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Abstract

In this paper, we introduce a novel methodology to model rating transitions with
a stochastic process. To introduce stochastic processes, whose values are valid rating
matrices, we noticed the geometric properties of stochastic matrices and its link to matrix
Lie groups. We give a gentle introduction to this topic and demonstrate how It6-SDEs
in R will generate the desired model for rating transitions.

To calibrate the rating model to historical data, we use a Deep-Neural-Network (DNN)
called TimeGAN to learn the features of a time series of historical rating matrices. Then,
we use this DNN to generate synthetic rating transition matrices. Afterwards, we fit the
moments of the generated rating matrices and the rating process at specific time points,
which results in a good fit.

After calibration, we discuss the quality of the calibrated rating transition process by
examining some properties that a time series of rating matrices should satisfy, and we

will see that this geometric approach works very well.
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1 Introduction

1 Introduction

In this paper, we model rating transition matrices with a stochastic process using historical
data published by rating agencies such as S&P, Moody’s or Fitch for the calibration.

This is done in two steps. First, we show how a Deep-Neural-Network (DNN) known as
TimeGAN (cf. [18]) can be utilized to learn the distribution of the historical rating transitions.
In a second step, we match the moments of the model and the synthetic data generated by
the DNN. For the stochastic model itself, we will demonstrate how basic matrix Lie group
theory can be helpful to define It6-processes in R to model the rating transitions.

A rating is an indicator of the creditworthiness of an entity. A high rating associates less
risk to an entity to not fulfill its financial obligations and a low rating a high risk. Ratings
are usually denoted by letters A, B, ..., D, where A denotes the best rating and D denotes
the worst rating. The rating D is special. It means that an entity has defaulted, i.e. it
can not fulfill its financial obligation towards a contracting party. In this paper, we use the
terms default and bankruptcy of an entity synonymously, implying that a defaulted company
cannot recover from this state.

For most applications, it is important to model the rating changes of an individual entity
or an entire sector on a continuous time scale. This can be done in two different ways.
On the one hand, one can define a process X;, which tells us at each time and trajectory
the current rating of a company. The natural state-space of these processes is therefore
discrete and the time axis is continuous. On the other hand, one can model the transition
probabilities R; of a sector at each point in time and derive a rating process using these
transition probabilities. The state-space of this type of model is then a matrix whose entries
are the probability of transitioning from one rating to another starting at an initial time #g
(usually today) till a future time ¢. An example of such a ¢t — ¢y rating matrix is given in

Table 1. We can see that the individual rows sum up to one, meaning that all rows are valid

To A B C D
From
A 0.9395  0.0566 0.0037 2.7804c-04
B 0.0092  0.9680 0.0211  0.0017
C 6.2064e-04 0.0440 0.8154  0.1400
D 0 0 0 1

Table 1: Example of a one year rating transition matrix.

probability distributions. These type of matrices are called stochastic for this reason. The
last row corresponds to our idealized assumption that a defaulted entity cannot recover, i.e.
the default state is absorbing. Rating agencies publish these type of matrices usually once
a year for a few time frames. Short-term rating matrices are usually published with time
frames of 1,3,6,12 months and long-term rating matrices with time frames of 1,2,3,5,10
years. We see a lot of uncertainty in the historical data published by the agencies increasing
with larger time frames. Therefore, it stands to reason to desire stochastic models for the

rating transitions.




1.1 Review of the literature and comparison

Thus, we would like to model the evolution of rating transition matrices as seen from today
with a stochastic process in continuous time. We will focus in this paper on short-term rating

madtrices.

1.1 Review of the literature and comparison

We recognize two different approaches to rating modelling in the literature which is described
in [2, p. 76 Section 4.12.1 Standing Assumptions] in more details. On the one hand, one can
model ratings in a HJM-framework, proposed independently by [3] and [16]. On the other
hand, there are intensity-based models, introduced by the pioneering work of [8]. As this
paper can also be viewed as an intensity approach let us explain this in more details alongside

a short illustration in Figure 1.

X; CTMC X, rating process
U; Transi- Calibration Rating Transi- Calibration R; process
tion operator tion Matrices in Lie Group

L; SDE in

A generator Lie Algebra

Figure 1: Ilustration how our approach compares to the literature.

In the intensity approach (left-hand side in Figure 1), usually the rating process X; is modelled
by a continuous-time Markov chain (CTMC). This seems quite natural, because its state space
is discrete. Another feature of this approach is that due to the Markovianity one can describe
a CTMC fully by its transition operators U;. Transition operators tell us for a given initial
time and state the probability to transition to another state at a later time. So exactly, what
rating transition matrices describe. Assuming time-homogeneity of the CTMC, it is easy to
derive a so-called generator A of the transition operator, which gives a full characterization
of the CTMC. This leads to an analytical and numerical tractable model.

However, in this setting the transition operators and generators are deterministic and in the
special case of homogeneous CTMCs (the most common assumption in the literature), the
generator is constant. While this makes it possible to calibrate the model directly to the
published rating matrices, it limits the possibility for modelling time-dependent features or
uncertainty.

In this paper, we want to model the rating transitions with a stochastic process (right-hand
side in Figure 1) and noticed that generators of CTMCs are actually elements in a suitable
subspace of the Lie algebra of stochastic matrices. This allows us to formulate [t6-SDEs
taking values in R>( and apply a basis transformation to the desired Lie algebra leading to
a process L;. The exponential map, i.e. the matrix exponential, maps the model in the Lie

algebra to the proper Lie group of stochastic matrices resulting in a stochastic model R;.




2 Generating rating transition matrices

For the calibration, we need to study the distribution of the time series of historical rating
matrices, for which we use a TimeGAN.

To the best of our knowledge, this is the first paper which is modelling rating transitions
starting from an SDE in an appropriate subspace of the Lie algebra of stochastic matrices.
Additionally, the application of a Deep-Neural-Network (DNN) to learn the distribution of
historical rating transition matrices seems entirely novel in this community. Also we believe
that this is an exciting approach with many possibilities for future research from both a
theoretical point of view and modelling point of view.

The paper is structured as follows: In Section 2 we will train a DNN learning a time series
of 1,3,6,12 rating matrices. The section is divided into two parts. In Section 2.1 we explain
how to compute rating matrices from historical data making certain that all rows sum up
to one. This is followed in Section 2.2 by a description how the training data is built and
how the TimeGAN DNN works. In Section 3 we give a gentle introduction to matrix Lie
groups and notice that the stochastic matrices are a subgroup of a matrix Lie group. We
show two different ways how to utilize this framework to model rating transition matrices
by a stochastic process. Afterwards, we do some numerical experiments in Section 4 and
define desirable properties of short-term rating matrices in Section 4.1. The first step is to
calibrate the rating process to the distributions learned by the DNN, which is subject of
Section 4.2. Then, in Section 4.3 and Section 4.4 we perform one test for each of the two
methods proposed in Section 3 and assess their quality. Last but not least, we conclude the

paper in Section 5 and discuss possibilities for future research.

2 Generating rating transition matrices

In this section, we will explain how to generate synthetic rating transition matrices from
historical data. The section is structured as follows. First of all, we will discuss in Section 2.1
what rating matrices are, what kind of historical data we have and how to compute them.
Afterwards, we will give a brief introduction to the relevant Deep-Neural-Network (DNN)

architectures, which are necessary for the TimeGAN in Section 2.2.

2.1 Historical data and Aalen-Johansen estimator

Ratings are an ordered set of indicators for creditworthiness of an entity. The best rating is
usually denoted by the letter AAA or simply A. If an entity is insolvent, meaning that it
cannot fulfill its financial obligations, we say that this entity has defaulted. In this paper, we
will not distinguish between the default and bankruptcy of an entity, which translates to the
fact that once an entity has defaulted, it cannot recover from it. In the mindset of ratings, a
default can be viewed as the worst possible rating usually denoted by D.

To keep this presentation as simple as possible in this paper, we consider only four differ-
ent ratings: A, B, C, D ordered from best to worst rating and identify them by integers

{1,2,..., K}, whenever it is more convenient. But it is straightforward to use more ratings.




2.1 Historical data and Aalen-Johansen estimator

Methodology. Rating agencies, such as S&P, Moody’s and Fitch are required by “Rule 17g-
7 of the Securities Exchange Act of 1934”! to publish the history of rating changes for some
entities. This data can be downloaded from their respective websites and consists of rating
histories of individual entities in different sectors, e.g. financial institutes and corporate. We
will use the data set from S&P with focus on the corporate sector. The data is structured
like follows: for each entity it consists of a list of time stamps when a rating was changed or
confirmed. Therefore, we can extract the historical ratings for each individual company for
each day.

After extracting these rating trajectories, we apply the so-called Aalen-Johansen estimator
(cf. [12]) to the processed data to compute the rating transition matrices with a given time
span. For example, we can set our initial time to the first of January of a specific year and
compute the rating transitions over one year to get an average rating transition matrix of
one year in the corporate sector.

Let us explain this in more details. The Aalen-Johansen estimator is a non-parametric
estimator of the transition probabilities of a time-inhomogeneous continuous-time Markov
chain (ICTMC) and we will assume that the historical rating transition data can be modelled
by an ICTMC. The rating transition probabilities starting at time s up to time ¢ are then
estimated by

P(s,t) = ﬁ (I +AA(Ty)),
k=1

where T}, is the jump time in the interval [s,t] and m € N is the number of jumps, as well as

the estimated generator

Y1 (T},) Y1 (Tk) Y1 (Tx) Y1(Ty)

Ya(T})
AA(T}) = :

T Ya(Tw)

ANg_11(Tx) ANg_1,2(Ty)

Yi—1(Tx)
0

Yie—1(Tx)
0

Ya(T})

Yo (Ty)

_ANg (Ty)  ANk-—1,x(Ty)

Yi—1(Tx) Yi—1(Tx)
0

The jump process AN;; (T};) denotes the number of transitions from rating ¢ to rating j at
time T} and AN; (T}) counts the total number of transitions away from rating i at time T.
The jump process Y; (T}) denotes the number of entities with rating ¢ right before time T}.
The last row is zero, because we assume an absorbing default rating. So each time a rating
changes in the underlying data, the estimated generator is updated accordingly.

For a more detailed explanation with examples we refer to [12, pp. 9ff.].

Advantages and limitations. To discuss the advantages of using the Aalen-Johansen esti-
mator, we need to discuss briefly a huge problem of the rating data. Entities have the right

at any point in time to not being rated anymore for whatever reason. This is a huge issue,

!Please visit https://www.sec.gov/structureddata/rocr-publication-guide.html for more details. Last
accessed: 19.05.2022 12:23.
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2.2 TimeGAN

because suppose you would want to calculate the rating transition probabilities naively by
setting a time frame, denote how many companies are in which rating initially and then look
where they end up at the end of the time frame. If a company decides to withdraw from being
rated in this time window, one has at the end a rating matrix with rows that do not sum up
to one, i.e. an invalid probability distribution. The Aalen-Johansen estimator overcomes this
problem naturally, by updating after each rating change. Therefore, this method guarantees
that rows sum up to one, which will be important later on.

However, we found that our results differ from the rating matrices which are published by
the agencies and confirmed with S&P that they also use unpublished sensitive rating data
and remove correlation structures from data, for which additional knowledge of the entities
and their relation towards each other is necessary.

Therefore, the results presented in this paper serve as an illustration how this methodology

can be applied but the underlying data needs some work for an implementation in practice.

2.2 TimeGAN

In this section, we show how one can use a generative adversarial network (GAN) for time
series data to obtain fake rating transition matrices from paths of a Brownian motion. In
particular, we chose a network called TimeGAN by [18] to learn the rating distributions from
the historical data.

The TimeGAN is supposed to learn a function

f(tk7 Wi, (w)> = Ry, (w)

mimicking the historical rating matrices RE@ for kK =1,...,n, n € N. After the learning
phase, we can use a path of the Brownian motion W to generate fake rating matrices at the

points in time .

Training data. We use the technique described in the previous paragraph to compute rating
matrices with time spans of 1,3,6,12 months starting in 2011 till the end of 2019. For the
one month rating matrices, we start at each month in a year and compute the transition
probabilities with the Aalen-Johansen estimator till the next month. For the three month
rating matrices we proceed similar but starting every three months and so on, such that data
is not used twice for the rating matrices with respective time spans. After computing all
these matrices we end up with 108 matrices for one month, 36 for three months, 18 for six
months and nine for one year. After that, we build a set of time series data by considering
all the permutations of the rating matrices leading to a data set of roughly 630000 different
time sequences of rating matrices.

We are aware that this approach might raise some eyebrows but rating data is scarce and it
is not unusual to assume independence of the rating events which justifies this approach. We
will discuss the impact of this choice in Section 4 further, while studying properties of rating

madtrices.

Remark 2.1. One can alternatively use the rating matrices which are published by the rating




2.2 TimeGAN

agencies from e.g. the last 10 years. However, these are usually only available for long
term rating matrices, i.e. 1 up to 10 years. Another problem with this data set is that
rating agencies use the so-called cohort method to compute the matrices, i.e. they have the
imperfections due to entities who do not want to be rated anymore. So one idea could be to
repair them with an heuristic method and build up a training data set by again considering

the permutations of the time series.

The TimeGAN combines an autoencoder with a generative adversarial network using recur-
rent neural networks linked by a supervising network. We would like to give a short intuition

how these networks work together in our case and refer the reader to [18] for the details.

Embedder Recovery

Generator Discriminator

Figure 3: Illustration of a GAN network.

Autoencoder. For a detailed treatment of Variational Autoencoders (VAE) we refer the
reader to [11].

The principle network architecture in an application without time series data is illustrated
in Figure 2. There are two different networks linked to each other, one called embedder or
encoder and the other one called recovery or decoder. The idea is to introduce a bottleneck
between these networks. This forces the network to learn principle components of the data
and helps with denoising as well as dimensionality reduction. For the training phase, the data
is first embedded, recovered and afterwards compared to the original data to minimise the dif-
ference of both. After the training phase the recovery network can be used to generate rating
matrices from their embedded features. We will see how the generator network of generative

adversarial network can be used to generate fake features in the next two paragraphs.

Generative Adversarial Network. For a detailed treatment of Generative Adversarial Net-
works (GAN) we refer the reader to [6].




2.2 TimeGAN

The principle network architecture in an application without time series data is illustrated
in Figure 3. There are two different networks linked to each other, one called generator
and the other one called discriminator. The idea is to play these networks against each
other. The generator network has a few random numbers as input and outputs fake data.
The discriminator network will get the fake data from the generator as an input, as well as
the real data. Then it is learning to distinguish between fake and real data by outputting
a probability of the data being real. Since we know which of the input data is fake and
which is real we can optimize the prediction of the discriminator network. The generator
on the other hand is learning how to fool the discriminator, i.e. making it believe that the
fake data point was real. After the learning phase and when the discriminator is not very
confident anymore in distinguishing between fake and real, the generator network can be used

to produce synthetic data.

Supervisor. The supervisor network does not have a special network architecture and it is
placed in-between the embedder and recovery network, as well as between the generator and
the discriminator network to establish a link between them. This makes it also possible in
the training of the entire network to compare the supervised networks to the unsupervised
networks. Another implication of this approach is that the generator network of the GAN is
not generating the rating matrices directly but the features of the rating matrices. As afore-
mentioned, combining the trained generator with the trained recovery network will enable us

to generate synthetic rating matrices.

Recurrent networks. For a detailed treatment of Recurrent Neural Networks (RNN) and a
comparison of Long-Short-Term-Memory (LSTM) to Gated-Recurrent-Units (GRU) we refer
the reader to [4].

So far, we have discussed how the supervised VAE and GAN can be used together at a single
point in time to generate synthetic rating matrices. RNNs enable us to use time series data
and all the aforementioned networks are augmented with GRUs in our implementation to
take the time series of rating matrices into account. GRUs consist of two different gates. One
is called the update gate and the other one is called forget gate. The update gate decides how
much of the new temporal information is added to the time sequence. The forget gate has
the possibility to forget the previous times in the time sequence, making the current point in

time independent of the past.

Hyperparameters and network architecture. It is not the purpose of this paper to “over-
optimize” the procedure, since it is a first step using these modern techniques for rating
transitions. Additionally, for its next use case of rating triggers, an additional source of
market data will be available and the current architecture might need some adjustments. We
leave it up to the reader to change the hyperparameters and network architectures, because
we are satisfied with the performance of the current setting, which is discussed in Section 4.1

in greater detail. We chose the following settings for our experiments.




3 SDEs on the Lie Group of stochastic matrices

1. We used 40 epochs in total and noticed that 10 epochs take roughly 1 hour in the
training step.

2. We found that a batch size of 128 was a good middle-ground between speed and realistic
rating matrices.

3. For the embedder we used three GRU layers. The first and last with 3 units and the
second one with 2 units. The output dense layer has 4 units and a sigmoid activation
function.

4.  For the recovery we used three GRU layers. The first and last with 3 units and the
second one with 2 units. The output dense layer has K2 = 16 units and a sigmoid
activation function.

D. For the supervisor we used two GRU layers, each with 4 units. The output dense layer
has 4 units and a sigmoid activation function.

6. For the generator we used three GRU layers, each with 4 units. The output dense layer
has 4 units and a sigmoid activation function. As an input we take the values of a
Brownian path at ¢t = 1,3, 6,12 months.

7. For the discriminator we used three GRU layers, each with 4 units. The output dense
layer has a single unit and a sigmoid activation function.

8. All optimizers were Adam (cf. [10]) with the standard learning rate le — 4.

As aforementioned, for the training of the network we refer the reader to [18] and note that

we used the standard loss functions indicated in this paper.

3 SDEs on the Lie Group of stochastic matrices

In this section, we show how an SDE can help to interpolate the generated rating matrices
in time. This is a desirable feature for several applications, because it gives access to rating
matrices of any time span or can help to forecast transition matrices with larger time spans.
To guarantee that our SDE will produce stochastic matrices, we noticed that this is a special
kind of geometry and the proper tools are readily available in the matrix Lie group literature.
We will recall all the necessary results first.

We consider the group G = {R € GL(K) : R1 = 1}, 1 = [1,...,1]T € RX  which is
a matrix Lie group according to [5], i.e. a subgroup of GL(K) which is a differentiable
manifold and for which the product is a differentiable mapping G x G — G. The tangent

(K-1)? kwﬂiin/mesiy—» 9>0 /N |
R0 ' Basis & | ) \

o R(E-1)?

(K-1)
0

Figure 4: Illustration of the relationship between RY 2, g>0 and G>p.




3 SDEs on the Lie Group of stochastic matrices

space at the identity of a Lie group is called the Lie algebra and is in this case given by
g =T;G = {L ¢ REXK . 1 = 0}, which means that the Lie algebra consists of matrices
with row sum equal to zero. The Lie algebra g is a vector space with dim(g) = K (K —1) since
basis matrices for g can be formulated as E;; — Ej; for 4,5 = 1,..., K with i # j, where F;;
are elementary matrices. This makes the Lie algebra g together with the matrix commutator,
[,-]: g x g — @, [L1,Ls] = L1Ly — LoLy, isomorphic to RX(K=1 " The matrix exponential
exp: g — G, exp(L) = Y32, L*/k!, maps elements from the Lie algebra to the Lie group
and is a local diffeomorphism in a neighbourhood of L. = 0. The directional derivative of the

matrix exponential along an arbitrary matrix H € g is given by

<ddL exp(L)) H =exp(L)dexp_;(H) with dexp ;(H) = ; (kil)!ad’“ 1 (H).

where ady,: g — g, adr(H) = [L, H] denotes the adjoint operator, which is used iteratively,
ady (H) = H, adj(H) = adg(ad} '(H)) = [L,ad} ' (H)]

for £ > 1. For more details on Lie groups and Lie algebras we refer the interested reader to
[7]-
Consider the following SDE in the Lie algebra g

dL; = A(t, Ly)dt + B(t, Ly)dS;, Lo =0, (3.1)

where A, B € g and S; is a one-dimensional general semimartingale. Applying a numerical
scheme, e.g. the Euler-Maruyama scheme, to get an approximation L, , of (3.1) after one
time step and computing Ry, = Ry, exp(Ly, ;) would result in a numerical method for

solving

dR = (Rdexp_L(A) + ;(C?LRdexp_L(B))B> dt + Rdexp_(B)dW;, Ro=1, (3.2)
which can be easily verified by applying It6’s lemma to Ry = Rpexp(L;) € G in the case
St = Wy a Brownian motion (as done e.g. in [9]). As this approach preserves the geometry
of the Lie group G opposed to applying the Euler-Maruyama scheme directly to (3.2), this
method was called the geometric Euler-Maruyama scheme in [14]. Higher order schemes
based on this approach can be found in [15].

Since we are interested in stochastic matrices that are elements of G>¢ = {ReG: R;; €
[0,1],4,7 =1,..., K} we now consider a subset of the Lie algebra g, namely g>¢ :={L € g :
Lij >0,i# j, Ly <0,Lgj =0,i,j =1,..., K}. Note that additional to the usual properties
of generator matrices we choose the last line of matrices L € g>¢ to be zero because applying
the matrix exponential exp to these matrices will generate matrices that have the last unit
vector in the last line. This choice is in accordance with our assumption that the default state
is absorbing. With this assumption the dimension of g is now dim(g>o) = (K —1)? because

as before basis matrices can be denoted by E;; — E;; but fori =1,... K —-1,5j=1,...,K
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and 7 # j. Similar to the previous setting, there exists an isomorphism between g>o and
IR{%_UQ, which is illustrated on the left-hand side in Figure 4. We will denote the basis for
ggo by &, i =1,...,(K — 1)2. The fact that for any L € g>¢ we have exp (L) € G>q is
well-known and a proof can be found in [17, pp. 86 ff. Chapter 4.2.5: Solving Kolmogorov’s
Equation].

Direct exponential mapping. For the interpolation of the generated rating matrices we
consider the SDE (3.1) again and discuss some conditions for the solution L; to be evolving
in g>o such that exp(L;) € G>o. Therefore, we make the assumption that the equation is

decoupled in the following sense:

K-1)?
dL; = A(t, Ly)dt + B(t, L;)dS; = | Z) (ult, Li)dt + Bi(t, L})dS, ) &, (33)
i=1
where &; denotes the basis vectors of g>g. If the solution L! of dL} = (¢, Lt)dt+5;(t, L)dSy is
P-almost surely positive for all ¢ > 0 and for all ¢ then L; € g>¢ and RtSDE = exp (Lt) € G>p.
Let us show two examples:
1. Let a;(t,x) = a; € R, Bi(t,z) = b; € R>g: In this case, L = a;t + b;S; and the
condition Lé > 0 leads to a;t + b;Sy > 0 for all ¢ P-almost surely. Further assuming
S: > 0 would be one example.
2. L% are CIR-processes, i.e. Sy = Wy and dLi = a; (b; — Li) dt + o4/ LidWy.

RSPE cannot be viewed as an

For this simple approach there is a price to pay, namely
evolution system of a Markovian rating process, since the Chapman-Kolmogorov equation
is not necessarily satisfied. Or in other words, the associated rating process will not be

memoryless and it is difficult to sample it.

Geometric Euler-Maruyama. In order to preserve the Chapman-Kolmogorov equation one
could use the aforementioned geometric Euler-Maruyama scheme and define RtSDE = Rpexp(Ly).

However, to ensure that RPPF

€ (>0, which is equivalent to ensuring that the approximation
for L; is in g>0, we need an additional assumption. For the Euler-Maruyama scheme to have
results in g>¢ it would be necessary that all increments AL;, > 0, i.e. L; > 0 must have
monotonically increasing paths in time, as well.

A class of processes satisfying this condition easily, would be all jump processes with positive
jumps only. Another possibility could involve processes with stochastic coefficients of the

form

dLy = a;(t,Y{)dt,  ai(t,y) >0
dY; = bit, Yi)dt + ei(t, Yi)dS, Vg =y

In this case, L; are positive, pathwise-increasing, continuous stochastic processes for any

semimartingale S;.

Remark 3.1. Let us note, that decoupling the SDE in the Lie algebra does not mean that

10



4 Numerical tests

the SDE in the Lie group will be decoupled as well. On the contrary, one can see by the
definition of the matrix exponential and the matrix multiplication therein that the resulting
SDE will be fully coupled.

From a computational point of view, the decoupling in the Lie algebra is very advantageous,
because all SDEs can be solved in parallel. Since we want to calibrate the SDE in the Lie
group to historical rating matrices, it will be very important that the SDEs in the Lie algebra
can be solved very fast.

From an analytical point of view, this approach translates the problem of defining an SDE
with values in the space of stochastic matrices to simple SDEs taking values in R, where a

vast of literature and standard analytical tools are available.

4 Numerical tests

In this section, we conduct two experiments, one for the direct exponential mapping and one
for the geometric Euler approach. We calibrate the resulting rating models RtSDE to RSAN
at t = 1, i.e. 1 year, by matching the first four moments. This is described in Section 4.2 in
more details. In Section 4.3, we show one example for the direct method using CIR processes
on g>o and in Section 4.4 we show another example for the geometric Euler approach using a
constant drift and volatility. In both sections, we will discuss the fit to the TimeGAN rating
matrices by looking at their corresponding distributions at 1, 3,6, 12 months and study some
properties rating matrices should satisfy. These properties are introduced next in Section 4.1.
We used for the calibration of the rating SDE Matlab 2022a with the (Global) Optimization
Toolbox and for the training of the TimeGAN (Intel-)Python 3.9 with

Tensorflow 2.8.0 running on Windows 10 Pro, on a machine with the following specifica-
tions: processor Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz and 2x32 GB (Dual Channel)
Samsung SODIMM DDR4 RAM @ 2667 MHz, and a NVIDIA GeForce RTX 2070 with

Max-Q Design (8 GB GDDR6 RAM).

4.1 Rating properties

To estimate the quality of the TimeGAN and the SDEs we observed from the historical data

that short term rating matrices up to one year should have the following properties:

1. It is more likely to stay in the initial rating than changing to another: This means
rating matrices are strongly diagonal dominant, i.e. fori=1,..., K
[Re (w)];; > Z (R (W)]U (4.1)
J#i

2. Downgrading is more likely than upgrading: This means that the sum of the upper

triangular matrix is bigger than the sum of the lower triangular matrix, i.e.

Z (R (W)]ij 2 Z (R (W)]U (4.2)

1<j 1>7

11



4.1 Rating properties

3. Lower rated entities are more likely to default: This means that the default column is

increasing from best starting rating to lowest, i.e.

[Re (Wi < [Be (W)ag < -+ < [Re (W) gge - (4.3)

4. The rating spreads more over time: We measure this by looking for decreasing diagonal
elements, i.e. forall s<tandalli=1,..., K

[Rs (w)];; = [Re (w)]y; - (4.4)

These properties are not strict in the sense that they can be violated on some occasions.
Moreover, one might think of other properties for rating matrices. Also for long term rating
matrices (more than 1 year) these properties might not hold true anymore. This makes it
very hard to define rigorous conditions for rating matrices in general and are subject to future
research and economical validation.

In Table 2 we can see a summary of the rating properties (4.1)—(4.4) for the training data set.
The numbers represent the percentages of time-sequences satisfying the conditions averaged
over all initial ratings. For the rating spreads over time, we consider time steps from 0
to 1 month, 1 to 3, 3 to 6 and 6 to 12 and write down the percentages for ¢t = 1,3,6,12
respectively. We can see that all of the rating matrices in the training data set were strongly
diagonal dominant and nearly all had monotone increasing default columns.

The majority of the rating matrices put more emphasis on downgrading for time spans be-
tween one month and six months, while for one year all of them satisfied the condition.

For the increasing rating spread we see the biggest violations of the property. This is most
likely due to the fact that we consider all permutations of the data. It might be beneficial to

filter these sequences out of the training set.

Table 2: Rating properties for training data. Average percentage of the time series fulfilling
the conditions (4.1)—(4.4).

> X%
& & S S,
) NG N D O
S S OO & $
0& &q,?o@_\,\ e Q‘C} SN éoqzy N
< 45 % S g ¢ > S0 >
¥ & & Q%&&Q) /«,\6@ > &
s &
&/60 & 60@ Qo&o@ ¥ o‘o\é g o
1 100 % 87.96 % 100 % 100 %
3 100 % 97.22% 99.9% 85.81%
6 100 % 94.44 % 100 % 83.18%
12 100 % 100 % 100 % 90.53 %

In Table 3 we see exactly the same table for TimeGAN using M = 12000 synthetic time-
sequences. Even though we did not impose any hard constraints, e.g. that rows must sum up
to one, the DNN learned the conditions (4.1)—(4.4) very well, as well as that rows must sum
to one. The only criterion which was not always satisfied was again (4.4) but less severe than

for the training data. Since these properties are almost always satisfied we did not optimize
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4.2 Calibration of the rating SDE

the hyperparameters or network architecture any further.

Table 3: Rating properties for TimeGAN with M = 12000. Average percentage of the time
series fulfilling the conditions (4.1)—(4.4) and average row sums.

> . N o2
> S A ~ ~i <&
on;Q &‘Z”ég Q\ 6&%\}(]} & B %“§ » &>
N S S
S s RN & &
&QJ O 3 QJ\\ L \&Q > & NS
s S VS & ¥R =
1 100 % 100 % 100 % 100 % 0.9999
3 100 % 100 % 100 % 100 % 0.9996
6 100 % 100 % 100 % 93.2% 1.0002
12 100 % 100 % 100 % 93.33 % 1.0017

4.2 Calibration of the rating SDE

Before we start to explain, how we calibrate RtSDE to RtGAN let us explain why we do not
calibrate directly to the historical data. Suppose that we select one specific time series of
historical rating matrices and try to fit our model in a least-square sense in expectation.
Then, the randomness should be eliminated by the optimizer since we want to fit all the
different trajectories to one time sequence. This is not the way to go, if we desire a stochastic
model for the rating transitions. Another approach would be considering all of the training
data set, sample as many trajectories and calibrate again in a least-square sense. There is no
reason, why each of the random trajectories should match the particular rating matrix where
it is subtracted from, maybe it would match another one perfectly. So comparing trajectories
does not make much sense either.

Hence, it makes more sense to compare distributions or moments of the data and the model.
Now, the problem with using the historical rating matrices directly in this approach would be
that at each specific point in time, we only have a few available matrices. Take for example
the one year rating matrices, we only have 9 different matrices. Discussing a distribution of
such a sample size is not very insightful.

Therefore, we rely on the ability of the TimeGAN to learn the behaviour of the time series
of rating matrices. As aforementioned, considering the time series allows us to artificially
inflate the data set by using all the permutations in time for the training. After the learning
phase, we can sample fake time series data, getting an arbitrary number of different rating
matrices at each point in time. Now, it makes sense to compare the moments of the fake
rating matrices to the ones obtained at each point in time from RPPE.

To be more precise, we use the standard estimators for mean, variance and moments of higher

13



4.2 Calibration of the rating SDE

order in our experiments, i.e. for k=3,...,n,n € N,

1 M
(111 (t)]ij = M Z [Rt(w)]ij7

Let II denote the parameter set. Then, our objective function f: II — R™(E-1)-K

by

is given

foi = RUICDE g (p) = vee (PP (1) — nf N (1))
fn(p) = [wl : fl(p)7 R fn(p)]Ta

where wy, € R>( are weights and our minimisation problem can be formulated as a non-linear

least square problem
: n 2
. 4.5
min ||/ (p)]l; (4.5)

Of course, this procedure can be generalized by considering multiple points in time. Since
this minimisation problem is very dependent on the performance of the DNN and its ability
to learn the distribution of rating transition matrices from the historical data, one can also
think of a penalized version of (4.5). For example one can add another least-square term for

the most recent time series, i.e.

I;éiﬁl)\l " (p H2+>\2 lekZlHRSDE Rtk

where [|-||  denotes the Frobenius norm and Aj, A2 > 0 are weights. We will make the code

publicly available and leave this experiment for the reader.

Remark 4.1. As aforementioned, using rating matrices with more than four ratings is straight-
forward in this approach. Since the SDEs in the Lie algebra are decoupled and can be com-
puted in parallel, solving them will not lead to a major performance bottleneck compared to
fewer ratings. The more relevant issue is that the number of parameters in the calibration
increases quadratically, making it more and more important to use some principle component
analysis to make the calibration more efficient. A possibility to use the autoencoder of the
TimeGAN comes to mind, this is however subject to future research.

Also it is straightforward to remove the condition that the default rating is absorbing. In

this case, we would need (K — 1) - K decoupled SDEs in the Lie algebra.
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4.3 The case of direct exponential mapping.

4.3 The case of direct exponential mapping.

Let us now consider RE™ := exp (L), where
dLj = a; (b — L}) dt + o0/ LidW,.

Each of the SDEs have a parameter for the mean-reversion b;, mean-reversion speed a; and
volatility o;, which are all assumed to be positive. During our calibration procedure we allow
the Feller-condition to be violated and use a simple Monte-Carlo technique. We are aware
that there are some issues with the numerical scheme and refer the reader to [1] for further
details.

The parameter set is therefore given by positive real numbers IR = ]R?;(()Kfl)Q by stacking
the individual parameters below each other. We found during our expe;iments that values
between zero and one worked best. We calibrated RS™® for ¢+ = 1, i.e. for the 12 month
rating transitions, by matching the moments up to order 4. For the variance we added a
weight we = 10 and set w; = ws = wg = 1 to put more emphasis on the variance. The
corresponding parameters after the calibration procedure with M = 1000 trajectories for
RE™® and M = 10000 trajectories for REAN can be found in Table 4. The first column
explains to which basis element the coefficients belong. To be more precise, 2-3 means that
the initial rating is 2 and at ¢ = 1 we transition to rating 3. The minimisation error (4.5) in
this case was 7.494e — 05, telling us that the moments up to order 4 match very well and it

took roughly 68.5 seconds using lsqnonlin with the Trust-Region-Reflective algorithm.

Table 4: Parameters of R} after calibration at ¢t = 1 to RSN using n = 4 moments.
From-To a b o

1-2 2.41e-01 2.29e-01 1.28e-01
1-3 3.73e-02  3.73e-02 1.17e-01
1-4 6.80e-02 6.74e-03 1.21e-01
2-1 9.25e-02  9.19e-02  4.59e-02
2-3 1.50e-01 1.47e-01 6.01e-02
2-4 0.34e-02 5.44e-02 2.47e-01
3-1 2.06e-02 2.01e-02 6.74e-03
3-2 3.0le-01 1.87e-01 9.14e-03
3-4 4.07e-01  3.69e-01 2.62e-01

CIR Gyer time for each entry in the rating matrix

In Figure 5, we can see the trajectories of R
except for the last row. The upper left corner are the transition probabilities from A to A,
right next to it from A to B and so on. The grey lines are a cloud of 1000 trajectories of
RtCIR and the blue line is one trajectory. The green dashed line is the mean at each time of
the process and the red dots are the means of RtGAN att =1,3,6,12 months. We can see that
the paths are rough and the mean-reversion of the CIR processes is apparent as well, since
the blue line tends to come back to the green dashed line illustrating its mean. Also we see
again a good fit over time to RtGAN by comparing how close the mean of R?IR is compared

to the mean of RFAN.
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4.3 The case of direct exponential mapping.

W 0.1 0.02 0.04
0.95 3 0.02
08 0.05 W 001 '
0.85 0 0 A S 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
t t t t
0.02 ———— 01
0.95
0.01 1
w 09
0 0.85
0 0.5 1 0.5 1
t t
3
1410 0.05 .
1 f‘/
0.5 /V /
0 - 0L
0 0.5 1 0 0.5 1

| Paths of SDE —1 Path of SDE Mean of SDE = Mean of GANl

CIR
t

Figure 5: Trajectories of calibrated R with parameters as in Table 4.

Remark 4.2. We modelled the rating transition by starting with an SDE on the positive half-
space of the Lie algebra of stochastic matrices. Another approach could involve, modelling the
SDE on the appropriate half-space of the Lie group directly. To do this, it would be necessary
to use SDEs respecting the underlying geometry, i.e. Stratonovich-SDEs, since they obey the
chain rule, or the Itd counterpart by It6-Stratonovich conversion.

In this line of research, numerical methods such as Runge-Kutta-Munthe-Kaas (RKMK) or
the Magnus expansion are available, see for instance [15] and [9] for more details.

The advantage of studying these SDEs directly on the Lie group are that one can check more
easily if the SDE will satisfy the rating matrix properties.

Analysis of the rating distributions and properties Since we expect that downgrades are
more likely than upgrades, we expect that the rating distributions should be skewed with
one tail being fatter than the other. We can see this in both Figure 6 (¢ = 0.5) and Figure 7
(t = 1). Each of the figures are ordered as the entries for the rating matrices excluding the
last row. This means that the upper left subfigure shows the transitions for A to A, the one
right next to it A to B and so on. The red columns are the histogram of R?AN and the blue
columns illustrate the histogram of RE™. We fitted beta distributions to the histograms.
The red solid line is the according beta distribution of RFAN and the blue dashed line the
beta distribution of RFR.

Let us focus for the moment on Figure 7, i.e. the rating transitions for one year. The
distributions using RSAN look like they have two modes and suggest a mixture Gaussian
model. Therefore, the beta distributions do not describe the data very well. However, we
have no intuition why the rating transitions should have two modes and consider it as subject
for further investigation.

For RC™ we see a close match of the beta distribution to the histograms and match our
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4.3 The case of direct exponential mapping.

initial intuition that the model should have one tail being fatter than the other.

In Figure 6 we see in most of the subfigures a good match of the shapes of the beta dis-

RGAN RC™ even though the CIR processes have constant coefficients and

tributions of and
are calibrated to the moments of REAN at ¢t = 1. We saw the same for ¢ = 1,3 months and

therefore decided not to put the figures to shorten the presentation.
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Figure 6: Histograms of ratings transition probabilities at 6 months.
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Figure 7: Histograms of ratings transition probabilities at 12 months.

Let us now assess the quality of the model rating matrices as for the training data set and
TimeGAN by (4.1)—(4.4). Table 5 is structured exactly like Table 2. We can see similar
results to Table 3. Almost all the conditions are satisfied perfectly except for (4.4), where
only 7% violated the condition at ¢t = 6,12 months. Another downside of this method can be
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4.4 The case of geometric Euler Maruyama.

seen in Figure 5 by focusing on the blue trajectory in the default-column. It seems possible
that the default is not absorbing because the trajectories are not monotonically increasing,
only the mean is increasing. This could be viable if we allow companies to recover from
default over time if they were not bankrupt from begin with, which in fact would be more
realistic, because otherwise either every entity would eventually default or at some point
no entity would default anymore. Also it could be interesting to study conditions in this
setting to ensure monotone increasing paths in the default column, which is subject to future
research. We will see in the next section that the geometric Euler approach will not suffer

from this problem.

Table 5: Rating properties for RO, Average percentage of the time series fulfilling the
conditions (4.1)—(4.4).

2 Q’& > @0\)’\) &%
N o SN X S
& &z»%@.\\ S0 S & B
s SR 5T 0 SN
< & > éQ% -\@' & Q?’fo &
S & F SR SR
&8 bo@’ & & KL
1 100 % 100 % 100 % 100 %
3 100 % 100 % 100 % 100 %
6 100 % 100 % 100 % 93.22 %
12 100 % 100 % 100 % 93.34 %

4.4 The case of geometric Euler Maruyama.

Let us now consider RfEM and assume that each of the SDEs are given by

dr; = |v;|" at

dY} = bidt + o;dW;,  Y§ =0.

They have a parameter for a constant drift b;, power a; and volatility o;, which are all assumed
to be positive. The parameter set is therefore given by positive real numbers IT8FM =
R:;(()K_I)Z) by stacking the individual parameters below each other. We found during our
experiments that values between zero and two worked best. We calibrated RfEM fort =1,
i.e. for the 12 month rating transitions, by matching the moments up to order 4. For the
variance we added a weight ws = 10 and set w; = ws = wy = 1 to put more emphasis on
the variance. The corresponding parameters after the calibration procedure with M = 1000
trajectories for RthM and M = 10000 trajectories for RGAN can be found in Table 6. The
first column explains to which basis element the coefficients belong. To be more precise, 2 —3
means starting rating is 2 and at ¢ = 1 we transition to rating 3. The minimisation error (4.5)
in this case was 5.265¢ — 05., telling us that the moments up to order 4 match very well and
it took roughly 1058 seconds using 1sqnonlin with the Trust-Region-Reflective algorithm.

In Figure 8 we can see the trajectories of RfEM over time for each entry in the rating matrix
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4.4 The case of geometric Euler Maruyama.

Table 6: Parameters of REFM after calibration at t = 1 to RSN using n = 4 moments.
From-To a b o

1-2 9.21e-01  7.70e-02 3.15e-02
1-3 1.85e4+00 9.61e-03 5.57e-03
1-4 1.92e4+00 1.41e-02 1.50e-02
2-1 1.32e4+00 4.91e-02 1.39e-02
2-3 1.09¢e4+00 5.43e-02 1.74e-02
2-4 1.86e+00 2.13e-02 2.58e-02
3-1 1.99¢4+00 8.17e-04 1.00e-04
3-2 1.03e4+00 1.09e-01 1.00e-04
3-4 8.03e-01  7.59e-02 1.38e-01

except for the last row. The upper left corner are the transition probabilities from A to A,
right next to it from A to B and so on. The grey lines are a cloud of 1000 trajectories of
R,%EM and the blue line is one trajectory. The green dashed line is the mean at each time of

the process and the red dots are the means of RtGAN at t = 1,3,6,12 months. We can see
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Figure 8: Trajectories of calibrated RthM with parameters as in Table 6.

that the paths are much smoother compared to Figure 5. Also we see again a good fit at

the terminal time to REAN by comparing how close the mean of RthM is compared to the

RtGAN

mean of . For t =1, 3,6 months we see a slight deviation of their corresponding means,

suggesting that we should either use time-dependent parameters or different SDEs.

Analysis of the rating distributions and properties In Figure 9 and Figure 10 we can see

the analogue of Figure 6 and Figure 7 from Section 4.3. We used the same trajectories of

REAN in these plots to be able to compare both methods amongst each other.

Let us focus for the moment on Figure 10, i.e. the rating transitions for one year. For RthM

we see a close match of the beta distribution to the histograms as well. Also we see a very
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4.4 The case of geometric Euler Maruyama.

good fit of the beta distributions of REAN and R8FM towards each other. This fit looks even

RGAN and RCIR .

closer than in Figure 7 for
In Figure 9, the six month rating transitions, we see a worse fit to the data than we saw in
Figure 6 using RtCIR. This suggests that one should either use a different underlying SDE for

Y} or introduce time-dependent parameters. Most remarkably all the conditions (4.1)—(4.4)
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Figure 9: Histograms of ratings transition probabilities at 6 months.
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Figure 10: Histograms of ratings transition probabilities at 12 months.

were satisfied perfectly for this model.
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5 Conclusion and future research

In this paper, we developed a novel methodology in the community of rating transition
modelling, making it possible to formulate rating transitions as processes on Lie groups by
using its relation to its Lie algebra and imposing SDEs there. We showed two different
approaches, first the direct exponential mapping in Section 4.3 and showed numerical results
using CIR processes in the Lie algebra. Second we demonstrated, how the geometric Euler
method can be applied to preserve the Chapman-Kolmogorov equations in Section 4.4. In

Table 7 we compare the two methods and their features.

REIR RthM
Simple method with fast calibration More complex with slower calibration
Needs only L} to be positive Requires that L} has monotonically increas-
ing paths
Satisfies all rating properties well Satisfies all rating properties perfectly

Does not satisfy the Chapman-Kolmogorov Satisfies Chapman-Kolmogorov equations
equations
Default column is not absorbing Default column is absorbing

Table 7: Comparison of RC™ and RfEM.

As mentioned at various points throughout this paper, there are many possibilities for future
research.

For instance, we could try to learn the historical generators instead of the rating transitions.
In this case, we would be able to calibrate the SDE on the Lie algebra to the fake generators.
Also novel neural network architectures called DeepONets (cf. [13]) could be thought of in
this framework.

Another line of research could involve adding an additional network to the TimeGAN which
outputs the calibrated parameters of the target SDE directly. It would be beneficial to link the
Autoencoder or Supervisor network to this new network to exploit dimensionality reductions.
In a next step, we would like to include the possibility to furthermore calibrate the rating
SDE to Credit-Default-Swap (CDS) quotes under the risk-neutral measure. This extension
will be useful for instance in the context of rating triggers under a netting agreement with

Credit-Support-Annex (CSA) for valuation adjustments.
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