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Abstract: We study state-of-the-art models for Electricity Price Forecasting ranging from standard1

inferential statistical methods to deep learning based ones. Combining multiple weekday dummies2

with historical data, we propose an innovative forecast solution where electricity spot prices series are3

decomposed into a seasonal trend component plus a stochastic one. The latter allows us to provide a4

highly performing predictive solution in all considered time windows.5

Keywords: Electricity price forecasting; univariate model; statistical method; autoregressive; machine6

learning; deep learning; neural network7

1. Introduction8

The study of Electricity Price Forecasting (EPF) has attracted an increasing attention within Europe9

energy markets at least starting from 1996, as result of liberalization protocol adopted by the European10

Authority for Energy. The latter concertized in an augmented complexity of the European electricity11

market, as a whole, as well as w.r.t. each single production/consumption of its components.12

The most studied aspect of electricity price forecasting concerns short time horizons, i.e. from13

hours to a day, underlying dynamics being different from those of other commodities. Indeed,14

electricity can not be stored and a constant balance between generation and consumption is required.15

Demand, in turn, is subject to hourly, daily and seasonal fluctuations, being also influenced by economic16

activities of participating countries, political changes, weather variables’ behavior (temperature, solar17

radiation, wind speed/direction, etc.), interconnected markets’ dynamics.18

Focusing on the German market, from 2017 renewable energy sources start acquiring more and19

more relevance, with an increment of 38.5 %, leading to an adjustment in short-term electricity trading20

also because of the implicit volatility due to weather conditions variance. The latter implied the need21

to develop models able to simultaneously consider point forecasts, probabilistic forecasts or path22

forecasts. We focus on the study of electricity prices first applying standard statistical models, to then23

switch to machine learning based solutions. Predictions of both daily (average) and hourly prices24

are carried out w.r.t. different time windows to be predicted: in the first case medium and long time25

horizons, medium and short ones for the second one.26

The rest of the paper is organized as follows. Section 2 and Section 3 present the statistical models27

for the prediction and the machine and deep learning models. Section 4 contains the analysis of our28

data and shows the results obtained. Finally, Section 5 discusses the results and possible future work.29
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2. Benchmark Data and Statistical Models30

We focus on forecasting electricity prices behavior within the German market w.r.t. to both large31

time window, months, and short time ones, day. We implement statistical as well as deep learning32

models, exploiting German market hourly prices from 2020 and until mid-2022. For the sake of33

simplicity, we have assumed that the year 2020 is a non leap year, in order to have all the years with 36534

days. It is worth mentioning that our datasets are characterized by not so regular behavior. Indeed, we35

had an increasing trend, starting in July 2021 then culminating in March 2022, probably incorporating36

effects due to the Russia-Ukraine conflict. Moreover, we underline how years analyzed have seen the37

huge impact of the COVID-19 pandemic as well as energy crisis that, in Germany, implied supply38

contracts with delivery in 2023 to be over 1000 e per Mw/h and to 800 e per Mw/h, in August 2022.39

Finally, 2022 saw significant changes since German renewable electricity covering 49 % of demand40

during first six months. In what follows, we denote the price P at time t, by Pt, then discretizing41

the period of interest, let’s say [0, T], with T positive, but finite, in regular N, N ∈ N+ and finite,42

sub-intervals with equally spaced extremes ti, i = 1, . . . , N, i.e. observations are collected at fixed43

time intervals: hourly intervals. We used the most recent prices along considered time windows,44

dividing the time series into segments with the ’same’ price level, and exploiting algorithms such as45

K-Nearest Neighbourhood (K-NN) [1] or more recent Narrowest Over Threshold (NOT) [2], to select46

the calibration sample based on similarities with respect to a subset of explanatory variables, leading47

to a remarkable improvement in forecasting.48

As naive benchmark we used a method belonging to the class of similar-day technique. The idea49

is the following: the electricity price forecast for hour h on Tuesday, Wednesday, Thursday and Friday50

is set equal to the price for the same hour on the previous day, i.e. P̂d,h = Pd−1,h, while the forecast for51

hour h on Saturday, Sunday and Monday is set equal to the price for the same hour a week ago, i.e.52

P̂d,h = Pd−7,h.53

2.1. Statistical Models54

Among statistical models usually exploited for time series prediction, let us recall the55

Autoregressive Moving Average (ARMA) one along with its extensions, and Generalized56

Autoregressive Conditional Heteroskedasticy (GARCH) [3]. For the sake of completeness, let us recall57

the definitions of Autoregressive (AR) and Moving Average (MA), to then analyze Autoregressive58

Moving Average and its extensions.59

An Autoregressive Model, of order p is indicated as AR(p), predicts a variable of interest using a
linear combination of past values of that variable. This model takes into account the random nature
and time correlations of the phenomenon studied, starting with previous prices. The AR model reads

Pt = α + ϕ1 Pt−1 + ϕ2 Pt−2 + · · ·+ ϕp Pt−p + ϵt, (1)

where ϵt takes into account the randomness component, being modeled by a white noise stochastic60

process.61

A Moving Average Model predicts a variable using a linear combination of past forecast errors:
this model considers q previous values of the noise, thus performing a totally different procedure
compared to the AR models. We denote by MA(q) a Moving Average model of order q:

Pt = α + ϵt + θ1 ϵt−1 + θ2 ϵt−2 + · · ·+ θq ϵt−q, (2)

ϵt being defined as above.62

The Autoregressive Moving Average Model is denoted by ARMA(p, q), where p and q are the
coefficients of AR and MA, respectively. In the ARMA(p, q) model, the price Pt is defined as

ϕ(B)Pt = θ(B) ϵt, (3)
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where B is the backward shift operator, i.e. BPt = Pt−1. In detail, the ϕ(B) and θ(B) terms are:

ϕ(B) = 1 − ϕ1B − . . . − ϕpBp and θ(B) = 1 + θ1B + . . . + θqBq,

where ϕ1, . . . , ϕp and θ1, . . . , θq represent the coefficients of the AR and MA polynomials, while ϵt can63

be seen as a collection of i.i.d. Gaussian random variables, i.e. ϵt ∼ WN(0, σ2), hence specifying the64

white noise component cited before at each time of interest.65

Since the ARMA model can be applied only to stationary time series, we applied unit root tests66

(ADF, KPSS and PP), cf. [4].67

Previous point can be overcame by Autoregressive Integrated Moving Average Model, ARIMA,
introduced by Box and Jenkins (1976), to consider non-stationary time series by exploiting a differencing
technique. The latter allows to remove both trend and seasonality, to obtain a stationary time series,
from data with a period d. Firstly, we have to introduce the lag − d differencing operator ∇d defined as

∇dPt = Pt − Pt−d = (1 − Bd) Pt. (4)

The ARIMA(p, d, q) model can be written as:

ϕ(B)∇dPt = θ(B)ϵt, (5)

where p and q are the order for the AR and MA models, respectively. Here d indicates the number of68

differencing passes at lag d.69

When time series is also characterized by seasonality, a standard approach is to used the
Seasonal Autoregressive Integrated Moving Average Model, SARIMA, an extension of ARIMA. The
SARIMA(p, d, q)× (P, D, Q)s model is defined as

ϕ(B)Φ(Bs)∇d∇D
s Pt = θ(B)Θ(Bs)ϵt, (6)

where (p, d, q) refers to the non-seasonal component, while (P, D, Q) refers to the seasonal ones, and s70

indicates the number of observations in a season. Since every SARIMA model can be transformed into71

an ARMA model using the variable P̃t = ∇d∇D
s Pt, prediction is accomplished in two steps: model72

identification and estimation of the parameters, see Section 4.3.2.73

Next, we introduce an Autoregressive Model for hourly price prediction where dummies are
considered. The model uses the ARX model as starting point, but does not include exogenous variables:

Pd,h = β1Pd−1,h + β2Pd−2,h + β3Pd−7,h + β4Pd−1,24 + β5Pmax
d−1 + β6Pmin

d−1 +
7

∑
j=1

βh,j+8Dj + ϵd,h, (7)

where Pd−1,h, Pd−2,h and Pd−7,h account for the autoregressive effects corresponding to prices from the74

same hour h of the previous day, two days before and a week before. The coefficient Pd−1,24 is the last75

known price at the time when the prediction is made, then providing information about the end of76

day price level. Coefficients Pmin
d−1 and Pmax

d−1 are the previous day’s minimum and maximum prices,77

respectively. Lastly, D1, . . . , D7 are weekday dummies and ϵd,h is the noise term, which is assumed to78

be i.i.d. and with finite variance, then we estimate the βi’s using Least Absolute Shrinkage and Selection79

Operator.80

3. Machine Learning based Models81

For the sake of completeness, in what follows we recall basics about Extreme Gradient Boosting82

and Neural Network models.83
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3.1. The XGBoost Model84

The Extreme Gradient Boosting (XGBoost), improves gradient booster performances by considering85

new trees correcting errors of those trees that are already part of the model. Trees are added until no86

further improvements can be made to the model, hence implementing a walk forward validation [5]87

scheme. In particular, we used the XGBoost library [6].88

Given a training set {(xt, pi)}N
i=1, a differentiable loss function L(p, F(x)), a number of weak89

learners M and a learning rate α [7], the algorithm is defined as follow:90

1. Initialization of the model with a constant value:

f̂(0)(x) = arg min
θ

N

∑
i=1

L(pi, θ).

2. For m = 1, . . . M:91

(a) Compute the gradients and Hessians:

ĝm(xi) =

[
∂L(pi, f (xi))

∂ f (xi)

]
f (x)= f̂(m−1)(x)

, ĥm(xi) =

[
∂2L(pi, f (xi))

∂ f (xi)2

]
f (x)= f̂(m−1)(x)

.

(b) Fit a base learner using the training dataset
{

xi,−
ĝm(xi)

ĥm(xi)

}N

i=1
by solving the optimization problem below:

ϕ̂m = arg min
ϕ∈Φ

N

∑
i=1

1
2

ĥm(xi)

[
− ĝm(xi)

ĥm(xi)
− ϕ(xi)

]2

, f̂m(x) = αϕ̂m(x).

(c) Update the model f̂(m)(x) = f̂(m−1)(x) + f̂m(x).92

3. Output: f̂ (x) = f̂(M)(x) =
M
∑

m=0
f̂m(x).93

3.2. Neural Network Models94

Since the mid-2010s, research on EPF shifted to consider an increasing number of inputs as, e.g.,95

in Deep Learning models. The latter has been made possible by augmented computational capacities96

(mainly based on GPUs) at lower costs, also exploiting on cloud solutions. As a result, it has been97

possible to gain better representations of hidden data, while maintaining reasonable work-times.98

Neural Networks can be equipped to provide from single-valued forecast, to a complete interval of99

possible values.100

The first Neural Networks used for Electricity Price Forecasting were mainly simple NNs with101

one hidden layer such as Multilayer Perceptron (MLP), Radial Basis Function (RBF) networks or at102

most very simple Recurrent Neural Networks. The most common MLP is described as follows: every103

neuron in the previous layer is fully connected to every neuron in the next layer. In the EPF literature,104

the input is the past energy load and the output is the future energy load.105

The Deep Neural Network (DNN) is the natural extension of the traditional MLP using multiple106

hidden layers. Here, our DNN is a Deep Feedforward Neural Network [8] with 4 layers within the107

multivariate framework and exploiting Adam optimizer. The variables defining a DNN with two108

hidden layers are the following: the input vector X = [x1, . . . , xn]⊤, the vector of day-ahead prices that109

we want to predict P = [p1, . . . , p24]
⊤ and the number of neurons for hidden layer n1, n2.110

Recurrent Neural Network (RNN) are a specialized class of Neural Networks allowing cyclical111

connections. Their structure allows to record past information that can be then used to forecast future112

values. It is worth mentioning that RNNs only take into account inputs at time t − 1 hence facing113
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the long-term dependencies problem, that can be tackled by Long Short Term Memorys, introduced by114

Hochreiter and Schmidhuber in 1997 [9].115

Long Short Term Memory (LSTM) Neural Networks are special variants of RNNs, in which116

information can be stored, updated or forgot by a choice of the state of the cell. This allows such NNs117

to use large input spaces and understand long-term dependencies. The computational graph of LSTMs118

contains five basic elements: input gate, forget gate, output gate cell and state output. Gate operations119

are performed in the cell memory state and are of the following types: reading, writing and erasing.120

Defining as xt the input value recorded at time t and by ht the associated LSTM output, main121

steps of this particular NN-solution read as follows:122

• decide which information is going to be removed from the cell state by using the sigmoid layer,123

called the forget gate layer. It looks at xt and ht−1 and returns a value between 0 and 1 for each124

value in the cell state Ct−1.125

• decide which new information will be stored in the cell state. This step is divided into two126

substeps:127

1. use a input gate layer implemented by a sigmoid layer deciding which values will be updated,128

it = σ(Wi × [ht−1, xt] + bi);129

2. use a tanh layer to provide a vector of new candidate values C̃t = tanh(WC × [ht−1,xt ] + bC)130

that can be added to the state.131

As a result, old cell state Ct−1 is updated with Ct = ft · Ct−1 + it · C̃t, where ft · Ct−1 indicates132

what we have already chosen to forget and the other term indicates the new candidates.133

• The output will be defined by a filtered version of the cell state, via a sigmoid layer deciding134

which parts will be included in the output ot = σ(Wo · [ht−1,xt ] + bo), and then a tanh is carried135

out which is itself multiplied by the output of the sigmoid gate ht = ot · tanh(Ct).136

σ σ tanh σ

× +

× ×

tanh

C⟨t−1⟩

Memory Cell

h⟨t−1⟩

Hidden state

x⟨t⟩Input

C⟨t⟩

Next memory cell

h⟨t⟩

Next hidden state

o⟨t⟩Output

Figure 1. Block of Long Short Term Memory at any timestamp t.

Another NN that can be used to predict day-ahead prices is the Convolutional Neural Network137

(CNN), which uses the concept of weight sharing and provides better accuracy in highly non-linear138

problems. The inputs are divided between those modeling sequential past data XS = [xS1 , . . . , xSN ]
⊤

139

and those modeling information about next 24 hours day-ahead XF = [xF1 , . . . , xFN ]
⊤. With previous140

two inputs, the model uses two parallel CNNs to model the electricity price behavior. Specifically, the141

convolution process starts with inputs and transforms them into the feature maps. Then the pooling142

process is performed, wherein the feature map of convolution layer is sampled and its dimension is143

reduced. After both networks perform a series of convolution and pooling operations. Then, we have144

a fully connected layer that models the day-ahead prices P.145
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4. Data Analysis146

We implemented the above mentioned models considering hourly electricity prices in Germany,147

ranging from 2020 to mid-2022, then providing a forecast exploiting both daily average and hourly148

prices on different time windows. Concerning daily average prices, we first carried out a long term149

forecast taking holidays. The latter could be useful in view of investments planning them, e.g., when150

dealing with mid to long-term power plant energy demand programming, see, e.g. [10].151

The accuracy of a forecast model is defined considering realized errors, e.g., analyzing Mean
Absolute Percentage Error, Mean Absolute Deviation and Median Relative Absolute Error. For the
day-ahead forecasting those errors are not a good choice, since the economic decision might lead to
economic benefits or damage, depending on the forecast precision. Rather, according to literature, a
better choice is represented bny quadratic errors, i.e. L2, such as the Mean Squared Error (MSE)

MSE =
1
n

n

∑
t=1

(P̂t − Pt)
2

or the related Root Mean Squared Error (RMSE), defined as: RMSE =
√

MSE.152

4.1. Naive Benchmark Results153

We first show results obtained from the naive benchmark, cf. Section 2.154

Daily Average Price:155

In the analysis of average daily prices, hours were not taken into account, i.e. the forecast is156

equivalent to the price of the previous day except for Saturday, Sunday and Monday, considered to be157

those of the previous week. These results, in Table 1, show that this model does not accurately identify158

future prices, in fact the errors are considerable.159

Naive Benchmark
Training period Test period RMSE

2020 2021 91.0102
2020-2021 2022 150.4029
two weeks in 2020 two weeks in 2021 56.0675

Table 1. RMSE of Naive Benchmark on different training and test periods for daily average prices.

Hourly Daily Price:160

We show the errors of the Naive Benchmark concerning the prediction of daily hourly prices161

over different time windows. From Table 2, showing the RMSEs, we deduce that, as in the previous162

case concerning daily average prices, this model does not perform well on our data. The predictions163

of daily hourly prices obtained by the Naive Benchmark model are distant in terms of values to the164

current price, but as we show in Figure 2, the behavior is predicted very accurately, which is due to the165

fact that the year 2020 and 2021 during the first months of the year had similar daily behavior.166

Naive Benchmark
Training Period Test Period RMSE
one month in 2020 one month in 2021 123.8230
one week in 2020 one week in 2021 51.5851
one day in 2020 one day in 2021 31.6256

Table 2. RMSE of Naive Benchmark model on different training and test periods for daily hourly prices.
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Figure 2. Comparison of target and forecast values for one day with Naive Benchmark.

4.2. SARIMA167

In what follows we consider SARIMA model, after observing seasonality of our time series.168

We first take into account Autocorrelation Function (ACF) and the Partial Autocorrelation Function169

(PACF), as to focus on parameter q and p, respectively. While to identify m it is sufficient to analyze the170

time series provided. It is crucial to note that the choice of m affects the seasonal parameters P, D, Q.171

Parameters d and D values can be determined by unit root test, in our study case the ADF, or by172

looking at the rolling mean and the rolling standard deviation.173

Daily Average Price:174

In the context of daily average prices of electricity the seasonality is defined as m = 7, since we175

observed a periodical weekly behaviour. The parameters of the model SARIMA, for the forecasts of the176

daily average prices, have been chosen observing ACF and PACF plots and using the library pmdarima.177

We rely on this results, as we checked at the p-value of each individual parameter which are less178

than 0.05, i.e. they are less statistically significant. Then we checked at the p-value of the Ljung-Box test179

and we cannot reject the null hypothesis: in conclusion, the residuals are independently distributed,180

i.e. they are white noise.181

SARIMA(3, 1, 3)× (1, 1, 1)7
Training Period RMSE
2020 85.3509

Table 3. RMSE of SARIMA model of 2020 for testing 2021 for the daily average prices.

SARIMA(2, 0, 2)× (0, 1, 1)7
Training Period RMSE
2020-2021 77.6600

Table 4. RMSE of SARIMA model of 2020-2021 for testing mid-2022 for the daily average prices.

In Table 4 we observe errors obtained from the SARIMA model trained on data from 2020 to 2021182

to predict mid-2022 which are much lower than the ones for the model previously observed. Also183

we can consider the results obtained because the p-value of the Ljung-Box test is 0.92 which is much184

greater than 0.05, the residuals are independent.185

Although we can consider such results as they satisfying the model’s assumptions and although186

they fit better than previous model, we observe in Figure 3 that SARIMA predicts regular and periodic187

behavior which is not reflected in our data. Is also interesting to observe a significant peak in March,188

an unexpected datum probably due to the war between Russia and Ukraine that started one week189

before. As seen for the other SARIMA models, Table 5 provides errors obtained using different time190

windows as a training period and a two weeks test set.191
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Figure 3. Comparison of target and forecast values for mid-2022 using 2020-2021 as training set with
SARIMA(2, 0, 2)× (0, 1, 1)7 for daily average prices.

RMSE of two weeks of testing in 2021
Training Period SARIMA(p, d, q)× (P, D, Q)7 RMSE
2020 SARIMA(1, 1, 2)× (1, 0, 2)7 23.3416
Spring-Summer SARIMA(2, 1, 1)× (0, 1, 1)7 17.1818
Autumn-Winter SARIMA(1, 1, 3)× (4, 1, 3)7 12.2135

Table 5. RMSE of the SARIMA model trained on different time windows for testing two weeks.

In Table 6 we show the p-values for the Ljung-Box test, which allows us to state that the three192

models are reliable. In Figure 4 we observe the forecast made by the SARIMA model for a fortnight,193

the model predicts a more regular behavior than the current one and fails to predict peaks.194

Ljung-Box Test
Training Period p-value Null Hypothesis
2020 0.93 not rejected
Spring-Summer 0.87 not rejected
Autumn-Winter 0.69 not rejected

Table 6. The p-values of the Ljung-Box test for the SARIMA model on 2 weeks of test.

Figure 4. Comparison of target and forecast values for two weeks in 2021 using autumn-winter
2020-2021 as training set with SARIMA(1, 1, 3)× (4, 1, 3)7 on daily average prices.

Hourly Daily Price:195

We considered daily hourly prices, starting by predicting a month using different time windows196

and then predicting a week and a day using the same time windows. The SARIMA models explained197

above were tested performing the Ljung-Box test as shown in Table 8. In Table 9 we see the results198
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obtained from SARIMA models to predict a week. In the case of the autumn-winter training set it199

turns out to be a good prediction, in fact the lowest RMSE obtained in these SARIMAs.200

RMSE of one month of testing in 2021
Training Period SARIMA(p, d, q)× (P, D, Q)24 RMSE
2020 SARIMA(2, 1, 1)× (2, 1, 0)24 118.8870
Spring-Summer SARIMA(2, 0, 2)× (2, 1, 0)24 107.9992
Autumn-Winter SARIMA(2, 0, 0)× (2, 1, 0)24 110.7636

Table 7. RMSE of the SARIMA model of different time windows for testing one month in 2021.

Ljung-Box Test
Training Period p-value Null Hypothesis
2020 0.33 not rejected
Spring-Summer 0.92 not rejected
Autumn-Winter 0.96 not rejected

Table 8. p-values of the Ljung-Box test for the SARIMA model on one month test.

RMSE of one week of testing in 2021
Training Period SARIMA(p, d, q)× (P, D, Q)24 RMSE
2020 SARIMA(2, 1, 0)× (2, 1, 0)24 41.7355
Spring-Summer SARIMA(2, 0, 2)× (2, 1, 0)24 19.6915
Autumn-Winter SARIMA(2, 0, 0)× (2, 1, 0)24 16.5124

Table 9. RMSE of the SARIMA model of different time windows for testing one week.

Figure 5 presents the forecasts made provided by the SARIMA model, using autumn-winter201

as training set and testing one week in 2021, which predicts positive peaks quite well while is not202

detecting prices approaching zero. Table 10 shows the errors obtained by SARIMA models on one203

day using different time series as training sets. Also for these models, p-values were measured for204

the Ljung-Box test, all of which allows us to state the models considered are defined by independent205

residuals.206

Figure 5. Comparison of target and forecast values for one week in 2021 using autumn-winter as
training set with SARIMA(2, 0, 0)× (2, 1, 0)24.

RMSE of one day of testing in 2021
Training Period SARIMA(p, d, q)× (P, D, Q24 RMSE
2020 SARIMA(2, 1, 0)× (2, 1, 0)24 7.8986
Spring-Summer SARIMA(2, 0, 2)× (2, 1, 0)24 16.9000
Autumn-Winter SARIMA(2, 0, 0)× (2, 1, 0)24 12.1786

Table 10. RMSE of SARIMA model of different time windows for testing one day for the hourly prices.
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Figure 6 displays the 24-hour period forecast by the model previously stated. The above model207

does not predict very well since it predicts only one peak, although our time series of daily hourly208

prices are defined by two peaks. We can state that the SARIMA model better performs on both daily209

average and hourly prices, when compared with the XGBoost and Naive Benchmark. However it is210

not really appropriate as evidenced by the RMSEs.211

Figure 6. Comparison of target and forecast values for one day in 2021 using 2020 as training set with
SARIMA(2, 1, 0)× (2, 1, 0)24.

4.3. Deseasonalization212

In this section we are going to deseasonalize our time series, applying the wavelet decomposition.213

Using the time series with a seasonal adjustment clearly improves the accuracy obtained on both214

simple autoregression and structured models with automated variable selection via LASSO. Moreover,215

such seasonal decomposition has also turned out to work well for deep learning based models for both216

point forecast and probabilistic forecast.217

Seasonal decomposition refers to the representation of a signal as sum and/or product of a218

periodic component, the remaining variability being typically described by the action of a stochastic219

process tha could allow for jumps. We referred to the wavelets approach. Because after numerical220

implementations, the RMSEs obtained from forecasts made with the same models on time series with221

a seasonal adjustment done with the HP filter are similar.222

4.3.1. Wavelet Decomposition223

Wavelet transform is based on a series of functions called wavelets, each with a different scale.224

A wavelet family consists of pairs composed by a father, also called scaling function, and a mother,225

respectively indicated with ϕ and ψ. In detail, the father wavelet is about the low frequency smooth226

components while the mother captures the higher frequency components. Every wavelet family227

is defined with an order, indicating the number of vanishing moments which is related to the228

approximation order and smoothness of the wavelet.229

Additionally, there are two assumptions on the wavelet, finite energy and zero mean. Finite230

energy means that it is localized in time and frequency; it is integrable and the inner product between231

the wavelet and the signal always exists. The admissibility condition implies a wavelet to have zero232

mean in the time domain, a zero at zero frequency in the time domain. This is necessary to ensure that233

it is integrable and the inverse of the wavelet transform can also be calculated.234

We used the Daubechies family of order 24 (denoted by ’d24’), as suggested by Weron [11]235

in the ’deseasonalize.m’ MATLAB code, and smoothing level k from 6 to 14, as suggested in [12].236

The Daubechies wavelet family of order 24 is sufficiently regular and smooth for our datasets. To237

perform the wavelet decomposition in Python, the (open source) PyWavelets library has been exploited,238

particularly functions ’wavedec’, ’waverec’ and ’threshold’ [13].239
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Figure 7. Figure of the Long Trend Seasonal Component (LTSC) based on wavelets S6, S8, S14 for the
daily average prices.

In wavelet smoothing, the time series is decomposed using the discrete wavelet transform into a
sum of approximation series capturing the general trend, SJ , and a number of detailed series DJ repre-
senting the high frequency components: SJ + DJ + DJ−1 + · · ·+ D1, where J is the smoothing level,

SJ = ∑
k

sJ,kϕJ,k(t) and Dj = ∑
k

dj,kψj,k(t).

The terms sJ,k, dJ,k, dJ−1,k, . . . , d1,k indicate the wavelet transform coefficients that measure the240

contribution of the corresponding wavelet function to the approximation sum. At the coarsest scale the241

LTSC term can be approximated by SJ and more precisely by SJ−1 = SJ + DJ . At each step, we obtain242

a better estimate of the original signal by adding a mother wavelet Dj of a lower scale j = J1, J2, . . . .243

The reconstruction process can always be interrupted, especially when we reach the desired accuracy.244

Daily Average Price:245

In Figure 8 we observe the daily average prices after removing the Long Trend Seasonal246

Component (LTSC) and after replacing negative values with null prices, see also ’deseasonalized.m’247

MATLAB code [11]. The seasonal adjustment shown below was obtained with the wavelet family248

’db24’ on the wavelet S8.249

Figure 8. Figure of the deseasonalized prices based on wavelet S8 for the daily average prices.
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Hourly Daily Price:250

For hourly prices, the LTSC decomposition is done with the same MATLAB code used for daily251

average prices and is performed on the same wavelet family ’db24’ using the wavelet S12, see Figure 9.252

Figure 9. Figure of the deseasonalized prices based on wavelet S12 for the daily hourly prices.

4.3.2. Box-Jenkins Model253

The Box and Jenkins approach [14], ARIMA, consists of the following steps: model identification,254

parameter estimation, estimate the parameters for the model and model diagnostic [15].255

Model Identification:256

Since ARMA requires stationarity, standard Box and Jenkins approach suggests both a short and257

a seasonal differentiation to obtain stationarity of the mean, then performing a logarithmic/power258

transformation to achieve stationarity in the variance. Analogously, when dealing with seasonal259

components, we can consider seasonal multiplicative models coupled, when necessary, with long-term260

differencing to achieve mean-stationarity, see, e.g., [16].261

Parameter Estimation262

Dealing with a stationary and deseasonalized time series, we can move forward applying ARMA,263

hence choosing the order of the parameters p and q, by exploiting Autocorrelation Function and Partial264

Autocorrelation Function plots. They, respectively, show correlations of an observation with lag values,265

a summary of correlations between observations and lag values that are not accounted for by prior266

lagged observations. Models accuracy is provided by the following information criteria:267

• Akaike Information Criteria (AIC): goodness-of-fit measure of an estimated statistical model,268

AIC = −2 log(L) + 2(p + q + 1).269

• Bayesian Information Criteria (BIC): estimate of the Bayes factor for two competing models270

BIC = −2 log(L) + log(N)(p + q + 1).271

L indicates the maximum likelihood function, while N is the number of observations. Hence, the model272

providing the minor Information Criteria (IC) is the one to choose, since it identifies both the goodness273

of the fit and the number of parameters, see, e.g., [17,18].274

Model Estimation:275

To estimate the coefficients of the previously chosen ARMA(p, q) model we can use criteria such276

as Maximum Likelihood Estimation and Least Squared Estimation.277

Model Diagnostic:278

The last step of the Box-Jenkins methodology concerns the diagnostic check to verify that the279

model is adequate. Box-Pierce and Ljung-Box tests are used to check the correlation of the residuals.280
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• The Box-Pierce test is defined as

Q(k) = N
k

∑
i=1

r2
i ,

where N represents the number of observations, k is the length of coefficients to test281

autocorrelation and ri is the autocorrelation coefficient for the lag i.282

The null hypothesis of the Box-Pierce test reads283

H0: none of the autocorrelation coefficients up to lag k is different from zero,284

i.e., the residuals are independently distributed, i.e. white noise, and the model is adequate.285

• The Ljung-Box statistics follows this formula:

Q∗(k) = N(N + 2)
k

∑
i=1

r2
i

(N − i)
,

where the variables are the same as the Box-Pierce test and the null hypothesis too.286

Daily Average Price:287

We continue the analysis with statistical models as ARIMA on the deseasonalized time series.288

Applying the steps required by the Box-Jenkins model we obtained the parameters p = 2, d = 1 and289

q = 1 using the ACF, PACF and the AIC as information criteria. The parameter d = 1 indicates the290

non-stationarity of our time series, see Section ??, therefore it must be differentiated with lag = 1 to be291

stationary.292

Additionally, the Ljung-Box test was carried out showing a p-value of 0.83 so we can not refuse293

the null hypothesis, i.e. the residuals are independently distributed and we can consider the results294

obtained by the model valid. In the first Table 11 is shown the RMSE of the ARIMA model trained on295

2020 in order to predict 2021. We observe a clear improvement of the RMSE compared to what is seen296

in Table 3 with SARIMA. However, although the RMSE is not large, this is not a result of the model’s297

ability but only of the seasonal adjustment of the LTSC component, as clearly observed in Figure 10.298

ARIMA(2, 1, 1)
Training Period RMSE
2020 43.4172

Table 11. RMSE of ARIMA model of 2020 for testing 2021 on the daily average deseasonalized prices.

Figure 10. Comparison of target and forecast values for 2021 using 2020 as training set with
ARIMA(2, 1, 1) for daily average prices.

In the same way we evaluated and obtained the ARIMA’s hyperparameters using the years 2020299

and 2021 as training set and testing mid-2022, as shown in Table 12. However, this model in contrast to300
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the previous one, does not perform better than the SARIMA on the same training and test sets. The301

latest models designed to forecast two weeks starting from the daily average deseasonalized time302

series on different time windows. The results of these models are shown in Table 13 and Table 14.303

ARIMA(7, 1, 1)
Training Period RMSE
2020-2021 77.6933

Table 12. RMSE of ARIMA on 2020-2021 for testing mid-2022 on daily average deseasonalized prices.

RMSE of two weeks of testing in 2021
Training Period ARIMA(p, d, q) RMSE
2020 ARIMA(2, 1, 1) 11.1749
Spring-Summer ARIMA(6, 2, 0) 10.4634
Autumn-Winter ARIMA(6, 1, 6) 11.2119

Table 13. RMSE of ARIMA model for testing two weeks on daily average deseasonalized prices.

The RMSEs are lower than those obtained from the SARIMA model, see Table 5, trained on the304

same training and test sets. Figure 11 shows that the model can predict quite well, in truth the model305

predicts the weekly behaviour. This ARIMA model predicts the two upper peaks quite accurately.306

Ljung-Box Test on two weeks of test
Training Period p-value Null Hypothesis
2020 0.83 not rejected
Spring-Summer 0.24 not rejected
Autumn-Winter 0.95 not rejected

Table 14. The p-values of the Ljung-Box test for the ARIMA model on two weeks test.

Figure 11. Comparison of target and forecast values for two weeks in 2021 using spring-summer as
training set with ARIMA on the deseasonalized daily average prices.

Hourly Daily Price:307

Let us now consider the hourly prices at which we removed the LTSC component with wavelet308

decomposition on the wavelet S12. After observing plots concerning ACF and PACF and after309

ascertaining the stationarity of our time series using the ADF test, we obtain the hyperparameters310

for the different time windows presented in Table 15. Before evaluating the errors, we checked the311

reliability of the models using the Ljung-Box test in Table 16.312
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RMSE of one month of testing in 2021
Training Period ARIMA(p, d, q) RMSE
2020 ARIMA(4, 0, 1) 71.1059
Spring-Summer ARIMA(2, 0, 1) 71.0840
Autumn-Winter ARIMA(7, 0, 3) 71.3371

Table 15. RMSE of the ARIMA model on different training sets for testing one month on the hourly
deseasonalized prices.

Ljung-Box Test on one month of test
Training Period p-value Null Hypothesis
2020 0.97 not rejected
Spring-Summer 0.99 not rejected
Autumn-Winter 1 not rejected

Table 16. The p-values of the Ljung-Box test for the ARIMA models on one month test.

Once we have ensured the reliability of the models, we can state that ARIMA on the seasonally313

adjusted hourly prices performs better than the SARIMA and Naive Benchmark models. We now see314

in Table 17 the results obtained by ARIMA on different training sets testing one week. The RMSE in315

the case of the model trained on 2020 is clearly decreased, whereas this is not the case with the model316

trained on the autumn-winter period.317

RMSE of one week of testing in 2021
Training Period ARIMA(p, d, q) RMSE
2020 ARIMA(4, 0, 1) 19.1394
Spring-Summer ARIMA(2, 0, 1) 19.2664
Autumn-Winter ARIMA(7, 0, 3) 19.2074

Table 17. RMSE of the ARIMA model on different training sets for testing one week on the hourly
deseasonalized prices.

As observed for the daily average prices, Figure 12 reveals how the forecasts made by ARIMA318

trained on 2020 do not predict price trends despite the fact that the error is not high. Looking at Table319

18 we see a worsening in the RMSE values by testing a day in 2021, indeed Table 10 is definitely better.320

Figure 12. Comparison of target and forecast values for one week using 2020 as training set with
ARIMA(4, 0, 1) for daily hourly prices.
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RMSE of one day of testing in 2021
Training Period ARIMA(p, d, q) RMSE
2020 ARIMA(2, 0, 1) 16.8249
Spring-Summer ARIMA(2, 0, 1) 16.6854
Autumn-Winter ARIMA(6, 0, 3) 14.2826

Table 18. RMSE of the ARIMA model of different training sets for testing one day on the hourly
deseasonalized prices.

4.4. AR with Dummies321

In this Section, we observe the results obtained on deseasonalized daily hourly prices with wavelet322

S12 applying the model explained in Section 2. In Table 19 we observe the errors of the AR model with323

dummies, these errors are larger than those obtained with SARIMA and ARIMA, probably because324

we are not considering the exogenous variables. Figure 13 shows the daily hourly prices and those325

predicted by this model which are very far from the actual prices, which have two peaks, one around326

9AM an the second at 7PM which are not predicted by the model.327

AR with Dummies
Training Period RMSE
2020 26.1521
Spring-Summer 43.4731
Autumn-Winter 39.1706

Table 19. RMSE of the AR with dummies model of different training sets for testing one day on the
hourly deseasonalized prices.

Figure 13. Comparison of target and forecast values with AR Dummies for one day in 2021 using 2020
as training set on daily hourly prices.

4.5. XGBoost328

In order to apply the XGBoost model we have to first select characterizing features, e.g. time,329

quarter, month, year, day of the week/month/year, week of the year, of our time series as to cast the330

latter into a supervised learning problem. Next we identify the so called training set, composed by331

Xtrain and ytrain, the former being defined on the previously calculated features, while the second332

contains the German market electricity prices. Next we decide the objective function hyper-parameter,333

defined by a training loss and a regularization term. The training loss indicates how predictive our334

model is with respect to the training data, the MSE was chosen. While the regularization term controls335

the complexity of the model in order to avoid overfitting, the L1 regularization was chosen with336

α = 0.1.337

After the model has been fitted on Xtrain and ytrain, the XGBoost library allows to display the338

feature importance. In our case features are ordered (from heaviers to lighters ones as follows: hour, day339
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of the year, day of the week, day of the month, month and quarter, and we can then forecast prices of340

the test set based on Xtest.341

Daily Average Price:342

Running the model on daily average prices over two different time windows, we obtain the results343

shown in Table 20. The XGBoost library provides the feature importance, as shown in Figure 14 which344

manifests the features that most influence our endogenous variable, i.e. average electricity prices, in345

the model with training set over autumn winter and predicting two weeks.346

XGBoost
Training Period Test Period RMSE
2020 2021 90.1138
2020-2021 2022 148.2663

Table 20. RMSE of XGBoost model on different training and test periods for the daily average prices.

Figure 14. Feature importance of the XGBoost on daily average prices for two weeks using the
autumn-winter period as training set.

Table 21 shows the errors obtained from the forecasts over different training periods in the two347

weeks forecast, which are not particularly encouraging as the RMSEs are large. The XGBoost model348

trained on the autumn-winter period only succeeds in identifying a few negative peaks and fails to349

predict the behavior of the two weeks as a whole, as Figure 15 reveals.350

XGBoost
Training Period Test Period RMSE
2020 two weeks in 2021 46.6614
Spring-Summer two weeks in 2021 47.8949
Autumn-Winter two weeks in 2021 13.2064

Table 21. RMSE of the XGBoost model on different training periods for testing two weeks in 2021 on
the daily average prices.
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Figure 15. Comparison of target and forecast with XGBoost on daily average prices for two weeks
using Autumn-Winter as training set.

Hourly Daily Price:351

Here we present the XGBoost performed on the daily hourly prices, firstly in the case of one352

month forecasts, showing that this model is more accurate than the Naive Benchmark but less with353

respect to ARIMA and SARIMA. The results obtained in the weekly forecast displayed in Table 23 are354

large errors, considering the RMSEs, excluding the case where autumn and winter 2020-2021 is used355

as the training set.356

XGBoost
Training Period Test Period RMSE
2020 one month in 2021 122.8169
Spring-Summer one month in 2021 114.8268
Autumn-Winter one month in 2021 123.3496

Table 22. RMSE of the XGBoost model of one month in 2021 for the daily hourly prices.

XGBoost
Training Period Test Period RMSE
2020 one week in 2021 42.4270
Spring-Summer one week in 2021 41.3770
Autumn-Winter one week in 2021 19.7381

Table 23. RMSE of the XGBoost model of different train periods for testing one week in 2021 on the
daily hourly prices.

In the concrete, as shown in Figure 16 depicting the forecast for the week of April 2021, we observe357

that this model predicts the regular behaviour quite well but fails to predict the positive and negative358

price peaks present in the German market. In the scenario of hourly pricing, Table 24 illustrates that359

the XGBoost model works well when utilizing autumn-winter as the training period. Summing up,360

the XGBoost model performs better than the Naive Benchmark. Nevertheless, it shows considerable361

errors when applied to our data, probably because of their irregularity, a second possible factor being362

that, we are considering variables with similar characteristics as exogenous ones.363

Figure 16. Comparison of target and forecast values for one week using Autumn-Winter as training set
with XGBoost model on daily hourly prices.
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XGBoost
Training Period Test Period RMSE
2020 one day in 2021 40.3105
Spring-Summer one day in 2021 40.9339
Autumn-Winter one day in 2021 7.7653

Table 24. RMSE of the XGBoost model of different train periods for testing one day in 2021.

4.6. Selection of the Network Structure364

Neural Networks require input data series to be characterized by low variance level, otherwise365

associated training process requires exponentially (in volatility level) growing computational time with366

low probability of pattern-learning. A possible solution can be found in scaling our time series, hence367

by a standardization and transformation approach. We consider the Median and Median Absolute368

Deviation (MAD) to avoid latter cited potential delay. In addition, the NN can be used to model369

univariate time series forecasting problems, but we can not apply them directly to the time series, as370

we did with ARIMA; rather, we transformed the time series into a multivariate input sample, where371

each sample has a specific number of time steps, the output being the value of a single step.372

The most common technique for choosing the number of hidden layers and the number of hidden373

neurons is through experiments, as no fixed methods are provided for finding them, unlike for ARIMA,374

cf. Section 4.3.2. The Neural Network must be trained, i.e. examples of the problem to be solved375

must be presented to the network, then connection weights must be adjusted based on the difference376

between the output obtained and the desired data (ground truth). On the daily average prices, we377

implemented a simple RNN, but this did not provide noteworthy results as by definition it has no378

memory cell compared to LSTM.379

4.6.1. LSTM380

Our data need to be normalized and after that we split the normalized time series into train381

and test set, then we made the time series a multivariate sample as described at the beginning of382

this section. At this point, we obtained as Xtrain and Xtest two vectors of dimension (n, 2), where n383

denotes the time windows chosen as input and test, respectively, containing the electricity prices.384

In our LSTM the Adam algorithm, a stochastic gradient descent method based on an adaptive385

estimation of first and second order moments [19], has been chosen as optimizer with a learning rate386

of 0.001. In all the Neural Network based methods, we considered Mean Squared Error as the loss387

function, minimized throughout the training process. Furthermore all the NNs are defined with LSTM388

hidden layers followed by a dropout layer. This dropout layer randomly sets input to zero, with a389

frequency given by the rate, at each step during the training. Instead, the inputs that are not set to zero390

are scaled up by 1/(1 − rate). The batch size defines the number of samples to work on before the391

internal parameters are updated, usually 32, 64, 128 and 256.392

Daily Average Price:393

We will show the results obtained on the LSTM model on the daily average prices using different394

training and test sets. The model chosen to predict the daily average prices for the year 2021 relies395

on a NN made up of 4 layers: input, hidden, dropout and output. In particular, the hidden layer396

has 300 LSTM cells followed by a dropout layer with rate=0.4. The dropout layer can be seen as a397

regularization technique to reduce overfitting, while a fully connected layer with one neuron is chosen398

as the output layer. Let us briefly note that in Python we used the Keras library, hence exploiting classes399

for the layers ’LSTM’, ’Dropout’ and ’Dense’.400
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LSTM with one hidden layer
Training Period Epochs RMSE
2020 250 34.0001

Table 25. RMSE of the LSTM of training period 2020 for testing one year on the daily average prices.

In Table 25 we observe the results obtained from the training of an LSTM with a training set of401

one year and a test set of the following year. Our NN is trained for 250 epochs starting with arbitrary402

weights, which are updated at each step minimizing the loss function chosen, in our case the MSE with403

Adam optimizer in which the learning rate is 0.001 and the batch size is 60.404

Figure 17. Loss during the training and validation process of an LSTM for one year testing.

Furthermore, during the training of the NN, we use the month of December 2020 as validation set;405

we display the training and validation loss for each epoch in Figure 17. As desired, the loss function406

drops and approaches zero as the epochs progress; however the validation loss does not reach the407

training loss, meaning that our model is probably underfitting. The result displayed in the previous408

Table 25 and Figure 18 shows that this NN performs very well on our time series, in fact the RMSE is409

lower compared to all the models analyzed before.410

Figure 18. Comparison of target and forecast values for the year 2021 using 2020 as training set with
LSTM model on daily average prices.

The LSTM architecture for predicting mid-2022 is defined with input and output layers like the411

one of the previous model, while it has 2 hidden layers of 300 LSTM cells each, both followed by a412

dropout layer with rate 0.2. The training is done with the same optimizer and loss function.413
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LSTM with two hidden layers
Training Period Epochs RMSE
2020-2021 250 57.8398

Table 26. RMSE of LSTM of training period 2020-2021 for testing mid-2022 on the daily average prices.

Table 26 shows a smaller RMSE, i.e. a better forecast; however, even the LSTM does not perform414

very well in the case of this forecast. The price behaviour in 2022 is totally irregular and different from415

previous years under consideration. Finally, in order to predict two weeks of daily average prices in416

2021, we implemented LSTMs with a single hidden layer defined as an LSTM of 400 cells followed by417

a dropout layer with rate 0.2.418

LSTM with one hidden layer
Training Period Hidden Layers Epochs RMSE
2020 400 units 300 11.0914
Spring-Summer 400 units 300 9.5359
Autumn-Winter 400 units 300 13.8709

Table 27. RMSE of the LSTM model of different training periods for testing two weeks in 2021 on daily
average prices.

The results obtained from this LSTM, in Table 27, are not optimal, if we compare them to the419

models previously analyzed on the same training and test sets they are slightly lower. Figure 19420

suggests that our LSTM predicts well the general behavior excluding the fact that it has a lower price421

range, this is due to the fact that our model can not predict the trend in our time series.422

Figure 19. Comparison of target and forecast values for two weeks using 2020 as training set with
LSTM model on daily average prices.

Hourly Daily Price:423

Here we report the results obtained using different training and testing periods on hourly data.424

Considering hourly data enables us to provide the NN significantly more data than those in the425

preceding subsection, which typically results in improved accuracy. Each of the three hidden layers in426

the first NN, which has 300 LSTM cells in each, is followed by a dropout layer, whose purpose it is to427

prevent overfitting, at a rate of 0.2. Moreover, the training is carried out with a batch size of 60.428

LSTM with different number of hidden layers
Training Period Epochs LSTM Layers RMSE
2020 300 3 67.5297
Spring-Summer 300 2 75.1064
Autumn-Winter 300 3 74.7541

Table 28. RMSE of the LSTM model of different training periods for testing one month in 2021.



Version December 7, 2022 submitted to Journal Not Specified 22 of 25

Both the 2020 training and the autumn-winter training adopt the initial neural network with the429

previously described architecture. The amount of data available, notably in the case of 2020, and the430

increased complexity of the neural network itself are undoubtedly responsible for the fact that in both431

situations the training implementation time takes few minutes. The neural network, implemented432

considering spring-summer as training period, has two LSTM layers with 300 cells each, followed by a433

dropout layer with a rate of 0.2 and batch size of 60.434

Table 28 presents the RMSE of these NNs, which have been verified as accurate after looking at435

the loss functions of both the training and validation sets. However, a closer look at Figure 20 suggests436

that LSTM is better able to represent the behaviour of the time series than ARIMA, even though the437

RMSE of these NNs is marginally greater than the one achieved with the ARIMA model in Table 15.438

Figure 20. Comparison of target and forecast values for one month using 2020 as training set with
LSTM model on daily hourly prices.

The predictions generated by the LSTM trained on 2020 accurately forecasted negative peaks,439

which were barely predicted by the other models. One week forecasts based on 2020 hourly prices are440

computed via a NN with three hidden LSTM layers, with each having a unit size of 300, followed as441

broadly explained by a 0.2 rate dropout. In the spring-summer training, we define two LSTMs with442

250 units each, whereas in the autumn-winter training period we used two LSTMs with 300 units each.443

Take into consideration that the first NN’s batch size is 60, while the other NN’s batches are 30.444

LSTM with different number of hidden layers
Training Period Epochs RMSE
2020 300 11.3126
Spring-Summer 150 14.3904
Autumn-Winter 250 12.6480

Table 29. RMSE of the LSTM model of different training periods for testing one week in 2021.

The errors from the recently introduced Neural Networks are shown in Table 29, and during this445

test period, the LSTM remains to be the most accurate model. In order to estimate the hourly prices of446

a day on 3 training time windows, two distinct NN are designed. With one hidden layer made up of447

300 LSTM cells spread throughout 250 epochs, the one trained on 2020 and autumn-winter is the same.448

The single hidden layer with 500 units was chosen as the NN using spring-summer as training set.449

LSTM with different number of hidden layers
Training Period Epochs RMSE
2020 250 7.2073
Spring-Summer 250 8.2753
Autumn-Winter 250 8.2147

Table 30. RMSE of the LSTM model for different training periods for testing one day in 2021.
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Figure 21. Loss during the training and validation process of an LSTM for one day testing.

Figure 21 shows the loss function for the training and validation set. We see that LSTM is the best450

model among the tested ones to predict our data. Comparing the hourly prices predicted by the LSTM451

with the actual prices (Figure 22), we can see how accurately the behaviour and peaks are predicted.452

Figure 22. Comparison of target and forecast values for one day using 2020 as training set with LSTM
model on daily hourly prices.

5. Conclusions453

In the present work we compared statistical, similar-day and machine learning approaches to454

the Electricity Price Forecasting problem with respect to German market electricity prices, within the455

period ranging from 2020 to the mid of 2022.456

The latter having being characterized by a high grade of volatility, with several up and downs and457

irregular seasonality components, also caused by exogenous socio-political events as the well known458

COVID19-pandemic, the climate related energy crisis and the Ukraine-Russia war. Our analysis has459

shown that an LSTM-based approach outperforms all other models when evaluating a medium term460

forecast, by using daily average prices, as well as when dealing with short term predictions based on461

hourly prices.462

We have also shown that removing the Long Trend Seasonal Component (LTSC) and applying the463

ARIMA model on deseasonalized prices, lead to errors mitigation. Unfortunately, this model worked464

poorly when we examined plots emphasizing differences between the actual and forecasted values.465

The XGBoost model performed better than the Naive Benchmark model, even if predicted prices are466

significantly less than the ones obtained with SARIMA and ARIMA.467

As a result of our analysis, we claim that exogenous variables such as, day-ahead system load468

forecasts, day ahead wind power generation, may be taken into account to improve obtained forecasts469

by exploiting more structured models, as, e.g. the Neural Basis Expansion Analysis with exogenous470

variables (NBEATSx) one, recently introduced as an extension of the Neural Basis Expansion Analysis471
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(NBEATS) approach. A possible further improvement could be achieved studying outliers behavior;472

i.e. the predictions of "normal" prices and spiky prices is carried out and then compared. Further473

possible alternatives, within the field of Electricity Price Forecasting research, rely on hybrid models,474

i.e. models obtained by combining statistical and NN models.475
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Acronyms483

ACF Autocorrelation Function.484

ADF Augmented Dickey-Fuller.485

AIC Akaike Information Criteria.486

AR Autoregressive.487

ARIMA Autoregressive Integrated Moving Average.488

ARMA Autoregressive Moving Average.489

ARX Autoregressive with exogenous inputs.490

BIC Bayesian Information Criteria.491

CNN Convolutional Neural Network.492

DNN Deep Neural Network.493

EPF Electricity Price Forecasting.494

GARCH Generalized Autoregressive Conditional Heteroskedasticy.495

IC Information Criteria.496

K-NN K-Nearest Neighbourhood.497

KPSS Kwiatkowski Phillips Schmidt Shin.498

LASSO Least Absolute Shrinkage and Selection Operator.499

LSTM Long Short Term Memory.500

LTSC Long Trend Seasonal Component.501

MA Moving Average.502

MAD Median Absolute Deviation.503

MADE Mean Absolute Deviation.504

MAPE Mean Absolute Percentage Error.505

MLP Multilayer Perceptron.506

MRAE Median Relative Absolute Error.507

MSE Mean Squared Error.508

NBEATS Neural Basis Expansion Analysis.509

NBEATSx Neural Basis Expansion Analysis with exogenous variables.510

NN Neural Network.511

NOT Narrowest Over Threshold.512

PACF Partial Autocorrelation Function.513

PP Phillips Perron.514



Version December 7, 2022 submitted to Journal Not Specified 25 of 25

RBF Radial Basis Function.515

RMSE Root Mean Squared Error.516

RNN Recurrent Neural Network.517

SARIMA Seasonal Autoregressive Integrated Moving Average.518

XGBoost Extreme Gradient Boosting.519
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