another dichotomic search to find a loss weighting with a good trade-off. Since

the underlying physical system in this case fits the data less well than in the

previous short-term prediction (since the long-term data consist of multiple

waves with different infection peaks), we chose a search window closer to α = 1
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with α = [0.995, 0.9999] to weight the data loss even higher. The results can be

seen in Figure 10.

(a) Level 1: Lexicographic optimization and

one weighted sum (three training runs)

(b) Level 2: Five training runs, bisection

used

(c) Level 3: Nine training runs

Figure 10: Pareto front approximation using dichotomic search with a starting learning rate of

0.003 and learning rate schedule with starting weights α1 = 0.995 and α2 = 0.9999. Favorable

trade-offs can be identified starting from level 3.

We identify the weighting α = 0.9987 as a good trade-off solution that does

not lose much in the MSEU -loss and is much better than α = 0.9999 in the

MSEF -loss. We decide to use this weighting for our long-term prediction. The

results can be seen in Figure 11.

We note that the quality of the prediction is lower compared to the short-

term prediction. This is not surprising given that the underlying SVIHR sys-
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Figure 11: Infection numbers obtained from the reported data (black) or the training of the

PINN with the loss terms MSEU and MSEF (blue) from the 1st considered week to the 95th

week for α = 0.9987. The training data set covers the calendar weeks 10 in 2020 to 45 in 2021

(1st to 89th considered week).

tem is designed to simulate one wave of infection. To improve these results,

time-varying functions for vaccination and transmission rates would need to be

included, which we plan to investigate in future work.

5. Conclusion and Outlook

We consider physics-informed neural networks (PINNs), a Deep Learning

technique that combines data and physical knowledge. The predictions for

COVID-19 infection rates are used as a case study. Our main contribution

is a new perspective on the trade-off between data loss and residual loss in

PINN training. We present an inherently biobjective method that efficiently

identifies near-ideal knee solutions. This is complemented by an inverse model-

ing approach to determine the model parameters that govern the dynamics of

the system, based on a numerical solution of the associated system of differential

equations.

In our approach, the data loss is computed for data on COVID-19 infection

rates in Germany. The PINN predicts the sizes of the compartments of an es-

tablished susceptible-vaccinated-infected-hospitalized-recovered (SVIHR) model,

with a focus on the compartment of infected individuals. The residual loss is
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derived from a system of ODEs based on the proposed SVIHR model, which

mathematically describes the dynamics of transitions between different com-

partments and infectious disease transmission in a population affected by the

COVID-19 pandemic. We propose an NSFD scheme especially designed for the

numerical solution of the SVIHR model. Its solution is used to estimate the

transmission risk β and the residual transmission probability after vaccination

κ that govern the dynamics.

Our results show that the prediction quality of the PINN is highly dependent

on the considered data, and on the weighing parameter α that combines the two

conflicting loss functions in a weighted sum Lα. A combination of short-term

data and an optimized choice of the weighting parameter α leads to a very good

prediction of the first omicron wave.

The approach is based on a dichotomic search method that iteratively ap-

proximates the Pareto front and identifies near-ideal knee solutions (i.e., trained

networks) with comparatively few training runs. We found that the preferred

values of the weighting parameter α in the total loss function were greater than

0.99 in most cases, thus giving greater weight to data loss than to residual loss.

This numerical value has to be interpreted with care due to the different scal-

ings of the data loss and the residual loss. We emphasize that the biobjective

approach to PINN training can be extended to PINNs regardless of the number

of loss terms or application field. While appropriate weighting parameters α

could theoretically be obtained by scanning the weights of reasonable candi-

date values, this would require a prohibitively large number of individual neural

network trainings, growing exponentially with the number of loss functions.

Finally, we use NSFD parameter estimation and dichotomic search to per-

form long-term prediction for COVID-19 infection rates, using most of the avail-

able data as training data for the delta wave prediction. We find that the PINN

provides reasonable results even for long-term predictions. However, since the

dynamics in the long term are affected by many different aspects and measures,

the physical model is even less accurate in this case, which explains the slightly

worse performance compared to the short term predictions.
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In future work, time-varying functions for vaccination and transmission rates

will be included, i.e. β = β(t), κ = κ(t), to account for seasonal and variant-

dependent fluctuations, cf. [45]. Time-variability in the transmission rate should

especially be taken into consideration with respect to long-term predictions, in

which the training data set covers multiple months and thus includes different

mutations, lockdown measures, and seasons. To this end, it is also necessary to

incorporate a reflux from the recovered compartment R to the susceptible com-

partment S. It is worth noting that we only dealt with two loss terms here and

therefore used a biobjective optimization model. The concept of multiobjec-

tive PINN training can easily be extended to consider more than two objective

functions. This occurs in more advanced applications such as solving PDEs by

PINNs, e.g., using gradient-enhanced PINNs (gPINNs) [46], in which case the

number of loss terms is greater than two and a multiobjective approach is re-

quired. For example, in [46, Section 2.2], the number of loss terms is 3+d, where

d is the dimension of the spatial domain. Here, one has to identify similar and

conflicting training objectives in order to avoid an overly large parameter set.

This extension to multiobjective optimization approaches will be the content of

a follow-up article.
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