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Abstract

In this paper, we present a fully discrete finite difference scheme with a fast
convolution of artificial boundary conditions for solving the Cauchy problem
of the one-dimensional linearized Benjamin-Bona-Mahony equation.

The Padé expansion of the square root function in the complex plane
is used to implement the fast convolution thereby significantly reducing the
computational costs incurred by the time convolution.

By introducing a constant damping term into the governing equations,
the convergence analysis is performed when the damping term satisfies cer-
tain conditions. The theoretical analysis is supported by numerical examples
that demonstrate the performance of the proposed fast numerical method.

Keywords: Benjamin-Bona-Mahony equation, artificial boundary
condition, fast convolution quadrature, Padé approximation, convergence
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1. Introduction

The Benjamin-Bona-Mahony (BBM) equation is a classical nonlinear
dispersive equation governing the unidirectional propagation of weakly non-
linear long waves in the presence of dispersion. The theoretical and numeri-
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cal aspects of the BBM equation have been studied in some important works
[1, 2, 3]. In this paper, we mainly focus on the following linearized BBM
equation, cf. [3], namely,

∂tu+ c∂xu = κ∂xxtu, x ∈ R, t > 0 (1)

The original system (1) is derived and defined on the whole space. How-
ever, the domain of numerical investigation is restricted to a bounded do-
main and one must prescribe appropriate boundary conditions. To obtain
a reliable computational method, a standard approach is to truncate the
infinite domain around the region of interest and introduce an artificial
boundary condition (ABC) at the fictitious boundary. There are quite ex-
tensive studies [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
on ABCs for some types of wave equations such as the classical Schrödinger
equation. In general, the exact ABCs for the wave equations are nonlocal
in time and contain some temporal convolutions in the formulations. Noble
proposed the exact ABC for the linearized BBM equation in [3]. The ABC
for the linearized BBM equation is also studied in [4], where the boundary
condition is treated by numerical convolutions.

However, the nonlocal convolutions in the exact ABC cause a huge com-
putational cost for the truncated problem in bounded domains (this occurs
in the long term evolution: at the n-th time step O(n) operations are re-
quired to compute the convolution integral). Therefore, fast algorithms are
introduced to reduce the computational load. Some types of fast approxi-
mation for kernel symbols are studied in [23, 24, 25, 26, 27, 28]. In most fast
algorithms, summation of exponentials is used to approximate the convolu-
tion kernel, which can reduce the computational load from O(n) to O(1).
To reduce the computational cost incurred by the exact convolution in time,
we have proposed in this paper a convergent numerical method for solving
the Cauchy problem of the one-dimensional linearized BBM equation (1),
which integrates a fast evaluation of the exact ABC.

To this end, we first reformulate the BBM equation (1) into an equivalent
form by introducing a constant damping term, and then construct a Crank-
Nicolson scheme to discretize the equivalent problem in time. Specifically,
for the reformulated Crank-Nicolson scheme, we derive a semi-discrete ABC
for the temporally discretized problem by applying the Z-transform, and
then we propose a second-order finite difference scheme for further spatial
discretization. A fast algorithm is introduced to approximate the discrete
convolution kernel involved in the exact semi-discrete ABC by using the
Padé rational expansion of the square root function [27] where the symbol
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for the exact semi-discrete ABC can be approximated by a rational function
that allows a fast convolution calculation, as the multi-pole method does.
The damping term is chosen to preserve the convergence of the resulting
fully discrete numerical method [31]. Finally, a stability analysis for the
proposed numerical method is presented.

The remainder of this paper is organized as follows. In Section 2 the
problem formulation is introduced, a damping factor in time is introduced
to reformulate the problem, and the exact ABC for the semi-discrete refor-
mulated scheme is obtained. In Section 3 a semi-discrete exact ABC for
the time discretized Crank-Nicolson scheme for the reformulated problem is
derived by applying the Z-transform. Then the time and space discretiza-
tions for the reformulated system on a truncated computational domain are
proposed. In Section 4 we introduce a Padé approximation for the exact
discrete kernel and the resulting fast algorithm for practical computations.
In Section 5 we give the properties of the approximation for the exact dis-
crete kernel and determine the order of the Padé expansion. In Section 6 we
give the convergence analysis of the fast numerical solutions. In Section 7,
numerical examples are given to illustrate the effectiveness of the proposed
numerical method. In Section 8 we draw a conclusion.

2. Exact ABCs for the one-dimensional linearized BBM equation

We consider the initial value problem (IVP) for the linearized Benjamin-
Bona-Mahony (BBM) equation defined on the whole real line,

∂tu(x, t) + c∂xu(x, t) = κ∂xxtu(x, t), ∀x ∈ R, ∀ t > 0,

u(x, 0) = u(x), ∀x ∈ R,
lim

|x|→+∞
u(x, t) = 0, ∀ t > 0.

(2)

Let us introduce the new function

v(x, t) = e−σtu(x, t),

where σ > 0 denotes an auxiliary parameter for controlling the stability of
a fast algorithm to be introduced later in this paper. It is straightforward
to verify that the function v(x, t) solves the following IVP:

∂tv(x, t) + σv(x, t) + c∂xv(x, t) = κ∂xx
(
∂tv(x, t) + σv(x, t)

)
, ∀x ∈ R, ∀ t > 0,

v(x, 0) = u(x), ∀x ∈ R,
lim

|x|→+∞
v(x, t) = 0, ∀ t > 0.

(3)
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To obtain exact ABCs for the problem (3), we first consider the following
exterior problem on the semi-infinite interval [x+,+∞):

∂tv(x, t) + σv(x, t) + c∂xv(x, t) = κ∂xx

(
∂tv(x, t) + σv(x, t)

)
,

∀x ∈ [x+,+∞), ∀ t > 0, (4a)

v(x, 0) = 0, ∀x ∈ [x+,+∞), (4b)

lim
x→+∞

v1(x, t) = 0, ∀ t > 0. (4c)

The Laplace transform of (4) in time yields

(s+ σ)v̂(x, s) + c∂xv̂(x, s) = κ(s+ σ)∂xxv̂(x, s),

∀x ∈ [x+,∞), ∀ s ∈ C+, (5)

lim
x→∞

v̂(x, s) = 0, ∀ s ∈ C+, (6)

where C+ stands for the right half part of the complex plane. Thus, the
general solution of the equation (5) reads

v̂(x, s) = c1(s) exp
(
xξ−(s)

)
+ c2(s) exp

(
xξ+(s)

)
,

with

ξ±(s) =
c

2κ(s+ σ)

(
1±

√
1 +

4κ(s+ σ)2

c2

)
where

√
· denotes the branch of the square root with non-negative real part.

Clearly, the infinity boundary condition (6) implies c2(s) = 0. Consequently,
by differentiating the last equation we obtain

∂xv̂(x, s) = ξ−(s)v̂(x, s)

=
c

2κ(s+ σ)

(
1−

√
1 +

4κ(s+ σ)2

c2

)
v̂(x, s), ∀x ∈ [x+,+∞), ∀ s ∈ C+,

whose inverse Laplace transform yields an ABC at x+:

∂xv(x+, t) =
c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v(x+, t), ∀ t > 0. (7)

In the above equation (7), The factor

c

2κ(∂t + σ)

√
1 +

4κ(∂t + σ)2

c2
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stands for the multiplier operator (in time) associated with the symbol

c

2κ(s+ σ)

√
1 +

4κ(s+ σ)2

c2
,

namely,

c

2κ(∂t + σ)

√
1 +

4κ(∂t + σ)2

c2
v2(x+, t)

:= L−1[
c

2κ(s+ σ)

√
1 +

4κ(s+ σ)2

c2
v̂2(x+, s)](t), ∀ t > 0,

with L−1 denoting the inverse Laplace transform with respect to the s-
variable. A similar boundary condition can be derived at x−:

∂xv(x−, t) =
c

2κ(∂t + σ)

(
1 +

√
1 +

4κ(∂t + σ)2

c2

)
v(x−, t), ∀ t > 0. (8)

In view of (7) and (8), the solution of (3) is the same as the solution of
the following problem posed in a bounded domain:

∂tv(x, t) + σv(x, t) + c∂xv(x, t) = κ∂xx

(
∂tv(x, t) + σv(x, t)

)
,

∀x ∈ (x−, x+), ∀ t > 0, (9)

∂νv(x±, t) = ± c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
v(x±, t), ∀ t > 0.

(10)

v(x, 0) = u(x), ∀x ∈ [x−, x+], (11)

where ∂ν denotes the outward normal derivative at the boundary points x±.

3. Discretization of the one-dimensional linearized BBM equation
with exact semi-discrete ABC

In this section, we discretize the one-dimensional linearized BBM equa-
tion in time using the Crank-Nicolson scheme and derive an exact semi-
discrete ABC. Then we propose a second order finite difference scheme for
further spatial discretization. To do this, we first introduce the necessary
notations related to the Z-transform.
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3.1. Z-transform of a sequence of functions

Given a Hilbert space H with inner product (·, ·)H and induced norm
∥ · ∥H, we introduce the semi-infinite sequence spaces:

ℓ2(H) =

{
u = {un}∞n=0 : ∥u∥ℓ2(H) ≡

( ∞∑
n=0

|un|2
) 1

2

< ∞
}
,

ℓ20(H) =
{
u = {un}∞n=0 ∈ ℓ2(H) : u0 = 0

}
equipped with the inner product

(u, v)ℓ2(H) ≡
∞∑
n=0

unvn, ∀u, v ∈ ℓ2(H).

Next, we define the Z-transform as

ũ(z) =
∞∑
n=0

unzn for u = {un}∞n=0 ∈ ℓ2(H). (12)

It is well-known that the following Parseval’s identity holds:

(u, v)ℓ2(H) =

∫
∂D

ũ(z)ṽ(z) µ(dz), ∀u, v ∈ ℓ2(H). (13)

For a sequence u = {un}∞n=0 ∈ ℓ2(H), the shift operator S is defined by Su =
{un+1}∞n=0. The average operator E and the forward difference quotient
operator Dτ are defined by

E =
S + I

2
and Dτ =

S − I

τ
,

respectively. It is convention to define that

Sun = (Su)n, Eun = (Eu)n, Dτu
n = (Dτu)

n.

3.2. Exact boundary conditions for the semi-discretized linearized BBM equa-
tion

Let τ > 0 denote the time step where Nτ = T with T being the total
computation time. Let us set tn = nτ . We discretize (3) as follows

(Dτ + σE)vn(x) + c∂xEvn(x) = κ∂xx(Dτ + σE)vn(x),

∀x ∈ R, ∀n ≥ 0, (14)

v0(x) = u(x), ∀x ∈ R, (15)

lim
|x|→+∞

vn(x) = 0, lim
|x|→+∞

vn2 (x) = 0, ∀n ≥ 1, (16)
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where v(x)n ≈ v(x, tn).
Suppose the initial data u1(x) and u2(x) are compact on the finite in-

terval [x−, x+]. On the interval [x+,+∞) the semi-discrete problem (14)
reduces to

(Dτ + σE)vn(x) + c∂xEvn(x) = κ∂xx(Dτ + σE)vn(x),

∀x ∈ [x+,+∞), ∀n ≥ 0, (17)

v0(x) = 0, ∀x ∈ [x+,+∞), (18)

lim
x→+∞

vn(x) = 0, ∀n ≥ 1. (19)

Let ũ(x, z) denote the Z-transform of the sequence {un(x)}∞n=0. Applying
the Z-transform to (17), we obtain

1

κ
ṽ(x, z) +

cτ(1 + z)

κ
(
2− 2z + στ(1 + z)

) ṽ(x, z)− ∂xxṽ(x, z) = 0, ∀x ∈ [x+,+∞),

lim
x→+∞

ṽ(x, z) = 0,

whose solution can be generally expressed as

ṽ(x, z)s = c+1 exp
(
xη−(z)

)
+ c+2 exp

(
xη+(z)

)
,

with

η±(z) =
cτ(1 + z)

2κ(2− 2z + στ(1 + z))

(
1±

√
1 +

4κ(2− 2z + στ(z + 1))2

c2τ2(1 + z)2

)
.

The decay condition lim
x→+∞

ṽ(x, z) = 0 implies c+1 = 0. This leads to the

following identity (by differentiating ṽ(x, z) with respect to x):

∂xṽ(x+, z) = η−(z)ṽ(x+, z) = B̃+(z)ṽ(x+, z), ∀z ∈ D. (20)

We note that the function B̃+(z) is analytic in the unit disk D, i.e. it has a
power series expansion

B̃+(z) =
∞∑
j=0

(B+)
jzj , ∀ z ∈ D. (21)

Substituting (21) and ṽ(x, z) =
∑∞

n=0 v
n(x)zn into (20) yields an exact ABC

for (14) at the right artificial boundary point x = x+:

(B+∗v)n(x+) = ∂νv
n(x+), ∀n ≥ 0,
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where B+∗ denotes the convolution quadrature operator corresponding to
the symbol B̃+(z)

(B+∗v2)n =

n∑
j=0

(B+)
jvn−j

2 . (22)

For simplicity, for a function v(x, t) we use the notation

B+ ∗ v(x, tn) =
n∑

j=0

Bj
+ v(x, tn−j).

Analogously, by analyzing the problem (14) on (−∞, x−], we derive an
exact ABC at the left artificial boundary point x = x−:

∂xṽ(x−, z) = η+(z)ṽ(x−, z), ∀z ∈ D.

thus

∂xṽ(x−, z) =
cτ(1 + z)

2κ(2− 2z + στ(1 + z))(
1 +

√
1 +

4κ(2− 2z + στ(z + 1))2

c2τ2(1 + z)2

)
ṽ(x−, z), ∀z ∈ D, (23)

which leads to
∂νv

n(x−) = (B−∗v)n(x−), ∀n ≥ 1,

with

B̃−(z) = − cτ(1 + z)

2κ(2− 2z + στ(1 + z))

(
1 +

√
1 +

4κ(2− 2z + στ(z + 1))2

c2τ2(1 + z)2

)
.

Hence, the semi-discrete problem (14) defined on the the whole real line,
can be reduced to the following semi-discrete problem on a bounded interval:

(Dτ + σE)vn(x) + c∂xEvn(x) = κ∂xx(Dτ + σE)vn(x),

∀x ∈ (x−, x+), ∀n ≥ 0, (24)

∂νv
n(x±) = (B±∗v)n(x±), ∀n ≥ 0, (25)

v(x) = u(x), ∀x ∈ [x−, x+]. (26)

Comparing (24) with (9), we see that the equation is discretized by
a Crank-Nicolson scheme subject to a perturbation of order O(τ2), with a
convolution quadrature approximation of the fractional order time derivative
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at the boundary points x±. Since the time discretization (14) is of second
order in the whole space, it follows that the induced convolution quadrature
at the boundary points x± in (24) is also of second order:

|(B±∗v)n(x±)∓
c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
v(x±, tn)| ≤ Cτ2.

A proof of the above estimate is given in Section 6.1.

3.3. Spatial discretization

Let M be a positive integer, h = (x+ − x−)/M be the mesh size, and
τ > 0 be the time step. We define the mesh points

xk = x− + (k − 1/2)h, k = 0, 1, . . . ,M + 1,

tn = nτ, n = 0, 1, . . . , N,

with x0 and xM+1 being two ghost points.
In the time-stepping scheme (24) vnk denotes the numerical solution of

vn(xk) with 0 ≤ k ≤ M + 1. Let vn = (vn0 , . . . , v
n
M+1). Given a vector

ω = (ω0, . . . , ωM+1) ∈ RM+2, we introduce the discrete gradient ∇hw by

∇hω =
(ω1 − ω0

h
,
ω2 − ω1

h
, . . . ,

ωM+1 − ωM

h

)
The linear operator P maps the (M+2)-dimensional vector ω = (ω0, . . . , ωM+1)
to the M -dimensional vector (ω1, . . . , ωM ). Next, we define the Neumann
and Dirichlet data associated with the (M + 2)-dimensional vector ω as

∂−
ν ω =

ω0 − ω1

h
, ∂+

ν ω =
ωM+1 − ωM

h
, γ−w =

ω0 + ω1

2
, γ+w =

ωM+1 + ωM

2
.

We introduce an inner product for M -dimensional vectors

ϕ1 =
(
(ϕ1)1, . . . , (ϕ1)M

)
and ϕ2 =

(
(ϕ2)1, . . . , (ϕ2)M

)
as

(ϕ1, ϕ2)h = h

M∑
k=1

(ϕ1)k(ϕ2)k,

an inner product for (M + 2)-dimensional vectors

ω1 =
(
(ω1)0, . . . , (ω1)M+1

)
and ω2 =

(
(ω2)0, . . . , (ω2)M+1

)
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as

⟨ω1, ω2⟩h =
h

2
(ω1)0(ω2)0 + h

M∑
k=1

(ω1)k(ω2)k +
h

2
(ω1)M+1(ω2)M+1.

Correspondingly, the induced norms will be denoted by

∥ϕ∥h =
√
(ϕ, ϕ)h, |ω|h =

√
⟨ω, ω⟩h.

We introduce a second-order spatial discretization ∆h, which maps the
(M + 2)-dimensional ω to the M -dimensional vector space:

∆hw =
(w0 − 2w1 + w2

h2
, . . . ,

wM−1 − 2wM + wM+1

h2

)
.

Thus we have

(Pω2,∆hω1)h = −⟨∇hω2,∇hω1⟩h + γ+ω2 · ∂+ω1 + γ−ω2 · ∂−ω1. (27)

We also introduce a second-order centered spatial discretization ∇m
h , which

maps the (M + 2)-dimensional ω to the M -dimensional vector space:

∇m
h w =

(w2 − w0

2h
, . . . ,

wM+1 − wM−1

2h

)
.

Thus we have

Re(Pω,∇m
h ω)h = Re(wMwM+1)− Re(w1w0). (28)

The vector ∇m
h Hvn can be defined by

∇m
h Hvn =

(Hvn2 −Hvn0
2h

, . . . ,
HvnM+1 −HvnM−1

2h

)
,

where H is any operator that only works on the time direction. We can also
define the vector ∆hHvn2 by

∆hHvn =
(Hvn0 − 2Hvn1 +Hvn2

h2
, . . . ,

HvnM−1 − 2HvnM +HvnM+1

h2

)
.

It is easy to see

∇hHvn = H∇hv
n, ∆hHvn = H∆hv

n.

Replacing in the time-stepping scheme (24) the function vn(x) by the
vector vn = (vn0 , . . . , v

n
M+1) and replacing the continuous operator ∂xx by its

discrete analog ∆h, we obtain the fully discrete finite difference scheme

(Dτ + σE)Pvn +∇m
h Evn = κ∆h(Dτ + σE)vn, ∀n ≥ 0,

(B± ∗ γ±v)n − ∂±
ν v

n = 0, ∀n ≥ 0,

v0 = (u(x0), . . . , u(xM+1)).

(29)
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4. Fast approximation of the discrete convolution (B± ∗ γ±v2)
n

In this section, a fast algorithm for approximating the boundary convo-
lution (B± ∗ γ±v2)n in (29) is presented. The stability of the proposed fast
algorithm is shown in the next section.

4.1. Rational approximation of the convolution quadrature

In [27] it was shown that for non-negative integer m > 0 the Padé ap-
proximation for the function

√
1 + s can be expressed as

√
1 + s ≈ 1 +

m∑
j=1

αjs

1 + βjs
,

where

αj =
2

2m+ 1
sin2

jπ

2m+ 1
, βj = cos2

jπ

2m+ 1
, j = 1, . . . ,m.

Based on this Padé approximation, a rational approximation for the square
root function

√
s on the closed right half complex plane can be written as:

√
s =

√
1 + s− 1 ≈ 1 +

m∑
j=1

αj(s− 1)

1 + βj(s− 1)
≡ Rm(s), Re(s) ≥ 0.

Thus,

Rm(s) = λ−
m∑
j=1

1

gjs+ hj
, λ = 1 +

m∑
j=1

αjβ
−1
j ,

hj = α−1
j βj(1− βj), gj = α−1

j β2
j , j = 1, . . . ,m.

(30)

We define κ1 = 4κ/c2 for convenience. For all τ > 0 and σ > 0, by
defining s(z) such that,

s(z) =
cτ(1 + z)

2κ
(
2− 2z + στ(1 + z)

) , (31)

and

S(z) =
( cτ(1 + z)

2κ
(
2− 2z + στ(1 + z)

))2(
1 + κ1

(
2− 2z + στ(z + 1)

)2
τ2(1 + z)2

)
= s(z)2 +

1

κ
, (32)
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let us introduce the rational approximation B̃(m)
+ (z) of the symbol B̃+(z):

B̃(m)
+ (z) := s(z)−Rm

(
S(z)

)
, ∀m ≥ 0. (33)

We denote by B(m)
+ ∗ the convolution operator defined analogously to (22) by

replacing the convolution coefficients (B±)
j in (22) by the series expansion

coefficients of the function B̃(m)(z). After replacing the convolution operator

B±∗ in (29) by its rational approximation B(m)
± ∗, we obtain the following

fully discrete scheme:

(Dτ + σE)Pvn + c∇m
h Evn = κ∆h(Dτ + σE)vn, ∀n ≥ 0, (34)

(B(m)
± ∗ γ±v)n − ∂±

ν v
n = 0, ∀n ≥ 0, (35)

v0 = (u(x0), . . . , u(xM+1)). (36)

Eq. (35) can be solved by the fast algorithm described in the next Section 4.2.

4.2. Fast algorithm

By applying (30) to (33), we derive

B̃(m)
± (z)∓ s(z) = −Rm

(
S(z)

)
= − 1√

κ
Rm

(
κ
(
s(z)

)2
+ 1

)
= − 1√

κ

[
λ−

m∑
j=1

1

gj
c2τ2(1+z)2

4κ

(
2−2z+στ(1+z)

)2 + hj

]

= − 1√
κ

[
λ−

m∑
j=1

4κ
(
2 + στ + (στ − 2)z

)2

4κhj

(
2 + στ + (στ − 2)z

)2
+ gjc2τ2(1 + z)2

]

= − 1√
κ

[
λ−

m∑
j=1

(
λj +

ejz + fj
(ajz + bj)2 − (cjz + dj)2

)]
= − 1√

κ

[
λ−

m∑
j=1

λj −
m∑
j=1

( Aj

(aj + cj)z + bj + dj
+

Bj

(aj − cj)z + bj − dj

)]
,

(37)
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where we have set

λj =
4κ(τσ − 2)2

4κhj(τσ − 2)2 + gjc2τ2
,

ej = 8κ(1− hjλj)(σ
2τ2 − 4)− 2c2τ2λjgj ,

fj = 4κ(1− hjλj)(2 + στ)2 − c2τ2λjgj ,

aj = 2
√

κhj(στ − 2), bj = 2
√

κhj(στ + 2),

cj = i
√
gjcτ, dj = i

√
gjcτ,

Aj =
−ejcj + bjfj − ejaj + fjdj

a2j + b2j − c2j − d2j
,

Bj =
ejcj + bjfj − ejaj − fjdj

a2j + b2j − c2j − d2j
.

Therefore, we have

B̃(m)
± (z) = − 1√

κ

[
λ−

m∑
j=1

λj −
m∑
j=1

( Aj

(aj + cj)z + bj + dj

+
Bj

(aj − cj)z + bj − dj

)]
± s(z)

= − 1√
κ
(λ−

m∑
j=1

λj) +
1√
κ

m∑
j=1

Aj

bj + dj

∞∑
n=0

(
− aj + cj

bj + dj

)n
zn

+
1√
κ

m∑
j=1

Bj

bj − dj

∞∑
n=0

(
− aj − cj

bj − dj

)n
zn

±
( cτ

2κ(στ − 2)
+

2cτ

κ(2− στ)

1

(2 + στ) + (στ − 2)z

)
= − 1√

κ
(λ−

m∑
j=1

λj) +
1√
κ

m∑
j=1

Aj

bj + dj

∞∑
n=0

(
− aj + cj

bj + dj

)n
zn

+
1√
κ

m∑
j=1

Bj

bj − dj

∞∑
n=0

(
− aj − cj

bj − dj

)n
zn

± cτ

2κ(στ − 2)
± 2cτ

κ(4− σ2τ2)

m∑
j=1

(2− στ

2 + στ

)n
zn.

13



Thus, B̃(m)
± (z) can be rewritten as

B̃(m)
± (z) =

3m+1∑
k=1

∞∑
n=0

C±
k (γ±k )

nzn,

which implies that

(B(m)
± )j =

2m+1∑
k=1

C±
k (γ±k )

j .

Therefore (B(m)
± ∗ γ±v2)n =

∑n
j=0(B

(m)
± )j(γ±v2)

n−j can be implemented by
fast convolution in (35).

5. Properties of the rational approximation B̃(m)
± (z)

In this section, we prove the following Proposition 1 for the properties

of (B(m)
± )j used later for the error estimation:

Proposition 1 Under the condition σ ≥ 1/
√
κ1 and for a time step τ small

enough, if m is large enough such that

2m+ 1 ≥ ln ϵ

ln(1− δ)
, for some ϵ ∈

(
0,

µσκ

4c
√
κ1σ2 + 1

τ3
]
, (38)

the following inequalities hold:

max
z∈∂D

|B̃(m)
± (z)− B̃±(z)| ≤ µ

τ3

2
, (39)

Re

n∑
k=0

(τDτ + σE)uk(Dτ + σE)(B(m)
± ∗ u)k ≤ 0, (40)

for all complex sequences u = {un}∞n=0 with u0 = 0. Here

µ(κ, σ) = min
[ 2σ

c(1 +
√
1 + κ1σ2)

cos
(
θm(κ, σ)

)
,

2

c

( 4σ2

κ1(1 + 4κ1σ2)

) 1
4
cos

(
θm(κ, σ)

)]
,

and

δ(κ, σ) = min
( √

2S1

(S1)2 +
√
2S1 + 1

,

√
2S2

(S2)2 +
√
2S2 + 1

)
,
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where

S1 =
c
√
κ1σ2 + 1

2κσ
, S2 =

c

2κ

( 4κ31σ
2

1 + 4κ1σ2

) 1
4
,

and θm(κ, σ) satisfies 0 ≤ θm(κ, σ) < π/2.

Now, let

r(s) :=

√
s− 1√
s+ 1

, (41)

one can prove that the symbol B̃±(z) satisfies the following inequalities:

Lemma 1 Under the setting of Proposition 1,

2σ

c(1 +
√
1 + κ1σ2)

≤ |B̃+(z)| ≤
2

c

(1 + 4κ1σ
2

4κ31σ
2

) 1
4
, for z ∈ ∂D. (42)

2

c

( 4σ2

κ1(1 + 4κ1σ2)

) 1
4 ≤ |B̃−(z)| ≤ c

1 +
√
1 + κ1σ2

2κσ
, for z ∈ ∂D. (43)

Furthermore, under the conditions σ ≥ 1/
√
κ1, we have

max
z∈∂D

|r(S(z))| ≤ 1− δ(κ, σ), (44)

max
z∈∂D

Re [B̃±(z)] ≤ −µ(κ, σ), (45)

− arctan(
1√
τ
) ≤ argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃±(z)

]
≤ arctan(

1√
τ
), (46)

where S(z) is defined in (32).

Proof 1 Let ρ = i−1 2(1− z)

τ(1 + z)
for z ∈ ∂D. Then we have

max
z∈∂D

|B̃+(z)| =
2

c
max
ρ∈R

∣∣∣ iρ+ σ

1 +
√

1 + κ1(iρ+ σ)2

∣∣∣ ≤ 2

c
max
ρ∈R

∣∣∣ iρ+ σ√
1 + κ1(iρ+ σ)2

∣∣∣
=

2

c

(
(ρ2 + σ2)2

κ21(ρ
2 + σ2)2 + 1 + 2κ1σ2 − 2ρ2κ1

) 1
4

=
2

c

(
1

κ21 + (1 + 2κ1σ2 − 2ρ2κ1)/(ρ2 + σ2)2

) 1
4

=
2

c

(
1

κ21 +
1+4κ1σ2

(ρ2+σ2)2
− 2κ1

ρ2+σ2

) 1
4

.
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Thus,

|B̃+(z)| ≤
2

c

(1 + 4κ1σ
2

4κ31σ
2

) 1
4
, for z ∈ ∂D.

This leads to

|B̃−(z)| =
∣∣∣− 1

κB̃+(z)

∣∣∣ ≥ 2

c

( 4σ2

κ1(1 + 4κ1σ2)

) 1
4
, for z ∈ ∂D.

In the same way, we have

max
z∈∂D

|B̃−(z)| = max
z∈∂D

∣∣∣ 1

κB̃+(z)

∣∣∣ = c

2κ
max
ρ∈R

∣∣∣1 +√
1 + κ1(iρ+ σ)2

iρ+ σ

∣∣∣
≤ c

2κ
max
ρ∈R

∣∣∣ 1

iρ+ σ

∣∣∣+ c

2κ
max
ρ∈R

∣∣∣√1 + κ1(iρ+ σ)2

iρ+ σ

∣∣∣
=

c

2κσ
+

c

2κ
max
ρ∈R

(
κ21(ρ

2 + σ2)2 + 1 + 2κ1σ
2 − 2ρ2κ1

(ρ2 + σ2)2

) 1
4

=
c

2κσ
+

c

2κ
max
ρ∈R

(
κ21 + (1 + 2κ1σ

2 − 2ρ2κ1)/(ρ
2 + σ2)2

) 1
4

= c
1 +

√
1 + κ1σ2

2κσ
,

which leads to

|B̃+(z)| =
∣∣∣− 1

κB̃−(z)

∣∣∣ ≥ 2σ

c(1 +
√
1 + κ1σ2)

, if z ∈ ∂D,

which finishes the proof of (42) and (43).

Recalling B̃−(z) = −c
1 +

√
1 + κ1(iρ+ σ)2

2κ1(iρ+ σ)
, we take in the sequel ρ > 0

for our discussion. It is clear that 0 ≤ arg
[
(iρ+ σ)2

]
≤ π. Thus, we have

arg
[
1 +

√
1 + κ1(iρ+ σ)2

]
≤ arg

[√
1 + κ1(iρ+ σ)2

]
,

which leads to

arg
[ iρ+ σ

1 +
√

1 + κ1(iρ+ σ)2

]
≥ arg

[ iρ+ σ√
1 + κ1(iρ+ σ)2

]
≥ 1

2
arg

(
2σρ+ i(ρ2 − σ2)

2σρ+ i(ρ2 − σ2 − 1/κ1)

)
≥ 0.

There are two cases for ρ > 0.
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• ρ ≤ σ.

arg
[ iρ+ σ

1 +
√

1 + κ1(iρ+ σ)2

]
≤ arg

[
iρ+ σ

]
≤ arg

[
iσ + σ

]
= π/4.

• ρ ≥ σ. Taking A(ρ) = |1 + κ1(iρ+ σ)2|
1
2 ,

arg
[ iρ+ σ

1 +
√

1 + κ1(iρ+ σ)2

]
≤ arg

[ iρ+ σ

1 + eiπ/4A(ρ)

]
= arg

[
σ +

√
2

2
A(ρ) · σ +

√
2

2
A(ρ) · ρ+ i

(
ρ+

√
2

2
A(ρ) · ρ−

√
2

2
A(ρ) · σ

)]
= arctan

[ρ+ √
2
2 A(ρ) · ρ−

√
2
2 A(ρ) · σ

σ +
√
2
2 A(ρ) · σ +

√
2
2 A(ρ) · ρ

]
.

It is clear that

ρ+
√
2
2 ρ ·A(ρ)−

√
2
2 σ ·A(ρ)

σ +
√
2
2 σ ·A(ρ) +

√
2
2 ρ ·A(ρ)

> 0

and

lim
ρ→∞

ρ+
√
2
2 ρ ·A(ρ)−

√
2
2 σ ·A(ρ)

σ +
√
2
2 σ ·A(ρ) +

√
2
2 ρ ·A(ρ)

= 1.

Thus, for ρ ≥ σ,
ρ+

√
2
2 ρ ·A(ρ)−

√
2
2 σ ·A(ρ)

σ +
√
2
2 σ ·A(ρ) +

√
2
2 ρ ·A(ρ)

can obtain maximum

Am(σ, κ).

Combing the two cases for ρ > 0, one obtains

argρ>0

[ iρ+ σ

1 +
√
1 + κ1(iρ+ σ)2

]
≤ θm(κ, σ) = max

(
π/4, arctan(Am(σ, κ))

)
< π/2. (47)

In the same way for the case of ρ < 0 we have

0 ≥ argρ≤0

[ iρ+ σ

1 +
√
1 + κ(iρ+ σ)2

]
≥ −θm, (48)
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which leads to

− θm(κ, σ) ≤ argz∈∂D[−T̃−(z)] ≤ θm(κ, σ). (49)

By the same manner, for B+(z) one obtains

− θm(κ, σ) ≤ argz∈∂D[−B̃+(z)] ≤ θm(κ, σ). (50)

In addition, recalling (42) and (43), above two estimates yield

Re [B̃+(z)] ≤ − 2σ

c(1 +
√
1 + κ1σ2)

cos θm(κ, σ).

and

Re [B̃−(z)] ≤ −2

c

( 4σ2

κ1(1 + 4κ1σ2)

) 1
4
cos θm(κ, σ).

This proves (45).

Recalling S(z) =
( cτ(1 + z)

2κ(2− 2z + στ(1 + z))

)2(
1+κ1

(2− 2z + στ(z + 1))2

τ2(1 + z)2

)
,

for z ∈ ∂D,

S(z) =
( c

2κ

)2 1 + κ1(iρ+ σ)2

(iρ+ σ)2
,

with ρ = i−1 2(1− z)

τ(1 + z)
∈ R. It is easy to verify

|
√

S(z)| = c

2κ

(
κ21+(1+2κ1σ

2−2ρ2κ1)/(ρ
2+σ2)2

)1/4
≤ S1 =

c
√
κ1σ2 + 1

2κσ
,

(51)
and

|
√
S(z)| ≥ S2 =

c

2κ

( 4κ31σ
2

1 + 4κ1σ2

) 1
4
. (52)

It is also easy to for ρ ≥ 0,

θ = arg
(
S(z)

)
= arg

(
2σρ+ i(ρ2 − σ2 − 1/κ1)

2σρ+ i(ρ2 − σ2)

)
,

from which we have

θ = −arctan
2σρ/κ1

ρ4 + (2σ2 − 1/κ1)ρ2 + σ4 + σ2/κ1

= −arctan
2σρ/κ1
Θ(ρ)

,

(53)
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with Θ(ρ) = ρ4+(2σ2−1/κ1)ρ
2+σ4+σ2/κ1. It is straightforward to derive

that Θ(ρ) ≥ 0, for σ ≥ 1
√
κ1

(σ2 ≥ 1

κ1
). Therefore, from (53) we derive

that −π/2 ≤ θ ≤ 0 for ρ ∈ [0,+∞), which means −π/4 ≤ θ/2 ≤ 0. In
the same manner, one derives 0 ≤ θ ≤ π/2 for ρ ∈ (−∞, 0], which means
0 ≤ θ/2 ≤ π/4. Therefore by

√
S(z) =

√
|S(z)|

(
cos

(θ
2

)
+ i sin

(θ
2

))
,

and cos
(θ
2

)
≥

√
2

2
, for z ∈ ∂D we have

|r(S(z))| =

∣∣∣∣∣
√

S(z)− 1√
S(z) + 1

∣∣∣∣∣ =
√√√√1−

4
√

|S(z)| cos
(
θ/2

)
|S(z)|+ 2

√
|S(z)| cos

(
θ/2

)
+ 1

≤ 1−
√
2
√

|S(z)|
|S(z)|+

√
2
√
|S(z)|+ 1

,

where the last inequality is due to Taylor’s expansion (1 − x)
1
2 = 1 − 1

2x −
1
8x

2 + · · · ≤ 1− 1
2x. Recalling (51) and (52), by considering

√
2r

r2 +
√
2r + 1

=

√
2

r +
√
2 + 1/r

,

we see that the minimum value of

√
2
√

|S(z)|
|S(z)|+

√
2
√
|S(z)|+ 1

is attained at

|S(z)| = (S1)
2 or |S(z)| = (S2)

2. Thus, we obtain

√
2
√
|S(z)|

|S(z)|+
√
2
√
|S(z)|+ 1

≥ min
( √

2S1

(S1)2 +
√
2S1 + 1

,

√
2S2

(S2)2 +
√
2S2 + 1

)
= δ(κ, σ) < 1,

which completes the proof of (44).
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We define T1
−(ρ) and T2

−(ρ) in the following way,[
− 2κ

c

(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
T̃−(z)

]

=
[(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2

√
1 + κ1

(
2(z−1−1)
τ(z−1+1)

+ σ
)2

2(z−1−1)
τ(z−1+1)

+ σ

]
+

1
2(z−1−1)
(z−1+1)

+ σ

=
[ ρi+ σ

τρi+ σ

√
1 + κ1

(
iρ+ σ

)2

iρ+ σ

]
+

1

iτρ+ σ

= B1
−(ρ) + B2

−(ρ).

Recalling (53), we can define F1(ρ) and F2(ρ) in the following way,

arg [B1
−(ρ)] =

1

2

[
− arctan

2σρ/κ1
Θ(ρ)

+ 2 arg
ρi+ σ

τρi+ σ

]
= arctan

−2σρ/κ1√
(Θ)2 + (2σρ/κ1)2 +Θ

+ arctan
σ(1− τ)ρ

σ2 + τρ2
,

= arctan F1(ρ) + arctan F2(ρ) = arctan
F1(ρ) + F2(ρ)

1− F1(ρ)F2(ρ)
.

(54)

It is easy to verify that,∣∣∣F1(ρ)F2(ρ)
∣∣∣ ≤ 2σ2ρ2/κ1

2Θσ2
=

ρ2/κ1
Θ

≤ ρ2/κ1
ρ4 + (2σ2 − 1/κ1)ρ2 + σ4 + σ2/κ1

≤ 1/κ1

(2σ2 − 1/κ1) + 2
√

σ4 + σ2/κ1
≤ 1√

3
. (55)

Then for ρ > 0, (54) and (55) indicates that,

arg[B1
−(ρ)] = arctanρ∈R+

F1(ρ) + F2(ρ)

1− F1(ρ)F2(ρ)
≤ arctan

[0 + σ(1−τ)ρ
σ2+τρ2

1− 1√
3

]

≤ arctan
[ σ(1−τ)ρ

σ2+τρ2

1− 1
2

]
≤ θ+ρ = arctan

[2σ(1− τ)ρ

σ2 + τρ2

]
> 0,

(56)
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and

arg [B1
−(ρ)] = arctanρ∈R+

F1(ρ) + F2(ρ)

1− F1(ρ)F2(ρ)
≥ arctan

[F1(ρ) + 0

1− 1√
3

]
≥ arctan

[F1(ρ)

1− 1
2

]
≥ θ−ρ = − arctan

[ 4σρ/κ1√
(Θ)2 + (2σρ/κ1)2 +Θ

]
≥ − arctan

[4σρ/κ1
2σρ/κ1

]
= − arctan(2). (57)

In addition,

d

dρ
θ+ρ =

d

dρ

[
arctan

2σ(1− τ)ρ

σ2 + τρ2

]
=

σ(1− τ)(σ2 − τρ2)

(σ2 + τρ2)2 + σ2(1− τ)2ρ2
,

where θ+ρ increases with respect to |ρ| in [0,
σ√
τ
] and decreases in [

σ√
τ
,∞),

such that θ+ρ ≤ θ+σ√
τ
= arctan(1−τ√

τ
) ≤ arctan 1√

τ
. Thus, by (56) one obtains

argρ>0

[
− 2κ

c

(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃−(z)

]
= argρ>0

[
B1
−(ρ) + B2

−(ρ)
]
≤ argρ>0

[
|B1

−(ρ)|ei arg[B
1
−(ρ)] +

1

iτρ+ σ

]
= argρ>0

[
|B1

−(ρ)| cos
(
arg [B1

−(ρ)]
)
+

σ√
τ2ρ2 + σ2

+ i
(
|B1

−(ρ)| sin
(
arg [B1

−(ρ)]
)
− τρ√

τ2ρ2 + σ2

)]

≤ arctanρ>0

[ |B1
−(ρ)| sin

(
arg[B1

−(ρ)]
)

|B1
−(ρ)| cos

(
arg[B1

−(ρ)]
)] = arg[B1

−(ρ)]

≤ θ+ρ = arctanρ>0

[2σ(1− τ)ρ

σ2 + τρ2

]
≤ arctan(

1√
τ
).

(58)

In the same way, by (57) one gets

argρ>0

[
− 2κ

c

(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃−(z)

]
= argρ>0

[
B1
−(ρ) + B2

−(ρ)
]

≥ argρ>0

[
|B1

−(ρ)|eiθ
−
ρ +

1

iτρ+ σ

]
= argρ>0

[
|B1

−(ρ)| cos θ−ρ +
σ

τ2ρ2 + σ2
+ i(|B1

−(ρ)| sin θ−ρ − τρ

τ2ρ2 + σ2
)
]
,
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which leads to

arg
[
B1
−(ρ) + B2

−(ρ)
]
≥ − arctan

|B1
−(ρ)|| sin θ−ρ |+

τρ
τ2ρ2+σ2

|B1
−(ρ)| cos θ−ρ + σ

τ2ρ2+σ2

= − arctan
[ | sin θ−ρ |
cos θ−ρ

+

τρ−| sin θ−ρ |σ/ cos θ−ρ
τ2ρ2+σ2

|B1
−(ρ)| cos θ−ρ + σ

τ2ρ2+σ2

]
= − arctan

[ | sin θ−ρ |
cos θ−ρ

+
τρ− | sin θ−ρ |σ/ cos θ−ρ

4
√
κ21ρ

4 + 2κ1(κ1σ2 − 1)ρ2 + κ21σ
4 + 2κ1σ2 + 1 · cos θ−ρ + σ√

τ2ρ2+σ2

]

≥ − arctan
[ | sin θ−ρ |
cos θ−ρ

+
τρ

4
√
κ21ρ

4 + 2κ1(κ1σ2 − 1)ρ2 + κ21σ
4 + 2κ1σ2 + 1 · cos θ−ρ + σ√

τ2ρ2+σ2

]

= − arctan
[ | sin θ−ρ |
cos θ−ρ

+
τ

4
√
κ21 + 2κ1(κ1σ2 − 1)/ρ2 + (κ21σ

4 + 2κ1σ2 + 1)/ρ4 · cos θ−ρ

]
≥ − arctan

[ | sin θ−ρ |
cos θ−ρ

+
τ(κ1σ

2 + 1)√
4κ31σ

2 · cos θ−ρ

]
= arctan(−C1),

(59)

where C1 is a constant depended on κ and σ.
Therefore, by (58) and (59) one has

arctan(−C1) ≤ argρ>0

[
B1
−(ρ) + B2

−(ρ)
]
≤ arctan(

1√
τ
),

and in the same manner, we can estimate the case for ρ ≤ 0:

− arctan(
1√
τ
) ≤ argρ<0

[
B1
−(ρ) + B2

−(ρ)
]
≤ arctan(C1).

Combing the above two estimates, one derives

− arctan(
1√
τ
) ≤ argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃−(z)

]
≤ arctan(

1√
τ
),
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which gives a half part of (46).
To prove another half part of (46), we have[
− 2κ

c

(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]

=
[(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2

√
1 + κ1

(
2(z−1−1)
τ(z−1+1)

+ σ
)2

2(z−1−1)
τ(z−1+1)

+ σ

]
− 1

2(z−1−1)
(z−1+1)

+ σ

=
[ ρi+ σ

τρi+ σ

√
1 + κ1

(
iρ+ σ

)2

iρ+ σ

]
− 1

iτρ+ σ
=

[√1 + κ1

(
iρ+ σ

)2
− 1

iτρ+ σ

]
.

We assume √
1 + κ1

(
iρ+ σ

)2
= a+ bi,

such that

a2 =
1 + κ1σ

2 − κ1ρ
2 +

√
(1 + κ1σ2 − κ1ρ2)2 + 4κ21σ

2ρ2

2
,

and
b =

κ1σρ

a
.

We can prove that a > 1. In fact, if a ≤ 1, one has

a2 =
1 + κ1σ

2 − κ1ρ
2 +

√
(1 + κ1σ2 − κ1ρ2)2 + 4κ21σ

2ρ2

2
≤ 1.

The above equality is equivalent to√
(1 + κ1σ2 − κ1ρ2)2 + 4κ21σ

2ρ2

2
≤ 1− κ1σ

2 + κ1ρ
2

2
,

from which one obtains

κ1σ
2ρ2 ≤ ρ2 − σ2.

On the other hand, by σ ≥ 1/
√
κ1 one derives

κ1σ
2ρ2 ≥ ρ2,
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which is impossible.

Then it is easy to see
b

a− 1
=

κ1σρ

a(a− 1)
has a maximum ϑm(κ, σ) for

ρ ∈ [0,∞). Thus,

argρ>0

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]

= argρ>0

[√1 + κ1

(
iρ+ σ

)2
− 1

iτρ+ σ

]
= arg

[a− 1 + bi

iτρ+ σ

]
≤ arg

[
a− 1 + bi

]
≤ arctan(

b

a− 1
) ≤ arctan(ϑm).

(60)

On the other hand, one has

arg
[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]
= arg

[(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2

2(z−1−1)
τ(z−1+1)

+ σ

1 +

√
1 + κ

(
2(z−1−1)
τ(z−1+1)

+ σ
)2

]

= arg
[ iρ+ σ

1 +
√
1 + κ(iρ+ σ)2

]
+ arg

[ ρi+ σ

ρτi+ σ

]
.

and

arg
[ iρ+ σ

1 +
√

1 + κ(iρ+ σ)2

]
≥ arg

[ iρ+ σ√
1 + κ(iρ+ σ)2

]
≥ arg

(
2σρ+ i(ρ2 − σ2)

2σρ+ i(ρ2 − σ2 − 1/κ)

)
≥ 0,

which leads to

argρ>0

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]
≥ argρ>0

[ ρi+ σ

ρτi+ σ

]
= argρ>0

[
σ2 + τρ2 + iσ(1− τ)ρ

]
≥ 0. (61)
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Combing (60) and (61), for small τ one gets

0 ≤ argρ>0

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]
≤ arctan(ϑm) ≤ arctan(

1√
τ
).

In the same manner we have

− arctan(
1√
τ
) ≤ argρ<0

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]
≤ 0,

Finally we have

− arctan(
1√
τ
) ≤ argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃+(z)

]
≤ arctan(

1√
τ
). □

For Rm(s) defined in (30), the following error result was proved in [27].

Lemma 2 For the error of the rational approximation for the square root

em(s) :=
√
s−Rm(s), m = 0, 1, 2, . . .

the following identity holds:

em(s) = 2
√
s

r2m+1(s)

1 + r2m+1(s)
, if Re(s) ≥ 0 and s ̸= 0, (62)

where r(s) is defined in (41).

Lemma 3 Under the conditions σ ≥ 1√
κ1

and the setting of Proposition 1,

for small τ we have

max
z∈∂D

Re B̃(m)
± (z) ≤ 0, (63)

max
z∈∂D

Re
[(z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃(m)
± (z)

]
≤ 0. (64)

Proof 2 From (44) of Lemma 1 we have following inequality

max
z∈∂D

|r(S(z))| ≤ 1− δ(κ, σ).
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If σ ≥ 1√
κ1

and m satisfies (38), then |r(S(z))|2m+1 ≤ [1− δ]2m+1 ≤ 1/2.

As a result of (62),

max
z∈∂D

∣∣∣∣∣
√

S(z)−
√
S(m)

(z)√
S(z)

∣∣∣∣∣ = max
z∈∂D

∣∣∣∣ 2r2m+1(S(z))
1 + r2m+1(S(z))

∣∣∣∣ ≤ max
z∈∂D

2 |r(S(z))|2m+1

1− |r(S(z))|2m+1

≤ 4max
z∈∂D

|r(S(z))|2m+1,

then (42) and (45) implies

max
z∈∂D

Re [B̃(m)
± (z)] = max

z∈∂D

[
Re B̃±(z)− Re

(
B̃±(z)− B̃(m)

± (z)
)]

= max
z∈∂D

[
Re B̃±(z)± Re

(√
S(z)−Rm(S(z))

)]
≤ −µ+

µσκτ3

c
√
κ1σ2 + 1

max
z∈∂D

√
|S(z)| ≤ −µ+

µσκ

c
√
κ1σ2 + 1

S1

≤ −µ+ µ/2 ≤ 0,

which proves (63).
In addition, by (42) and (43), for τ small enough we have

argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃(m)
± (z)

]
= argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃±(z)

(
1 +

B̃(m)
± − B̃±

B̃±

)]
= argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃±(z)

]
+ argz∈∂D

(
1 +

B̃(m)
± − B̃±

B̃±

)
= argz∈∂D

[
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2
B̃±(z)

]
+ argz∈∂D

(
1±

√
S(z)−R(m)

(
S(z)

)
B̃±

)
≤ arctan(

1√
τ
) + argz∈∂D

[
1 + imax

(cµ(1 +√
1 + κ1σ2)

4σ
,

µc

4
(
κ1(1 + 4κ1σ

2)

4σ2
)
1
4

)
τ3
]

≤ arctan(
1√
τ
) + arctan(

√
τ

2
) ≤ arctan(

4√
τ
).

26



Thus, for τ small enough,

− arctan(
4√
τ
) ≤ argz∈∂D

(
− (z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2

[
B̃(m)
± (z)

])
≤ arctan(

4√
τ
),

which completes the proof of (64). □

We give the proof of Proposition 1 with the consequences of (63), (64).

Proof 3 Firstly, for small τ , if σ ≥ 1√
κ1

and m satisfies (38), then [1− δ]2m+1 ≤
ϵ ≤ 1/2. As a result, Lemma 2 implies

max
z∈∂D

∣∣∣B̃±(z)− B̃(m)
± (z)

∣∣∣ = max
z∈∂D

∣∣∣√s(z)−
√
s
(m)

(z)
∣∣∣

≤ max
z∈∂D

2
√
|s(z)| |r(s(z))|2m+1

1− |r(s(z))|2m+1 ≤ µτ3

2
,

which proves (39).
We assume (Dτ + σE)uk = 0 for k ≥ n. Thus, we have

uk+1 =
1− στ/2

1 + στ/2
uk for k ≥ n,

which generates the sequence {uk} such that (Dτ + σE)uk = 0 for k ≥ n.
From (63) we have

Re

n∑
k=0

(Dτ + σE)uk((Dτ + σE)T (m)
± ∗ u)k

= Re((Dτ + σE)u, (Dτ + σE)T (m)
± ∗ u)ℓ2(C)

= Re

∫
∂D

|ũ(z)|2[z−1 − 1 + στ(z−1 + 1)/2]B̃(m)
± (z)[z−1 − 1

+ στ(z−1 + 1)/2] ν(dz)/τ2

= Re

∫
∂D

|z|−2|ũ(z)|2[2− 2z + στ(1 + z)]B̃(m)
± (z)[2− 2z + στ(1 + z)] ν(dz)/(4τ2)

= Re

∫
∂D

|z|−2|ũ(z)|2B̃(m)
± (z)|[2− 2z + στ(1 + z)]|2 ν(dz)/(4τ2) ≤ 0.

Analogously, we assume (τDτ + σE)uk = 0 for k ≥ n. Thus, we have

uk+1 =
1− σ/2

1 + σ/2
uk for k ≥ n,
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which generates the sequence {uk} such that Euk = 0 for k ≥ n. We have

Re
n∑

k=0

(τDτ + σE)uk((Dτ + σE)B(m)
± ∗ u)k

= Re((τDτ + σE)u, (Dτ + σE)B(m)
± ∗ u)ℓ2(C)

= Re

∫
∂D

|ũ(z)|2B̃(m)
± (z)(z−1 − 1) + σ(z−1 + 1)/2[(z−1 − 1)/τ

+ σ(z−1 + 1)/2] ν(dz)

= Re

∫
∂D

|(z−1 − 1) + σ(z−1 + 1)/2|2
((z−1 − 1)/τ + σ(z−1 + 1)/2

(z−1 − 1) + σ(z−1 + 1)/2

)
B̃(m)
± (z)|ũ(z)|2 ν(dz) ≤ 0.

This finishes the proof. □

6. Error estimate

Let εn =
(
vn0 −v(x0, tn), . . . , v

n
M+1−v(xM+1, tn)

)
. We first give the main

result on the error estimate:

Theorem 1 Suppose that the solution u1(x, t) and u2(x, t) of (2) is suffi-
ciently smooth, or equivalently that the solution v1(x, t) and v2(x, t) of (3)
is sufficiently smooth. For σ ≥ 1√

κ1
and a time step τ small enough, if m

satisfies (38) with µ and δ given in Proposition 1, then we have the estimate:

max
1≤n≤[T/τ ]

(
∥Pεn∥2h + |∇hε

n|2h
)
≤ O(τ2 + h2), (65)

for a given computational time T .

It is easy to verify that the error vector εn defined in Theorem 1 satisfies
the following equation:

(Dτ + σE)Pεn + c∇m
h Eεn = κ∆h(Dτ + σE)εn + fn, ∀n ≥ 0, (66)

(Bm
± ∗ γ±ε)n − ∂±

ν ε
n = gn±, ∀n ≥ 0, (67)

ε0 = (0, . . . , 0), (68)

where fn =
(
fn
1 , . . . , f

n
M

)
and gn± are given interior truncation errors and
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boundary truncation errors of the time and space discretizations, i.e.

fn
j =− [(Dτ + σE)v(xj , tn)− (∂tv(xj , tn+ 1

2
) + σv(xj , tn+ 1

2
))]

−
[
E(v(xj+1, tn)− v(xj−1, tn))/2h− ∂xv(xj , tn+ 1

2
)
]

+ κ
[
(Dτ + σE)(v(xj−1, tn)− 2v(xj , tn) + v(xj+1, tn))/h

2

− ∂2
x(∂t + σ)v(xj , tn+ 1

2
)
]
, 1 ≤ j ≤ M,

(69)

gn± =− (B(m)
± − B±)∗ γ±v(tn)

−
[
B±∗ γ±v(tn)∓

c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
γ±v(tn)

]
−
[
± c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
γ±v(tn)

∓ c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
v(x±, tn)

]
−
[
− ∂±

ν v(tn) + ∂νv(x±, tn)
]
,

(70)

with v(tn) = (v(x1, tn), ·, v(xM , tn)).
The proof of Theorem 1 is presented in the following two subsections.

6.1. Estimate for the truncation errors

In this section we give the estimate for the truncation errors of the bound-
ary scheme and the interior scheme.

Proposition 2

∥fn∥h + |gn±|+ |Dτg
n
±| ≤ C(τ2 + h2). (71)

Proof 4 Estimate of |gn±|. Here we will prove

gn± = O(τ2 + h2). (72)

We divide the proof into two steps.

Step 1: First we prove

∣∣∣B+ ∗ v(x±, t)−
c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v(x+, t)

∣∣∣ ≤ O(τ2).

(73)
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Let us recall that

B̃+(e
−iτξ) = G

(2(1− e−iτξ)

τ(1 + e−iτξ)

)
,

with G(s) =
c

2κ(s+ σ)

(
1−

√
1 +

4κ(s+ σ)2

c2

)
. Therefore, we have

∣∣∣B̃+(e
−iτξ)−G(iξ)

∣∣∣ = ∣∣∣G(iξ)−G(i
2 tan(τξ/2)

τ
)
∣∣∣ = ∣∣∣ ∫ i

tan(τξ/2)
τ/2

iξ

d

ds
G(s) ds

∣∣∣
=

∣∣∣ ∫ i
tan(τξ/2)

τ/2

iξ

2

c

1√
1 + κ1(s+ σ)2(1 +

√
1 + κ1(s+ σ)2)

ds
∣∣∣

≤ C
∣∣∣itan(τξ/2)

τ/2
− iξ

∣∣∣ ≤ C
∣∣∣ ∫ ξ

0

( 1

1 +
τ2ξ21
4

− 1
)
dξ1

∣∣∣
= C

∣∣∣ ∫ ξ

0

τ2ξ21
4

1 +
τ2ξ21
4

dξ1

∣∣∣ ≤ C
τ2

4

∫ |ξ|

0
ξ21dξ1 ≤ Cτ2|ξ|3.

Thus, one has∣∣∣∣B̃+(e
−iτξ)− c

2κ(iξ + σ)

(
1−

√
1 +

4κ(iξ + σ)2

c2

)∣∣∣∣ ≤ Cτ2|ξ|3. (74)

From (4a) and (4b) we have

∂tv(x, 0) = κ∂xx

(
∂tv(x, 0)

)
, ∀x ∈ [x+,+∞), (75)

this implies that ∂tv(x, 0) = Ce
− x√

κ for x ∈ [x+,+∞). Then we have

∂t∂xv(x+, 0) = − C√
κ
e
−x+√

κ . (76)

On the other hand, from (7) one has

∂xv(x+, t) =
c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v2(x+, t)

=
(
f ∗ v(x+, ·)

)
(t) =

∫ t

0
f(t− s)v(x+, s) ds,

with

f(t) = L−1

[
c

2κ(s+ σ)

(
1−

√
1 +

4κ(s+ σ)2

c2

)]
.
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This implies that

∂x∂tv(x+, 0) = f(0)v(x+, 0) +
(
∂tf ∗ v(x+, ·)

)
(0) = 0,

this means that the C in (76) is 0. Thus, ∂tv(x+, 0) = 0. Repeating
this procedure, we can easily find that v(x+, t) and its time derivatives
are zero at t = 0. Consequently, we obtain a sufficiently smooth func-
tion v(x+, t) defined for t ∈ R by extending v(x+, t) so that it is zero
on t ∈ (−∞, 0]. We define

B+ ∗ v(x+, t) :=
∞∑
j=0

Bj
+v(x+, t− jτ), ∀ t ∈ R, (77)

which is consistent with the definition (22) at t = tn. The Fourier
transform in time of the last equation is

Ft[B+ ∗ v(x+, t)](ξ) =
∫
R
B+ ∗ v(x+, t)e−itξdt

=

∞∑
j=0

∫
R
Bj
+v(x+, t− jτ)e−itξ dt = B̃+(e

−iτξ)Ftv(x+, ξ)

=
c

2κ(iξ + σ)

(
1−

√
1 +

4κ(iξ + σ)2

c2

)
Ftv(x+, ξ)

+
(
B̃+(e

−iτξ)− c

2κ(iξ + σ)

(
1−

√
1 +

4κ(iξ + σ)2

c2

))
Ftv(x+, ξ)

= Ft[
c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v(x+, t)](ξ)

+
(
B̃+(e

−iτξ)− c

2κ(iξ + σ)

(
1−

√
1 +

4κ(iξ + σ)2

c2

))
Ftv(x+, ξ)
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which implies that∣∣∣B+ ∗ v(x+, t)−
c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v(x+, t)

∣∣∣
=

∣∣∣F−1
ξ

[
(B̃+(e

−iτξ)− c

2κ(iξ + σ)

(
1−

√
1 +

4κ(iξ + σ)2

c2

)
)Ftv(x+, ξ)

]
(t)

∣∣∣
≤

∫
R

∣∣∣B̃+(e
−iτξ)− c

2κ(iξ + σ)

(
1−

√
1 +

4κ(iξ + σ)2

c2

)∣∣∣|Ftv(x+, ξ)| dξ

≤ Cτ2
∫
R
|ξ|3|Ftv(x+, ξ)| dξ

≤ Cτ2
∫
R

1

1 + |ξ|
(1 + |ξ|4)|Ftv(x+, ξ)| dξ

≤ Cτ2
(∫

R

1

(1 + |ξ|)2
dξ

) 1
2
(∫

R
(1 + |ξ|4)2|Ftv(x+, ξ)|2dξ

) 1
2

= Cτ2
(∫ ∞

0
(|v(x+, t)|2 + |∂4

t v(x+, t)|2)dt
) 1

2

according to (74). The estimate at x− is the same and we obtain (73).

Step 2: Inequality (39) of Proposition 1 implies |B̃(m)
± (z)− B̃±(z)| ≤

Cτ3 for |z| = 1. Then

(B(m)
± )j =

∫
∂D

B̃(m)
± (z)z−jµ(dz) and (B±)

j =

∫
∂D

B̃±(z)z
−jµ(dz)

imply that

|(B(m)
± )j − (B±)

j | ≤
∫
∂D

|B̃(m)
± (z)− B̃±(z)|µ(dz) ≤ Cτ3.

Thus it holds that∣∣∣∣ n∑
j=0

(B(m)
± )jv(tn−j)−

n∑
j=0

(B±)
jv(tn−j)

∣∣∣∣
≤

n∑
j=0

|(B(m)
± )j − (B±)

j ||v(tn−j)| ≤
n∑

j=0

Cτ3 ≤ Cτ2,

which implies

(B(m)
± − B±)∗ γ±v(tn) = O(τ2). (78)
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Besides, (73) implies that

B±∗ γ±v(tn)−
(
± c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
γ±v(tn)

)
= O(τ2). (79)

Since γ+v =
vM+1 + vM

2
and x+ =

xM+1 + xM
2

= xM+ 1
2
, it follows

∣∣∣∣ c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
γ+v(tn)−

c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v(x+, tn)

∣∣∣∣
=

∣∣∣∣ c
2κ(∂t+σ)

(
1−

√
1 + 4κ(∂t+σ)2

c2

)
v(xM+1, tn) +

c
2κ(∂t+σ)

(
1−

√
1 + 4κ(∂t+σ)2

c2

)
v(xM , tn)

2

− c

2κ(∂t + σ)

(
1−

√
1 +

4κ(∂t + σ)2

c2

)
v(xM+ 1

2
, tn)

∣∣∣∣ = O(h2), (80)

and

∂+
ν v(tn)− ∂νv(x+, tn) =

v(xM+1, tn)− v(xM , tn)

h
− ∂xv(xM+ 1

2
, tn) = O(h2),

∂−
ν v(tn)− ∂νv(x−, tn) = −v(x1, tn)− v(x0, tn)

h
+ ∂xv(x 1

2
, tn) = O(h2).

(81)

Substituting (78)-(81) into (70) yields (72).

Estimate of ∥fn∥h. Here we will prove

∥fn∥h ≤ O(τ2 + h2). (82)

Recalling (69),we estimate the three terms in the expression of fn
j sep-

arately. Firstly, we have

(Dτ + σE)v(xj , tn)− (∂tv(xj , tn+ 1
2
) + σv(xj , tn+ 1

2
))

=

(
v(xj , tn+1)− v(xj , tn)

τ
− ∂tv(xj , tn+ 1

2
)

)
+ σ

(
v(xj , tn) + v(xj , tn+1)

2
− v(xj , tn+ 1

2
)

)
= O(τ2).

(83)
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Secondly, it holds that[
E(v(xj+1, tn)− v(xj−1, tn))/(2h)− ∂xv(xj , tn+ 1

2
)
]
= O(τ2 + h2).

In the same manner, recalling (69),

(Dτ+σE)
v(xj−1, tn)− 2v(xj , tn) + v(xj+1, tn)

h2
−(∂t+σ)∂2

xv2(xj , tn+ 1
2
)

= O(τ2 + h2),

Thus,
fn
j = O(τ2 + h2), 1 ≤ j ≤ M. (84)

Finally, from (83)–(84) we obtain

∥fn∥h = O(τ2 + h2).

Estimate of |Dτg
n
±|. Since

Dτg
n
± = −(B(m) − B)∗ γ±Dτv(tn)

−
[
B∗ γ±Dτv(tn)∓

c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
γ±Dτv(tn)

]
−
[
± c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
γ±Dτv(tn)

∓ c

2κ(∂t + σ)

(
1∓

√
1 +

4κ(∂t + σ)2

c2

)
Dτv(x±, tn)

]
−
[
− ∂±

ν Dτv(tn) + ∂νDτv(x±, tn)
]
,

(85)

it follows that (85) can be estimated similarly as (70) (replacing v(x, tn)
by Dτv(x, tn)), then we derive that

Dτg
n
± = O(τ2 + h2). (86)

Combing (72), (82), and (86) we prove (71). □

6.2. Error estimate

Let us give the error estimate for (65). Firstly we prove the stability for
the scheme (34)-(36) by the following estimate.
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Lemma 4 If σ ≥ 1/
√
κ1, and the order m of the Padé approximation sat-

isfies (38) with µ and δ given in Proposition 1, the solution of (34)–(36)
satisfies the following stability estimate:

max
1≤n≤[T/τ ]

(
∥Pvn∥2h + |∇hv

n|2h
)
≤ CT

(
∥Pv0∥2h + |∇hv

0|2h
)
, (87)

where CT is a constant depending on T .

Proof 5 Due to

Dτv
n
m · Evnm =

vn+1
m − vnm

τ
· v

n+1
m + vnm

2
=

|vn+1
m |2 − |vnm|2

2τ
,

Thus,
Re

(
DτPvn, EPvn

)
h
= Dτ (∥Pvn∥2h)/2.

Performing the inner product of (66) with (τDτ + σE)Pvn and taking
the real part,

Re
(
(τDτ + σE)Pvn, (Dτ + σE)Pvn +∇m

h Evn
)
h

= Re
(
(τDτ + σE)Pvn, κ∆n

h(Dτ + σE)v
)
h
. (88)

The left of (88) can be written as

τ∥DτPvn∥2h +
σ(1 + τ)

2
Dτ (∥Pvn∥2h) + σ2∥EPvn∥2h

+Re
(
(τDτ + σE)Pvn,∇m

h Evn
)
h
. (89)

By applying the discrete Green’s formula (27), the boundary conditions (35)
and (40), the right of the above equality can be written as

−κ⟨∇h(τDτ + σE)vn,∇h(Dτ + σE)vn⟩h

+ κRe
(
γ±(τDτ + σE)vn∂±(Dτ + σE)vn

)
= −κ⟨∇h(τDτ + σE)vn,∇h(Dτ + σE)vn⟩h

+ κRe
(
(τDτ + σE)γ±vn(Dτ + σE)∂±vn

)
= −κ⟨∇h(τDτ + σE)vn,∇h(Dτ + σE)vn⟩h

+ κRe
(
(τDτ + σE)γ±vn(Dτ + σE)(B(m)

± ∗ γ±v)n
)

≤ −κ⟨∇h(τDτ + σE)vn,∇h(Dτ + σE)vn⟩h.

(90)
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Combining (89) and (90) we have

τ∥DτPvn∥2h +
σ(1 + τ)

2
Dτ (∥Pvn∥2h) + σ2∥EPvn∥2h

+ κ⟨∇h(τDτ + σE)vn,∇h(Dτ + σE)vn⟩h

= τ∥DτPvn∥2h +
σ(1 + τ)

2
Dτ (∥Pvn∥2h) + σ2∥EPvn∥2h

+ κτ |Dτ∇hv
n|2h +

κσ(1 + τ)

2
Dτ (|∇hv

n|2h) + κσ2|E∇hv
n|2h

≤ −Re
(
(τDτ + σE)Pvn,∇m

h Evn
)
h
,

= Re
(
(τDτ + σE)vn1Evn0

)
/2− Re

(
(τDτ + σE)vnMEvnM+1

)
/2,

from which we derive that

Dτ (∥Pvn∥2h) +Dτ (|∇hv
n|2h)

≤ O(1)
(
E(|γ±vn|2) + E(|vn0 |2) + E(|vn1 |2) + E(|vnM |2) + E(|vnM+1|2)

)
.

Summing up the above inequality from the 0-th step to the n−1-th step yields

∥Pvn∥2h + |∇hv
n|2h ≤ ∥Pv0∥2h + |∇hv

0|2h

+O(τ)
n∑

k=0

(
|γ±vn|2 + |vn0 |2 + |vn1 |2 + |vnM |2 + |vnM+1|2

)
. (91)

Recalling the discrete Sobolev imbedding theorem

|γ±vn|2 ≤ C∥Pvn∥2h + C|∇hv
n|2h,

from (91) we derive

∥Pvn∥2h + |∇hv
n|2h ≤ ∥Pv0∥2h + |∇hv

0|2h +O(τ)

n∑
k=1

(
∥Pvk∥2h + |∇hv

k|2h
)
.

Applying the discrete Gronwall’s inequality to the above estimate, we derive
(65). The proof of Lemma 4 is complete. □

Lemma 4 assures that the numerical solution is bounded for a finite
computational time.
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Lemma 5 If σ ≥ 1/
√
κ1, and the order m of the Padé approximation sat-

isfies (38) with µ and δ given in Proposition 1, the solution of (34)–(36)
satisfies the following estimate:

max
1≤n≤[T/τ ]

(
∥Pεn∥2h + |∇hε

n|2h
)

≤ CT

[
max

0≤k≤n−1
(∥fk∥2h + ∥Dτg

k
±∥2h) + max

0≤k≤n
|gk±|2

]
, (92)

where CT is a constant depending on T .

Proof 6 Due to

Dτ (ε)
n
m · E(ε)nm =

(ε)n+1
m − (ε)nm

τ
· (ε)

n+1
m + (ε)nm

2
=

|(ε)n+1
m |2 − |(ε)nm|2

2τ
,

Thus,
Re

(
DτPεn, EPεn

)
h
= Dτ (∥Pεn∥2h)/2. (93)

Using the inner product of (66) with (τDτ + σE)Pεn and taking the real
part, yields

Re
(
(τDτ + σE)Pεn, (Dτ + σE)Pεn +∇m

h Eεn
)
h

= Re
(
(τDτ + σE)Pεn, κ∆n

h(Dτ + σE)ε+ fn
)
h
. (94)

By (93), the left side of (94) can be written as

τ∥DτPεn∥2h +
σ(1 + τ)

2
Dτ (∥Pεn∥2h) + σ2∥EPεn∥2h

+Re
(
(τDτ + σE)Pεn,∇m

h Eεn
)
h
. (95)

By applying the discrete Green’s formula (27), the boundary conditions (35)
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and (40), the right of (94) can be written as

− κ⟨∇h(τDτ + σE)εn,∇h(Dτ + σE)εn⟩h

+ κRe
(
γ±(τDτ + σE)εn∂±(Dτ + σE)εn

)
+Re

(
(τDτ + σE)Pεn, fn

)
h

= −κ⟨∇h(τDτ + σE)εn,∇h(Dτ + σE)εn⟩h

+ κRe
(
(τDτ + σE)γ±εn(Dτ + σE)∂±εn

)
+Re

(
(τDτ + σE)Pεn, fn

)
h

= −κ⟨∇h(τDτ + σE)εn,∇h(Dτ + σE)εn⟩h

+ κRe
(
(τDτ + σE)γ±εn(Dτ + σE)(B(m)

± ∗ γ±ε)n
)

− κRe
(
(τDτ + σE)γ±εn(Dτ + σE)gn±

)
+Re

(
(τDτ + σE)Pεn, fn

)
h

≤ −κ⟨∇h(τDτ + σE)εn,∇h(Dτ + σE)εn⟩h

− κRe
(
(τDτ + σE)γ±εn(Dτ + σE)gn±

)
+Re

(
(τDτ + σE)Pεn, fn

)
h
.

(96)

Combining (95) and (96) we have

τ∥DτPεn∥2h +
σ(1 + τ)

2
Dτ (∥Pεn∥2h) + σ2∥EPεn∥2h

+ κ⟨∇h(τDτ + σE)εn,∇h(Dτ + σE)εn⟩h

= τ∥DτPεn∥2h +
σ(1 + τ)

2
Dτ (∥Pεn∥2h) + σ2∥EPεn∥2h+

+ κτ |Dτ∇hε
n|2h +

κσ(1 + τ)

2
Dτ (|∇hε

n|2h) + κσ2|E∇hε
n|2h

≤ −Re
(
(τDτ + σE)Pεn,∇m

h Eεn
)
h
+Re

(
(τDτ + σE)Pεn, fn

)
h
,

− κRe
(
(τDτ + σE)γ±εn(Dτ + σE)gn±

)
,

= Re
(
(τDτ + σE)Pεn, fn

)
h
− κRe

(
(τDτ + σE)γ±εn(Dτ + σE)gn±

)
+Re

(
(τDτ + σE)εn1Eεn0

)
/2− Re

(
(τDτ + σE)εnMEεnM+1

)
/2,

from which we derive that

Dτ (∥Pεn∥2h) +Dτ (|∇hε
n|2h)

≤ O(1)
(
E(|γ±εn|2) + E(|εn0 |2) + E(|εn1 |2) + E(|εnM |2) + E(|εnM+1|2)

)
+O(1)

(
∥fn∥2h + |Dτg

n
±|2 + E(|gn±|2)

)
.
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Summing up the above inequality from the 0-th step to the n−1-th step, one
obtains

∥Pεn∥2h + |∇hε
n|2h ≤ ∥Pε0∥2h + |∇hε

0|2h

+ O(τ)
n∑

k=0

(
|γ±εn|2 + |εn0 |2 + |εn1 |2 + |εnM |2 + |εnM+1|2

)
+O(τ)

n∑
k=0

|gk±|2 +O(τ)
n−1∑
k=0

(
∥fk∥2h + |Dτg

k
±|2

)
. (97)

By the discrete Sobolev imbedding theorem

|γ±εn|2 ≤ C∥Pεn∥2h + C|∇hε
n|2h,

from which and (97) we obtain

∥Pεn∥2h + |∇hε
n|2h ≤ ∥Pε0∥2h + |∇hε

0|2h +O(τ)
n∑

k=1

(
∥Pεk∥2h + |∇hε

k|2h
)

+O(τ)

n∑
k=1

|gk±|2 +O(τ)
n−1∑
k=0

(
∥fk

2 ∥2h + |Dτg
k
±|2

)
.

(98)

Applying the discrete Gronwall’s inequality to the above estimate, we derive
(65). The proof of Lemma 5 is complete. □

Now, by Lemma 2 and Lemma 5, it is easy to prove Theorem 1.

7. Numerical results

We now perform numerical tests to confirm the theoretical results pre-
sented in the previous sections. In the calculations we determine the number
of Padé expansion terms with the help of the following criterion:

m =
ln ϵ

2 ln(1− δ)
, ϵ =

µσκ

4c
√
κ1σ2 + 1

τ3,

with µ and δ given in Proposition 1. When m is fixed, the computational
cost of the fast convolution is of order O

(
mN

)
= O

(
N ln(N)

)
for Nτ ≤ T .
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7.1. Example 1: Gaussian Initial Condition

We first consider an initial Gaussian distribution for the free surface
elevation

u0(x) = exp
(
−400(x− 1/2)2

)
.

The computational domain is (t, x) ∈ [0, 1] × [0, 1], and the parameters are
taken as c = 2, κ = 0.1. We let σ = 10, which meets the condition σ >
1/
√
κ1 in Theorem 1. The mesh sizes are h = 10−5, τ = 10−4 respectively.
The displacement solution is depicted in the left panel of Figure 1. The

influence of the wave has reached the boundary, where we do not see any
significant artificial reflections, nor any numerical instability. A reference
solution uref is computed with the same grid sizes but a much larger spatial
domain (x ∈ [−40, 40]) to avoid any boundary reflections. The result is
plotted in the right panel of Figure 1. It can be seen the computed solution
matches uref well.
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Figure 1: Solution to Example 1: (left) by the proposed method; (right) by using a large
spatial domain

To study the performance of the proposed method, we fix the spatial
mesh size h = 10−5, but employ different time step sizes τ , ranging from
10−4 to 10−2. The error of our solution is assessed by the relative difference
between the obtained displacement vector at the final time step (t = 1.0)
and the reference solution

err =
∥u(x, 1)− uref(x, 1)∥∞

∥uref(x, 1)∥∞
.

The errors are then plotted vs. the time step size in the left panel of Figure 2.
From the log-log plot, it can be seen that most data points are almost on a
straight line with a slope of 2. It indicates a second-order convergence with
respect to time step size. This agrees with our previous discussions.
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Figure 2: Performance of the proposed method in Example 1: (left) relative error versus
time step size τ (h = 10−5); (right) relative error versus spatial mesh size h (τ = 10−4)

Similarly, we fix τ = 10−4 but change the spatial mesh size h. The
displacements at the nodes that overlay with the original mesh nodes are
extracted and then compared with the reference solution. The relative error
is shown in the right panel of Figure 2. We see a second-order convergence
with respect to the spatial mesh size, which also agrees with our conclusion.

7.2. Example 2: Small Wave Packet

In this example, we further consider the following initial datum,

u0(x) = exp
(
−400(x− 1/2)2

)
sin(20πx).

To evaluate the long term performance of the proposed method, the equation
parameters are taken as c = 0.2, κ = 0.0001 and the computer domain
(t, x) ∈ [0, 10] × [0, 1]. According to Theorem 1, we let σ = 10. The step
sizes are taken as h = 5× 10−5, τ = 2× 10−4.

The result is shown in the left panel of Figure 3. Since about t = 3,
the wave packet has reached the right boundary, but no significant artificial
reflection is observed throughout the computing time domain. The reference
solution, which is computed in a much larger spatial domain (t, x) ∈ [0, 10]×
[−40, 40] with the same step sizes (h = 5× 10−5, τ = 2× 10−4), is given in
the right panel of Figure 3 for comparison. As can be seen the two solutions
match well.

The relative errors to the reference solution when employing a different
h or τ are presented in Figure 4. Again we observe second-order convergence
with respect to both spatial and time step sizes.

We now consider the computational cost. The CPU time is examined by
increasing the total number of time steps N from N = 1000 up to N = 50000
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Figure 3: Solution to Example 2: (left) by proposed method; (right) by using a large
spatial domain
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Figure 4: Performance of the proposed method in Example 2: (left) relative error versus
time step size τ (h = 5 × 10−5); (right) relative error versus spatial mesh size h (τ =
2× 10−4)

with fixed m and h = 5× 10−5. Figure 5 shows the CPU times for the fast
convolution. One can observe the slope of 1.

7.3. Example 3: Using a Small σ

In previous section we proved the convergence of the proposed method
under the condition σ > 1/

√
κ1. However, in this example we show it is not

a necessary condition. We employ the same initial condition and computing
domain as in Example 1, but a different parameter set c = 2, κ = 0.0001.
Then the previous condition leads to σ ≥ 100, which is not favorable because
a large σ will pollute the numbers when doing the transform u = v exp(σt).
In fact, by using a much smaller value, i.e., σ=0.01, we will see the proposed
method still applies, even though right now we cannot prove its convergence
theoretically in this condition.
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Figure 5: (Example 2) Ln− Ln plot for the CPU time by fixing m with different N .

When mesh sizes of h = 5 × 10−5, τ = 5 × 10−5 are employed, the
displacement solutions by the proposed method and the reference method
are shown in Figure 6. The two agree with each other well. In both solutions
the main wave has reached the boundary at about t = 0.25, but no artificial
reflection or numerical instability is noticed.

The error evolution with respect to different h and τ are shown in Fig-
ure 7. Second-order convergence can be observed from the log-log plots.
The result suggests the proposed method works in a much wider condition
than the assumption of Theorem 1, although the strict proof is currently
beyond the scope of with work.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

t

-1.0

-0.80

-0.60

-0.40

-0.20

0.0

0.20

0.40

0.60

0.80

1.0

u(x,t)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

t

-1.0

-0.80

-0.60

-0.40

-0.20

0.0

0.20

0.40

0.60

0.80

1.0

u(x,t)

Figure 6: Solution to Example 3: (left) by proposed method; (right) by using a large
spatial domain

8. Conclusion

A convergent fast numerical method for solving the Cauchy problem
of the one-dimensional linearized Benjamin-Bona-Mahony (BBM) equation
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Figure 7: Performance of the proposed method in Example 3: (left) relative error versus
time step size τ (h = 5 × 10−5); (right) relative error versus spatial mesh size h (τ =
5× 10−5)

is proposed to reduce the computational cost incurred by the exact con-
volution. To this end, the BBM equation in an unbounded domain was
reformulated into an initial boundary value problem in a bounded domain
of computational interest. A fully discrete Crank-Nicolson finite difference
method has been proposed to solve the reformulated initial boundary value
problem with an exact semi-discrete artificial boundary condition (ABC).
A fast convolution algorithm is introduced to handle the convolutions for
the exact semi-discrete ABC using the Padé rational expansion. A criterion
for determining the damping term was proposed to guarantee convergence.
In this case, it was theoretically proved that the corresponding numerical
scheme can achieve second order accuracy. Numerical tests confirmed the
effectiveness of the proposed numerical method.

The problem that remains to be solved is that the damping term e−σt

should satisfy the stability condition σ ≥ 1/
√
κ1. For small dispersion pa-

rameters κ, a too fast decaying damping term e−σt leads to numerical errors.
We will deal with this problem in a forthcoming paper.

Finally, we also have to deal with nonlinear systems, which is still an
open problem. We would like to address these problems in the near future.
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