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Abstract. In this paper we consider a compartmental model describing the

transmission of Zika virus to humans and mosquito populations and an ex-

tended model including a second reservoir host of a non-human primate (mon-
key). This model is later generalized by a fractional time derivative.

To properly simulate the spread of the disease we design for each model

a nonstandard finite difference (NSFD) scheme that is able to guarantee the
positivity of the solution and exhibits the correct asymptotic behaviour of the

solution.
Numerical simulations of the models illustrate these advantages, e.g. the

positivity preservation, compared to using standard solver like the Runge-

Kutta Fehlberg method ode45.

1. Introduction

The Zika virus (ZIKV) is an emerging arbovirus that is transmitted by several
so-called vectors, the most important being the Aedes aegypti mosquito. Vectors
are living organisms that can transmit infectious pathogens between humans, or
from animals to humans. ZIKV was first isolated from a macaca monkey in the
Zika forest in Uganda in 1947, giving the virus its name, cf. [32, 33].

The first major ZIKV epidemic began 2007 on the Yap archipelago in the
Federated States of Micronesia, where a high number of cases were recorded in
about 75% of the population within a few months [36, 48]. Later, a worldwide
epidemic occurred in French Polynesia (2013-2014) with approximately 28,000 cases
(about 11%) of the total population [63]. In 2015, ZIKV was reported in Brazil via
viremic travelers or infected mosquitoes [106], it also began to spread in Mexico
[41]. Messina [72] showed that up to 2.17 billion people live in ”risk areas” (tropical
and subtropical regions).

The ZIKV infection is associated with mild symptoms: Fever, headache, rash,
myalgia, and conjunctivitis, similar to other arboviruses (dengue or chikungunya)
[52] and no deaths have been reported to date. Nevertheless, ZIKV has emerged
as a major cause of the development of the Guillain-Barré syndrome [14]. Also,
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there is still uncertainty about the outcome of co-infections with other arboviruses
such as Dengue fever. Furthermore, there is no available treatment for ZIKV in-
fection. Patient care is based on symptomatic treatment with a combination of
acetaminophen and antihistamine medications [48].

Several mathematical models have been developed to address different cate-
gories in epidemiology, such as prediction of disease outbreaks and evaluation of
control strategies [23, 45, 64, 103]. The first mathematical epidemic model dates
back to Kermack and McKendrick (1927), who were concerned with mass events in
the susceptible, infected, and remote (SIR) disease transmission cycle [54]. Manore
and Hyman [66] proposed a mathematical model for ZIKV representing disease
transition and population dynamics Gao [40] developed a model of ZIKV transmis-
sion through bites of Aedes mosquitoes and also through sexual contact. Lee and
Pietz [61] developed a mathematical model for Zika virus using logistic growth in
human populations. Nishiura et al. [81] proposed a mathematical Zika model that
exhibits the same dynamics as Dengue fever.

In this work we derive a new nonstandard finite difference scheme (NSFD)
for a recent SEIR (susceptible-exposed-infectious-recovered) model [64] that de-
scribes the spread of the Zika virus using a human-mosquito compartmental model
and a human-mosquito-monkey compartmental model. Despite the fact that this
NSFD scheme has a nonlinear denominator function, this schemes has a couple
of favourable properties: it is explicit and due to its construction it reproduces
important properties of the solution, like the number and location of fixed-points,
the positivity and certain conservation laws. The goal of this work is to briefly
demonstrate, in detail, how the NSFD methodology is to be applied to a system of
coupled ODEs, where the discretizations are dynamical consistent with the critical
properties of the continuous differential equations.

The paper is organized as follows. In Section 2, we formulate the ZIKV trans-
mission models. Section 3 includes the stability analysis of the two considered
models. In Section 4 we design the nonstandard finite difference method for the
two proposed models and show how it can be extended to time-fractional variants
of the models using the L1 method. In Section 5 we propose a NSFD scheme for a
time-fractional version of our models. The numerical results of our novel schemes
are shown in Section 6. Finally, Section 7 presents the conclusions and some out-
look.

2. The ZIKV transmission models

In this section, we will briefly describe the two considered mathematical com-
partmental models [64] to describe the ZIKV transmission.

In areas without nonhuman primates, such as Yap State and French Polynesia,
ZIKV is likely maintained in a human-mosquito-human cycle, suggesting that the
virus has adapted to humans as reservoir hosts [59]. This settimng will lead us the
first model, formulated in a SEIR-SEI framework.

Boorman and Porterfield [22] showed in a laboratory setting that Monkeys can
become infected with ZIKV. However, there is no evidence that ZIKV is transmitted
to humans through contact with animals. On the other hand, the presence of
specific antiviral antibodies in various nonhuman primates, suggesting that other
reservoirs may play a role in the ZIKV transmission cycle, cf. [31]. For this reason
we also consider a second extended model.
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2.1. The Parameters. The human population is divided into four classes
(so-called ’compartments’): susceptible, exposed (latently infected), infected, and
recovered (individuals who have acquired immunity). We denote the number in
each compartment by Sh, Eh, Ih, and Rh. Accordingly, we divide the vector pop-
ulation (adult female mosquitoes) into three compartments: susceptible, exposed,
and infected, with the analogous notation Sv, Ev and Iv. Next, we define the total
number of populations as

(2.1) Nh = Sh + Eh + Ih +Rh, Nv = Sv + Ev + Iv.

Doing so, we can consider the variables normalized to the total population

Sh =
Sh

Nh
, Eh =

Eh

Nh
, Ih =

Ih
Nh

, Rh =
Rh

Nh
,

Sv =
Sv

Nv
, Ev =

Ev

Nv
, Ih =

Iv
Nv

.

(2.2)

Let us introduce a couple of parameters, cf. [64].

• B is the average number of bites per mosquito per day.
• βvh is the probability rate that a bite from an infectious vector will infect a
human, the product Bβvh is the number of disease-transmitting bites per
infectious mosquito per day, and the product BβvhIv(t) is the number
of disease-transmitting bites per day in the entire mosquito population
at time t (measured in days). However, multiplying BβvhIv(t) by the
proportion of susceptible people at time t represents the number of disease-
transmitting bites per day by infectious mosquitoes on susceptible people
at time t (the daily rate at which susceptible people are exposed).

• The parameter µh is the proportion of the human population that dies
each day (’human mortality rate’).

• νh is the daily rate at which exposed people become infected (’human
infection rate’).

• ηh denotes the daily rate at which infected people become immune. (’hu-
man immunity rate’).

• The parameter βhv is the probability that the bite of an infectious human
will infect a mosquito; Bβhv is the number of disease-transmitting bites
per mosquito per day. Thus, the product BβhvSv(t) is the number of bites
per day that result in disease being transmitted by susceptible mosquitoes
at time t. Multiplying BβhvSv(t) by the proportion of infectious people
at time t the complete rate of disease-transmitting bites at time t (the
daily rate at which susceptible mosquitoes become infected).

• The parameter µv is the proportion of the mosquito population that dies
each day (’mosquito mortality rate’).

• νv denotes the daily rate at which exposed mosquitoes become infected
(’mosquito infection rate’).

Finally, we include a constant system inflow, the birth rates Λh, Λv (e.g. birth of
new individuals that can get infected, and the natural mortality rates µh, µv.

2.2. The human-mosquito model. Now we are ready to formulate the first
model. The system of ordinary differential equations (ODEs) has the following
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form

dSh(t)

dt
= Λh −

(
Bβvh

Nv

Nh
Iv(t) + µh

)
Sh(t),

dEh(t)

dt
= Bβvh

Nv

Nh
Iv(t)Sh(t)− (νh + µh)Eh(t),

dIh(t)

dt
= νhEh(t)− (ηh + µh)Ih(t),

dRh(t)

dt
= ηhIh(t)− µhRh(t),

dSv(t)

dt
= Λv − (Bβhv Ih(t) + µv)Sv(t),

dEv(t)

dt
= Bβhv Ih(t)Sv(t)− (νv + µv)Ev(t),

dIv(t)

dt
= νvEv(t)− µvIv(t).

(2.3)

The dynamical system described by equation (2.3) is depicted in Figure 1. We note
that by a convention in epidemiology models all parameters in (2.3) are assumed
to be positive.

 

𝐒h 𝐄h 𝐈h 𝐑h 

𝐒v 𝐄v 𝐈v 

𝜇ℎ 𝜇ℎ 𝜇ℎ 𝜇ℎ 

Λℎ 

Λ𝑣 

 
𝜇𝑣 𝜇𝑣 𝜇𝑣 

𝐵𝛽𝑣ℎ
𝑁𝑣
𝑁ℎ

𝐈v𝐒ℎ 

𝐵𝛽ℎ𝑣𝐈h𝐒𝑣 

𝜗ℎ 𝜂ℎ 

𝜗𝑣 

Figure 1. A schematic representation of the model (2.3)

Summing up the equations in (2.3) gives immediately

dNh(t)

dt
= Λh − µh Nh(t),

dNv(t)

dt
= Λv − µv Nv(t).

(2.4)

Since the Zika virus transmission has a faster dynamic than the human birthrate
and the human natural mortality, Nh(t) can be regarded as a conserved quantity of
the above ODE system, if we set Λh = µh = 0. This is not the case for the vector
(mosquito) which has a comparable dynamic.
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2.3. The human-mosquito-monkey model. Accordingly, we define the to-
tal monkey population as

(2.5) Nm(t) = Sm(t) + Em(t) + Im(t) +Rm(t),

and introduce the normalized variables

(2.6) Sm =
Sm

Nm
, Em =

Em

Nm
, Im =

Im
Nm

, Rm =
Rm

Nm
.

Next, we introduce similar parameters for the monkey population, cf. [64]:

• βvm is the probability rate that a bite from an infectious mosquito will
infect a monkey.

• The parameter µm is the proportion of the monkey population that dies
each day.

• νm is the daily rate at which exposed monkeys become infected.
• ηm the daily rate at which infected monkeys become immune.

The corresponding system of ODEs for the temporal evolution of the (normal-
ized) human, vector and monkey population has the following form

dSh(t)

dt
= Λh −

(
Bβvh

Nv

Nh
Iv(t) + µh

)
Sh(t),

dEh(t)

dt
= Bβvh

Nv

Nh
Iv(t)Sh(t)− (νh + µh)Eh(t),

dIh(t)

dt
= νhEh(t)− (ηh + µh)Ih(t),

dRh(t)

dt
= ηhIh(t)− µhRh(t),

dSv(t)

dt
= Λv − (Bβhv Ih(t) +Bβmv Im(t) + µv)Sv(t),

dEv(t)

dt
= Bβhv Ih(t)Sv(t) +Bβmv Im(t)Sv(t)− (νv + µv)Ev(t),

dIv(t)

dt
= νvEv(t)− µvIv(t),

dSm(t)

dt
= Λm −

(
Bβvm

Nv

Nm
Iv(t) + µm

)
Sm(t),

dEm(t)

dt
= Bβvm

Nv

Nm
Iv(t)Sm(t)− (νm + µm)Em(t),

dIm(t)

dt
= νmEm(t)− (ηm + µm)Im(t),

dRm(t)

dt
= ηmIm(t)− µmRm(t).

(2.7)

The dynamical system described by equations (2.7) is depicted in Figure 2.
Again, summing up the equations in (2.7) yields for the total populations

dNh(t)

dt
= Λh − µh Nh(t),

dNv(t)

dt
= Λv − µv Nv(t),

dNm(t)

dt
= Λm − µm Nm(t).

(2.8)
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𝐒m 𝐄m 𝐈m 𝐑m 
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𝑁𝑣
𝑁𝑚

𝐈v𝐒𝑚 
𝜗𝑚 𝜂𝑚 

𝛬𝑚 
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𝜗ℎ 𝜂ℎ 

𝜗𝑣 

Figure 2. A schematic representation of the model (2.7).

and analogously, Nh(t) and Nm(t) can be regarded as a conserved quantity of the
above ODE system, if we set Λh = µh = 0 and Λm = µm = 0.

3. Stability Analysis

In this section we will briefly review the results from [64] and add new findings
that are used later in the numerical part. First, we investigate the existence and
stability of the equilibrium points of system (2.3), i.e. the steady state points.

Using the following relationships for the normalized populations (2.2),

(3.1) Rh(t) = 1− Sh(t)−Eh(t)− Ih(t), Sv(t) = 1−Ev(t)− Iv(t),

and setting Λh = µh (since the human dynamics is much slower than the one of the
mosquitos), we obtain from system (2.3) an equivalent reduced system with only 5
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components

dSh(t)

dt
= µh − µhSh(t)− pBβvh Iv(t)Sh(t),

dEh(t)

dt
= −(νh + µh)Eh(t) + pBβvh Iv(t)Sh(t),

dIh(t)

dt
= νhEh(t)− (ηh + µh) Ih(t),

dEv(t)

dt
= Bβhv Ih(t)− (νv + µv)Ev(t)−Bβhv Ih(t)Ev(t)−Bβhv Ih(t)Iv(t),

dIv(t)

dt
= νvEv(t)− µvIv(t),

(3.2)

where we have used the abbreviation (and assumption)

(3.3) p =
Nv

Nh
> 1.

The system (3.2) has the Jacobi matrix J = J(Sh,Eh, Ih,Ev, Iv) given by
−µh − pBβvhIv 0 0 0 −pBβvhSh

pBβvhIv −(νh + µh) 0 0 pBβvhSh

0 νh −(ηh + µh) 0 0
0 0 Bβhv(1−Ev − Iv) −(νv + µv)−BβhvIh −BβhvIh
0 0 0 νv −µv

 .

3.1. Equilibrium Points. In [64] the basic reproduction number R0 of the
reduced system (3.2) was determined as

(3.4) R0 =
νvνhpB

2βhvβvh
µv(νv + µv)(ηh + µh)(νh + µh)

.

Further, it was shown that the system (3.2) has always the disease free equilibrium
(DFE)

(S∗
h,E

∗
h, I

∗
h,E

∗
v, I

∗
v) = (1, 0, 0, 0, 0),

which is the unique equilibrium point in the case R0 ≤ 1.
For R0 > 1 the system (3.2) has a second stationary point, the endemic equi-

librium (EE), given by, cf. [64]

S∗∗
h =

pνvBβvh + µh(νv + µv)R0(
νvpBβvh + µh(νv + µv)

)
R0

,

E∗∗
h =

νvµhpBβvh
νh + µh

R0 − 1(
νvpBβvh + µh(νv + µv)

)
R0

,

I∗∗h =
µhνvνhpBβvh

(ηh + µh)(νh + µh)

R0 − 1(
νvpBβvh + µh(νv + µv)

)
R0

,

E∗∗
v =

µvµh(R0 − 1)(
νvpBβvh + µh(νv + µv)

)
R0

,

I∗∗v =
νvµh(R0 − 1)(

νvpBβvh + µh(νv + µv)
)
R0

.

(3.5)
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Evaluating the Jacobian matrix J of the system (3.2) at the DFE, one obtains

J(DFE) =


−µh 0 0 0 −pBβvh
0 −(νh + µh) 0 0 pBβvh
0 νh −(ηh + µh) 0 0
0 0 Bβhv −(νv + µv) 0
0 0 0 νv −µv

 .

In [64] it was shown that all eigenvalues of this matrix have negative real parts, i.e.
the DFE of the reduced system (3.2) is locally asymptotically stable.

Similarly, the Jacobian matrix can be evaluated at the EE and one can prove
that for R0 > 1, the EE of the system (3.2) is locally asymptotically stable, cf. [64].

4. The Nonstandard Finite Difference Method

In this section we explain the technique of nonstandard finite difference schemes
(NSFDs). A NSFD scheme is constructed to satisfy the positivity condition and
the conservation laws. Consequently, the solutions are bounded, i.e. stable. Also,
only the fixed-points of the ODE systems (2.3), (2.7) appear in the NSFD scheme.
The specific full details are not given; we refer to the book of Mickens [73] for the
discretization strategy.

4.1. Nonstandard Finite Difference Schemes. NSFD methods for the
numerical integration of differential equations had their origin in a paper by Mickens
published in 1989 [73]. In this section, an NSFD scheme is constructed to satisfy
the essential positivity condition and the conservation law for Λh = µh = 0, Λv =
µv = 0 and Λm = µm = 0 which leads as a byproduct to the stability of the scheme.
We will also check that the equilibrium points of the ODE model also appear in
the proposed NSFD scheme.

Let us recall that schemes such as those based on Runge-Kutta methods can
yield wrong negative solutions (see [71, 42]) can produce ’false’ or ’spurious’ fixed-
points, which are not fixed points of the original ODE system, cf. [74].

Finally, we will determine in Section 4.4 the so-called denominator function
ϕ(h), such that we obtain the correct long-time behaviour. We refer to [16, 100],
where we established an NSFD scheme for a similar compartment model as here.

We remind the reader that a numerical scheme for a system of first-order dif-
ferential equations is called NSFD scheme if at least one of the following conditions
[73] is satisfied:

• The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives appearing in the differential equations.

• Discrete representations for derivatives must, in general, have nontrivial
denominator functions. Here, the first-order derivatives in the system
are approximated by the generalized forward difference method (forward

Euler method) dun

dt ≈ un+1−un

ϕ(h) , where un ≈ u(tn) and ϕ ≡ ϕ(h) > 0 is the

so-called denominator function such that ϕ(h) = h + O(h2), with h the
step size. This function ϕ(h) is chosen so that the discrete solution has
the same asymptotic behaviour as the analytical solution.

• The nonlinear terms are approximated by non-local discrete representa-
tions, for instance by a suitable function of several points of a mesh, like
u2(tn) ≈ unun+1 or u3(tn) ≈ (un)2un+1.
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• Special conditions that hold for either the ODE and/or its solutions should
also apply to the difference equation model and/or its solution, e.g. pos-
itivity of the solution, convexity of the solution (in finance), equilibrium
points of the ODE system, including their local asymptotic stability prop-
erties.

In NSFD schemes, derivatives must be modeled by discrete analogues that take
the form, cf. [73]

(4.1)
du(t)

dt
→ un+1 − ψ(h)un

ϕ(h)
,

where tn = nh, un is the approximation of u(tn), and ψ(h) = 1+O(h). The purpose
of this more general time discretization (4.1) in NSFD schemes, is to properly model
the asymptotic long-time behaviour of the solution.

4.2. NSFD scheme for the human-mosquito model. Next, we propose
the following NSFD discretization for solving the ODE system (2.3)

Sn+1
h − Sn

h

ϕ(h)
= Λh −

(
Bβvh

Nv

Nh
Inv + µh

)
Sn+1
h ,

En+1
h −En

h

ϕ(h)
= Bβvh

Nv

Nh
Inv S

n+1
h − (νh + µh)E

n+1
h ,

In+1
h − Inh
ϕ(h)

= νhE
n+1
h − (ηh + µh)I

n+1
h ,

Rn+1
h −Rn

h

ϕ(h)
= ηhI

n+1
h − µhR

n+1
h ,

Sn+1
v − Sn

v

ϕ(h)
= Λv − (Bβhv I

n+1
h + µv)S

n+1
v ,

En+1
v −En

v

ϕ(h)
= Bβhv I

n+1
h Sn+1

v − (νv + µv)E
n+1
v ,

In+1
v − Inv
ϕ(h)

= νvE
n+1
v − µvI

n+1
v ,

(4.2)

with a denominator function ϕ(h) to be determined later, given by (4.12).
Let us briefly comment on the discretizations of the nonlinear (here: quadratic)

terms. For example, in the first line (4.2) we have discretized the nonlinear contact
term βvhIv(t)Sh(t) in (2.3) by βvhI

n
v S

n+1
h rather than, say, Inv S

n
h or In+1

v Sn+1
h . The

rule is that exactly one factor of the variable appearing in the time derivative (here
Sh) must be taken at the new time level n + 1. This is needed to obtain a posi-
tivity preserving scheme, see (4.3). In order not to destroy the explicit sequential
evaluation, all other variables are taken from the previous time level, unless they
are already known from a previous step, like In+1

h Sn+1
v in the fifth line. If possible,

discrete conservation properties (here: total population of humans, vectors) must
also be taken into account.

Observe that although the initial scheme (4.2) can be considered implicit, the
variables at the (n+ 1)-th discrete-time level can be explicitly calculated in terms
of the previously known variable values as given in the sequence of the equations
above, i.e. we can rewrite it as an explicit form
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Sn+1
h =

Sn
h + ϕ(h) Λh

1 + ϕ(h)
(
Bβvh

Nv

Nh
Inv + µh

) ,
En+1

h =
En

h + ϕ(h)Bβvh
Nv

Nh
Inv S

n+1
h

1 + ϕ(h) (νh + µh)
,

In+1
h =

Inh + ϕ(h) νhE
n+1
h

1 + ϕ(h) (ηh + µh)
,

Rn+1
h =

Rn
h + ϕ(h) ηhI

n+1
h

1 + ϕ(h)µh
,(4.3)

Sn+1
v =

Sn
v + ϕ(h) Λv

1 + ϕ(h)
(
Bβhv I

n+1
h + µv

) ,
En+1

v =
En

v + ϕ(h)Bβhv I
n+1
h Sn+1

v

1 + ϕ(h) (νv + µv)
,

In+1
v =

Inv + ϕ(h) νvE
n+1
v

1 + ϕ(h)µv
.

The calculation must be done in exactly this order. All parameters appearing in
these type of epidemic models are always non-negative. This is the convention used
in fields related to the spread of diseases. From the explicit representation (4.2)
it is easy to deduce that this scheme preserves the positivity, given some natural
conditions on the parameters.

4.3. NSFD scheme for the human-mosquito-monkey model. Corre-
spondingly, the NSFD discretization for solving the ODE system (2.7) reads

Sn+1
h − Sn

h

ϕ(h)
= Λh −

(
Bβvh

Nv

Nh
Inv + µh

)
Sn+1
h ,

En+1
h −En

h

ϕ(h)
= Bβvh

Nv

Nh
Inv S

n+1
h − (νh + µh)E

n+1
h ,

In+1
h − Inh
ϕ(h)

= νhE
n+1
h − (ηh + µh)I

n+1
h ,

Rn+1
h −Rn

h

ϕ(h)
= ηhI

n+1
h − µhR

n+1
h ,

Sn+1
v − Sn

v

ϕ(h)
= Λv − (Bβhv I

n+1
h +Bβmv I

n+1
m + µv)S

n+1
v ,

En+1
v −En

v

ϕ(h)
= Bβhv I

n+1
h Sn+1

v +Bβmv I
n+1
m Sn+1

v − (νv + µv)E
n+1
v ,(4.4)

In+1
v − Inv
ϕ(h)

= νvE
n+1
v − µvI

n+1
v

Sn+1
m − Sn

m

ϕ(h)
= Λm −

(
Bβvm

Nv

Nm
In+1
v + µm

)
Sn+1
m ,

En+1
m −En

m

ϕ(h)
= Bβvm

Nv

Nm
In+1
v Sn+1

m − (νm + µm)En+1
m ,
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In+1
m − Inm
ϕ(h)

= νmEn+1
m − (ηm + µm)In+1

m ,

Rn+1
m −Rn

m

ϕ(h)
= ηmIn+1

m − µmRn+1
m .

Sn+1
h =

Sn
h + ϕ(h) Λh

1 + ϕ(h)
(
Bβvh

Nv

Nh
Inv + µh

) ,
En+1

h =
En

h + ϕ(h)Bβvh
Nv

Nh
Inv S

n+1
h

1 + ϕ(h) (νh + µh)
,

In+1
h =

Inh + ϕ(h) νhE
n+1
h

1 + ϕ(h) (ηh + µh)
,

Rn+1
h =

Rn
h + ϕ(h) ηhI

n+1
h

1 + ϕ(h)µh
,

Sn+1
v =

Sn
v + ϕ(h) Λv

1 + ϕ(h)
(
Bβhv I

n+1
h +Bβmv I

n+1
m + µv)

,

En+1
v =

En
v + ϕ(h)

(
Bβhv I

n+1
h +Bβmv I

n+1
m )Sn+1

v

1 + ϕ(h) (νv + µv)
,(4.5)

In+1
v =

Inv + ϕ(h) νvE
n+1
v

1 + ϕ(h)µv
,

Sn+1
m =

Sn
m + ϕ(h) Λm

1 + ϕ(h)
(
Bβvm

Nv

Nm
In+1
v + µm

) ,
En+1

m =
En

m + ϕ(h)Bβvm
Nv

Nm
In+1
v Sn+1

m

1 + ϕ(h) (νm + µm)
,

In+1
m =

Inm + ϕ(h) νmEn+1
m

1 + ϕ(h) (ηm + µm)
,

Rn+1
m =

Rn
m + ϕ(h) ηmIn+1

m

1 + ϕ(h)µm
.

4.4. The denominator function. Finally, it only remains to correctly de-
termine the denominator function ϕ(h). To do so, we reconsider the combined total
population N = Nh+Nv of the ODE system (2.3) (or N = Nh+Nv +Nm) for sys-
tem (2.7)), now without neglecting the birthrates and the natural mortality. Here,
we introduce accordingly the combined values Λ = Λh+Λv, µ = µh+µv for system
(2.3) and Λ = Λh + Λv + Λm, µ = µh + µv + µm for the extended system (2.7).

Adding the equations of (2.3) or (2.7), we easily obtain the following differential
equation describing the dynamics of the combined total population N

(4.6)
dN(t)

dt
= Λ− µN(t) .

It is solved by

(4.7) N(t) =
Λ

µ
+
(
N(0)− Λ

µ

)
e−µt = N(0) +

(
N(0)− Λ

µ

)
(e−µt − 1),

with N(0) = Nh(0) + Nv(0) + Nm(0). From (4.7) we immediately deduce that
we have in the long term limt→∞N(t) = Λ/µ. Let us briefly note that this link
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between the transient dynamics and their ’natural’ limiting systems can be used to
reduce the dimension of this model, cf. [27].

Next, adding the equations in the discrete NSFD model (4.2) yields

(4.8)
Nn+1 −Nn

ϕ(h)
= Λ− µNn+1,

i.e.

Nn+1 =
Nn + ϕ(h)Λ

1 + ϕ(h)µ
= Nn −

(
Nn − Λ

µ

) ϕ(h)µ

1 + ϕ(h)µ

= Nn +
(
Nn − Λ

µ

)( 1

1 + ϕ(h)µ
− 1

)
.

(4.9)

The denominator function can be derived by comparing Equation (4.8) with the
discrete version of Equation (4.7), that is

(4.10) Nn+1 = Nn +
(
Nn − Λ

µ

)
(e−µh − 1), h = ∆t,

such that the (positive) denominator function is defined by

(4.11)
1

1 + ϕ(h)µ
= e−µh,

i.e.

(4.12) ϕ(h) =
eµh − 1

µ
=

1 + µh+ 1
2µ

2h2 + . . .− 1

µ
= h+

µh2

2
+ . . . = h+O(h2).

Note that the conservation property requires all the denominator functions ϕ(h)
for the compartments to be the same. Otherwise, it would be impossible to obtain
a discrete analogue like (4.8) which is also needed for stability reasons.

Remark 4.1. An even more accurate way to compute the denominator function
would take into account the transition rate Υi at which the ith compartment is
entered by individuals for all model compartments Ki, i = 1, 2, . . . (e.g. βvh, νh,
ηh, νv,. . . ), cf. [37]. In this case the parameter µ occurring in the denominator
function in Equation (4.12) would be replaced by a parameter 1/T ∗. T ∗ could be
determined as the minimum of the inverse transition parameters:

T ∗ = min
i=1,2,...

{ 1

Υi

}
.

5. A NSFD scheme for a time-fractional model

The fractional-order dynamics of the transmission of the Zika virus to human
and vector populations is given, as a generalization of model (2.3), by the following
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system

CDαSh(t) = Λα
h −

(
Bαβvh

Nv

Nh
Iv(t) + µα

h

)
Sh(t),

CDαEh(t) = Bαβvh
Nv

Nh
Iv(t)Sh(t)− (ναh + µα

h)Eh(t),

CDαIh(t) = ναhEh(t)− (ηαh + µα
h)Ih(t),

CDαRh(t) = ηαh Ih(t)− µα
hRh(t),

CDαSv(t) = Λα
v − (BαβhvIh(t) + µα

v )Sv(t),

CDαEv(t) = BαβhvIh(t)Sv(t)− (ναv + µα
v )Ev(t),

CDαIv(t) = ναv Ev(t)− µα
v Iv(t),

(5.1)

with the initial conditions

Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0) ≥ 0,

where CDαX(t) denotes the Caputo derivative and it is defined as:

CDαX(t) =
1

Γ(1− α)

∫ t

0

dX(τ)

dτ
(t− τ)−αdτ, t > 0 and 0 < α < 1.

Adding the equations of the system (5.1) yields

(5.2) CDαN(t) = Λα − µαN(t),

where Λα = Λα
h + Λα

v and µα = µα
h + µα

v .
In the model (5.1) given above, we modified the right-hand sides parameters µα

h ,
Bα, ναh , η

α
h , µ

α
v and ναv using the procedure described in Diethelm [35] in order to

adjust the dimensions because the dimension of the left-hand sides of the equations
is (time)−α. Note that in the limiting case α → 1, the system (5.1) reduces to the
classical system given in (2.3).

Let t0 = 0 < t1 < · · · < tN = T , tn = nT/N , where N ∈ N. Next, we present
a numerical approximation of the Caputo derivative using the NSFD method. We
have

CDαX(t)
∣∣
t=tn+1

=
1

Γ(1− α)

n∑
j=0

∫ tj+1

tj

dX(τ)

dτ
(tn+1 − τ)−αdτ

We discretize the term dX(τ)
dτ on [tj , tj+1] as

dX(τ)

dτ
=
Xj+1 −Xj

ϕ(h)
,

where Xj = X(tj) and ϕ(h) from (4.12).

CDαX(t)
∣∣
t=tn+1

≈ 1

Γ(2− α)

n∑
j=0

∆j
α,n

Xj+1 −Xj

ϕ(h)
,

where

∆j
α,n =

(
(tn+1 − tj)

1−α − (tn+1 − tj+1)
1−α

)
.

Each equation in (5.1) can be written as

CDαX(t) = F
(
X(t)

)
,
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at the point t = tn+1, we have

(5.3)
1

Γ(2− α)

n∑
j=0

∆j
α,n

Xj+1 −Xj

ϕ(h)
− F (Xn+1) = 0, n = 1, . . . , N − 1.

Now, we apply the scheme (5.3) to the system (2.3), we obtain

Sn+1
h =

h1−αSn
h −

∑n−1
j=0 ∆j

α,n(S
j+1
h − Sj

h) + Γ(2− α)ϕ(h)µα
h(

h1−α + Γ(2− α)ϕ(h)
(
Bαβvh

Nv

Nh
Inv + µα

h

)) ,

En+1
h =

h1−αEn
h −

∑n−1
j=0 ∆j

α,n(E
j+1
h −Ej

h) + Γ(2− α)ϕ(h)Bαβvh
Nv

Nh
InvS

n+1
h(

h1−α + Γ(2− α)ϕ(h)(ναh + µα
h)
) ,

In+1
h =

h1−αInh −
∑n−1

j=0 ∆j
α,n(I

j+1
h − Ijh) + Γ(2− α)ϕ(h)ναhE

n+1
h(

h1−α + Γ(2− α)ϕ(h)(ηαh + µα
h)
) ,

Rn+1
h =

h1−αRn
h −

∑n−1
j=0 ∆j

α,n(R
j+1
h −Rj

h) + ϕ(h)Γ(2− α)ηαh I
n+1
h(

h1−α + ϕ(h)Γ(2− α)µα
h

) ,

(5.4)

Sn+1
v =

h1−αSj
v −

∑n−1
j=0 ∆j

α,n(S
j+1
v − Sj

v) + Γ(2− α)µα
v(

h1−α + ϕ(h)Γ(2− α)(BαβhvI
n+1
h + µα

v )
) ,

En+1
v =

h1−αEn
v −

∑n
j=0 ∆

j
α,n(E

j+1
v −Ej

v) + ϕ(h)Γ(2− α)BαβhvI
n+1
h Sn+1

v(
h1−α + ϕ(h)Γ(2− α)(ναv + µα

v )
) ,

In+1
v =

h1−αInv −
∑n−1

j=0 ∆j
α,n(I

j+1
v − Ijv) + ϕ(h)Γ(2− α)ναv E

n+1
v(

h1−α + ϕ(h)Γ(2− α)µα
v

) ,

and

(5.5) Nn+1 =
h1−αNn −

∑n−1
j=0 ∆j

α,n(N
j+1 −Nj) + ϕα(h)Γ(2− α)Λα(

h1−α + ϕα(h)Γ(2− α)µα
) .

Setting n = 0, the equation 5.5 gives

(5.6) N1 =
h1−αN0

h1−α + ϕα(h)Γ(2− α)µα
+

ϕα(h)Γ(2− α)Λα

h1−α + ϕα(h)Γ(2− α)µα
.

The exact solution of the equation (5.2) is derived by using the Laplace trans-
form technique introduced by Podlubny [86]

(5.7) N(t) = N(0)Eα

(
−(µt)α

)
+ ΛαEα,α+1

(
−(µt)α

)
,

where Eα,α+1 is the Mittag-Leffler function

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
, (α > 0, β > 0).

The denominator function ϕα(h) can be derived by comparing the exact version
(5.7) with the discrete version (5.6), that is

ϕα(h) =
h1−α

(
1− Eα

(
−(µh)α

))
Eα

(
−(µh)α

)
Γ(2− α)µα

.
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It is not difficult to show that ϕα(h) reduces to the classical ϕ(h) in (4.12) when
α = 1.

6. Numerical Results

In this section, we present the numerical solution of the systems (2.3) and (2.7)
using the NSFD schema. Then, we compare it with the solution computed by the
ode45 solver of Matlab.

6.1. The human-mosquito Model. We denote by Y the matrix of order
N × 7 that contains the approximated solution determined by the ode45 solver
which is given by

Y =


Sh(t1) Eh(t1) Ih(t1) Rh(t1) Sv(t1) Ev(t1) Iv(t1)
Sh(t2) Eh(t2) Ih(t2) Rh(t2) Sv(t2) Ev(t2) Iv(t2)

...
...

...
...

...
...

...
Sh(tN ) Eh(tN ) Ih(tN ) Rh(tN ) Sv(tN ) Ev(tN ) Iv(tN )

 ,

where N is the number of discretization points in time t ∈ [0, T ] and ti = (i− 1)×
T

N−1 for i = 1, 2, . . . , N .
The parameters used to simulate the model are listed in the Table 1. The initial

conditions are always set to

Sh(0) = 0.9, Eh(0) = 0, Ih(0) = 0.1, Rh(0) = 0,

Sv(0) = 0.88, Ev(0) = 0, Iv(0) = 0.12.

Table 1. Fixed and operational parameters for disease-free and
disease-endemic equilibrium.

E0 E1

µh 3.8587e− 04 3.8587e− 04

B 0.155 0.1932

βhv 0.1254 0.773

βvh 0.1149 0.7913

νh 0.0833 0.0833

ηh 0.2 0.2

µv 0.0333 0.0333

νv 0.1 0.1

Nh 1e+ 6 1e+ 6

Nv 10×Nh 10×Nh

T (days) 30× 365 5× 365

The following Figures 3–8 represent the three dimensional curves of the hu-
man and the vector populations, respectively. They show that the NSFD method
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remains stable and approaches the disease-free equilibrium (DFE) or endemic equi-
librium (EE) points.

0

0.15

0.02

Ih

E0

0.04

1

The human population

0.1

0.06

0.8Eh

0.08

0.6

0.1

0.05

Sh

0.4

0 0.2

Y0

Figure 3. The convergence of the discrete system (4.3) to the
DFE

The Figures 9 and 10 show that the approximate solutions obtained by the
NSFD method and ode45 method are very closed to each other. However, the
solution Y obtained by the ode45 solver becomes negative for some values of t.
This does not figure clearly in the curves because the smallest negative value of Y
is −1.19e− 6.

The Table 2 presents the percentage of negative values in the matrix Y simu-
lating the human-mosquito model (2.3) with the ode45 solver using the parameters
for the disease-free point in the Table 1. The results given in Table 2 show that the
NSFD preserves the positivity for all step sizes in [0, T ] which is a desirable mod-
eling property. On the other side, the ode45 method yields solutions that becomes
negative for some value of t.

6.2. The human-mosquito-monkey model. Now we simulate the system
for the data given in Tables 2 and 2. The initial conditions are always set to

Sm(0) = 0.8, Em(0) = 0, Im(0) = 0.8, Rm(0) = 0.

Figures 11–20 show that the numerical solution approximates very well the solu-
tion of the continuous system by preserving positivity and converging towards the
equilibrium points DFE or EE. Table 4 gives the percentage of negative values for
the NSFD method and the ode45 solver. It can easily be seen that NSFD preserves
the positivity of the continuous system where the ode45 solver failed in some cases.
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Figure 4. The convergence of the discrete system (4.3) to the
DFE

Table 2. Percentage of negative paths for the NSFD method and
the standard ode45 solver .

N=60 N=100 N=400 N=1200 N=2000 N=3000 N=5000

NSFD 0 0 0 0 0 0 0

ode45 26.67% 26.71% 27% 27.07% 27.05% 27.06% 27.07%

min(Y ) -1.14e-06 -1.09e-6 -1.1e-6 -1.19e-6 -1.14 -1.17e-6 -1.19e-6

6.3. The time-fractional model. In this section, we provide some numerical
simulations of the discrete model (5.4) with different values of fractional order α. To
proceed with the simulation, we use the parameter values in Table 1 and the initial
conditions in (6.1). The numerical simulation results for the NSFD fractional order
obtained for different values of α are displayed in Figures. 21-26. These figures
show two different scenarios:

Case 1 DFE. : The dynamical behavior of system for different values of α
is shown in Figures 21-23 for Rα

0 < 1 which implies that it converges to
the DFE. It is noticeable that due to the memory property of the Caputo
fractional derivatives, the evolution of the system becomes slower each
time the α decreases. Therefore, the system decays to the equilibrium
like t−α, as previously established in [69].
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Figure 5. The convergence of the discrete system (4.3) to the
DFE

Table 3. Fixed and operational parameters for disease-free and
disease-endemic equilibria (Monkey population).

E0 E1

µm 3.87e− 2 3.87e− 2

βmv 0.1254 0.773

βvm 0.1149 0.7913

νm 0.035 0.035

ηm 0.3 0.2

Nm 3.3e5 3.3e5

T (days) 365× 30 365× 2

Case 2 EE.: For Rα
0 > 1, Figures 24-26 show the impact of changing the

Caputo fractional order α on Zika dynamics. The observed behavior from
these figures demonstrates that the EE is shifted towards Eα1 , Eα2 , Eα3

and Eα4
when α is decreasing which confirms the validity of stability

analysis represented in Appendix.

The numerical results above show the memory effect for the fractional dynam-
ical system which does not occur in the ordinary differential system as already
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Figure 6. The convergence of the discrete system (4.3) to the EE

Table 4. Percentage of negative paths for the NSFD method and
ode45 solver.

N=60 N=100 N=400 N=1200 N=2000 N=3000 N=5000

NSFD 0 0 0 0 0 0 0

ode45 27.73% 27.73% 28.43% 28.22% 28.42% 28.36% 28.4%

min(Y ) -1.02e-6 -1.12e-6 -1.12e-6 -1.2e-6 -1.12e-6 -1.18e-6 -1.18e-6

proved by [7, 8]. And show also that the new approach is very effective, preserves
the positivity of the system, applies simpler and can be used as an alternate method
for solving fractional differential problems.
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Figure 9. The NSFD and ode45 method numerical simulations
of human sub-populations Sh(t), Eh(t), Ih(t) and Rh(t) for model
(2.3).
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Figure 10. The NSFD and ode45 method numerical simulations
of vector sub-populations Sv(t), Ev(t) and Iv(t) for model (2.3).
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Figure 11. The convergence of the discrete system (4.5) to the
DFE

0

0.12

0.1

0.2

0.1
E0

0.3

1

Y00.08

R
h

0.4

0.9

The human population

0.5

0.8

Eh

0.06

0.6

0.7

Sh

0.7

0.04 0.6
0.50.02

0.4
0 0.3

Figure 12. The convergence of the discrete system (4.5) to the
DFE



24 MAGHNIA HAMOU MAAMAR, MATTHIAS EHRHARDT, AND LOUIZA TABHARIT

0

0.02

0.05

E0

1

Iv

0.1

The vector population

Ev

0.01 0.95

Sv

0.15

0.9

0 0.85

Y0

Figure 13. The convergence of the discrete system (4.5) to the
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Figure 14. The convergence of the discrete system (4.5) to the
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Figure 15. The convergence of the discrete system (4.5) to the
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7. Conclusion and Outlook

In this work we have presented a novel nonstandard finite difference (NSFD)
method for calculating numerical solutions to a SEIR model for the spread of the
Zika virus. In the absence of the exact solution and in order to prove the efficiency
of the method, the approximate solution is compared with the ode45 solver solu-
tion. The numerical simulations show that the discrete system converges to the
same equilibrium points as that of the continuous system. They also prove that
the positivity is preserved. Finally, it should be clear that the use of the NSFD
methodology can be applied to all epidemic models of the spread of diseases.

It is worth recalling that we have used Caputo-type fractional derivatives to
describe the temporal dynamics of epidemiological models. The most important
reason for using a system of ODEs/PDEs of time-fractional order equations is to
account for memory effects. These types of effects exist e.g. in many realistic
systems like in endemic models to describe the waning effects of the vaccination or
a biphasic decline behavior of infections or diseases.

These fractional order approaches were used in COVID-19 transmission mod-
els by using fractional order Caputo derivative [90], the analysis of semi-analytical
solutions of a hepatitis B epidemic model using the Caputo-Fabrizio operator [5],
the study of stability and Lyapunov functions for HIV/AIDS epidemic models with
the Atangana-Baleanu-Caputo derivative [97], the mathematical modeling of the
measles epidemic with optimized fractional order under the classical Caputo differ-
ential operator [88].

Appendix

7.1. The human-mosquito-monkey model. The system (2.7) has two equi-
librium points, the disease-free equilibrium E0 = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)⊤ and the
endemic equilibrium E∗∗

1 = (S∗∗
h ,E

∗∗
h , I

∗∗
h ,S

∗∗
v , I

∗∗
v ,S

∗∗
m ,E

∗∗
m , I

∗∗
m )⊤, where

S∗∗
h =

µhNh

BβvhNvIv + µhNh
,

E∗∗
h =

µhBβvhNvI
∗∗
v

(νh + µh)(BβvhNvI∗∗v + µhNh)
,

I∗∗h =
νhE

∗∗
h

(ηh + µh)
,

S∗∗
v =

νv − (νv + µv)I
∗∗
v

νv
,

S∗∗
m =

µmNm

BβvmNvI∗∗v + µmNm
,

E∗∗
m =

µmBβvmNvI
∗∗
v

(νm + µm)(BβvmNvI∗∗v + µmNm)
,

I∗∗m =
νm

(ηm + µm)
E∗∗

m ,

(7.1)

I∗∗v is implicitly given as the zero of the following rational fraction expression

P (Iv) =
νhµhBβhvBβvhNv

(
νv − (νv + µv)Iv

)
(ηh + µh)(νh + µh)(BβvhNvIv + µhNh)
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+
νmµmBβmvBβvmNv

(
νv − (νv + µv)Iv

)
(ηm + µm)(νm + µm)(BβvmNvIv + µmNm)

− µv(νv + µv),

which is determined numerically. The basic reproduction number of (2.7) is

R0 =
√
R0,1 +R0,2,

where

R0,1 =
νvνmBβvmBβmvNv

µv(µv + νv)(µm + νm)(µm + ηm)Nm
,

and

R0,2 =
BνvνhBβvhβhvNv

µv(µv + νv)(µh + νh)(µh + ηh)Nh
.

7.2. The time-fractional model. The basic reproduction number Rα
0 of the

system (5.1) is given by

Rα
0 =

√
ναh ν

α
v B

αβvhBαβhvNv

µα
v (ν

α
h + µα

h)(η
α
h + µα

h)(µ
α
v + ναv )Nh

.

Theorem 7.1 (Equilibrium points, [64]). Let us consider the definition domain

Ω =
{
(Sh,Eh, Ih,Ev, Iv) ∈ R5

+ : 0 ≤ Sh +Eh + Ih ≤ 1; 0 ≤ Sv + Iv ≤ 1
}
.

The system (5.1) has the disease-free equilibrium E0 = (1, 0, 0, 1, 0) independent of
the values of the parameters, whereas, only if Rα

0 > 1 there exist a unique endemic
equilibrium E1 = (S∗∗

h ,E
∗∗
h , I

∗∗
h ,S

∗∗
v , I

∗∗
v ) with

S∗∗
h =

µα
hNh

BαβvhNvI∗∗v + µα
hNh

, E∗∗
h =

(ηαh + µα
h)

ναh
I∗∗h ,

S∗∗
v =

µα
v

(BαβhvI∗∗h + µα
v )
, I∗∗v =

ναv
(µα

v + ναv )

BαβhvI
∗∗
h

(BαβhvIh + µα
v )
,

in the interior of Ω where

I∗∗h =
µα
vµ

α
h(µ

α
v + ναv )

(
(Rα

0 )
2 − 1

)
Bαβhv

(
ναv B

αβvhp+ µα
h(µ

α
v + ναv )

) .
The proof of the theorem requires the following lemma :

Lemma 7.2. If X0, X1, . . . , Xn ≥ 0 then

h1−αXn −
n−1∑
j=0

∆j
α,n

(
Xj+1 −Xj

)
≥ 0.

Proof. For n ∈ N∗, we have

h1−αXn−
n−1∑
j=0

∆j
α,n

(
Xj+1−Xj

)
=

(
h1−α−∆n−1

α,n

)
Xn+∆0

α,nX
0+

n−1∑
j=1

(
∆j

α,n−∆j−1
α,n

)
Xj .

and
h1−α −∆n−1

α,n =
(
2− 21−α

)
h1−α ≥ 0.

Thus

h1−αXn −
n−1∑
j=0

∆j
α,n

(
Xj+1 −Xj

)
≥ 0

□
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Theorem 7.3 (Positivity of solution). Let the initial data S0
h, E

0
h, I

0
h, R

0
h, S

0
v,

E0
v and I0v ≥ 0, then all the components Sn+1

h , En+1
h , In+1

h , Rn+1
h , Sn+1

v , En+1
v and

In+1
v ≥ 0 in the system (5.4) are satisfied for all n ∈ N.

Proof. We have for n = 0

S1
h =

h1−αS0
h + Γ(2− α)ϕα(h)µ

α
h(

h1−α + Γ(2− α)ϕα(h)
(
Bαβvh

Nv

Nh
I0v + µα

h

)) ≥ 0,

E1
h =

h1−αE0
h + Γ(2− α)ϕα(h)B

αβvh
Nv

Nh
I0vS

1
h(

h1−α + Γ(2− α)ϕα(h)(ναh + µα
h)
) ≥ 0,

I1h =
h1−αI0h + Γ(2− α)ϕα(h)ν

α
hE

1
h(

h1−α + Γ(2− α)ϕα(h)(ηαh + µα
h)
) ≥ 0,

R1
h =

h1−αR0
h + ϕα(h)Γ(2− α)ηαh I

1
h(

h1−α + ϕα(h)Γ(2− α)µα
h

) ≥ 0,

S1
v =

h1−αS0
v + ϕα(h)Γ(2− α)µα

v(
h1−α + ϕα(h)Γ(2− α)(BαβhvI1h + µα

v )
) ≥ 0,

E1
v =

h1−αE0
v + ϕα(h)Γ(2− α)BαβhvI

1
hS

1
v(

h1−α + ϕα(h)Γ(2− α)(ναv + µα
v )
) ≥ 0,

I1v =
h1−αI0v + ϕα(h)Γ(2− α)ναv E

1
v(

h1−α + ϕα(h)Γ(2− α)µα
v

) ≥ 0.

We suppose that for 1, 2, . . . , n, Sn
h, E

n
h, I

n
h, R

n
h, S

n
v , E

n
v and Inv ≥ 0. The hypothesis

of induction and Lemma 7.2 allow for n+ 1, i.e.

Sn+1
h , En+1

h , In+1
h , Rn+1

h , Sn+1
v , En+1

v and In+1
v ≥ 0.

□
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syndrome among Zika virus infected cases: a systematic review and meta-analysis, Brazil.

J. Infect. Dis. 22 (2018), 137–141.

[14] R. Becker, Animal models to study whether Zika causes birth defects, Nat. Med. 22(3)
(2016), 225–227.
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