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Exponentially expanding space-times play a central role in contemporary
cosmology, most importantly in the theory of inflation and in the Dark Energy
driven expansion in the late universe. In this work, we give a complete list of de
Sitter solutions of the semiclassical Einstein equation (SCE), where classical
gravity is coupled to the expected value of a renormalized stress-energy
tensor of a free quantum field. Concretely, we study the stress-energy tensor
of a scalar field in the (preferred) Bunch-Davies state on the cosmological
coordinate patch using the recently proposed ‘moment approach’. From the
energy component of the SCE we thus obtain an analytic consistency equation
for the model’s parameters which has to be fulfilled by solutions to the SCE.
Using this equation we then investigate the number of solutions and the
structure of the solution set in dependency on the coupling parameter of the
quantum field to the scalar curvature and renormalization constants using
analytic arguments in combination with numerical evidence. We also identify
parameter sets where multiple expansion rates separated by several orders
of magnitude are possible. Potentially for such parameter settings, a fast
(semi-stable) expansion in the early universe could be compatible with a late
time ‘Dark Energy-like’ behavior of the universe.
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1. Introduction

In modern cosmology, the ΛCDM is considered the standard model as it explains a large
amount of observational data (see e.g. [48] and references therein). However, one of
its predictions is the presence of Dark Energy or, equivalently, a positive cosmological
constant. While matter in this model happens to be purely classical, it is one possible
option that Dark Energy may naturally emerge from quantum effects, that is, if the
matter content is modelled by a quantum field.

Physicists have put a lot of effort into deriving a satisfactory quantum theory of gravity.
For an extensive survey on a wide range of quantum cosmological effects we refer to
Schander and Thiemann [42]. The semiclassical Einstein equation (SCE) takes a rather
moderate approach. In particular, gravity is avoided to be quantized and modelled by
a classical metric formalism governed by an Einstein equation. The energy content, on
the other hand, is modelled by quantum fields. The latter are then coupled to classical
gravity via the expected value of the stress-energy tensor in a quantum state ω and the
SCE reads

Gµν + Λgµν = κ
〈
T ren
µν

〉
ω
. (1)

Hereby, gµν is the metric1, Gµν = Rµν− 1
2Rgµν is the Einstein curvature tensor (consisting

of the Ricci curvature tensor Rµν and its trace R) and Λ is the cosmological constant.
T ren
µν is the renormalized quantum stress-energy (QSE) tensor of one or multiple quantum

field(s), coupling to the geometry of the underlying space-time with a strength controlled
by the parameter κ. We restrict to free scalar fields φ governed by the Klein-Gordon
equation

(� + ξR+m2)φ = 0 (2)

with mass m and curvature coupling ξ. � = −gµν∇µ∇ν denotes the d’Alembertian of
the metric gµν .

The SCE has been introduced in a series of articles from the late 70’s by Davies,
Fulling et al. which culminated in [12]. The problem of finding a suitable QSE tensor
was then axiomatized by Wald [49] and further refined by Christensen [8, 9], coming up
with a properly covariant regularization scheme. The SCE (for cosmological settings)
was approached by numerical algorithms and special analytic solutions have been found,
e.g. by Anderson [2–5] or Suen & Anderson [46], as well as Starobinski [44]. Another
modern view on the physical content of the SCE was provided by Flanagan & Wald
in [17]. We refer to the monographs by Birrel & Davies [6], Fulling [20] and Wald [51] for
a comprehensive view on the research on the SCE up to the 90’s. In 2003, Moretti [37]
defined a covariantly conserved QSE tensor as demanded in one of Wald’s axioms, whereas
in 2004, the same QSE was derived from a completely different point of view in [28].

A mathematical theory of solutions, tailored to cosmological settings, began to be
developed in the late 2000’s. In their work [10] the authors Dappiaggi, Fredenhagen
& Pinamonti observed a distinguished behavior in their solutions which they call de
Sitter-type behavior and we will pick up this discussion a bit later. Ongoing, the first

1We use the signature convention (−,+,+,+)
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result towards a mathematical solution theory, providing local existence and uniqueness
results for the trace of the SCE, was formulated in the seminal article [39] by Pinamonti.
This approach was further refined, particularly studying global properties of solutions
and their continuability, by Pinamonti & Siemssen in [40, 43]. These works, similarly
to many of the older references cited above, focused the conformally coupled case. The
review articles by Fredenhagen & Hack [18] and by Hack [24, 26] built bridges between
purely mathematical solution theory and the modern physicists’ approaches to cosmology.
The results of [40] were recently generalized to non-conformally coupled fields by Meda,
Pinamonti & Siemssen in [36]. Therein, the SCE is reformulated as a fixed point equation
of a certain operator on a suitable Banach space, which allows to conclude short-time
existence and uniqueness of solutions by a fixed-point theorem. Moreover, in the same
period of time Eltzner & Gottschalk [13] managed to write the SCE into one dynamical
system for both the scaling factor (of the underlying Friedman-Lemâıtre-Robertson-
Walker (FLRW) space-time) and for the expectation values of Wick products of the
field and its derivatives. This result was further refined and reformulated in a rigorous
framework in [22], where the authors prove (global) existence and uniqueness of solutions.
The latter approach, however, has the disadvantage of a somewhat implicit definition of
the initial state.

Recently, the SCE has been used to derive special cosmological models. Sanders
constructed in [41] maximally symmetric states on a given static (cosmological) space-
time of positive (spatial) curvature. Moreover, in [21] the authors of the present article
have used the techniques of [22] to study a class of cosmological expansion models driven
by a massless scalar field in a Minkowski-like state, motivated by some observation on
the Minkowski-vacuum state on Minkowski space. A recent paper by Juárez-Aubry [30]
studies the SCE on static and ultrastatic, not necessarily spatially homogeneous space-
times as an initial value problem for the state. This work was recently extended to
more generic settings and applied to so-called ‘quantum state collapse’ scenarios in
[31]. A noteworthy recent result is given in [27], where the author studies the ordinary
differential equations for H = ȧ

a arising from the conformally coupled and massless SCE
and to a certain extend classifies the corresponding dynamical systems in terms of the
topological properties of their phase portraits. Another work on special solutions is [29],
also by Juárez-Aubry. There the author finds solutions of the SCE which coincide with
the classical vacuum solutions for a positive cosmological constant Λ, that is, the de
Sitter solution with constant curvature R = Λ or, equivalently, a(t) = exp(

√
Λ/3 t). In

particular, the expectation value of the QSE tensor is taken with respect to the so-called
Bunch-Davies state as first introduced by Bunch & Davies in [7] and further discussed by
Allen in [1]. By isometrically embedding a cosmological space-time with pure de Sitter
expansion into de Sitter space, this distinguished Bunch-Davies state can be pulled back
and indeed yields a global state on the given de Sitter-type cosmological space-time.
However, searching for these particular (vacuum) solutions of the SCE corresponds to
solving

〈
T ren
µν

〉
ω

= 0. (Note that Gµν + Λgµν = 0 vanishes for the currently discussed
metric/scale factor a). Thus [29] is studying the parameter set for which the presence of
the Bunch-Davies vacuum state has no back-reaction effect to the space-time. While this
approach is suitable for the treatment of the so-called cosmological constant problem (as

3
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in [29]), it does not cover all cases where a de Sitter expansion and the Bunch-Davies
state on the resulting space-time yield a solution to the cosmological SCE. In particular,
it omits situations when the presence of the vacuum state does have a back-reaction
effect.

Another perspective on studying exponential late-time behavior of cosmological ex-
pansions deals with the topic of so-called energy inequalities (EIs). These kinds of
considerations are based on an observation by Wald [50] from ’83, namely that FLRW
solutions to the Einstein equation with positive Λ generally approach the respective
exponential vacuum solution with Hubble rate

√
Λ/3, provided the stress-energy tensor

fulfills these EIs. However, QSE tensors usually do not fulfill the EIs in a pointwise
manner and the focus has shifted towards studying whether the observation of [50]
remains true if the stress-energy tensor fulfills similar weaker inequalities, for example
where now the stress-energy tensor is averaged along time-like geodesics. For further
reading we refer to some recent articles on this topic, e.g. to Fewster & Kontou [14],
Fewster & Smith [15], Fewster & Verch [16] and, in particular, to the comprehensive
introduction by Kontou & Sanders in [32].

Apart from late time de Sitter solutions, many authors also discuss inflation, i.e.
solutions with a de Sitter phase at early time. An inflationary phase in the universe’s
expansion was originally suggested as a solution to the so-called cosmic horizon prob-
lem [23, 33, 34]. The main architects of inflationary physics in its modern shape are Guth,
Linde and Starobinski, with their most noteworthy articles on that topic [23, 34, 45],
respectively, all from the early 1980’s. In particular, Starobinski addresses the compati-
bility of an inflationary phase with semiclassical gravity, and with this purpose notes the
existence of pure de Sitter expansion solutions to the SCE as mentioned above. Moreover,
considerable progress was made by Mukhanov [38] and others to explain the scale free
spectrum of cosmological structures. For comprehensive discussions we refer to reviews of
Liddle [33] and of Hack [26], where the latter in particular discusses inflationary models
in view of modern algebraic quantum field theory.

Our present work is dedicated to finding all solutions to the cosmological SCE whose
scaling factor describes a purely exponential expansion, driven by a massless or massive
scalar field in the (pullback) Bunch-Davies vacuum state.

The physical motivation is to identify parameter settings, where for both an inflationary
phase and a late-time de Sitter phase there are two (or more) exact solutions of the
aforementioned kind which approximate the universe’s expansion during these phases.
Suppose that in future work one can show that the solution with a larger Hubble rate
is unstable towards perturbations, that the solution with smaller rate is stable and
that these two solutions are connected by a trajectory in phase space. Then one would
show that a scalar quantum field is capable to drive both inflation and a late-time Dark
Energy-dominated expansion. Note that such stability/instability behavior of de Sitter
solutions have been found for simplified semiclassical models in [10] and [27] (cf. the
discussion in Section 7).

On the other hand, a complete list of de Sitter solutions is interesting in its own
right since these solutions frequently occur in semiclassical cosmology (e.g. [10, 21, 44]).
Hereby the pullback Bunch-Davies state can be viewed as distinguished by its symmetry

4
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behavior on (the entire, non-cosmological) de Sitter space. Note that while we are mostly
interested in the cosmological setting in order to make sense of any stability features,
we also obtain, as a by-product, a list of all parameters for which (the entire) de Sitter
space and thereon the (non-pullback) Bunch-Davies solve the SCE.

We summarize our results in the following main theorem:

Theorem 1.1. For H > 0, consider the cosmological space-time with flat spatial sections
defined by a(t) = exp(Ht) and thereon a free scalar quantum field φ in the state obtained by
pulling back the Bunch-Davies vacuum on de Sitter space with radius 1

H along cosmological
coordinates. The field dynamics is governed by the Klein-Gordon equation (2) with
parameters m and ξ. Then:

(i) The semiclassical Einstein equation (1) with coupling κ and cosmological constant
Λ for this field and state breaks down into a (non-dynamic) consistency equation
for the parameters H, m, ξ, κ, Λ and the renormalization constants originating in
φ’s stress-energy tensor. Of these parameters only four are independent.

(ii) Viewing the consistency equation as a constraint on (ξ,H)-pairs with two (effective)
remaining parameters, the solution set can be parameterized by analytic curves in
the ξ-H-plane. In numbers, these are one or two curves if m = 0, or two or three
curves if m > 0.

(iii) The large-H and small-H asymptotics of the solution curves can be explicitly worked
out.

Note that, by time-reflection invariance, values H < 0 correspond to positive values
−H > 0. The well known H = 0-Minkowski case is not discussed here. In particular,
with the knowledge of part (iii) of the theorem we can conclude:

Corollary 1.2. There exist parameter settings m, ξ, κ, Λ and renormalization constants,
such that multiple H-values solve the consistency equation. Moreover, the model of
Theorem 1.1 in the case m > 0 is flexible enough such that for any two prescribed
positive values of H there exist a set of remaining parameters such that both H-values
are solutions.

While the last statement remains true for an arbitrary triple of positive numbers, we
are mostly interested in tuning parameters to obtain two prescribed solutions for the
reason discussed above.

Note that while in the following the results are stated more precise and tailored to the
respective cases, Theorem 1.1 and Corollary 1.2 immediately follow from Proposition 3.2,
Theorems 4.2 and 5.3 as well as the discussions in Sections 2 and 7.

Moreover, note that some intermediate results were merely accessible by numerically
evaluating certain functions, for example, such a function’s positivity or negativity on the
positive reals. In these cases we carefully worked out the asymptotic behavior of a given
function before, eventually, evaluating it on a sufficiently dense and sufficiently wide-
spread grid. Knowing of such a functions analyticity and identifying any precomputed

5
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asymptotic, we have no doubt that the respective assertions are true, although they are
not rigorously proven. In order to stick with the proposition labelling throughout the
text, we also call such assertions Lemma. However, for clarification we highlighted the
respective numerical demonstrations and close them by the rotated ‘q.e.d.-box’ �, while
analytical proofs are closed by the usual box �.

Our paper is organized as follows: The second section contains the derivation of the
consistency equation for the special case of cosmological de Sitter space-times and free
scalar fields in the (pullback) Bunch-Davies vacuum state. As a main tool, we utilize
the ‘moments’ approach to the SCE in [22]. Note that while the consistency equation as
such could have been derived faster using the results of [47], we particularly develop a
viewpoint in which the de Sitter solution correspond to a phase space trajectory for the
SCE as a dynamical system.

The third section is dedicated to the massless case, where the consistency equation
simplifies into an explicitly soluble polynomial equation. After solving the equation and
plotting the solution sets in the ξ-H-plane we discuss the asymptotics of the solution
curves.

In Sections 4, 5 and 6 we study the massive case. First, in Section 4, we exploit the
fact that the solution set is the zero set of an analytic function. In particular, we show
that any solution to the consistency equation belongs to an analytic solution curve which
is extendible into the asymptotics of the equation. Secondly, in Section 5 we explicitly
evaluate the asymptotics of said analytic function, completing the argument as it is
presented in Theorem 1.1 above. Section 6 then graphically presents the solution set as
obtained by numeric evaluation, confirming the results of the previous sections.

Section 7, finally, uses the results of the previous sections in order to show the existence
of parameter settings for potential inflationary models as in Corollary 1.2.

In the last section we present our conclusion and discuss some open problems for future
research.

2. The semiclassical Einstein equation on de Sitter space-time

In this section we derive the consistency condition for the parameters under which the
cosmological SCE admits a solution with a pure de Sitter expansion law, driven by a
scalar field in the (pullback) Bunch-Davies state.

2.1. The energy equation as a cosmological model

A priori, (1) is actually a system of 16 equations and by the symmetries of both the
Einstein and the stress-energy tensor, these reduce to ten independent equations. For a
(flat) cosmological FLRW metric

g = −dt2 + a(t)2
(
dy2

1 + dy2
2 + dy2

3

)
(3)

with scaling factor a(t) of these ten equations only two are independent, for example the
00- and one of the jj-components (j = 1, 2, 3). These two independent equations can be

6
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captured in the so-called energy and trace equations,

G00 − Λ = κ
〈
T ren

00

〉
ω

and gµνGµν + 2Λ = κgµν
〈
T ren
µν

〉
ω
, (4)

respectively. We refer to the discussions in [21, 22] that for the cosmological metric (3)
the Einstein tensor’s components fulfill2

d
dt

(
a2G00

)
+ 2aȧG00 = −aȧ gµνGµν (5)

(and likewise do the components of Gµν + Λgµν), implying that the energy equation
implies the trace equation whenever ȧ 6= 0. Thus, on any time-interval on which ȧ does
not vanish, it is sufficient to study the energy equation.

2.2. De Sitter space and the Bunch-Davies state

De Sitter space is the four-dimensional one-sheet hyperboloid of a certain radius as
a pseudo-Riemannian submanifold of five-dimensional Minkowski space M = R5, ori-
ented around the time axis of the latter. Formally, endow M with the coordinates
z0, z1, z2, z3, z4 : R→M (with time axis along the z0 coordinate), then de Sitter space is
the set

dSH =
{

(z0, z1, z2, z3, z4) ∈M
∣∣ − z2

0 +
4∑
i=1

z2
i = 1

H2

}

for some parameter H > 0, with the pullback Lorentzian metric via the canonical
embedding dSH →M. The group of isometries of dSH is given by the full Lorenz group
O(4, 1) and dSH , as a submanifold of M, is left invariant under this group’s action. In
particular, the induced pullback metric is left invariant as well.

We choose the coordinates (t, y1, y2, y3) such that

z0 = 1
H sinh(Ht) + 1

2HeHt
(
y2

1 + y2
2 + y2

3),

zi = eHtyi (i = 1, 2, 3),

z4 = 1
H cosh(Ht)− 1

2HeHt
(
y2

1 + y2
2 + y2

3),

which cover d̃SH = { (z0, z1, z2, z3, z4) ∈ dSH | z0+z4 ≥ 0 }, the so-called the cosmological

patch of dSH . Pulling the metric of M back to d̃SH through these coordinates we obtain
the metric

g = −dt2 + e2Ht(dy2
1 + dy2

2 + dy2
3)

= 1
H2τ2

(−dτ2 + dy2
1 + dy2

2 + dy2
3)

(6)

on R4 or R4
τ>0, respectively, where for the latter representation of the metric we defined

2We denote derivatives of a with respect to cosmological time t by dots, i.e. ȧ, ä and so on.
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the conformal time coordinate

τ(t) =

∫ t

0
e−Ht

′
dt′.

Hence (the cosmological patch of) de Sitter space can be regarded as flat FLRW-type
space and comparing (6) with (3) we identify the scale factor a(t) = eHt in cosmological
time t and a(τ) = 1

Hτ in conformal time τ . In the following we will sloppily speak of
R4
τ>0, endowed with the metric (6), as cosmological de Sitter space or simply as de Sitter

space-time.
Generally in algebraic QFT, one major difficulty is to define a state of the field algebra.

On de Sitter space dSH there exists a preferred choice of such, namely the Bunch-Davies
state [1, 7]. Among all O(4, 1)-invariant states discussed in [1] the Bunch-Davies state is
the only Hadamard state, suggesting it as a natural choice of vacuum state. Note that, in
order for the Bunch-Davies state to exist we have to assume that the effective de Sitter
mass of the field is positive, m2 + 12ξH2 > 0 (cf. [1]).

As a quasi-free state [51] the Bunch-Davies state is determined by its two-point function

ωBD
2 (y, z) =

2(6ξ − 1)H2 +m2

8π cos(πν)
2F1

(
3
2 + ν, 3

2 − ν; 2; 1
2(1 + Z(y, z))

)
(7)

(y, z ∈ dSH), where 2F1 is the hypergeometric function, ν =
√

9
4 − 12ξ − m2

H2 and Z(y, z)

is the chord length between y and z,

Z(y, z) = Z
(
(τy,y), (τz, z)

)
=
τ2
y + τ2

z − (y − z)2

2τyτz

(in conformal-time cosmological coordinates). For this particular representation of
the Bunch-Davies state’s two-point function we refer to [43], see also [1] for a similar
representation.

2.3. The consistency equation in the moment based approach

Starting from the shape of ωBD
2 from above, we can, in principle, evaluate all terms

constituting
〈
T ren
µν

〉
ω

following [37, 49]. By inserting the de Sitter expansion a(τ) = 1
Hτ

and ωBD
2 into the SCE, the dynamic aspect is eliminated and we obtain an equation for

the parameters of the model, similarly as in [29]. Note that the latter reference restricts
to the case H =

√
Λ/3, i.e. to solutions of

〈
T ren
µν

〉
ω

= 0. Moreover, note that while we
are mainly interested in the cosmological setting in which a formulation of the SCE as
a dynamical system is elaborated, an alternative approach is to use the stress-energy
tensors of a scalar field on (the entire) de Sitter space from [47]. Up to some details
(cf. Remark 4.10), however, this results in studying the same consistency equations for
the parameters. We, however, follow the approach of [22] and view the SCE on a flat
FLRW space-time as a dynamical system for both the scaling factor a and a sequence
of ‘moments’ derived from the state’s two-point function via a specific ‘cosmological’

8
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parametrix.
In the following we will shortly recapitulate on both the general quantization procedure

of a scalar field with the particular goal of a well-defined
〈
T ren
µν

〉
ω

and on the approach
of [22]. This rather serves as an introduction of relevant notation than as a complete
description; for details we refer the reader to the pertinent literature cited in Section 1.

We start from the classical stress-energy tensor

Tµν = (1− 2ξ)(∇µφ)(∇νφ)− 1
2(1− 4ξ)gµν(∇σφ)(∇σφ)− 1

2gµνm
2φ2

+ ξ
(
Gµνφ

2 − 2φ∇µ∇νφ− 2gµνφ�φ
)

of a classical scalar field φ governed by the Klein-Gordon equation (2). The QSE tensor of
φ after quantization is then obtained by replacing φ and its derivatives with their respective
quantum counterparts, that is, by the coincidence limit of (derivatives of) the regularized
two-point function of a Hadamard state ω. If we denote by H̃(y, z) the (possibly
truncated) distributional kernel of the Hadamard parametrix, the coincidence limit of the
regularized two-point function is given by [ω2 − H̃] := limz→y

(
ω2(y, z)− H̃(y, z)

)
with

the (unregularized) two-point function ω2(y, z) = ω(φ(y)φ(z)). Accordingly, we have
[(∇µ⊗∇ν)(ω2 − H̃)] := limz→y(∇µ)y(∇ν)z

(
ω2(y, z) − H̃(y, z)

)
and so on. As usual, a

conserved renormalization scheme such as Moretti’s [37] is mandatory and thus
〈
T ren
µν

〉
ω

additionally contains a trace anomaly term 1
4π2 gµν [ν1] (with the Hadamard coefficient

ν1). By this scheme, the QSE tensor indeed obeys ∇µ
〈
T ren
µν

〉
ω

= 0. Finally, we add the
renormalization freedom c1m

4gµν +c2m
2Gµν +c3Iµν +c4Jµν in terms of four independent

parameters c1, c2, c3, c4. We refer to [24] and references therein for precise formulas
regarding H̃, ν1, Iµν and Jµν . Concluding, the QSE tensor is of the form

〈
T ren
µν

〉
ω

= (8)

(1− 2ξ)
[
(∇µ⊗∇ν)(ω2 − H̃)

]
− 1

2(1− 4ξ)gµν
[
(∇σ⊗∇σ)(ω2 − H̃)

]
− 1

2gµνm
2
[
ω2 − H̃

]

+ ξ
(
Gµν

[
ω2 − H̃

]
− 2
[
(1⊗∇µ∇ν)(ω2 − H̃)

]
− 2gµν

[
(1⊗�)(ω2 − H̃)

])

+
1

4π2
gµν
[
ν1

]
+ c1m

4gµν + c2m
2Gµν + c3Iµν + c4Jµν .

Back in the cosmological setting (3), under the assumption that ω2(y, z) at points
y = (τ,y) and z = (τ̂ , z) merely depends on r = |y− z|, the derivatives of ω2 relevant for
(8) are stored in a vector

G(τ, r) :=



Gϕϕ(τ, r)
G(ϕπ)(τ, r)

Gππ(τ, r)


 := lim

τ̂→τ




1
1
2(∂τ̂ + ∂τ̂ )
∂τ̂∂τ̂


 a(τ)a(τ̂)ω2(τ, τ̂ , r). (9)

The components of G can be viewed as ‘semi-coincidence limit’ of ω2, i.e. the coincidence
limit in direction of the τ -coordinate, and these limits exist by the Hadamard property
of ω whenever r 6= 0. The singular structure of ω2 is then represented by the singular
structure of G(τ, ·) in the limit r → 0. The Klein-Gordon equation for ω2 implies for G

9
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that

∂τG =




0 2 0
∆r − V 0 1

0 2(∆r − V ) 0


G (10)

with the (spatial) Laplacian ∆r = r−2∂rr
2∂r and the potential3 V = (6ξ − 1)a

′′
a + a2m2.

For an expression of the (full) coincidence limit of the regularized two-point function
[ω2 − H̃] one defines H̃(τ, r) by the analog of formula (9) replacing ω2 by H̃. Note that
the Hadamard parametrix also depends only on r = |y − z|. The regularized two-point
function and its derivatives from (8) may now be written as certain (linear combinations
of) components of limr→0

(
G(·, r)− H̃(·, r)

)
, that is, they are obtained by completing the

coincidence limit along the spatial coordinate directions.
The main innovation of [22] is now to introduce a new ‘cosmological’ parametrix
H. In principle it is constructed somewhat similar to H̃ (or H̃, resp.), but adapted
to cosmological coordinates. Formally, fix an arbitrary length scale µ and define for
j ∈ Z≥−1 so-called homogeneous distributions, i.e. the functions h2j : (0,∞)→ R,

h−2(r) := − 1

π2r4
, h0(r) :=

1

2π2r2
, h2j(r) :=

(−1)j

2π2

r2(j−1)

Γ(2j)

(
log
( r
µ

)
− ψ(0)(2j)

)

with the Digamma function ψ(0) = log(Γ)′. Moreover, define

Hn(τ, r) :=



Hϕϕ,n(τ, r)
H(ϕπ),n(τ, r)

Hππ,n(τ, r)


 :=




0
0

γ−1(τ)


h−2(r) +

n∑

j=0



αj(τ)
βj(τ)
γj(τ)


h2j(r) (11)

with some sequences (αj)j≥0, (β)j≥0, (γ)j≥-1 of functions αj , βj , γj : (0,∞)→ R. Simi-
larly to the Hadamard parametrix the sum may be truncated at a sufficiently large order
without affecting the final result, so one can omit questions of convergence. In [22] these
functions are found such that H fulfills the Klein-Gordon system

∂τH∞ =




0 2 0
∆r − V 0 1

0 2(∆r − V ) 0


H∞ ∈ O(r∞). (12)

Hereby, the function class O(r∞) is to be read as that a truncation of (11) at some n
yields an error in O(rm(n)) with m(n)→∞ as n→∞.

As a next step, we replace the regularized expressions for the two-point function and
its derivatives in (8), i.e. [ω2 − H̃], [(∇µ⊗∇ν)(ω2 − H̃)] and so on, by the respective
(linear combinations of) components of

lim
r→0

(
G − H̃

)
= lim

r→0

(
G −H

)
+ lim
r→0

(
H− H̃

)
,

3Opposed to the convention in footnote 2 we denote derivatives of a with respect to conformal time τ
by primes, i.e. a′, a′′ and so on. Confusions in higher derivatives a(j) are excluded.
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where indeed both limits on the RHS do exist. limr→0

(
H− H̃

)
does not depend on the

precise choice of ω, and can be computed to result in a smooth function on the underlying
space-time depending on a and its derivatives only. G −H may be called the regularized
two-point function in the H-regularization scheme. Finally, define the moments of ω by

Mn := lim
r→0

∆n
r

(
G −H

)
,

that is, they can be thought of as (even-order, radial) Taylor coefficient of the (radially
symmetric) function G(τ, ·)−H(τ, ·). With (10) and (12) also G −H fulfills the (O(r∞)-
approximate) Klein-Gordon system (12) and we can reformulate the latter into a linear
evolution equation for the function τ 7→M(τ) valued in a suitable Banach space. In this
setting the SCE can be written as

{
A′(τ) = V

(
A(τ),M(τ)

)

M′(τ) = W
(
A(τ)

)
·M(τ)

(13)

with A = (a, a′, a′′, a′′′) and some dynamic vector fields V and W , and the authors of [22]
prove existence and uniqueness of the solutions. Note that the second line of (13) is a
mere consequence of the Klein-Gordon equation, particularly it is independent of whether
a is a solution to any cosmological model or not. The first line of (13) is, usually, obtained
from the traced SCE, constrained by the energy equation (4). However, by (5) (or its
conformal-time analog, resp.) we can use the energy equation for the first line of (13) in
the context of pure de Sitter expansions. In this case A is of the form A = (a, a′, a′′).

Performing the replacements described above, the energy evaluates to

0 =

(
6(3c3 + c4) +

1

960π2
− 6ξ − 1

96π2
− (6ξ − 1)2

32π2
log(aλ0)

)

·
(

2
a(3)a′

a4
− (a′′)2

a4
− 4

a′′(a′)2

a5

)

− (6ξ − 1)2

16π2

a′′(a′)2

a5
+

1

960π2

(a′)4

a6
+

(
Λ

κ
−m4

(
c1 +

1

32π2
log(aλ0)

))
a2 (14)

+

(
−3

κ
+m2

(
3c2 −

1

96π2
− 6ξ − 1

16π2

(
1 + log(aλ0)

))) (a′)2

a2

+
m2

2
Mϕϕ,0 + (6ξ − 1)

(
−(a′)2

2a4 Mϕϕ,0 +
a′

a3M(ϕπ),0

)

+
1

2a2

(
Mππ,0 −Mϕϕ,1

)
,

where λ0 is the ratio of the Hadamard length scale and the length scale µ. For more
details we refer the interested reader to [22]. Note that to obtain (14) from the latter
reference we have merely included a possibly non-vanishing Λ.

As a side remark, note that the representation in (14) nicely shows how precise choices
of both the involved length scales do not matter and any changes can be absorbed into

11
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the renormalization constants.
A more or less straightforward computation yields the first moments of the Bunch-

Davies state’s two-point function (7) on a cosmological de Sitter space-time with a(τ) =
1
Hτ as

Mϕϕ,0 =− 2(1− 6ξ)H2 −m2

16H2π2τ2

[
1 + log

( µ2
4τ2

)
+ ψ(0)

(
3
2 − ν

)
+ ψ(0)

(
3
2 + ν

)]

Mϕϕ,1 =− 2(1− 6ξ)H2 −m2

128H2π2τ4

·
[
18 + 84ξ + 7m

2

H2 + 6(12ξ + m2

H2 )
(

log
( µ2

4τ2

)
+ ψ(0)

(
3
2 − ν

)
+ ψ(0)

(
3
2 + ν

))]

M(ϕπ),0 =
2(1− 6ξ)H2 −m2

16H2π2τ3

[
2 + log

( µ2
4τ2

)
+ ψ(0)

(
3
2 − ν

)
+ ψ(0)

(
3
2 + ν

)]

Mππ,0 =− 2(1− 6ξ)H2 −m2

128H2π2τ4

·
[
30 + 12ξ + m2

H2 + 2(4 + 12ξ + m2

H2 )
(

log
( µ2

4τ2

)
+ ψ(0)

(
3
2 − ν

)
+ ψ(0)

(
3
2 + ν

))]
,

and for the combination of moments relevant in (14) we compute

m2

2
Mϕϕ,0 + (6ξ − 1)

(
−(a′)2

2a4 Mϕϕ,0 +
a′

a3M(ϕπ),0

)
+

1

2a2

(
Mππ,0 −Mϕϕ,1

)
(15)

=
2(1− 6ξ)H2 −m2

128π2H2τ2

[
6(1− 6ξ)H2 −m2 − 2m2

(
log( µ

2

4τ2
) + ψ(0)(3

2 − ν) + ψ(0)(3
2 + ν)

)]
.

Recall that ν =
√

9
4 − 12ξ − m2

H2 and note that the Digamma function ψ(0) stems from

taking derivatives of the hypergeometric function 2F1 in the Bunch-Davies two-point
function (7) and not from the occurrence of ψ(0) in the cosmological parametrix via the
homogeneous distributions (h2j)j≥-1. Moreover, note how all moments and, in particular,
the contribution (15) vanish in the massless conformally coupled case m2 = ξ − 1

6 = 0.
Finally, plugging both the de Sitter Ansatz a(τ) = 1

Hτ and the Bunch-Davies moments
(15) into the energy equation (14), we arrive at the following form of the consistency
equation

0 =

(
1

960
− (6ξ − 1)2

32

)
H4 − 3KH2 + ΛK +m4 d1 +m2H2 d2 (16)

+

(
m4

64
+

6ξ − 1

32
m2H2

)(
2 log(µH) + ψ(0)(3

2 − ν) + ψ(0)(3
2 + ν)

)
.

Here we have introduced linearly transformed renormalization constants

d1 :=
1

128
− 1

32
log(2λ0)− π2 c1 as well as d2 := 3π2 c2 −

1

96
− 6ξ − 1

16
log(2λ0)
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and we have set K := π2

κ . We note that I00 = J00 = 0 for de Sitter expansions a(τ) = 1
Hτ ,

thus we are left with only two renormalization constants. Moreover, the log(τ)-terms
of (15) just cancel the log(τ)-terms occurring in (14). This is not surprising if we recall
that all of them originate in the cosmological parametrix H. We are left only with the
length-scale µ and observe (again) that a different choice of µ leads to additional terms
which can be absorbed into the renormalization constants d1 and d2.

3. De Sitter solutions for the massless field

In the massless case m = 0, the consistency equation (16) breaks down into the polynomial
equation

0 =

(
1

960
− (6ξ − 1)2

32

)
H4 − 3KH2 + ΛK (17)

for ξ and H with parameters Λ and K.

Remark 3.1. (i) Throughout the present section we assume ξ > 0 in order to fulfill
the existence condition for the Bunch-Davies state.

(ii) Some may take the standpoint that the prefactors m2 (of Gµν) and m4 (of gµν) in
the renormalization freedom of

〈
T ren
µν

〉
ω

are only chosen to endow the respective
terms with the correct unit in order to obtain unit-free renormalization constants
c1 and c2. Consequently, in the massless case m = 0 these prefactors should be
expressed by some other mass scale m̃ in order to maintain this freedom. However,
replacing the coupling constant K and the cosmological constant Λ in equation (17)
by their renormalized analogs,

K̃ = K − m̃2d2

3
and Λ̃ =

3ΛK + 3m̃4d1

3K − m̃2d2
,

respectively, we end up with the very same equation with the only difference that
K̃ can be a non-positive parameter. Note also how (17) simplifies for K = 0
and how for K < 0 the analysis of (17) is (in a suitable sense) inverted around
the zeros 1

6 ± 1/
√

1080 of the H4-prefactor. However, we stick to the view that the
renormalization freedom compensates ambiguities in the choice of the Hadamard
length scale, that is, we always assume K > 0.

(iii) Carrying out the computation to obtain (17) from (14) and (15) one notices that
the Bunch-Davies state’s moments only yield a contribution into the prefactor of H4

in (17). Assuming vanishing moments M = 0 instead, the fraction (6ξ − 1)2/32
would be replaced by (6ξ − 1)2/8. Hence, the analysis of the present section can
be adjusted for the Minkowski vacuum-like states in [21] by squeezing any graphic
by a factor of 1/2 around ξ = 1/6. Note in particular the similarity between the
Λ = 0-curve in Figure 2 and the respective graphic in [21].
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We introduce

ξcc :=
1

6
, ξ(±) := ξcc ±

1√
1080

as well as Hvac :=

√
Λ

3

(for Λ > 0) since these particular ξ- and H-values are distinguished by the behavior of
the solution set of (17). Here, Hvac represents the unique (positive) de Sitter solution of
the vacuum Einstein equation Gµν + Λgµν = 0 for Λ > 0.

We find the following:

Proposition 3.2. Let Λ ∈ R, K > 0. The set of de Sitter solutions of the SCE for these
parameters with a scalar field in the Bunch-Davies state can be parameterized for Λ ≤ 0 by
one and for Λ > 0 by two analytic curves in the (ξ,H)-parameter plane (0,∞)× (0,∞).

Moreover:

(i) If Λ
K > 2160 the two solution curves can be globally solved for ξ. Denoting Hmin =(

K
29

(
14402 + 29 · 960 Λ

K

)1/2 − 1440K
29

)1/2 ∈ (0, Hvac), the solution curves are the
(disjoint) graphs of the functions

Ξ(+) : (0,∞)→ (0,∞), Ξ(−) : (Hmin,∞)→ (0,∞),

Ξ(±)(H) =
1

6
±
√

1

1080
− 8K

3H2
+

8ΛK

9H4
. (18)

In particular, any arbitrary H > 0 is the Hubble rate of a de Sitter solution to the
SCE for one or two suitable value(s) for ξ, with two possible values if and only if
H > Hmin. On the other hand, for any ξ ∈

(
max(Ξ(−)),min(Ξ(+))

) (
3 ξcc

)
there

exist no de Sitter solution H at all.

(ii) If Λ ∈ (0, 2160K) the two solution curves can be globally solved for H, that is, they
are the (disjoint) graphs of the (analytic continuations of the) functions

H(+) : (ξ(−), ξ(+))→ (0,∞), H(−) : (0,∞)→ (0,∞),

H(±)(ξ) =

√√√√
1440K

1±
√

1− Λ
2160K (1− 30(6ξ − 1)2)

1− 30(6ξ − 1)2
. (19)

In particular, for any ξ ∈ (ξ(−), ξ(+)) there exist precisely two de Sitter solutions
H(−)(ξ) and H(+)(ξ), while for any other ξ > 0 there exists precisely one de
Sitter solution H(−)(ξ). On the other hand, for any value H > 0 with H /∈(

max(H(−)),min(H(+))
)
6= ∅ there is a ξ-value such that H is the Hubble rate of a

de Sitter solution to the SCE.

(iii) If Λ/K = 2160 Equation (17) is equivalent to

ξ − 1

6
= ± 1√

1080

(
1− 2

H2
vac

H2

)
(20)
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Hvac

(i) Λ
K > 2160 (ii) 0 < Λ

K < 2160 (iii) Λ
K = 2160

Figure 1: Schematic plots for the quartic solution curves of (17) in Cases (i),
(ii) and (iii) of Proposition 3.2. The horizontal axis marks ξ and the vertical
dotted lines lie at ξ ∈ {ξcc, ξ(±)}. The vertical axis marks H, normalized to Hvac.

and thus can be globally solved for either H or ξ at will. Hence, the solution
set is the union of the graphs of two bijective functions (0, ξ(+))→ (Hmin,∞) and
(ξ(−),∞)→ (0,∞) mapping ξ 7→ H(ξ) (Hmin as in (i)) or their inverses, respec-
tively. The mappings are (piecewise) degenerations of (18) and (19) for the present
ratio Λ

K and the graphs intersect only in (ξcc,
√

2Hvac).

In particular, for any H ∈ (Hmin,∞)\{
√

2Hvac} there exist two values of ξ to yield
H as the corresponding de Sitter solution, whereas for any H ∈ (0, Hmin)∪{

√
2Hvac}

there exists precisely one such ξ-value. On the other hand, for any ξ > 0 there
exists (at least) one de Sitter solution H and a second solution exists if and only if
ξ ∈ (ξ(−), ξ(+))\{ξcc}.

(iv) If Λ ≤ 0 the single solution curve can be globally solved for H, that is, it is the
graph of the function H(+) : (ξ(−), ξ(+))→ (0,∞) defined in (19).

In particular, each H > min(H(+)) is the de Sitter solution for precisely two
ξ ∈ (ξ(−), ξ(+)), H = min(H(+)) is the unique de Sitter solution for ξ = ξcc and any
H < min(H(+)) does not yield a solution of our model. On the other hand, for any
ξ ∈ (ξ(−), ξ(+)) there exists one de Sitter solution, whereas otherwise there exists
none at all.

Note that every assertion of the previous proposition follows from studying (17) as
a quadratic equation for ξ and H2 and we skip the proof. Rather, we will concentrate
on a further description of the solution sets, in particular their asymptotes and some
physically relevant properties.

Figure 1 shows a plot of the solution set in the Cases (i) - (iii) of Proposition 3.2. The
vertical axis was rescaled by Hvac in order to show how for any Λ > 0 the respective only
solution at ξ = ξ(±) lies at Hvac, independently of K. More general, note how H(±)/Hvac

from (19) only depends on the ratio Λ
K , that is, the qualitative shape of the solution sets

also only depends on that parameter.
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√
2880

ξ

H√
K

Figure 2: The curves H/
√
K as a function of

ξ with different values of Λ
K < 0 (Case (iv) of

Proposition 3.2). The thick curve shows the
Λ = 0 case, whereas the other black curves
show the curves for

Λ

K
∈ {-2160, -8649, -34560, -138240, -552960},

as from bottom to top. For reference, the
gray curve shows a positive-Lambda curve with
Λ
K = 2025 (Case (iii)). The vertical dotted
lines mark the same distinguished ξ-values as
before. Note the similarity of the Λ = 0-curve
with the respective graphic for the ‘tow-in’
states in [21].

Figure 2 shows the solution sets for Case (iv) of Proposition 3.2. The horizontal axis
remains as in Figure 1, but the vertical axis is now rescaled by

√
κ. The thick curve marks

the boundary case Λ = 0, whereas the thin curves mark some solution curves for larger
and larger negative Λ

K . The gray curve marks one solution set for parameters obeying
Case (ii) in Proposition 3.2 for reference. Note how the shape of the H(+)-branch of
solutions is rather unaffected by Λ changing from positive to negative and the boundary
case Λ = 0 is (in a suitable sense) continuously embedded.

On the one hand, for Λ > 0 the solution set has the asymptote H = 0 as ξ →∞ which
to leading order is given by

H(−)(ξ) =

(
8K

Λ

)1/4 1√
ξ

+O(ξ−3/2)

in said limit. In particular, the stronger a scalar field couples to the metric’s curvature
the more it compensates the effect of a fixed positive value Λ > 0 to yield classical ‘Dark
Energy’ solutions with Hvac.

On the other hand we have, for any value of Λ, the asymptotes ξ = ξ(±) and H diverges
as ξ approaches ξ(−) from above or as ξ approaches ξ(+) from below, respectively. In
particular, by tuning the parameter ξ around said values, one obtains arbitrarily large
values of H to yield a de Sitter solution of the SCE. As noted above, for positive Λ,
there exists a second (continuous) solution branch around these ξ-values defined by H(−)

which in particular fulfills H(−)(ξ(±)) = Hvac. This observation suggest referring to the
lower solution branch (around Hvac) to the (semi)classical solution branch in the sense
of a classical solution plus quantum corrections, which exists if and only if the classical
solution exists. Moreover, this observation suggest referring to the upper (divergent)
solution branch as quantum solution branch in the sense that they exist independently
of the presence of the classical solution (i.e. for all Λ) and that they have no classical
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analog. Note that while the classical and quantum solution branches are clearly separated
whenever Λ

K < 2160 (Cases (ii) and (iv)), they degenerate in ξcc for Λ
K = 2160 (Case

(iii)) and even annihilate each other around ξcc if Λ
K > 2160 (Case (i)). However, around

the values ξ(±) the separation remain valid in all cases. We will pick up these solutions
branches in the discussion of Section 7.

Related results have been observed in the literature: The solutions at ξ = ξ(±), namely
H = Hvac, were previously found in [29] together with the fact that H = Hvac is a solution
only for the aforementioned ξ-values. On the other hand, de Sitter solutions at ξ = ξcc

were found before by many authors employing a variety of states or approximations
of states. For example, Starobinski [44] found what we called “quantum solution” for
ξ = ξcc using the Bunch-Davies state (synonymously referring to it as “de Sitter state”).
Moreover, the authors of [11] found the analogs of both what we called the quantum
and the classical solution using approximate KMS states. At third, in [21] the authors
of the present work found the quantum solution using massless Minkowski-like vacuum
states (i.e. states with M = 0), and by introducing a positive cosmological constant also
the classical solution would appear (cf. Remark 3.1.(iii)). Note that for a conformally
coupled field, however, the state merely contributes geometric terms, hence the precise
choice of a (Hadamard) state does not matter. How the two regimes around ξ(±) and ξcc

in turn are connected was, to the authors’ knowledge, not observed before.

4. The solution set of de Sitter solutions for the massive field

In this section we also consider the energy equation (16) as a consistency constraint
on points (ξ,H) ∈ R × (0,∞) with parameters m, K, Λ, µ, d1 and d2. In contrast
to the previous section this consistency equation is no more an explicitly solvable
polynomial equation and one major task is the treatment of the incomparably more
complicated dependency of the energy density

〈
T ren

00

〉
ω

on the parameters via the Bunch-
Davies moments (15). We also remark that negative values for ξ are allowed as long as
m2 + 12ξH2 > 0 (cf. Section 2.2).

At first we reformulate the consistency equation (16) into a shape tailored to the
massive case. In particular we identify two (effective) parameters e1 and e2 which
influence the shape of the solution set in the (ξ,H)-plane and we point out how the
remaining parameters merely rescale the solution set in said plane.

As a next step, in analogy to Proposition 3.2, we prove how the solution set in the
(ξ,H)-plane can be parameterized by analytic curves and how each such curve must hit
the boundary of admissible (ξ,H)-points at both ends. Partial results are outsourced to
Subsections 4.1, 4.2 and 4.3. The asymptotics of the solution set, particularly how many
curves constitute the solution set, will be analyzed in the next section, Section 5.

In order to simplify the consistency equation (16), denote

f : (0,∞)→ R, x 7→ ψ(0)
(

3
2 −

√
9
4 − x

)
+ ψ(0)

(
3
2 +

√
9
4 − x

)
. (21)

A plot of f on the relevant domain is shown in Figure 3.(i) below and a few useful

17



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

properties of it are listed in Appendix A. By introducing a shifted curvature coupling

x = 12ξ +
m2

H2
(22)

(note how the field equation reads (�+xH2)φ = 0 ), we can rewrite the Digamma function
terms occurring in the consistency equation (16) into ψ(0)(3

2 − ν) + ψ(0)(3
2 + ν) = f(x).

Moreover, regarding (16) as an equation for x instead of ξ simplifies the domain of our
problem to such (x,H)-points where both x > 0 and H > 0. Therefore we note that
x > 0 is equivalent to the positivity of the effective de Sitter mass xH2 = m2 + 12ξH2,
and hence equivalent to the existence of the unique O(4, 1)-invariant Bunch-Davies state
on the de Sitter space-time encoded by H, cf. [1].

We recall that changes in the length scale µ can be absorbed into the renormalization
constants d1 and d2. Hence, we eliminate the parameters m2 and µ by setting µ = m
and rewriting the energy equation in terms of h = H

m .
Finally, we define new parameters

e1 = 960
(
d1 +

ΛK

m4

)
− 15

2 and e2 = 960
(
d2 − 3

K

m2

)
(23)

and note that e1 and e2 are still linear transformations of the original renormalization
freedoms c1 and c2, respectively. In particular, they can be arbitrary real numbers.

Using all the above simplifications, we rewrite the consistency equation (16) into

F (x, h) = 0 (24)

with the functions F, F1, F2 : (0,∞)× (0,∞)→ R,

F1(x, h) =
(x2

4
− x+

29

30

)
h2 −

(x
2

+
e2

30
− 1
)
− e1

30

1

h2

=
(x

2
− 1
)2
h2 −

(x
2
− 1
)
− 1

30h2

(
h4 + e2h

2 + e1

)

=
h2

4
x2 −

(
h2 +

1

2

)
x+

29h2

30
− e2

30
− e1

30h2
+ 1,

F2(x, h) = 2 log(h) + f(x),

F (x, h) = F1(x, h)−
(
x
2 − 1

)
F2(x, h).

Due to the analyticity of f discussed in Appendix A, we have that F, F1, F2 are analytic.
We introduce the distinguished x-values

x(±) := 2±
√

2

15

and note that x(ξ(±)) = 12ξ(±) + 1
h2
→ x(±) in the limit h → ∞, that is, in said limit

these distinguished x-values correspond to the ξ-values distinguished in the massless case,
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Section 3.
In the following we study solutions of (24). Denote the analytic variety of solutions by

Se1,e2 :=
{

(x, h) ∈ (0,∞)× (0,∞)
∣∣F (x, h) = 0 for the parameters e1, e2

}

⊂ (0,∞)× (0,∞) .

Moreover, inspired by graph theory we introduce the following notion. Note that,
whenever we speak of a connected set we mean a path-connected set, that is, a set such
that any pair of points from that set is connected by a continuous curve contained in
that set.

Definition 4.1. A subset S ⊂ (0,∞) × (0,∞) is called tree-like if it is connected and
for each s ∈ S the set S\{s} is disconnected with finitely many connected components.

The following theorem characterizes the analytic variety Se1,e2 . Note again how,
compared to the massless case, the occurrence of the function f prevents a simple, closed
expression for solutions in Se1,e2 and we approach the equation using certain properties
of f such as its analyticity, its asymptotic behavior or certain bounds on its derivatives.

Theorem 4.2. Let e1, e2 ∈ R. The analytic variety Se1,e2 can be parameterized by finitely
many inextendible analytic curves. Any such curve

γ = (γ(x), γ(h)) : I → (0,∞)× (0,∞)

defined on an open I ⊂ R fulfills

γ(x)(t)→ 0, γ(x)(t)→∞, γ(h)(t)→ 0 or γ(h)(t)→∞

whenever t approaches inf I or sup I. Moreover, Se1,e2 is the disjoint union of tree-like
subsets.

Remark 4.3. (i) Note that by the proposed limits we state that any piece of solution
curve is analytically continuable until it runs into the “boundary” of the domain
(0,∞)× (0,∞) of F . In other words, any inextendible curve leaves any compact
subset of (0,∞) × (0,∞), in particular, Se1,e2 can have no compact connected
component. Hence, all solutions can be found by studying the asymptotics of F in
the limits x→ 0, x→∞, h→ 0 and h→∞ and continuing the arising solution
curves. The asymptotic analysis of F is postponed to Section 5.

(ii) In the present section we skip the proof that there are at most finitely many solution
curves as in the theorem. In Section 5, whenever we use Theorem 4.2, we do not
need this particular assertion. In the end, it will follow from the analysis in that
section.

The proof is based on the following lemmas.

Lemma 4.4. Let e1, e2 ∈ R. For any s ∈ Se1,e2 there exist an open neighborhood U 3 s
(open in (0,∞)× (0,∞)) such that U ∩ Se1,e2 can be regularly parameterized by one or
two analytic curves I → (0,∞)× (0,∞).
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Proof. Let s ∈ Se1,e2 ⊂ (0,∞)× (0,∞), then either ∇F (s) 6= 0 or ∇F (s) = 0.
In the first case an open neighborhood U and one (unique) curve as in the lemma are

provided by the implicit function theorem in its analytic version.
In the second case ∇F (s) = 0 we conclude from the results of Section 4.3 that HessF (s)

is indefinite and Lemma B.1 (cf. also Remark B.2) provides an open neighborhood U
and precisely two curves as in the lemma.

Note that both the implicit function theorem and Lemma B.1 represent the solution
curves in a way such that |γ′| can be uniformly bounded away from zero, imposing that
all curves are regularly parameterizable.

Lemma 4.5. Let e1, e2 ∈ R. Se1,e2 is closed in (0,∞)× (0,∞).

Proof. Se1,e2 is the zero set of a continuous function.

Lemma 4.6. Let e1, e2 ∈ R and suppose that γ : I → Se1,e2 is an inextendible, regularly
parameterized analytic solution curve. Then γ is injective.

Proof. Suppose γ is not injective, then there exist a, b ∈ I, a < b, such that γ(a) = γ(b)
and γ is continuous on [a, b] and analytic on (a, b) 6= ∅.

We first study the case ∇F (γ(a)) = 0. Let U be the open neighborhood of γ(a)
provided by Lemma 4.4. Moreover, let ηj : (−δ, δ)→ U , j ∈ {1, 2}, δ > 0, be the regular
parameterizations of U ∩Se1,e2 from the aforementioned lemma with η1(0) = η2(0) = γ(a).
Note that, if necessary, we can regularly reparameterize them to be defined on the same
symmetric interval (−δ, δ).
γ is a continuous curve with γ′(a) 6= 0. Thus we can assume that U is small enough

such that γ takes at least one value outside U . Consequently, there exists ε > 0 such
that γ

∣∣
[a,a+ε)

coincides with precisely one of the four solution branches

η1

∣∣
[0,δ)

, η1

∣∣
(−δ,0]

, η2

∣∣
[0,δ)

or η2

∣∣
(−δ,0]

, (25)

up to reparameterization. W.l.o.g. we can label the ηi’s such that γ
∣∣
[a,a+ε)

coincides with

η1

∣∣
[0,δ)

. In particular, we can assume that γ(t) 6= γ(a) for all t ∈ (a, b), otherwise we

replace b by the smallest such point. Therefore note that, since γ
∣∣
[a,a+ε)

coincides with

η1

∣∣
[0,δ)

, such points t with γ(t) = γ(a) do not accumulate in a.

By the same argument as above, there exists ε̃ > 0 such that γ
∣∣
(b−ε̃,b] coincides with

one of the four solution branches in (25). We go through the cases.
In the first case the curves γ

∣∣
[a,a+ε)

and γ
∣∣
(b−ε̃,b] coincide, up to reparameterization.

Explicitly, there exist an analytic reparameterization θ : (a, a + ε) → (b − ε̃, b) which,
by γ(a) = γ(b), is monotonously decreasing. Moreover, γ

∣∣
(a,b)

represents an analytic

continuation of both γ
∣∣
(a,a+ε)

and γ
∣∣
(b−ε̃,b), hence the analytic reparameterization θ can

be continued to a monotonously decreasing reparameterization θ̂ : (a, b)→ (a, b). Such a
map has a fixed point t0 ∈ (a, b), θ̂(t0) = t0, in which

γ′(t0) = θ̂′(t0) · γ′
(
θ̂(t0)

)
= θ̂′(t0) · γ′(t0)
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holds. θ̂′(t0) < 0 implies γ′(t0) = 0 yielding a contradiction to γ being regular.
In the other three cases of (25), that is, γ

∣∣
[a,a+ε)

coincides with η1

∣∣
(−δ,0]

, η2

∣∣
[0,δ)

or

η2

∣∣
(−δ,0]

up to reparameterization, we can make U and δ smaller, such that Se1,e2 ∩ ∂U
consists precisely of the four points

{
η1(δ) = γ(a+ ε) , η1(−δ) , η2(δ) , η2(−δ)

}
= Se1,e2 ∩ ∂U.

In particular, γ(t) /∈ U = U ∪ ∂U for all t ∈ (a+ ε, b− ε̃) and γ(b− ε̃) ∈ {η1(−δ) , η2(δ) ,
η2(−δ)}. Thereby we obtain two distinct continuous curves from γ(a + ε) to γ(b − ε̃),
one going through U passing γ(0) via γ

∣∣
[a,a+ε]

and γ
∣∣
[b−ε̃,b] and the other outside of U

along γ
∣∣
[a+ε,b−ε̃]. By concatenating them we obtain a closed continuous curve along

which F vanishes and which encloses at least one point in which F does not vanish,
say s0 ∈ U with F (s0) 6= 0. Thereby, the continuous curve in construction encloses
s0’s whole connected component of non-zeros of F , hence this connected component’s
closure is a compact subset of (0,∞)× (0,∞). The existence of such a set is excluded in
Proposition 4.23.

Concluding, if ∇F
(
γ(a)

)
= 0, any of the above possibility yields a contradiction. If, on

the other hand, ∇F
(
γ(a)

)
6= 0 the analytic implicit function theorem provides us an open

neighborhood U and a single curve η : (−δ, δ)→ U to regularly parameterize U ∩ Se1,e2 .
Replacing (25) by the two branches η

∣∣
[0,δ)

and η
∣∣
(−δ,0]

these cases imply contradictions

by same arguments as above.

Lemma 4.7. Let e1, e2 ∈ R and let

γ =
(
γ(x), γ(h)

)
: (a, b]→ Se1,e2

be continuous and analytic on (a, b). Moreover, suppose that γ is regularly parameterized,
i.e. γ′(t) 6= 0 for all t ∈ (a, b). Then either

γ(x)(t)→ 0, γ(x)(t)→∞, γ(h)(t)→ 0 or γ(h)(t)→∞

as t→ a or the limit lim
t→a

γ(t) exists in (0,∞)× (0,∞). Consequently, in the latter case

γ is continuously extendible to [a, b].

Proof. At first, suppose that none of the limits in the lemma holds true, that is, there exists
x1, x2, h1, h2 ∈ (0,∞) such that arbitrarily close to a, γ takes a value in [x1, x2]× [h1, h2].
More precisely, we find a sequence (an)n∈N in (a, b] with an → a as n → ∞ and
sn := γ(an) ∈ [x1, x2]× [h1, h2] for all n ∈ N. [x1, x2]× [h1, h2] is compact, thus (sn)n∈N
accumulates in some ŝ ∈ [x1, x2]× [h1, h2].

Now let (an)n∈N be an arbitrary sequence in (a, b] with an → a as n→∞ and denote
sn = γ(an), n ∈ N. Suppose (sn) has an accumulation point ŝ ∈ (0,∞) × (0,∞), but
does not converge to ŝ.

In the following we will pass to a subsequence of (an)n∈N several times, but we will
not give them a new label each time.
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By possibly passing to a subsequence, we can find an open neighborhood U ⊂ (0,∞)×
(0,∞) of ŝ such that s2n → ŝ as n → ∞ and s2n+1 /∈ U for all n. Moreover, we can
achieve that the limit an → a is strictly monotonous.

Note that, since sn ∈ Se1,e2 and Se1,e2 is closed (Lemma 4.5), also ŝ ∈ Se1,e2 , that
is, F (ŝ) = 0. By Lemma 4.4 and possibly making U smaller we find that U ∩ Se1,e2
is parameterized by one regular curve η : (−δ, δ) → U with η(0) = ŝ (in the case
∇F (ŝ) 6= 0) or by two curves ηi : (−δ, δ)→ U , i ∈ {1, 2} (in the case ∇F (ŝ) = 0) with
η1(0) = η2(0) = ŝ.

By possibly passing to a subsequence again we can achieve that s2n ∈ U for all n
and that still s2n → ŝ and s2n+1 /∈ U for all n. Hence, all (s2n)n∈N are contained in
the range of η or in the ranges of η1 and η2, respectively, according to the cases of
∇F (ŝ) = 0 or ∇F (ŝ) 6= 0. In the case of ∇F (ŝ) = 0, the range of at least one of η1 and
η2 contains infinitely many of the (s2n)n∈N and, by relabeling the ηi and possibly passing
to a subsequence again, we can achieve that all of the (s2n)n∈N are contained in the range
of η := η1.

Then there exists a sequence (cn)n∈N such that η(cn) = s2n = γ(a2n). Moreover, since
both γ and η are regularly parameterized analytic curves, there exist positive sequences

(ε
(−)
2n )n∈N and (ε

(+)
2n )n∈N such that for all n the curves

γ
∣∣
(a2n−ε(−)

2n ,a2n+ε
(+)
2n )

and η

coincide, up to reparameterization. Since U does not contain any s2n+1 and since an → a
monotonously, on each interval (a2n+2, a2n) the curve γ also takes values outside of U ,
namely γ(a2n+1) with a2n+1 ∈ (a2n+2, a2n). Consequently, the intervals

(a2n − ε(−)
2n , a2n + ε

(+)
2n ) with n ∈ N

are pairwise disjoint. But then, for some n ∈ N the curves

γ
∣∣
(a2n−ε(−)

2n ,a2n+ε
(+)
2n )

, γ
∣∣
(a2n+2−ε(−)

2n+2,a2n+2+ε
(+)
2n+2)

and η

have the same range and, in particular, γ is not injective on (a, b). This contradicts
Lemma 4.6.

Concluding, we have shown, that the values γ(t) with t→ a either approach one of
the limits in the lemma, or it accumulates in some ŝ ∈ (0,∞)× (0,∞). Moreover, we
have shown that in the latter case this accumulation point is already a limit.

Corollary 4.8. Let γ : [a, b]→ Se1,e2 be the continuous extension of γ : (a, b]→ Se1,e2
from the previous lemma with γ(a) = lim

t→a
γ(t) ∈ (0,∞)× (0,∞). Then γ is analytically

continuable to (a− ε, b] for some ε > 0.

Proof. Analogously to the proof of Lemma 4.6 we find an open neighborhood U 3 γ(a)
and an analytic curve η : (−δ, δ) → U together with ε̃ > 0 such that γ

∣∣
[a,a+ε̃)

and

η
∣∣
[0,δ)

coincide, up to reparameterization. But then γ can be concatenated with (a
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commensurable reparameterization of) η
∣∣
(−δ,0]

to obtain an analytic continuation of γ

beyond the point γ(a) on some interval (a− ε, b].

Lemma 4.9. Let e1, e2 ∈ R. Each connected component of Se1,e2 is tree-like.

Proof. We adjust the argument of Lemma 4.6.
Let S be a connected component of Se1,e2 . If S is not tree-like, there exists s ∈ S

such that S\{s} is still connected. Let U 3 s be the open neighborhood provided by
Lemma 4.4 and let η : (−δ, δ)→ U be the (if ∇F (s) 6= 0) or one of the two (if ∇F (s) = 0)
corresponding regular parameterization(s) of U ∩ Se1,e2 with η(0) = s. Since the range of
η is connected, η is a map (−δ, δ)→ U ∩ S.

Since S\{s} is still connected, there exists a continuous curve γ : [a, b]→ S\{s} with
γ(a) = η(−δ/2) and γ(b) = η(δ/2). On the other hand, η

∣∣
[−δ/2,δ/2] is a continuous curve in

S connecting γ(a) = η(−δ/2) and γ(b) = η(δ/2) as well, and since γ cannot take the value
s, we have indeed two different continuous curves in S connecting the aforementioned two
points. Hence, by concatenation, we obtain a closed continuous curve in S which, viewed
as curve in (0,∞) × (0,∞), must enclose at least one non-solution (with F (x, h) 6= 0)
and thus its whole connected component of non-solutions. This connected component
cannot exist as we have demonstrated in Lemma 4.23.

With the previous lemmas we can finally conclude Theorem 4.2.

Proof of Theorem 4.2. In Lemma 4.4 we have seen that any solution s ∈ Se1,e2 belongs
to the graph of an analytic curve. In Lemma 4.7 and Corollary 4.8 we have seen that
any such solution curve has an analytic continuation up to one of the four limits in the
theorem (or in Lemma 4.7) is approached, in both the infimum and the supremum of the
domain. Finally, the tree-like structure is proven in Lemma 4.9. We have not shown that
there are only finitely many solution curves. This assertion is postponed to Section 5 (cf.
Remark 4.3).

Remark 4.10. (i) Note that Lemma 4.4 may be viewed as a generalized implicit
function theorem for functions which, like F does, fulfill that whenever F (x, h) = 0
and ∇F (x, h) = 0 for some (x, h), then HessF (x, h) is indefinite. Hence, in the
usual fashion of continuing solution curves provided by the implicit function theorem
until that theorem is no longer applicable, it is already clear from Lemma 4.4 that
Se1,e2 consists of only “infinitely long” solution curves. Note that from Lemma B.1
(in particular the power series representation in Remark B.2) it is easy to see that
common zeros of both F and ∇F cannot accumulate. However, then one is still
burdened with excluding any kind of strange behavior an (even analytic) “infinitely
long” curve can show, such as spiraling into a point (with a non-integrable |γ′|) or
a “topologist’s sine curve”-like behavior (e.g. via x 7→ sin(1/x) ). If one, in the end,
aims to show that any such behavior must be visible in the asymptotics of F , one is
right in the middle of proving Lemma 4.7.

(ii) We have remarked before that the consistency equation is the same for the (non-
pullback) Bunch-Davies state on (the entire) de Sitter space using the stress-energy
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0 x
∣∣ 5 10

-5

y

0
y = f(x)

y = log(x)

y = − 3
x

1 x
∣∣ 10

0.01

y

1

y = ∂3F
∂x3 (x, h)

y = 18
x4

y = 1
2x2

(i) Plot of f and its asymptotics (ii) Plot of ∂3F
∂x3

and its asymptotics

Figure 3: Part (i) shows a plot of the function f together with its asymptotics
as asserted in the text. Part (ii) shows the third derivative of F (·, h) (for any
fixed h) in a double logarithmic plot together with its asymptotics as derived in
Lemma 4.11.

tensor derived in [47]. Here we note that while in the massless case this is straight-
forward, for a positive mass (which particularly does not rule out the renormalization
freedoms) the parameters e1 and e2 need to be defined different from (23).

The remainder of Section 4 collects results that are needed in order to prove Theo-
rem 4.2.

4.1. Counting of solutions

In this section we exploit that a strictly convex/concave function has at most two zeros.
More generally, a smooth function whose n-th derivative has ñ zeros has itself at most
n+ ñ zeros, n, ñ ∈ N0, which is an immediate consequence of the fundamental theorem
of calculus.

Note that an analytic, convex/concave, but not strictly convex/concave function is
already linear on some open set, and thus everywhere. Hence, in the following we suppress
the prefix strictly as any relevant function studied for strict convexity/concavity is both
obviously analytic and obviously not linear.

By these means, we obtain upper bounds on the number of solutions of (24) for fixed h-
and for fixed x-values, respectively. Moreover, we can identify regions in which solution
curves must lie. In particular, we show that Theorem 4.2 is not a theorem treating the
empty set. Note that most assertions in the following lemmas can be read off from the
different representation of F1 in (24) or follow by simple computations.

Lemma 4.11. Let e1, e2 ∈ R.

(i) For any fixed h > 0 the function (0,∞)→ R, x 7→ F (x, h) has at most three zeros.

(ii) For any fixed x > 0 the function (0,∞) → R, h 7→ F (x, h) has at most three
solutions and, depending on e1 (only), this bound can be lowered according to
Table 1.
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x
<
x (−

)

x
=
x (−

)

x (−
)
<
x
<

2

x
=

2

2
<
x
<
x (+

)

x
=
x (+

)

x
>
x (+

)

if e1 > 0: = 1 = 1 ≤ 2 ≤ 2 ≤ 2 ≤ 2 ≤ 3

if e1 = 0: = 1 = 1 ≤ 2 ≤ 1 ≤ 1 = 1 ≤ 2

if e1 < 0: ≤ 2 ≤ 2 ≤ 3 = 1 = 1 = 1 ≤ 2

Table 1: Collection of the respective counts of solutions. Note that the upper
bounds are sharp in the sense that for each entry we can find x and e1 values to
yield the respective amount of h-values to solve F (x, h) = 0. Example plots are
shown in Section 6.

Numerical evidence for (i). Consider the function x 7→ F (x, h) for fixed h > 0. It is
smooth and its third derivative is given by

∂3F

∂x3
(·, h) : (0,∞)→ R, x 7→ −3

2f
′′(x)−

(
x
2 − 1

)
f ′′′(x).

Using the asymptotics of f and its series expansion in the limit x→∞ from Appendix A
we get

∂3F

∂x3
(x, h) ∼ 18

x4
as x→ 0 as well as

∂3F

∂x3
(x, h) ∼ 1

2x2
as x→∞ ,

in particular ∂3F
∂x3

(·, h) is positive on (0, ε) and on (1
ε ,∞) for some ε > 0. Numerical

evidence for positivity on the remaining domain is given in Figure 3.(b), showing a double

logarithmic plot of ∂3F
∂x3

(·, h) together with its proposed small-x- and large-x-asymptotics.

Hence, F (·, h) has at most three solutions. �

Proof of (ii). Consider for any fixed x > 0

h3∂F

∂h
(x, h) = 2

(x2

4
− x+

29

30

)
h4 + (2− x)h2 +

e1

15
(26)

as a function of h. Read as a quadratic polynomial in h2 it has at most two positive
zeros and thus, as a polynomial in h, it has at most two positive zeros as well. Hence,
the same holds for ∂hF (x, ·) and F (x, ·) has at most three zeros by the argument in the
beginning of this section.

Given x < x(−), the RHS of (26), as a polynomial in h2, has precisely one positive
zero if e1 < 0, hence F (x, ·) has at most two zeros in said case. If, on the other hand,
e1 ≥ 0, the RHS of (26) has no positive zero at all and we have at most one zero of
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F (x, ·). Taking into account the limits

lim
h→0

F (x, h) = −∞ and lim
h→∞

F (x, h) = +∞

for e1 ≥ 0 we can, for such e1, replace “at most” by “exactly”.
If x = x(±) the leading coefficient in (26) vanishes. Hence, ∂hF (x(−), ·) has precisely

one zero if e1 < 0 and no zero at all if e1 ≥ 0, implying that F (x(−), ·) has at most two
or at most one zero, respectively. The very same argument can be applied to F (x(+), ·)
by reversing the sign of e1. Taking also into account the limits

lim
h→0

F
(
x(−), h) = −∞ and lim

h→∞
F
(
x(−), h) = +∞ if e1 ≥ 0

as well as

lim
h→0

F
(
x(+), h) = +∞ and lim

h→∞
F
(
x(+), h) = −∞ if e1 ≤ 0

we see that in the latter case “at most” can be replaced by “exactly”.
If x(−) < x < 2 the RHS of (26) has precisely one zero if e1 ≥ 0, implying that F (x, ·)

has at most two zeros.
At x = 2 the RHS of (26) has no positive zero if e1 ≤ 0 and precisely one if e1 > 0.

Consequently, F (2, ·) has at most one or at most two zeros, respectively. Taking, moreover,
into account that

lim
h→0

F (2, h) = +∞ and lim
h→∞

F (2, h) = −∞

for e1 < 0 in this case “at most” can again be replaced by “exactly”.
For 2 < x < x(+) the RHS of (26) has no positive zero if e1 ≤ 0 and precisely one

positive zero if e1 > 0. Consequently, F (x, ·) has at most one or at most two zeros,
respectively. Taking into account the limits

lim
h→0

F (x, h) = +∞ and lim
h→∞

F (x, h) = −∞

for e1 < 0 also here “at most” can be replaced by “exactly”.
Finally, if x > x(+) the RHS of (26) has precisely one positive zero if e1 ≤ 0, allowing

at most two positive zeros for F (x, ·).
This finishes the proof of every entry shown in Table 1.

Note that we will continue to study the zeros of ∂hF (x, ·) at fixed x in the subsequent
section.

Corollary 4.12. The solution set Se1,e2 of F (x, h) = 0 is non-empty for any choice of
renormalization constants e1 and e2.

Proof. For each row of Table 1 we have at least one entry with exactly one solution at
the respective x-value.
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After we have demonstrated how many solutions exist at most if we fix one variable
we can give a more accurate location of the three solutions at a fixed h. Note that the
solutions of F (2, h) = 0 are given by the zeros of the polynomial

p(h) = −30h2F (2, h) = h4 + e2h
2 + e1. (27)

Lemma 4.13. Let e1, e2 ∈ R and suppose that the polynomial function p(h) = h4 +
e2h

2 + e1 has a zero h0. If h0 > exp(γ − 1) ≈ 0.6552 with the Euler-Mascheroni number
γ ≈ 0.5772, then F (x, h0) has at least three solutions x1, x2, x3 ∈ (0,∞) with x1 ∈ (0, 2),
x2 = 2 and x3 ∈ (2,∞).

Proof. The map (0,∞)→ R, x 7→ F (x, h0) fulfills

lim
x→0

F (x, h0) = −∞, lim
x→∞

F (x, h0) = +∞ and F (2, h0) = 0.

Moreover, its derivative in x = 2 fulfills

∂xF (2, h0) = −1

2
− log(h0)− 1

2
f(2) < 0,

where we used that f(2) = 1− 2γ. Consequently, F (·, h0) is positive on an interval of the
form (2− ε, 2) and negative on an interval of the form (2, 2 + ε). In combination with the
limits above, this implies the existence of zeros of F (·, h0) as asserted in the lemma.

Remark 4.14. (i) In combination with Lemma 4.11.(i) the assertion “at least three”
in Lemma 4.13 can be replaced by “exactly three”.

(ii) If in Lemma 4.13 we claim h0 < exp(γ − 1) instead, we still have the solution at
(2, h0), but if two more h = h0-solutions exist at all, they must be either both larger
than 2 or both smaller than 2.

Complementary to Lemma 4.13 concerning zeros of p we find the following lemma
concerning h-values where p(h) 6= 0.

Lemma 4.15. Let h > 0, e1, e2 ∈ R and p(h) = h4 + e2h
2 + e1.

(i) If p(h) > 0, the equation F (x, h) = 0 has at least one solution x ∈ (0, 2).

(ii) If p(h) < 0, the equation F (x, h) = 0 has at least one solution x ∈ (2,∞).

Proof. At x 6= 2 the equation F (x, h) = 0 is equivalent to the function

(0,∞) \ {2} → R, x 7→ F (x, h)
x
2 − 1

having a zero. For this function we observe

lim
x→0

F (x, h)
x
2 − 1

= lim
x→∞

F (x, h)
x
2 − 1

= +∞.
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Moreover, this function has a first order pole at x = 2, and this poles residue has the
opposite sign than the value p(h). Consequently,

lim
x→2
x>2

F (x, h)
x
2 − 1

= −sgn p(h) · ∞ and lim
x→2
x<2

F (x, h)
x
2 − 1

= sgn p(h) · ∞

and the lemma follows.

Remark 4.16. Lemma 4.15 particularly shows that the equation F (x, h) for any fixed
h > 0 has at least one solution for x (recall that F (2, h) = 0 for p(h) = 0).

We postpone a further location of solution curves via the asymptotics of F to Section 5.

4.2. Possible non-h-soluble points

The implicit function theorem (in its analytical version) tells us that, whenever we have a
solution F (x, h) = 0 such that ∇F (x, h) =

(
∂xF (x, h), ∂hF (x, h)

)
6= 0, then there exists

an open neighborhood of (x, h) in which all solutions of F (x, h) = 0 are collected in an
analytic curve. Moreover, any such “piece of solution curve” can be continued either
until it diverges, until it hits the boundary {x = 0} ∪ {h = 0} or until it runs into a point
where ∇F (x, h) = 0.

The present section is dedicated to studying (a necessary condition on) points (x, h)
in which the gradient of F vanishes. Since ∂xF involves derivatives of f in a poorly
manageable combination, we use ∂hF = 0 as a necessary condition. The latter in turn is
(equivalent to) a polynomial equation and is explicitly solvable. Note that by this weaker
criterion we also identify points in which the solution curves “turn around”, i.e. points
where they are not solvable for h, but possibly for x.

Lemma 4.17. Let e1, e2 ∈ R and denote

hmin =

{
0 if e1 ≤ 15/2

(e1 − 15
2 )1/4 if e1 > 15/2

.

(i) The mapping

h 7→ X(e1,±)(h) = 2 + 1
h2
±
√

2
15 + 1

h4

(
1− 2e1

15

)

defines real-valued functions X(e1,±) : (0,∞) ∩ [hmin,∞)→ R.

(ii) Any (x, h) ∈ (0,∞)× (0,∞) with ∇F (x, h) = 0 fulfills x ∈ {X(e1,+)(h), X(e1,−)(h)}.
Proof. Finding the zeros of ∂hF is equivalent to solving the polynomial equation (for x)

0 = x2 −
(

4 +
2

h2

)
x+

58

15
+

4

h2
+

2e1

15h4
(28)

and doing so results in the functions X(e1,±) in the lemma. The domain which yields
real functions is obtained by requiring the radicand to be non-negative. From this both
assertions of the lemma follow immediately.
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0 2 4 6
x(−) x(+)

0

2

4

X(e1,±)(h)

h

x(h) = 2 + 1
h2

(iv)

(vii)

(iv)

Figure 4: The plot shows the curves of
points in the (x, h)-plane in which the
zero set of F is possibly not soluble for
h for different values of e1. Everywhere
else the zero set of F is representable
as the graph of a function h(x). We
picked the following e1-values:

(i) e1 = −100 (vi)∗ e1 = 6
(ii) e1 = −10 (vii) e1 = 15

2
(iii) e1 = −1 (viii)∗ e1 = 9
(iv) e1 = 0 (ix) e1 = 15
(v) e1 = 1 (x) e1 = 100

The dashed curve marks the symmetry
line of conformal coupling, x = 2 + 1

h2
. Any curve fragment above/right to this

symmetry line corresponds to X(e1,+), any fragment below/left to this line corresponds
to X(e1,−). The thick lines mark the distinguished values of e1. The remaining curves
are assigned to the remaining e1-values in a monotonous fashion. For the cases
marked with ∗ we plotted only X(e1,−) to avoid an overload.

A visualization of the graphs of X(e1,±) is given in Figure 4 for a few values of e1. Note
how X(e1,−) becomes negative if e1 < 0, that is, the curve defined by h 7→

(
X(e1,−)(h), h

)

leaves the domain (0,∞)× (0,∞) 3 (x, h) of our model at small h.
We collect a few properties of the functions X(e1,±).

Lemma 4.18. Denote for e1 ∈ R

Me1 = (0,∞)\
(

ranX(e1,+) ∪ ranX(e1,−)

)
⊂ (0,∞).

(i) The functions X(e1,±) admit the asymptotic expansion

X(e1,±)(h) = x(±) +
1

h2
+O

( 1

h4

)

in the limit h→∞.

(ii) If e1 ≤ 15
2 the functions X(e1,±) admit the asymptotic expansion

X(e1,±)(h) =
1±

√
1− 2e1

15

h2
+ 2 +O

(
h2
)

in the limit h → 0. In particular, X(0,−)(h) → 2 as h → 0 and X(0,−)(h) is a
bounded, monotonous function.
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(iii) If e1 < 0 the function X(e1,−) attains its global maximum

max
h>0

(
X(e1,−)(h)

)
= X(e1,−)

((2e21
15 − e1

)1/4)
= 2−

(
15
2 − 225

4e1

)−1/2 ∈ (x(−), 2)

and is unbounded from below. X(e1,+), in turn, is strictly decreasing and bijective as

a function (0,∞)→ (x(+),∞). Consequently, Me1 =
(

2−
(

15
2 − 225

4e1

)−1/2
, x(+)

]
.

(iv) If e1 = 0 the mappings X(0,±) define strictly decreasing, bijective functions

X(0,−) : (0,∞)→ (x(−), 2) and X(0,+) : (0,∞)→ (x(+),∞).

Consequently, M0 = (0, x(−)] ∪ [2, x(+)].

(v) If 0 < e1 ≤ 15
2 the mappings X(0,±) define strictly decreasing, bijective functions

X(0,±) : (0,∞)→ (x(±),∞).

Consequently, Me1 = (0, x(−)].

(vi) If e1 >
15
2 both functions X(e1,±) are bounded on their domains [hmin,∞). X(e1,−) is

bounded from below by its infimum x(−) and pointwise bounded by X(e1,+). X(e1,+),
in turn, attains its global maximum

max
h>0

(
X(e1,+)(h)

)
= X(e1,+)

((2e21
15 − e1

)1/4)
= 2 +

(
15
2 − 225

4e1

)−1/2 ∈ (x(+),∞).

Consequently, Me1 = (0, x(−)] ∪
(
2 +

(
15
2 − 225

4e1

)−1/2
,∞
)

We skip the proof since any of the assertions can be obtained by straightforward
computations.

Remark 4.19. Note that the implicit function theorem provides us around any x0 ∈Me1

with F (x0, h) = 0 an analytic curve of the form x 7→
(
x, h(x)

)
defined on a neighborhood

U 3 x0. Up to the possibility that h(x)→ 0 or h(x)→∞ if x approaches the boundary
of U , such a solution curve can even be extended to the whole connection component of
Me1 containing x0. We will continue to study these possibilities in Section 5 using the
asymptotics of F .

4.3. Non-existence of local extrema

In the previous section we have located where the solution set of F (x, h) = 0 is potentially
not locally soluble for h. In the present section we show that F has no local extrema. More
precisely, we show that at any critical point at which∇F (h, x) =

(
∂xF (x, h), ∂hF (x, h)

)
=

0 the function F has a saddle. This is equivalent to the fact that det(HessF ) < 0 in all
critical points, where HessF denotes the Hessian matrix of F . To show this, we define
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the analytic functions

Y(e1,±) : Dom
(
X(e1,±)

)
→ R,

h 7→ ∂2F

∂h2

(
X(e1,±)(h), h

)
· ∂

2F

∂x2

(
X(e1,±)(h), h

)
−
( ∂2F

∂h∂x

(
X(e1,±)(h), h

))2
(29)

=
[1

2

(
X(e1,±)(h)− 2 +

1

h2

)2
− 1

2h4
− e1

5h4
− 1

15

]

·
[h2

2
− f ′ ◦X(e1,±)(h)−

(1

2
X(e1,±)(h)− 1

)
· f ′′ ◦X(e1,±)(h)

]

−
[(
X(e1,±)(h)− 2

)
h− 1

h

]2

on the (possibly e1-dependent) maximal domains of X(e1,±). We study the functions
Y(e1,±) in terms of their asymptotics and by numerical means to show that they are
mostly negative, and if not, then ∂xF (h,X(e1,±)(h)) 6= 0 and thus the point in question
is not critical.

Lemma 4.20. Let e1 ∈ R.

(i) Y(e1,±)(h) < 0 for sufficiently large h.

(ii) If e1 <
15
2 , then Y(e1,+)(h) < 0 for sufficiently small h > 0.

(iii) If e1 ∈ [0, 15
2 ], then Y(e1,−)(h) < 0 for sufficiently small h > 0.

(iv) For e1 < 0 denote hcrit =
((

(15
29)2 − e1

29

)1/2 − 15
29

)1/2
. Then X(e1,−) is positive on

(hcrit,∞) and there exists ε > 0 such that Y(e1,−) is negative on (hcrit, hcrit + ε).

Proof. By Lemma 4.18.(i) we have X(e1,±)(h)→ x(±) as h→∞ and since f is smooth
(i.e. f ′ and f ′′ are continuous) we can read off from (29) that Y(e1,±) → −∞ as h→∞.
More precisely, identifying the dominant terms we find

1

h2
Y(e1,±)(h)→ − 2

15
as h→∞.

This proves (i).
In order to show (ii), recall from Section 4.2 that both X(e1,+) for e1 <

15
2 and X(e1,+)

for e1 ∈ (0, 15
2 ) are defined on (0,∞) and that X(e1,±)(h)→ +∞ as h→ 0 for the given

respective e1-values. Expanding each occurrence of X(e1,±) in Y(e1,±) from (29) to a
sufficiently high order in h we find that

Y(e1,±)(h) ∈ − 2(1− 2e1
15 )

15
(
1±

√
1− 2e1

15

)2h
2 +O(h3).

Note that the functions z 7→ z
(1±√z )2

are positive for the relevant domains. This proves

(ii) and, moreover, (iii) for e1 ∈ (0, 15
2 ).
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Recall that X( 15
2
,±)(h) = x(±) + 1

h2
for h > 0. By an expansion to sufficiently high

order we find that

Y( 15
2
,±)(h) ∈

(
− 8

225
± 16

√
30

1575

)
h6 +O(h7) . (30)

In particular, the leading order term in h of Y( 15
2
,−)(h) is negative, proving (iii) for

e1 = 15
2 .

In order to complete (iii) note that X(0,−) is defined on all of (0,∞), but now approaches
the limit X(0,−)(h)→ 2 as h→ 0. Hence we obtain

h2 Y(0,−)(h)→ −1

in said limit, showing (iii) for e1 = 0.
Finally, if e1 < 0, the function X(e1,−) is positive only if we restrict it to (hcrit,∞). In

particular, we have X(e1,−)(h)→ 0 as h→ hcrit. Expanding the respective occurrences
of f and its derivatives to sufficient high order in x (cf. Appendix A) we find

lim
h→hcrit

∂2F

∂h2

(
X(e1,−)(h), h

)
=

29

15
− 2

h2
crit

− e1

5h4
crit

> 0.

Note that inserting hcrit as defined in the lemma the positivity of the latter expression is
to be seen in a straightforward computation. Moreover, we find that

∂2F

∂x2

(
X(e1,−)(h), h

)
=
h2

2
− f ′ ◦X(e1,−)(h)−

(1

2
X(e1,−)(h)− 1

)
f ′′ ◦X(e1,−)(h) → −∞,

as h→ hcrit, where for the limit we note that f ′(x)→ +∞ and f ′′(x)→ −∞ as x→ 0.
At last,

lim
h→hcrit

∂2F

∂h∂x

(
X(e1,−)(h), h

)
= −2hcrit −

1

hcrit
,

in particular, this limit exists. Together these three limits imply Y(e1,−)(h) → −∞ as
h→ hcrit, proving (iv).

Remark 4.21. (i) Note that Y( 15
2
,+) is not considered for small h in the lemma. Indeed,

due to − 8
225 + 16

√
30

1575 > 0, cf. (30), a claim for Y( 15
2
,+) similar to parts (ii) or (iii)

of the lemma is false.

(ii) If e1 >
15
2 , both X(e1,±) are defined on

[
(e1 − 15

2 )1/4,∞
)

and bounded, hence Y(e1,±)

possesses a limit as h→ (e1− 15
2 )1/4 and there is no need to determine an asymptotic

behavior.

Lemma 4.22. Let e1 ∈ R. For all h > 0, either Y(e1,+)(h) < 0 or ∂xF
(
X(e1,+)(h), h

)
6= 0.

Numerical evidence. In Figures 5.(i)-(iii) we show the functions (h, e1) 7→ Y(e1,±)(h)
in terms of their level sets, where (iii) is a zoom into (i). Note that we can observe
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(i) (h, e1) 7→ Y(e1,+)(h)
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(ii) (h, e1) 7→ Y(e1,−)(h)

X(e1,+) not defined

0
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(iii) (h, e1) 7→ Y(e1,+)(h)

X(e1,+) not defined

Y(e1,+) = 0
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(iv) (h, e1) 7→ ∂xF
(
X(e1,+)(h), h

)

Figure 5: The graphics (i)-(iii) show the level sets and particularly the zero
sets (if non-empty as thick lines) of the functions Y(e1,±) in dependence of both
e1 and h, where (iii) is a zoom into (i) at specific values. (iv) shows the level sets
of ∂xF along the graph of X(e1,+), again in dependence of e1 and h in the region
where Y(e1,+) takes non-negative values. While we chose a logarithmic scaling
for the horizontal axes, the vertical axes are rescaled by a 3rd-order polynomial
which is approximately linear around the distinguished values {0, 15

2 } 3 e1, but
strongly compresses on the ends of large absolute values. The dotted gray lines
in (i) and (iv) mark the zero set of the respective other graphic for orientation.
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all analytical assertions of Lemma 4.20. Figure 5.(iv) shows the function (h, e1) 7→
∂xF

(
X(e1,+)(h), h

)
in terms of its level sets.

Observing that all the asymptotic assertions of Lemma 4.20 are already visible in
Figure 5, we have no doubt that Y(e1,−) is negative wherever it is defined and that the
zeros of Y(e1,+) and ∂xF (X(e1,+)(·), ·) are widely separated by a considerable margin in

the (e1, h)-plane. Thus we conclude the lemma from numerical evidence. �

To this end, F cannot have a local maximum. As a consequence we obtain the following
useful lemma.

Proposition 4.23. The open set

M =
{

(x, h) ∈ (0,∞)× (0,∞)
∣∣F (x, h) 6= 0

}
⊂ (0,∞)× (0,∞)

of non-solutions to the massive consistency equation F (x, h) = 0 possesses no (non-empty)
connected component whose closure (w.r.t. R2) is a compact subset of (0,∞)× (0,∞).

Proof. Suppose the contrary assertion holds, that is, let N be a connected component of
M such that N ⊂ (0,∞)× (0,∞) is compact (in R2). As a connected component of the
open set M , N is itself open, hence N = N ∪ ∂N is a disjoint union. On the other hand,
∂N ⊂ (0,∞) × (0,∞), that is, F is defined on ∂N with F

∣∣
∂N

= 0. Finally, F attains

both maximum and minimum on the compact set N and assuming that N is non-empty
we have either maxF

∣∣
N
> 0 or minF

∣∣
N
< 0. In both cases, F necessarily has a local

extremum in N which contradicts Lemma 4.22.

5. Asymptotic behavior of the solution set

After we have determined the structure of the solution set to F (x, h) = 0 in Theorem 4.2,
the present section addresses the identification of asymptotic solution curves. Under an
asymptotic solution curve we understand a curve which in a certain region of large or
small x or h approximates an actual solution curve to a sufficiently high order. Hereby,
sufficiently high means that by this approximation we can isolate solution curves in order
to count them. Below we will be more precise about this notion.

By the results of the previous section each solution curve must eventually terminate
in such an asymptotic solution curve. Conversely, since there can be no additional
compact connected components of solutions we find by continuing the solution curves
in the asymptotic regimes already all solution curves constituting the solution set of
F (x, h) = 0.

Denote for i ∈ {0,−1}

βi := −15

2
Wi

(
−e−2

)2 − 15Wi

(
−e−2

)
, (31)

where W0 is the principal branch of the Lambert-W -function and W-1 is the (-1)-st
subprincipal branch. Numerically, β0 ≈ 2.1903 and β-1 ≈ −27.046. The Lambert-W -
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function’s branches are the piecewise inverses of the map R→ R, t 7→ tet and occur in
the asymptotic behavior of F (x, h) at large x.

We introduce the following manner of speaking in order to characterize the asymptotic
behavior of Se1,e2 .

Definition 5.1. An asymptotic solution curve γ : I → (0,∞)× (0,∞) in some limit

x→ 0, x→∞, h→ 0 or h→∞ (32)

(or a combination of these limits) is a curve for which at least one of the limits (32)
holds and which approximates one curve constituting Se1,e2 (according to Theorem 4.2)
to sufficiently high order.

Remark 5.2. (i) Note that F does not necessarily vanish along an asymptotic solution
curve, that is, an asymptotic solution curve is not a solution curve in the sense of
Section 4.

(ii) We intentionally kept the approximation order of an asymptotic solution curve
vague in the previous definition. What is a sufficient order depends on the different
regimes, in particular, whether the graph of h 7→

(
X(e1,±)(h), h

)
(cf. Section 4.18)

comes amiss in the respective regime.

For example, at small x we can show for any parameter setting that the graph of
h 7→

(
X(e1,±)(h), h

)
is bounded away from Se1,e2 and a rather low order suffices.

On the other hand, at large x there are up to three solution curves in Se1,e2, all
approximated by x 7→

(
x, α/

√
x
)

for some values of α > 0, and, moreover, the graphs
of h 7→

(
X(e1,±)(h), h

)
are (for some e1) approximated by such curves as well.

Hence, in the latter regime, we need to determine the solution curve’s asymptotics
to a higher order such that we can separate them both among each other and from
the graphs of h 7→

(
X(e1,±)(h), h

)
.

Note that we will mostly express an approximation order employing the Landau-
function classes O(·) and O(·).

Theorem 5.3. Let e1, e2 ∈ R. The solution set Se1,e2 of the massive consistency equation
F (x, h) = 0 in (24) can be parameterized by three analytic curves in the cases

e1 ∈ (β-1, β0), e1 = β-1 and e2 ≥ −10 or e1 = β0 and e2 ≤ −10 (33)

and by two analytic curves otherwise. More detailed, we have:

(i) Three asymptotic solution curves at large h defined by the lines of constant x ∈
{0, x(−), x(+)}. Each of them approximates an analytic solution curve which can
be represented as the graph of an analytic function x 7→ h(x) on an interval of
the form (0, ε), (x(−), x(−) + ε) or (x(+), x(+) + ε) (for a sufficiently small ε > 0),
respectively, and h(x)→∞ as x→ 0, x→ x(−) or x→ x(+).

(ii) One asymptotic solution curve at small h in the following cases.
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(a) If e1 < 0, the line of constant x = 0 approximates an analytic solution curve
which is representable as the graph of an analytic function x 7→ h(x) defined on
an interval of the form (0, ε) (for some sufficiently small ε > 0) with h(x)→ 0
as x→ 0.

(b) If e1 = 0 and e2 < 0, the line of constant h = 0 approximates an analytic
solution curve which is representable as the graph of an analytic function
x 7→ h(x) defined on an interval of the form (2− ε, 2) (for some sufficiently
small ε > 0) with h(x)→ 0 as x→ 2.

(c) If e1 = e2 = 0, the line of constant x = 2 approximates an analytic solution
curve which is representable as the graph of an analytic function x 7→ h(x)
defined on an interval of the form (2, 2 + ε) (for some sufficiently small ε > 0)
with h(x)→ 0 as x→ 2.

(d) If e1 = 0 and e2 > 0, the line of constant h = 0 approximates an analytic
solution curve which is representable as the graph of an analytic function
x 7→ h(x) defined on an interval of the form (2, 2 + ε) (for some sufficiently
small ε > 0) with h(x)→ 0 as x→ 2.

(e) If e1 > 0, the map

γα : (x0,∞)→ (0,∞)× (0,∞), x 7→
(
x , α√

x

)
(34)

for an appropriate α > 0 and some x0 > 0 approximates an analytic solution
curve at large x which is also representable as the graph of an analytic function
x 7→ h(x) defined on (x0,∞) with

h(x) ∈ α√
x

+ O(x−1/2) (35)

as x→∞.

(iii) In the cases (33) there are two additional analytic solution curves which are ap-
proximated at large x by γα from (34) with appropriate (not necessarily different)
values of α. Also these solution curves are representable as in Case (ii).(e) with
approximation of the form (35).

Consequently, these six (in the cases (33)) or four (otherwise) curves can be extended
according to Theorem 4.2 in order to connect into three or two analytic curves, respectively,
in a tree-like manner.

Proof. The presence of the solution curves and their asymptotics in the theorem are
studied in Sections 5.1, 5.2 and 5.3, treating separately the regimes of large x, of
small x and of x-values in between, respectively. The remaining assertions follow from
Theorem 4.2.

We will, moreover, distinguish cases where there exist solutions at conformal and
minimal coupling in Section 5.4 as follows.
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Proposition 5.4. In general, there are at most two solutions of the consistency equation
(24) with minimal coupling ξ = 0 and at most three solutions with conformal coupling
ξ = 1

6 . In dependence of the parameters e1 and e2 these bounds can be lowered.

Proof. This proposition immediately follows from the findings of Section 5.4.

This analysis allows to locate the solution curves more accurately and in some cases
even shows which of the four or six solution curves in the asymptotics are analytically
continuable to one another. For example, suppose we have found two solution curves in
the asymptotics for which ξ < 1

6 holds and two such curves with ξ > 1
6 for parameters

at which there are no solutions with conformal coupling ξ = 1
6 . Then we can already

conclude that the two curves with ξ < 1
6 analytically extend into one another and,

analogously, the other two curves extend into one another as well. Note that, however,
the analysis of the particular ξ ∈ {0, 1

6}-cases is not carried out into every last possible
detail and the results should rather be viewed as a rough localization (in some cases) of
the solution subvarieties which constitute the solution set Se1,e2 in the ambient plane
(0,∞)× (0,∞).

5.1. Asymptotics at large x

In the present section we study the asymptotics at large x in the following lemmas. At
first, we prove a quite obvious lemma which will be refined afterwards.

Lemma 5.5. There exists (x0, h0) ∈ (0,∞)× (0,∞) such that F is strictly positive on
(x0,∞)× (h0,∞). Consequently, any solution of F (x, h) = 0 lies in the union of stripes
(0, x0)× (0,∞) ∪ (0,∞)× (0, h0).

Proof. This lemma simply follows by noting that for large x and for values of h which
are bounded away from 0 the term h2x2

2 in F1 (cf. (24)) is dominant for F .

For small h, the situation is more complicated as there are multiple competing terms
in F . We study this limit by evaluating F along the curves

γα : (0,∞)→ (0,∞)× (0,∞), x 7→
(
x , α√

x

)
, α > 0. (36)

Alternatively, studying F on these curves may be viewed as a reparameterization of
(0,∞)× (0,∞) into the coordinates (x, α). If we then find a solution curve x 7→

(
x, α(x)

)

for which α(x) converges to some α0 as x→∞, then in our original coordinates (x, h)
we have a solution curve which to order O(x−1/2) (for h(x) as x→∞) is approximated
by the asymptotic solution curve γα0 .

We obtain the equation

0 = F
(
x,

α√
x

)
(37)

= s(α)x+
(

1− α2 − e2

30
+ 2 log(α)− x

2

(
f(x)− log(x)

))
+
(29α2

30x
+ f(x)− log(x)

)
,
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where we grouped the terms according to their asymptotic behaviour in the limit x→∞
into the divergent term, the bounded (but non-zero) terms and the terms vanishing in
that limit. For the dominant term we introduced the function

s : (0,∞)→ R, α 7→ α2

4
− 1

2
− e1

30α2
− log(α),

For the assignment of f − log to the terms with the respective behavior we refer to the
asymptotic expansion of f in Appendix A.

We are particularly interested in the zeros of the function s and whether s changes
sign in its zeros. Note that, given α0 ∈ (0,∞) with s(α0) = 0 and ε > 0 with (w.l.o.g.,
otherwise the same follows analogously) s < 0 on [α0 − ε, α0) and s > 0 on (α0, α0 + ε],
we observe that

F
(
x ,

α0 − ε√
x

)
→ −∞ as well as F

(
x ,

α0 + ε√
x

)
→∞,

in particular, there exist x0 large enough such that

F
(
x ,

α0 − ε√
x

)
< 0 and F

(
x ,

α0 + ε√
x

)
> 0

for any x > x0. Consequently, for any such x there exists a solution (x, h) of F (x, h) = 0
with α0−ε√

x
< h < α0+ε√

x
. Below we will show that each such solution belongs to an analytic

curve for which, consequently, γα0 is the asymptotic approximation. Zeros of s without
sign change are a more subtle and will be treated below as well.

We study the function s. For the following lemma recall the definition and approximate
values of β0 ≈ 2.1903 ∈ (0, 15

2 ) and β-1 ≈ −27.046 < 0 from (31).

Lemma 5.6. (i) If e1 > β0 the functions s has precisely one zero and changes sign.

(ii) If e1 = β0 the function s has precisely two zeros and does change sign only in the
larger one.

(iii) If e1 ∈ (0, β0) the function s has precisely three zeros and changes sign in each.

(iv) If e1 ∈ (β-1, 0] the function s has precisely two zeros and changes sign in both.

(v) If e1 = β-1 the function s has precisely one zero and does not change sign.

(vi) If e1 < β-1 the function s has no zero.

Proof. Suppose e1 > 0. Taking three derivatives we find that d3

dα3αs(α) is positive, hence
α 7→ αs(α) admits at most three zeros. Note that the subsets of (0,∞) on which the
latter function is positive, negative or zero coincide with the respective sets for s. Thus,
also s has at most three zeros. Moreover, noting that

lim
α→0

s(α) = −∞ and lim
α→∞

s(α) = +∞ , (38)
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we find that if s′ has two distinct zeros, s necessarily has a local maximum at the smaller
zero of s′ and a local minimum in the larger one, or a saddle in both these zeros. If s′

has only one zero, s has a saddle there and hence is a monotonous function. If s′ has no
zero at all, s is monotonous as well.

The zeros of s′ are to be found at the solutions of

2α3s′(α) = α4 − 2α2 +
2e1

15
= 0, i.e. at α(±) =

√
1±

√
1− 2e1

15 , (39)

whenever this expression yields positive reals. In our present consideration of e1 > 0,
(39) has obviously at most one solution if e1 ≥ 15

2 . This partially proves (i) for e1 ≥ 15
2

(> β0).
If e1 ∈ (0, 15

2 ) (39) has indeed two distinct positive solutions α(−), α(+) with α(−) <
1 < α(+). Consider the map

R→ R, e1 7→ α2
(±)s(α(±)) = − e1

15
− 1

2

(
1±

√
1− 2e1

15

)
log
(

1±
√

1− 2e1
15

)
. (40)

We read off that α2
(+)s(α(+)) < 0 for e1 ∈ (0, 15

2 ), in particular s(α(+)) < 0 and with the

limit (38) we conclude that s has a zero in (α(+),∞). The “−”-branch, on the other
hand, may take both positive and negative values. Compute

d2

de1
2

(
α2

(−)s(α(−))
)

= − 1

450
(
1− 2e1

15

)3/2


 1

1−
√

1− 2e1
15

+ log
(

1−
√

1− 2e1
15

)

 (41)

and note that the map z 7→ 1
1−z + log(1− z) takes only positive values on the interval

(0, 1). Consequently, e1 7→ α2
(−)s(α(−)) defines a concave function on (0, 15

2 ). By observing

that α2
(−)s(α(−))→ −1

2 as e1 → 15
2 , that α2

(−)s(α(−))→ 0 as e1 → 0 and that

d

de1

(
α2

(−)s(α(−))
)

= − 1

15
− 1

30
√

1− 2e1
15

(
log
(

1−
√

1− 2e1
15

)
+ 1
)
→ +∞

as e1 → 0 we conclude that e1 7→ α2
(−)s(α(−)) has exactly one zero in the open interval

(0, 15
2 ). This zero is found at

e1 = β0 := −15

2
W0

(
− e−2

)2 − 15W0

(
− e−2

)
,

which lead to the definition (31). Note that the Lambert-W -function, as a piecewise
inverse of t 7→ tet, occurs naturally when solving the expression α2

(±)s(α(±)) = 0 in (40)
for e1.

In particular, if e1 ∈ (β0,
15
2 ), the function α 7→ α2s(α) is negative in the smaller zero

α(−) of s′. Consequently, s is negative on the interval (0, α(+)) and α(+) is the only zero
of s. This completes the proof of (i).
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If e1 = β0, the function α 7→ α2s(α) vanishes in the smaller zero α(−) of s′. Hence, s
has two zeros, namely α(−) where it consequently does not change sign and the zero in
the interval (α(+),∞) found above. This shows (ii). Note that s is negative on a pointed
neighborhood of α(−).

Finally, if e1 ∈ (0, β0), the function α 7→ α2s(α) is positive in the local maximum α(−)

of s. Consequently, also s(α(−)) > 0 and besides the zero larger than α(+) from above, s
has a zero in the interval (α(−), α(+)) and a zero in the interval (0, α(−)). In each zero s
must change sign. This shows (iii).

To show (iv)-(vi) we first note that s′′ is positive for e1 ≤ 0. Hence, s is strictly convex
and admits at most two zeros. Moreover, s′ has at most one zero. Taking into account
the limits

lim
α→0

s(α) = lim
α→∞

s(α) = +∞ ,

we find that s has a global minimum which, consequently, is the only local extremum
to be found at the unique positive solution α(+) of (39). Note that the formula for α(−)

does not yield a positive real for e1 ≤ 0.
Completely analogous to the above analysis of e1 7→ α2

(−)s(α(−)) we study the function

(−∞, 0]→ R, e1 7→ α2
(+)s(α(+))

and find an expression for d2

de1
2

(
α2

(+)s(α(+))
)

similar to (41) which now is positive, hence

also e1 7→ α2
(+)s(α(+)) has at most two zeros. With the limits

lim
e1→−∞

α2
(+)s(α(+)) = +∞ and α2

(+)s(α(+))
∣∣∣
e1=0

= − log(2) < 0,

said function has exactly one zero to be found at

e1 = β-1 := −15

2
W-1

(
− e−2

)2 − 15W-1

(
− e−2

)
,

in particular, it is positive on (−∞, β-1) and negative on (β-1, 0].
Consequently, if e1 ∈ (β-1, 0] the function α 7→ α2s(α) is negative in the global minimum

α(+) of s, thus s(α(+)) < 0 and s has exactly two zeros, one in the interval (0, α(+)) and
one in (α(+),∞). In both zeros it changes sign and (iv) follows.

If e1 = β-1 the function α 7→ α2s(α) vanishes in α(+), hence s vanishes in its global
minimum α(+). This proves (v). Note that s is positive everywhere but in α(+).

Finally, if e1 ∈ (−∞, β-1) the function e1 7→ α2
(+)s(α(+)) is positive in α(+) and thus s

is positive in its global minimum. This shows (vi) and completes the proof.

Corollary 5.7. If α0 is a zero of s with sign change, then s′(α0) 6= 0.

Proof. In the previous lemma’s proof the zeros of s′ were labeled α(±). Moreover, the
values e1 ∈ {β-1, β0} where the only cases in which s vanishes in a zero of s′. In these
cases, in turn, s did not change sign in its respective zero.
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Lemma 5.8. For any zero α0 at which s chances sign the curve γα0 in (36) is an
asymptotic solution curve in the limit x → ∞. The values of γα0 approximate exactly
one analytic solution curve.

Proof. Above we have noted, if s chances sign in a zero α0, then we find ε > 0 such that
(w.l.o.g., otherwise interchange ‘>’ and ‘<’ accordingly) s < 0 on [α0 − ε, α0) and s > 0
on (α0, α0 + ε] and thus there is x0 > 0 such that

F
(
x ,

α0 − ε√
x

)
< 0 and F

(
x ,

α0 + ε√
x

)
> 0

for any x > x0. This implies that there is at least one solution (x, h) of F (x, h) = 0 with
h ∈

(
γα0−ε(x), γα0−ε(x)

)
for such x.

By Corollary 5.7 we can make ε small enough such that s is monotonous on the interval
[α0− ε, α+ ε]. Consequently, possibly by choosing a larger x0, we have that also the map

[α0 − ε, α+ ε]→ R, α 7→ F
(
x ,

α√
x

)

is monotonous for each x > x0 and thus, it has precisely one zero. Hence we ob-
tain a map h : (x0,∞) → (0,∞) with F

(
x, h(x)

)
= 0 and F

(
x, h̃

)
6= 0 for all

h̃ ∈
(
γα0−ε(x), γα0−ε(x)

)
\{h(x)}, at all x > x0.

To this point we do not know whether h is analytic. However, since in the construction
of h we can shrink ε > 0 at will, we know that

h(x) ∈ α0√
x

+ O(x−1/2)

in the limit x→∞ and hence γα0 approximates the solution curves with an error better
than any ± ε√

x
.

Recall the asymptotic expansion of X(e1,±) stated in Lemma 4.18. The leading order
was given by

X(e1,±)(h̃) =
α2

(±)

h̃2
+O(1) as h̃→ 0 (42)

(compare Lemma 4.18.(ii) and Equation (39)). In the cases where X(e1,±)(h̃)→ +∞ as

h̃→ 0 (i.e. e1 ∈ (0, 15
2 ] for X(e1,−) and e1 ≤ 15

2 for X(e1,+)) we can solve the curves

(0, ε)→ (0,∞)× (0,∞), h̃ 7→
(
X(e1,±)(h̃), h̃

)

(ε > 0) for h̃ and obtain

(x1,∞)→ (0,∞)× (0,∞), x 7→
(
x, h(±)(x)

)
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for a sufficiently large x1 and some functions h(±) : (x1,∞)→ (0,∞). By (42) we have

h(±)(x) =
α(±)√
x

+ O(x−1/2)

in the limit x→∞. Since now α0 was assumed to be a zero with sign change, it coincides
in particular neither with α(+) nor with α(−). Hence, the solutions h(x) which we found
above and the points of the form

(
X(e1,±)(h), h

)
in which the solution set of F (x, h) = 0

is not locally soluble for h are asymptotically, at large x, bounded away from each other.
Consequently, h is analytic.

Remark 5.9. (i) Note that to this point we have found all solutions in the limit
x → ∞ for e1 ∈ (β-1, β0). By “all solutions in the limit” we mean that there
exists x0 such that any solution at x > 0 belongs to one of the curves provided by
Lemma 5.6, Parts (iii),(iv) and (v) via Lemma 5.8. That there can be no more
solutions can be concluded using the upper bounds in Lemma 4.11, matching the
amount of zeros of s.

(ii) Also, we have found all solution curves for e1 >
15
2 using the same argument. That

is, s in that case has one zero α0 and we have one solution curve approximated by
the respective γα0. On the other hand, by Lemma 4.18.(vi) the functions X(e1,±)

are bounded from above, in particular, ∂hF (x, ·) has no zeros for x above such an
upper bound on X(e1,+) and thus, at any x above that bound, there exist at most
one solution.

The following lemma shows that any solution in the limit of large x is approximated
by γα with s(α) = 0.

Lemma 5.10. Any solution of F (x, h) = 0 in the limit x→∞ is approximated in that
limit by a curve of the form γα from (36), with a zero α of s. The approximation is valid
in the function class O(x−1/2).

Proof. Note that, we have

lim
α→∞

s(α) = +∞, lim
α→∞

s′(α) = +∞ as well as lim
α→∞

s′′(α) =
1

2
,

hence we can find α1 ∈ (0,∞) such that

s(α1) > 0, s′(α1) > 0 as well as s′′(α) ≥ 1

4
for all α ≥ α1

holds. By applying the fundamental theorem of calculus we also have

s′(α) ≥ s′(α1) and s(α) ≥ s(α1)

for all α ≥ α1 and thus we can find x1 ∈ (0,∞) such that

∂2

∂α2
F
(
x,

α√
x

)
= s′′(α)x− 2− 2

α2
+

29

15x
> 0
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for all x ≥ x1 and all α ≥ α1.
From (37) we can read off that

lim
x→∞

F
(
x,
α1√
x

)
= +∞.

Moreover, by taking one x-derivative of (37) we can also read off that

lim
x→∞

∂

∂x
F
(
x,
α1√
x

)
= s(α1),

where we used that f − log possesses an asymptotic Puiseux expansion allowing term-
wise differentiation and, consequently, showing that ∂

∂x
x
2

(
f(x) − log(x)

)
∈ O( 1

x) and
∂
∂x

(
f(x) − log(x)

)
∈ O( 1

x2
), cf. Appendix A. By enlarging x1, if necessary, we can

guarantee that

F
(
x1,

α1√
x1

)
> 0 and

∂

∂x
F
(
x,
α1√
x

)
≥ s(α1)

2
for all x ≥ x1.

Finally, for any (x, α) ∈ [x1,∞)× [α1,∞) we conclude that

F
(
x,

α√
x

)
= F

(
x,
α1√
x

)
+

∂

∂α
F
(
x,

α√
x

)∣∣∣∣
α=α1

(α− α1) +

α∫

α1

dα̃

α̃∫

α1

dα̃̃α
∂2

∂α̃̃α
2 F

(
x,

α̃̃α√
x

)

≥ F
(
x,
α1√
x

)

= F
(
x1,

α1√
x1

)
+

x∫

x1

dx̃
∂

∂x̃
F
(
x̃,

α1√
x̃

)

≥ F
(
x1,

α1√
x1

)

> 0,

where we applied the fundamental theorem of calculus several times and used the above
estimates on the derivatives of F in the coordinates (x, α) in the respective regime.
Consequently, such (x, α) ∈ [x1,∞)× [α1,∞) cannot be a solution to (37).

We work out a similar argument at small α. In this way we distinguish the cases of
positive, negative or zero e1.

At first, in the case e1 < 0 we have a similar argument as above. Therefore we
reparameterize (37) via α 7→ 1

α , that is, we consider the equation

0 = F
(
x,

1

α
√
x

)

=s
( 1

α

)
x+

(
1− 1

α2
− e2

30
− 2 log(α)− x

2

(
f(x)− log(x)

))
+
( 29

30xα2
+ f(x)− log(x)

)
.
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Since e1 < 0 we have

lim
α→∞

s
( 1

α

)
= +∞ as well as lim

α→∞
∂

∂α
s
( 1

α

)
= lim

α→∞

(
− 1

2α3
− e1α

15
+

1

α

)
= +∞,

hence we can find α2 ∈ (0,∞) such that

s
( 1

α

)
≥ s(α2) > 0 as well as

∂

∂α
s
( 1

α

)
≥ 1

for all α ≥ 1
α2

. In this way we choose 1 as an arbitrary, but still positive, lower bound on
∂
∂αs
(

1
α

)
above 1

α2
.

Now we can find x2 ∈ (0,∞) such that

∂

∂α
F
(
x,

1

α
√
x

)
=

∂

∂α
s
( 1

α

)
x +

2

α3
− 2

α
− 29

15xα3
> 0

for all x ≥ x2 and all α ≥ 1
α2

. Again, we observe that

lim
x→∞

F
(
x,
α2√
x

)
= +∞ as well as lim

x→∞
∂

∂x
F
(
x,
α2√
x

)
= s(α2),

and by possibly enlarging x2 we can guarantee that

F
(
x2,

α2√
x2

)
> 0 and

∂

∂x
F
(
x,
α2√
x

)
≥ s(α2)

2
for all x ≥ x2,

again using the asymptotic expansion of f − log.
Finally, we compute for any (x, α) ∈ [x2,∞)× [ 1

α2
,∞) that

F
(
x,

1

α
√
x

)
= F

(
x,
α2√
x

)
+

α∫

1/α2

dα̃
∂

∂α̃
F
(
x,

1

α̃
√
x

)

≥ F
(
x,
α2√
x

)

= F
(
x2,

α2√
x2

)
+

x∫

x2

dx̃ F
(
x̃,
α2√
x̃

)

≥ F
(
x2,

α2√
x2

)

> 0,

showing that the equation F
(
x, 1

α
√
x

)
= 0 has no solution in [x2,∞)× [ 1

α2
,∞) 3 (x, α).

Reversing our reparameterization α 7→ 1
α from above, this means that the equation

F
(
x, α√

x

)
= 0 has no solution in [x2,∞)× (0, α2] 3 (x, α).
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To find α2 and x2 in the case e1 > 0 is much easier. At first, observe that

lim
α→0

s(α) = −∞ as well as lim
α→0

s′(α) = +∞,

hence there exist α2 ∈ (0,∞) such that

s(α) ≤ s(α2) < 0 for all α < α2.

From (37) we can read off that there exist M ∈ R such that

F
(
x,

α√
x

)
− s(α)x ≤M

for all α ∈ (0, α2) and all x ≥ 9
4 (we employ this lower bound on x in favour of the

explicit bound in (58), Appendix A). In particular, we can find x2 ∈ (0,∞) such that for
all x ≥ x2

F
(
x,

α√
x

)
≤ s(α)x+M < 0,

for all α ∈ (0, α2). Consequently, [x1,∞)× (0, α2] contains no solution of F
(
x, α√

x

)
= 0.

As a side remark, note that M is indeed a uniform bound. Such uniform bound cannot
be found in the cases we have treated before. Moreover, note that we comment on the
case e1 = 0 at the end of the proof.

To this point, if e1 6= 0 we have found x1, x2, α1 and α2, such that any solution of
F
(
x, α√

x

)
= 0 with x ≥ max{x1, x2} must fulfill α ∈ [α2, α1].

Now let ε > 0 and suppose we have α ∈ [α2, α1] such that |s(α)| ≥ ε. We assume that
ε is small enough, such that s(α1) > ε and s(α2) > ε. Then, similar as above, we read
off from (37) that there exists M ∈ R such that

∣∣∣F
(
x,

α√
x

)
− s(α)x

∣∣∣ ≤M

for all α ∈ [α2, α1] and all x ≥ 9
4 . That this bound is now uniform in α is a consequence

of restricting the α-values to the compact interval [α2, α1]. However, we can find
x3 ∈ (max{x1, x2},∞), such that for all x ≥ x3 and all α ∈ [α2, α1]

∣∣∣F
(
x,

α√
x

)∣∣∣ ≥
∣∣∣s(α)x

∣∣∣−
∣∣∣F
(
x,

α√
x

)
− s(α)x

∣∣∣ ≥ εx−M > 0

holds. In particular, for any solution of F
(
x, α√

x

)
= 0 with x ≥ x3 we have shown that

necessarily s(α) < ε holds. As ε > 0 can be chosen arbitrarily small, the claim of the
lemma follows for our present case e1 6= 0.

Finally, if e1 = 0 one could work out a similar method. However, the occurring
log-terms (which are dominant in the e1 = 0-case) prevent from analog estimates on
the derivatives of s and α 7→ F

(
x, α√

x
) and an adaption is not straightforward. On the

other hand, a more profound method is not necessary. As we have already noted in
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Remark 5.9, we have found all solutions at large x in the case e1 = 0 together with the
correct approximation using Lemmata 5.6.(iv) and 5.8 as well as the respective upper
bound in Lemma 4.11.

Remark 5.11. At this point, only the cases e1 ∈ {β0, β-1} remain open. Actually, in
addition to the cases commented on in Remark 5.9 (i.e. for e1 ∈ (β0, β-1) ), we have
shown that for e1 > β0 there exists precisely one asymptotic solution curve γα with the
single zero α of s (cf. Lemma 5.6.(i) ), whereas for e1 < β-1 there exists no solution at all
above a certain bound on x as s has no zero in that case (cf. Lemma 5.6.(vi) ).

Lemma 5.12. (i) Let e1 = β0 and let α(−) be the smaller zero of s provided by
Lemma 5.6.(ii), defined by Equation (39). If e2 ≤ −10, there exist two analytic
solution curves at large x approximated by γα(−)

, whereas if e2 > −10 there exist
no solution curves approximated by said curve.

(ii) Let e1 = β-1 and let α(+) be the only zero of s provided by Lemma 5.6.(ii), defined
by Equation (39). If e2 ≥ −10, there exist two analytic solution curves at large
x approximated by γα(+)

, whereas if e2 < −10 there exist no solution curves
approximated by said curve.

In all assertions the approximation order is given by α√
x

+ O( 1√
x

)
.

Proof. For e1 = β0 the function α 7→ F
(
x, α√

x

)
has, at sufficiently large x, a local

maximum at the smaller solution of

∂

∂α
F
(
x,

α√
x

)
= 0. (43)

On the other hand, for e1 = β-1 said function has a local minimum at the only real
(positive) solution of (43). For these assertions we recall the shape of the dominating
function s from previous lemmas.

Note that (43) is a polynomial equation (in x, as (28) was, too) and we denote its
solutions by

α̃(±) : (x0,∞)→ (0,∞), α̃(±)(x) :=
x

(
x
2
−1

)

2

(
x2

4
−x+ 29

30

)
[

1 ±
√

1− 2e1

15
+

4e1
225(
x−2
)2
]

= α(±) +O
(1

x

)
(44)

with some sufficiently large x0 and the zeros α(±) of s′. A lengthy computation shows
the surprisingly simple result that

F
(
x,
α̃(±)(x)√

x

)
= −e2 + 10

30
+

1 +Wj

(
− e−2

)

30

1

x
+ O

( 1

x2

)
(45)

for the presently relevant cases (±, j, e1) = (−, 0, β0) or (±, j, e1) = (+,−1, β-1).
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Now let e1 = β0. In Lemma 5.6.(ii) we have shown that s does not change sign at its
zero α(−). As we, moreover, have remarked in the proof of said lemma, s is negative on a
pointed neighborhood of α(−). Consequently, for any sufficiently small ε > 0, we have

lim
x→∞

F
(
x,
α(−) − ε√

x

)
= lim

x→∞
F
(
x,
α(−) + ε√

x

)
= lim

x→∞
s(α(−) ± ε)x = −∞,

independently of e2, in particular, the respective expressions are negative for x above
some certain common lower bound x1 ∈ (0,∞). On the other hand, from the asymptotic
expansion (45) we read off for e2 ≤ −10 that

F
(
x,
α̃(−)(x)√

x

)
> 0

for sufficiently large x, w.l.o.g. (if necessary enlarge x1) we assume that the latter
inequality holds for all x ≥ x1. For the boundary case e2 = −10 the sub-leading order in
(45) is decisive and we note that 1

30

(
1 +W0(−e−2)

)
≈ 0.02805 > 0.

By possibly enlarging x1 again and by recalling the asymptotic expansion (44) we can,
moreover, guarantee that

α̃(−)(x) ∈ (α(−) − ε, α(−) + ε)

for all x ≥ x1. Hence, for all x ≥ x1 the equation F
(
x, α√

x

)
= 0 has solutions α in both

the open intervals

(
α(−) − ε, α̃(−)(x)

)
and

(
α̃(−)(x), α(−) + ε

)
. (46)

Together with the third solution at such sufficiently large x-values (if necessary, enlarge
x1 once again) provided by Lemma 5.8 around the larger (sign-changing) zero of s, we
already exhaust the upper bound given in Lemma 4.11. Consequently, we can choose x1

such that each of the intervals (46) contains precisely one solution, for all x ≥ x1.
Note that, not only does the curve defined by α̃(−) provide points in which F is positive,

it also parameterizes all points (around α(−), particularly, bounded away from α(+)) in
which the hypothesis of the implicit function theorem fails. Since we have found our
two solutions in the open intervals (46), the latter theorem’s hypothesis fails in none of
these solutions and we obtain, for now in the coordinates (x, α), indeed two analytic
curves as the graphs of analytic functions of x which are, to order O(1) (recall that ε can
be chosen arbitrarily small), approximated by α(−). Inverting the reparameterization
(x, h) 7→ (x, α), finally, provides us with the analytic solution curves in our original
coordinates (x, h), approximated in O

(
1√
x

)
as asserted in the lemma.

For e2 > −10 we read off from the asymptotic expansion (45) that there exists some
x1 ∈ (0,∞) such that

F
(
x,
α̃(±)(x)√

x

)
< 0
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Case # α

e1 < β−1 e2 arb. 0 −
e1 = β−1 e2 < −10 0 −
e1 = β−1 e2 ≥ −10 2 α1 = α2 = α(+)

e1 ∈ (β−1, 0] e2 arb. 2 α1 < α(+) < α2

e1 ∈ (0, β0) e2 arb. 3 α1 < α(−) < α2 < α(+) < α3

e1 = β0 e2 ≤ −10 3 α1 = α2 = α(−) < α(+) < α3

e1 = β0 e2 > −10 1 α > α(+)

e1 ∈ (β0,
15
2 ) e2 arb. 1 α > α(+)

e1 = 15
2 e2 arb. 1 α > 1

(
= α(−) = α(+)

)

e1 >
15
2 e2 arb. 1 α > 1 (and α(±) /∈ R)

Table 2: The possible cases which can occur for solution curves in the limit
x → ∞, distinguished by value ranges of the parameters e1 and e2. For each
case we have listed how many branches the solution set Se1,e2 of F (x, h) = 0 has
in the limit x→∞ (column #), together with rough bounds on the coefficient
α in terms of α(±) (if possible) such that the solutions of the respective branch
are approximated by γα(x) =

(
x, α√

x

)
(column α). If necessary, the α-values are

labeled increasingly.

for all x ≥ x1. In particular, for some given (sufficiently small) ε > 0 the function

(α(−) − ε, α(−) + ε)→ R, α 7→ F
(
x,

α√
x

)
(47)

is negative in its local maximum, for each x ≥ x1. Since (43) has precisely the two
solutions (44), we can choose ε small enough such that α̃(+)(x) /∈ (α(−) − ε, α(−) + ε) for
all x ≥ x1, in other words, choose ε small enough such that said negative local maximum
serves as a uniform upper bound on the interval (α(−)−ε, α(−) +ε). From the asymptotic
expansion (45) we read off that this uniform upper bound on (47) can be estimated from
above by −1

2
e2+10

30 < 0 for all sufficiently large x, w.l.o.g. for x ≥ x1. Since at this
point we have found a uniform, x-independent, negative upper bound on the values of
F
(
x, α√

x

)
, we conclude that our equation F

(
x, α√

x

)
= 0 has no solution with x ≥ x1 and

α ∈ (α(−) − ε, α(−) + ε). In our original coordinates (x, h) this imposes what we have
claimed in the lemma, finishing the proof of (i).

The proof of (ii) works in principle the same. One merely has to reverse inequalities
and take into account that now the upper bound on the number of solution from
Lemma 4.11 is 2 and the two solutions in the intervals analog to (46) already exhaust
said upper bound. Moreover, for the boundary case e2 = −10 we note that now
1
30

(
1 +W-1(−e−2)

)
≈ −0.07154 < 0, though the main argument remains the same. This

finishes the proof.

Finally, we collect the results of the present section in a list in Table 2. Recall that for
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0 < e1 <
15
2 we have α(−) < 1 < α(+), that for e1 = 15

2 we have α(±) = 1, that for e1 ≤ 0

only α(+) is positive and for e1 >
15
2 none of the α(±) is a real number. Moreover, recall

that in each possible case we can find x0 > 0 such that either F (x, h) = 0 admits no
solution at all for x > x0 or such that each solution of F (x, h) = 0 is approximated by a
curve x 7→ γα(x) =

(
x, α√

x

)
in the limit x→∞ with some α ∈ (0,∞) for which s(α) = 0.

5.2. Asymptotics at small x

At first we study the situation of h away from the limits of small or large h.

Lemma 5.13. For any compact interval [a, b] ⊂ (0,∞) there is ε > 0 such that F (x, h)
is uniformly bounded away from 0 on (0, ε)× [a, b] 3 (x, h). Consequently, the equation
F (x, h) = 0 has no solution in (0, ε)× [a, b].

Proof. Note that for any fixed h ∈ [a, b] we have F (x, h) → −∞ as x → 0 since the
dominant term in this limit is −(x2 − 1)f(x) in F2. Recall that f(x) = − 3

x +O(1) in said
limit (cf. Appendix A). Any other term in F can be continued to x = 0, that is, there
exists a continuous function

F̃ : [0, 1]× [a, b]→ R s.t. F̃ (x, h) = F (x, h) +
(x

2
− 1
)
f(x)

for all x > 0 and all h ∈ [a, b]. Let M be an upper bound for the continuous function F̃
on its compact domain. By the above limit we find ε > 0 such that

−
(x

2
− 1
)
f(x) < −M

for all x < ε. Therefore, we have for all h ∈ [a, b] and all x ∈ (0, ε)

F (x, h) = F̃ (x, h)−
(x

2
− 1
)
f(x) < 0

and the lemma follows.

By the previous lemma it remains to study the limits h → ∞ and h → 0 in the
following two lemmata.

Lemma 5.14. For any e1 ∈ R we have an asymptotic solution curve in the limit h→∞
parameterized by

(0, ε)→ (0,∞)× (0,∞), x 7→
(
x,
√

90
29x

)

for some ε > 0.

Proof. In the limit of large h and small x the terms

29

30
h2 + f(x)
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are dominant. Studying when they mutually compensate (i.e. setting them to zero) and
solving for x yields the lemma. Note that approximating f(x) ≈ − 3

x is sufficient for this
claim.

Remark 5.15. (i) Using the results from Section 4.2 we can make ε small enough
such that the graphs of X(e1,±) are bounded away from our solution curve. Hence,
indeed the solution curve approximated by our asymptotic solution curve in the
previous lemma is solvable to be the graph of an analytic function of x on (0, ε).

(ii) Note that, without taking into account also terms of lower order than the one
considered in Lemma 5.14, we can only conclude that the solution curve is in√

90/29x + O(x−1/2). However, this suffices to conclude from
√

90/29 > 1 that the
solution curve in consideration provides solutions at positive ξ = 1

12

(
x − 1

h2

)
, at

least at sufficiently small x or sufficiently large h, respectively.

Lemma 5.16. If e1 < 0 the map

(0, ε)→ (0,∞)× (0,∞), x 7→
(
x,
√
− e1

90 x
)

is an asymptotic solution curve at small x with some sufficiently small ε > 0. If e1 ≥ 0
there exists ε > 0 such that (0, ε)× (0, ε) contains no solution of F (x, h) = 0.

Proof. The relevant terms in the present setting are

− e1

30

1

h2
+ log(h) + f(x). (48)

Let e1 < 0. Equating the first and last term of (48) (and approximating f(x) ≈ − 3
x ,

cf. Appendix A) yields the asymptotic solution curve in the lemma. In this scenario the
log-term only contributes in higher orders.

Note that the graphs of X(e1,±) cannot come amiss to the present consideration and
we indeed obtain an analytic solution curve approximated by the asymptotic solution
curve in the lemma.

If e1 ≥ 0, all the dominant terms diverge to −∞ as h → 0 or x → 0 and since the
remaining contributions into F that are left out in (48) are bounded in this limit we can
find a negative upper bound on F on some (0, ε)× (0, ε), ε > 0.

5.3. Asymptotics at finite x

At first we study the regime of small h.

Lemma 5.17. (i) Let e1 6= 0. For any compact interval [a, b] ⊂ (0,∞) there exists
ε > 0 such that F is bounded away from 0 on [a, b] × (0, ε). Consequently, the
equation F (x, h) = 0 has no solution in [a, b]× (0, ε).

(ii) Let e1 = 0. For any compact interval [a, b] ⊂ (0,∞) with 2 /∈ [a, b] there exists ε > 0
such that F is bounded away from 0 on [a, b]× (0, ε). Consequently, the equation
F (x, h) = 0 has no solution in [a, b]× (0, ε).
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Proof. The proof of (i) goes very similar to the proof of Lemma 5.13 and we skip the
details. Note that the term − e1

30
1
h2

in F1 is dominant in this regime and, in particular,
suppresses the influence of the log-term in F2.

If, on the other hand, e1 = 0, the dominant term in the limit h→ 0 is the log-term in
F2. This term does come with the prefactor −

(
x
2 − 1

)
, that is, with a prefactor which

changes sign at x = 2. If we, however, stay away from x = 2 and assume that 2 /∈ [a, b],
then all terms other than the log-term are continuable to h = 0 on [a, b]. By the same
argument as for Lemma 5.13 we conclude (ii).

Remark 5.18. Using Lemma 5.16 we can formulate part (i) of the previous lemma (i.e.
for the case e1 > 0) for intervals of the form (0, b].

Next we study the limit (x, h)→ (2, 0) for e1 = 0 which leads to cases sensible to e2.

Lemma 5.19. Let e1 = 0.

(i) If e2 > 0, there is precisely one solution curve in a sufficiently small neighborhood
of (2, 0) ∈ (0,∞)× (0,∞). This solution curve is of the form

(2, 2 + ε)→ (0,∞)× (0,∞), x 7→
(
x, h(x)

)
and fulfills h(x) ∈ O(x− 2),

for some ε > 0.

(ii) If e2 < 0, there is precisely one solution curve in a sufficiently small neighborhood
of (2, 0) ∈ (0,∞)× (0,∞). This solution curve is of the form

(2− ε, 2)→ (0,∞)× (0,∞), x 7→
(
x, h(x)

)
and fulfills h(x) ∈ O(2− x),

for some ε > 0.

(iii) If e2 = 0, there is precisely one solution curve in a sufficiently small neighborhood
of (2, 0) ∈ (0,∞)× (0,∞). This solution curve is of the form

(0, ε)→ (0,∞)× (0,∞), h 7→
(
x(h), h

)
and fulfills x(h) ∈ 2 +O(h2),

for some ε > 0. Moreover, x(h) > 2 for all h ∈ (0, δ).

Proof. We use polar coordinates around (x, h) = (2, 0) and evaluate

F (2 + % sinψ, % cosψ) with ψ ∈
(
− π

2 ,
π
2

)
and % ∈ (0, 2).

The dominant terms in the limit % → 0 stem from the log-term in F2 as well as from
the e2-term which does not depend on % or ψ. More precisely, evaluating the lengthy
expression for F (2 + % sinψ, % cosψ) we find that

F (2 + % sinψ, % cosψ) + % sinψ log(% cosψ) +
e2

30
→ 0 as %→ 0,
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uniformly in ψ ∈
(
− π

2 ,
π
2

)
and at least of order O(%). Consequently, for sufficiently

small % the solutions of F (2 + % sinψ, % cosψ) = 0 are approximated by solutions of
% sinψ log(% cosψ) + e2

30 = 0.
At fixed % ∈ (0, 1) the map ψ 7→ % sinψ log(% cosψ) is monotonously decreasing on(
− π

2 ,
π
2

)
with % sinψ log(% cosψ)→ ∓∞ as ψ → ±π

2 and a zero at ψ = 0. Since now

% sinψ log(% cosψ) +
e2

30
→ e2

30
as %→ 0

pointwise in ψ ∈
(
− π

2 ,
π
2

)
and uniformly in ψ ∈

(
− π

2 + δ, π2 − δ
)

for any δ ∈ (0, π2 ), we
conclude that at sufficiently small % we have precisely one solution ψ, and if e2 > 0 we
have ψ → π

2 , whereas if e2 < 0 we have ψ → −π
2 . If e2 = 0 we have ψ → 0.

Back in the coordinates (x, h), for e2 > 0 we obtain a solution curve as stated in the
lemma, part (i), where ψ → π

2 implies that h → 0 faster than linear. Analogously we
obtain the assertion (ii). Note that the graph of h 7→

(
X0,−)(h), h

)
is parameterized in

the (%, ψ)-coordinates by a curve with ψ → 0 and ψ < 0 as ε→ 0. In particular, the set
where F (x, h) = 0 is not soluble for h is bounded away from our solution curves, thus
they are indeed representable as the graph of a function of x.

Finally, for the assertion (iii) note that we have ψ → 0 from above as % → 0, in
particular, the graph of h 7→

(
X0,−)(h), h

)
is also bounded away from the solution curve

for e2 = 0. Moreover, since the map ψ 7→ % sinψ log(% cosψ) has a linear zero in ψ = 0
for sufficiently small %, that is, we have

% sinψ log(% cosψ) ∈ ψ% logψ +O(ψ3),

the limit ψ → 0 as %→ 0 is also achieved at least linearly. Transformation back into the
coordinates (x, h) adds another power and we obtain assertion (iii).

Next we study the situation at large h.

Lemma 5.20. For any choice of e1, e2 ∈ R the straight lines defined by x ∈ {x(±)}
are asymptotic solution curves. Moreover, the solution curves approximated by these
asymptotic solution curves are representable as graphs of analytic functions

(x(±), x(±) + ε)→ (0,∞)× (0,∞), x 7→
(
x, h(x)

)

for some ε > 0.

Proof. We evaluate the function F at x(±) and at x(±) + 2δ for some δ ∈ (0, 1/
√

30) and
obtain

F (x(±), h) = ∓ 1√
30
− e2

30
− e1

30

1

h2
∓ 1√

30

(
2 log(h) + f(x(±))

)
(49)

52



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

as well as

F (x(±) + 2δ, h) (50)

=
(
δ ±

√
2

15

)
δh2 ∓ 1√

30
− δ − e2

30
− e1

30

1

h2
−
(
δ ± 1√

30

)(
2 log(h) + f(x(±) + 2δ)

)
,

respectively.
Note that, for our given bound on δ both the prefactors δ ±

√
2/15 and δ ± 1√

30
of the

divergent terms in the limit h→∞ in (50) do not change sign in (0, 1/
√

30) 3 δ.
From (49) and (50) we can read off that

F (x(±), h)→ ∓∞ as well as F (x(±) + 2δ, h)→ ±∞

as h → ∞ and, consequently, there exists h0 ∈ (0,∞) such that for all h > h0 there
exists a solution of F (x, h) = 0 in both the intervals

(x(−), x(−) + 2δ) and (x(+), x(+) + 2δ). (51)

By possibly enlarging h0 we find that there is a third solution in some interval (0, δ̃)
provided by Lemma 5.14 and with Lemma 4.11 it is indeed the third solution. Hence,
each of the intervals (51) contains precisely one solution.

Since the above argument works for any (sufficiently small) δ > 0, and since the
solutions we have found are in the open intervals in (51) (in particular they do not
coincide with these interval’s lower bounds), we can already conclude that the solutions
“come closer to x(±)” as h→∞, more precisely, we have the asymptotic solution curves
as stated in the lemma.

Finally, evaluating F
(
X(e1,±)(h), h

)
(with X(e1,±)(h) from Lemma 4.17) we find the

dominant term in the limit h→∞ to be the log-term in F2. In particular, we find that
also F

(
X(e1,±)(h), h

)
→ ∓∞ as h→∞, and we can replace (51) by the refined intervals

(X(e1,−)(h), x(−) + 2δ) and (X(e1,+)(h), x(+) + 2δ)

at sufficiently large h. Again the solutions do not coincide with these refined interval’s
lower bounds. Hence, in every solution point found above we can solve the solution set
to yield the graph of an analytic function of x on some interval (x(±), x(±) + ε).

Remark 5.21. Recall that the values x(±) correspond, in the limit of large h, to the values
ξ(±) which we have distinguished in the massless case, where we also have a divergent
(H →∞) solution branch around these values.

5.4. Minimal and conformal coupling

In this section we want to study the physically distinguished ξ-values of minimal coupling
ξ = 0 and conformal coupling ξ = 1

6 . This allows us to exclude solutions or to specify a
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number of solutions along the curves defined by these ξ-values for certain choices of e1

and e2. For this analysis we use similar arguments as in Section 4.1.
Minimal and conformal coupling are realized in (x, h) coordinates by the curves

(0,∞)→ (0,∞)× (0,∞), x 7→
(
x, hmc(x)

)
:=
(
x,

1√
x

)
(52)

and

(2,∞)→ (0,∞)× (0,∞), y 7→
(
y, hcc(y)

)
:=
(
y,

1√
y − 2

)
, (53)

respectively.

Lemma 5.22. (i) For e1 < −15
2 the consistency equation (24) has precisely one

solution with minimal coupling ξ = 0 for any value of e2.

(ii) For e1 = −15
2 the consistency equation has precisely one solution with minimal

coupling ξ = 0 for e2 < 20 and no solution with minimal coupling for e2 ≥ 20.

(iii) For e1 > −15
2 there exists ê2 ∈ R such that the consistency equation has

◦ precisely two solutions along minimal coupling if e2 < ê2,

◦ precisely one solution along minimal coupling if e2 = ê2 and

◦ no solution along minimal coupling if e2 > ê2.

Numerical evidence. Evaluating the function F from (24) along the curve of minimal
coupling (52) results in

F
(
x, hmc(x)

)
= −

(1

4
+
e1

30

)
x−

( e2

30
+
x

2

(
f(x)− log(x)

))
+

29

30x
+ f(x)− log(x) (54)

for x > 0, where we grouped the terms according to their relevance in the different
regimes x→ 0, finite x or x→∞.

For the second derivative of (54) we compute that

∂2

∂x2
F
(
x, hmc(x)

)
∈ − 61

15x3
+O

( 1

x2

)
as x→ 0

as well as

∂2

∂x2
F
(
x, hmc(x)

)
∈ − 74

21x4
+O

( 1

x5

)
as x→∞,

for which we have employed the Puiseux expansion of f − log from Appendix A.
Consequently, at sufficiently small and at sufficiently large x the latter second derivative

is negative. That it is also negative in the intermediate regime is numerically justified in
Figure 6.(a), were we have plotted said second derivative in log-log-scaling together with
its asymptotics we have just computed.
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10-3 1 103
-1010

-105

-1

-10-5

-10-10

∂2

∂x2F
(
x, hmc(x)

)

x

(a) minimal coupling

10-3 1 103
10-10

10-5

1

105

1010 ∣∣ ∂2

∂x2F
(
x, hcc(x)

)∣∣

x− 2

(b) conformal coupling

Figure 6: The graphics show
the (in (b), absolute value
of the) second derivatives of
F along the curves of min-
imal (a) and conformal (b)
coupling, parameterized by x
and x− 2, respectively. The
dotted lines mark the asymp-
totics asserted in the text
both at small and large ar-
guments.

From the negativity of ∂2

∂x2
F
(
x, hmc(x)

)
for all x > 0 we conclude that the map

x 7→ F
(
x, hmc(x)

)
is strictly concave and hence for all parameter choices has at most two

zeros.
Now compute the asymptotic expansions

F
(
x, hmc(x)

)
∈ − 58

30x
+O(1) as x→ 0

and

F
(
x, hmc(x)

)
∈ −

(1

4
+
e1

30

)
x−

( e2

30
− 2

3

)
+O

(1

x

)
as x→∞.

We read off that for e1 < −15
2 the limits F

(
x, hmc(x)

)
→ −∞ as x→ 0 and F

(
x, hmc(x)

)

→ +∞ as x→∞ hold. A concave function admitting these limits has precisely one zero
and we conclude Assertion (i) of the lemma.

If e1 = −15
2 we have the same small-x-limit as before, but now we have F

(
x, hmc(x)

)
→

− e2
30 + 2

3 as x → ∞. That limit is positive if and only if e2 < 20. If this is the case, a
concave function with such limiting behavior has precisely one zero, whereas if this is not
the case, such a function cannot have a zero at all. This shows (ii).

Finally, for fixed e1 > −15
2 we read off the limits F

(
x, hmc(x)

)
→ −∞ for both x→ 0

and x→∞, and using its concavity the map x 7→ F
(
x, hmc(x)

)
has precisely one local

(and thus global) maximum. The value of F
(
x, hmc(x)

)
at this maximum depends on

e2 in a (affine) linear manner (with non-vanishing slope coefficient, namely − 1
30), in

particular, there exist exactly one ê2 such that maximum value equals 0. If e2 = ê2, the
strictly concave function vanishes in its global maximum and hence that maximum is
the only zero. If e2 < ê2, the maximum value is positive, and a concave function with
the above limiting behavior and a positive maximum has exactly two zeros. If, on the
other hand, e2 > ê2, the maximum value is negative and a function with negative global
maximum has no zero at all. Together we conclude (iii) of the lemma. �
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Lemma 5.23. (i) If e1 < −15
2 the consistency equation (24) has at most three solutions

with conformal coupling ξ = 1
6 .

(ii) Let e1 = −15
2 . If e2 ≤ −10 the consistency equation has exactly one solution with

conformal coupling. Moreover, there exists ê2 > −10 such that the consistency
equation has

◦ precisely two solutions with conformal coupling if e2 ∈ (−10, ê2),

◦ precisely one solution with conformal coupling if e2 = ê2 and

◦ no solution with conformal coupling if e2 > ê2.

(iii) If e1 > −15
2 there exists ê2 ∈ R such that the consistency equation has

◦ precisely two solutions with conformal coupling if e2 < ê2,

◦ precisely one solution with conformal coupling if e2 = ê2 and

◦ no solution with conformal coupling if e2 > ê2.

Numerical evidence. We proceed similar to Lemma 5.22, although we need to adjust the
arguments at some points.

For x > 2 and y = x− 2 we obtain

F
(
x, hcc(x)

)
= F

(
y + 2,

1√
y

)

= −
(1

4
+
e1

30

)
y − e2

30
− y

2

(
f(y + 2)− log(y)

)
− 1

30y
(55)

for the values of F along the curve of conformal coupling (53). Note that, employing
some Puiseux series arithmetics4 one can compute that

f(y + 2) ∈ log(y) +
2

3y
− 1

15y2
− 8

315y3
+O

(
1
y4

)

at large y and thus obtain the asymptotic expansions

F
(
y + 2, 1√

y

)
∈ − 1

30y
+O(1) as y → 0

and

F
(
y + 2, 1√

y

)
∈ −

(1

4
+
e1

30

)
y −

( e2

30
+

1

3

)
+O

(1

y

)
as y →∞.

On the other hand, for the second derivative (w.r.t. y) of (55) we obtain the asymptotic
expansions

∂2

∂y2
F
(
y + 2, 1√

y

)
∈ − 1

15y3
+O

( 1

y2

)
as x→ 0

4After we expanded f(y + 2) we, moreover, need to expand 1
(y+2)k

as well as log( y
y+2

) in terms of 1
xl
.
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as well as

∂2

∂y2
F
(
y + 2, 1√

y

)
∈ 24

315y4
+O

( 1

y5

)
as x→∞.

We read off that, above some bound on y-values the map y 7→ ∂2

∂y2
F
(
y+ 2, 1√

y

)
is positive

and below some bound it is negative. By numeric evaluation as shown in Figure 6.(b)
we conclude that in the intermediate regime this second derivative has precisely one
zero (indicated by the dip in the log-log plot) and hence, the map y 7→ F

(
y + 2, 1√

y

)
has

precisely one inflection point. In particular, it has independently of any parameters, at
most three zeros. This completes part (i) of the lemma.

For e1 < −15
2 we omit to improve the upper bound of three on the number of solutions

at conformal coupling.
If e1 = −15

2 , we read off from the asymptotic expansions that F
(
y + 2, 1√

y

)
→ −∞ as

y → 0 and F
(
y+2, 1√

y

)
→ − e2

30− 1
3 as y →∞. Consequently, if e2 ≤ −10 the latter large-

x-limit is non-negative and having only one inflection point the map y 7→ F
(
y + 2, 1√

y

)

must have precisely one zero. Therefore note that the second derivative is indeed positive
at large y.

On the other hand, from the limiting behavior we can read off that the map y 7→
F
(
y + 2, 1√

y

)
has a global maximum, in which (as in Lemma 5.22) the maximum value

depends linearly on e2. Hence there exists ê2 such that this maximum value is zero,
where in the context of the aforementioned argument necessarily ê2 > −10 holds. The
remaining claims of part (ii) in the lemma follow immediately.

Finally, for e1 > −15
2 we have F

(
y + 2, 1√

y

)
→ −∞ in both limits y → 0 and y →∞,

consequently the function y 7→ F
(
y + 2, 1√

y

)
has a global maximum in which its value,

again, linearly depends on e2. By the same arguments as above and in Lemma 5.22 we
obtain a ê2 ∈ R fulfilling (iii) of the lemma. �

6. Numerical treatment of the solution set

In the previous sections we discussed properties of the set Se1,e2 of de Sitter solutions
of the energy equation in the massive case, in particular, the structure of Se1,e2 and its
asymptotic behavior. The non-polynomial terms of the energy equation prevented an
explicit solution. In the present section have a look at the solution set by determining
the zeros of F numerically. In particular, we study at the behavior of the solution set
around distinguished parameter sets that were found in the above analysis. Hereby we
give attention to the topological changes of the solution set.

At first, in Figure 7, we look at the parameter pair e1 = e2 = 0. There, and throughout
this section, we use the following graphical conventions:

◦ Thick solid lines mark the solution set Se1,e2 of the consistency equation (24).

◦ Densely dashed lines mark the graphs of X(e1,±), where the equation F (x, h) = 0 is
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x

(a) log-log scaling

x(−) 2 x(+)

1

1

0.1

-0.1
-0
.1

0.1

x

(b) log-log scaling on a smaller section

0 1 2 3 4 5
0

1

2

3

h
4
h

5

-1-1
0

1

1
0

1

-1

1

10

x

(c) normal scaling

Figure 7: The graphics show the solu-
tion sets of the energy equation for e1 =
e2 = 0 in log-log and in normal scaling as
the thick, black lines. The dotted black
lines mark the values x ∈ {x(−), 2, x(+)},
the densely dashed lines mark the points
(x, h) where x = X(0,±)(h) and the
loosely dashed black lines mark mini-
mal and conformal coupling. The dot-
ted gray lines finally mark some more
level sets of F with the given values.
In the following we mostly stick with
the representation in log-log scaling as
the straight outgoing lines show off the
asymptotics of our solution curves. Note
that in (a), although it seems slightly
curved, the left branch of solutions also
ends in a straight line with (logarithmic)
slope −1

2 .

not soluble for h.

◦ Loosely dashed lines mark the curves from (52) and (53) of minimal (ξ = 0) and
conformal (ξ = 1

6) coupling, respectively.

◦ Dotted (black) lines mark the distinguished values of x ∈ {x(−), 2, x(+)}.
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◦ If suitable, we include some additional level sets of the function F in gray dotted.
As e2 enters the function F as an offset, these are solution curves for some other
value of e2.

Note that we display the solution sets in log-log scaling since by our results of Section 5
all solution curves are, in that scaling, asymptotically equivalent with straight lines,
either vertical or with slope ±1

2 .
In Figure 7 we identify most of the analytic assertions we have made in the previous

sections. These are, we have a solution curve running into (x, h) = (2, 0) (cf. Section 5.3),
three solution curves which are asymptotically equivalent with x 7→ α√

x
, one of them at

small x (cf. Section 5.2) and two at large x (cf. Section 5.1) and, finally, two solution
curves approaching the asymptotes at x = x(±) for large h (cf. also Section 5.3). Moreover,
we have exactly one point where the equation is not locally solvable for h, precisely where
the curve of solutions crosses the curve defined by the graph of X(0,−).

We have shown in Section 5.4 that the function F , restricted to the curve of minimal
coupling ξ = 0 is concave and divergent to −∞ both at small and large x. However, as we
can see in Figure 7, the maximum of the function F is indeed negative and, consequently,
there is no solution for the minimally coupled model. Moreover, there is also no solution
for the conformally coupled case. Thereby we conclude that the six open ends of the
present case constitute three connected components, namely the connected component
below the minimal coupling curve, the one above the conformal coupling curve and the
one in between these two curves. Moreover, we can separate the connected components
by the line x = 2, since for e1 = e2 = 0 we have F (2, h) = −h2

30 < 0 for all h > 0. Finally,
we can also observe the precise amount of solutions that we have asserted in Table 1 on
the lines at x = x(−) and x = x(+), namely exactly one solution for each x-value.

At next, we discuss the behavior of the solution set around the parameter point e1 =
e2 = 0, particularly we look at the asymptotic solution curve running into (x, h) = (2, 0).
Recall that there exists such a curve only for e1 = 0, where its precise shape is determined
by the parameter e2 (cf. Section 5.3). We have shown how for e2 = 0 the solution curve
running into (x, h) = (2, 0) is tangent to the x = 2-line in the limit, whereas the for
e2 > 0 and e2 < 0 it is tangent to the h = 0-axis, starting in positive or negative direction,
respectively. This is what we observe in Figure 8.(f).

If we tune e1 away from zero to values e1 < 0, we observe that this curve, instead of
running into (x, h) = (2, 0), now runs into (x, h) = (0, 0), and ends in the asymptotic
solution curve at small x we expect for such e1 values. If we choose, however, values
e1 > 0 we observe that now this branch adds to a third asymptotic solution curve at
large x. This behavior is shown in Figures 8.(c)-(e).

Moreover, in Figure 8 we capture how a saddle of the function F can be tuned to
coincide with a zero of F . While the value of F at its saddle is positive or negative in
Figure 8.(a) or 8.(c), respectively, the value of e1 in Figure 8.(b) was chosen such that we
indeed observe crossing solution curves, reducing the number of connected components of
our solution set by one. That in such a case the zero set of F can be locally decomposed
into two analytic curves was shown in Section 4.3

Furthermore, we want to look at the parameters nearby e1 = β0 and e2 = −10. We
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Figure 8: Behavior of the solution set of
the energy equation around the param-
eter point e1 = e2 = 0. On the one
hand, we show the solution sets at e2 = 0
for several e1-values around 0 in (a)−(e).
Above the shown section of the h-axis
the curves are more or less identical with
the plots in Figure 7, thus we cropped
these figures. On the other hand, we
show the solution sets close to the point
(x, h) = (2, 0) for e1 = 0 and for several
e2 values around 0 in (f). This value of e1

is the only case where we observe these
curves running into (2, 0) and the distinc-
tion of how these curves run into that
point is only visible if we show a non-log
scaling of the h-axis. For other values of
e1 close to 0 a variation of e2 is rather
unspectacular.

have studied this setting in Section 5.1. The solution sets for certain choices of parameters
are shown in Figure 9. At the value e1 = β0 the solution set transitions from having
three asymptotic solution curves to having only one. The lower two of these three curves
for e1 < β0 are connected to each other in Figure 9.(a).(i) and are connected to the two
curves which are left at large h without crossing in 9.(a).(ii). In between these values
there must, consequently, be an e2-value at which they are connected to the same two
curves, but now interchanged, and we can observe them to cross in the arising saddle of
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(i)

e2 = −9
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e2 = −13
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(a) e1 = 2.18 (b) e1 = 2.1902738594

≈ γ0

(c) e1 = 2.2

Figure 9: The graphic shows the behavior of the solution set of the energy
equation around the parameter e1 = γ0. Hereby we also include a variation of
the e2-values. The values of the rows (i) and (ii) are chosen around the value
e2 = −10 which only plays a particular role (for the asymptotics at large x) if
e1 = γ0. The value in row (iii) was chosen such that we additionally can observe
how we passed a value with crossing curves.

F . The same may be observed in each column between the e2-values of (ii) and of (iii).
Consequently, between the values of 9.(c).(ii) and 9.(c).(iii) there is a parameter point in
which we only have one connected component of solutions.

Around the parameter point e1 = β−1 we can observe a very similar behavior of the
solution set as around e1 = β0. We have shown is Section 5.1 that above this particular
value we have two asymptotic solution curves at large x, and that their asymptotic
approximation is determined by the zeros of s. The latter two zeros in turn degenerate
in the boundary case e1 = β−1 and below this value there are no such curves anymore.
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Hence we can, similarly as in Figure 9, observe that the two asymptotic solution curves
come closer to each other as e1 → β−1 from above, have the same asymptotic (first order)
approximation at e1 = β−1 and form a sling (now around the curve of X(e1,+)) which is
more and more pulled to smaller values of x as e1 further decreases.

7. Parameter choices for potential inflationary models

So far we mostly considered the consistency equation in the massive case as an equation
of x instead of the physical parameter ξ in order to simplify the analysis of the function
f . However, we can identify the curves of constant ξ as parameterized by

(0,∞)→ (0,∞)× (0,∞), h 7→
(
12ξ + 1

h2
, h
)
, (56)

where the curves of minimal coupling (52) and conformal coupling (53) are special cases.
If ξ < 0 these curves leave the domain (0,∞)× (0,∞) above a certain h-value, since the
Bunch-Davies state exists for negative ξ only if h is sufficiently small.

In the present section we want to identify parameter settings of potential inflationary
models. By a potential inflationary model we mean the following:

According to ‘standard’ (i.e. ΛCDM) cosmology our universe will, eventually at late
times, expand in a Dark Energy-dominated exponential manner. In other words, it will
be well approximated by a cosmological de Sitter solution, say with Hubble rate HDE.
On the other hand, assuming that the universe went through an inflationary early phase
solves various problems of ΛCDM physics, most importantly, the so-called cosmic horizon
problem. Also an inflationary phase is modelled by an (approximately) exponential
expansion, with a much larger Hubble rate. Denote it by HI (� HDE).

The aim of the present section is to identify parameter settings (e1, e2, ξ) in which
there exist multiple solutions of our model, say two values h1 and h2 with h1 � h2, which
restore the ratio h1

h2
= HI

HDE
of some given physical data HI and HDE. More advanced, we

will show that by parameter tuning one is more or less free to produce an arbitrary ratio
h1
h2

with a (more or less) arbitrary smaller solution h2. To establish a realistic magnitude
for the rates h1 and h2, we note that for today’s Hubble rate and for the Higgs mass (i.e.
the only mass of a scalar field occurring in the standard model of particle physics) one
can compute

h2 =
Htoday

MHiggs
≈ 10−44

in our unit system (i.e. where ~ = c = 1). On the other hand, supposing that the
inflationary phase lasted about 10−34 s and caused an expansion by a factor of 1026 we
can compute HI ≈ 1034 1

s and thus a magnitude of

h1 =
HI

MHiggs
≈ 107.

Suppose that in a subsequent step, for a parameter setting as above, one is able to
show how the dynamical system (13) is unstable towards perturbations around the de
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Sitter solution defined by the larger value h1 and stable around the solution defined by
the smaller h2. Moreover, suppose that one is able to show that the dynamical system
(13) (with the aforementioned stability properties) indeed possesses a solution starting
close to the unstable de Sitter solution with rate h1 and, after some intermediate phase,
eventually approaches the stable solution with rate h2. In that case one would provide a
physical model for our universe in which the driving forces for both the inflationary and
the late-time expansion are modelled by the presence of a quantum field. In particular,
such a model omits introducing the new and unknown Dark Energy, that is, a form
of energy which evades any observation other than enforcing an exponential late time
expansion. In such an approach, the present section makes the first step of providing
suitable parameter settings.

Note that similar to our hypothetical outline above, such effects have indeed been
observed among solutions of the semiclassical Einstein equation. At first we refer to
M. Hänsel [27] who found a parameter regime for the SCE of a massless, conformally
coupled scalar field (with the conformal vacuum) in which precisely the stability properties
of two (different) de Sitter solutions as described above are present. Moreover, the
corresponding phase diagram (Figure 5.6.(a) of [27]) shows how solutions that start close
to the larger de Sitter point approach the smaller de Sitter point under certain conditions.
In another article [10] the authors found two different de Sitter solutions of which the
one with a larger rate is unstable and the one with a smaller rate is stable. They also
work with a conformally coupled scalar field, using approximate KMS states. As a third
reference, the authors of the present article found in [21] a similar scenario in which a de
Sitter solution is present and appears attractive towards perturbations. In that latter
article, solutions are constructed using Minkowski-like states for a massless field. Note
that while the analysis of this scenario is carried out explicitly only for ξ = 1

6 , it is also
stated how this can be generalized for ξ close but not equal to 1

6 .
In the following we provide a few examples of parameter settings in which there exist

multiple solutions. Moreover, we show how to tune parameters in order to control the
h-values of these solutions (particularly their ratio) by exploiting the knowledge acquired
in Section 5.

In Figure 10 we can see how the solution set behaves if e2 → −∞. We started in (a)
with a parameter point e1 = 2 and e2 = −10 close to the parameters studied in Figure 9,
such that e1 lies in the interval (β-1, β0) where we have three asymptotic solution curves
at small h, and therefrom lowered e2.

In Section 5.4 we have seen that F , restricted to the curve of ξ = ξcc = 1
6 , parameterized

as in (56), diverges to −∞ for both h→ 0 and h→∞ at our choice of e1. Moreover, by
Lemma 5.23, it has two zeros if e2 lies below a certain bound and no zero above that
bound. We have not computed this bound, but apparently in Figure 10.(a) we are above
this bound whereas in Figure 10.(b) we are below it. Since then e2 enters F simply as a
(sign-reversed) offset, it is clear that, if we lower e2, the two corresponding h-values of
the two zeros of F drift more and more apart, and the smaller solution’s h converges to
0, whereas the larger solution’s h diverges to +∞ in the limit e2 → −∞.

What we have done above works not only for ξ = ξcc = 1
6 , but for any ξ with

|ξ − 1
6 | ≤ 1/

√
1080, that is, for all ξ such that the vertical asymptote of the corresponding
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(a) e2 = −10 (b) e2 = −1000 (c) e2 = −105

ξ(−) ξcc ξ(+)

Hvac

•

•

(d) massless case
(x = 12ξ for m = 0)

Figure 10: Solution sets of the massive equation
for e1 = 2 in (a)-(c). We can see how for smaller
and smaller values of e2 the visible slings of solution
curves are more and more pulled to large or small
values of h, respectively. Hereby, both of them cross
the line of ξ = ξcc = 1

6 . (d) shows a similar situation
for the solution set of the massless equation for the
same parameters as in Figure 1.(c).

curve (56) lies in between the values x(±) = 2±
√

2/15.
To see this, we observe that all constant-ξ-curves are asymptotically equivalent to

x 7→ 1/
√
x at large x and that the function s from Section 5.1 has one zero larger that 1

and two zeros smaller than 1 for our present value of e1. In particular, all these curves of
constant ξ lie, asymptotically at large x, in between the upper two solution curves, and
for sufficiently small e2 intersect the solution set at small h. On the other hand, for the
ξ-values specified above the solution set intersects all these curves at large h as well. By
lowering e2 the h-values of these two solutions then drift more and more apart.

We have a similar situation for this particular interval of ξ-values in the massless case.
We have included a graphic for this situation in Figure 10.(d). If the parameter ratio
Λ
K tends to zero, the two branches of the solution set drift more and more apart. More
precisely, while for a fixed value ξ ∈ (ξ(−), ξ(+)) the larger solution diverges, the smaller

solution remains close to Hvac =
√

Λ/3. Both these limiting behaviors can easily be read
off from (19) computing H(±)/Hvac.

As a next example we want to study solutions for ξ-values at and around minimal
coupling ξmc = 0. Figure 11 shows the solution sets for the same parameters e1 and e2

as in Figure 10. In Section 5.4 we have shown that also for minimal coupling we have
basically the same situation as above, namely that F along the minimal coupling curve
diverges to −∞ at both small and large h. Now already the value e2 = −10 in Figure 11
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(a) e2 = −10 (b) e2 = −1000 (c) e2 = −105

Figure 11: Solution sets of the massive equation for e1 = 2 in (a)-(c), i.e. for the
same parameters as in Figure 10, but on a larger interval of x-values. Moreover,
in this figure we included the curves of constant ξ = 0, as well as, of constant
ξ ∈ {10−3, 10−4, 10−5} in Subfigure (a).

lies below the upper bound on e2-values from Lemma 5.22.(iii), consequently, in all three
graphics of Figure 11 we have two solutions with minimal coupling. The h-values of these
solutions drift apart as e2 → −∞.

In this scenario, however, we can tune our parameter ξ to positive small values such
that the h-values of two solutions described above stay approximately stationary, but a
third solution with a large h-value comes into play. Therefore, Figure 11.(a) includes the
constant-ξ-curves for some such positive values. While it is obvious from the figure, we
can also conclude the existence of such a solution with h→∞ as ξ → 0 from Section 5.2.
Therefore we reparameterize the (small-x-) asymptotic solution curve from Lemma 5.14
into

(0,∞)→ (0,∞)× (0,∞), h 7→
(√

29
90

1
h2
, h
)

and note that this curve lies above the line of ξ = 0 in our x-h-parameter plane. On the
other hand, the constant-ξ-curve for any ξ > 0 has a vertical asymptote and, consequently,
crosses the asymptotic solution curve above. For this crossing we have x→ 0 and h→∞
as ξ → 0. Consequently, if ξ is small enough (such that this crossing is at sufficiently
small x-values for a good approximation of the actual solution curve by the asymptotic
solution curve), we observe a third solution with the behavior as claimed above. Note
that the smaller two solutions remain more or less stationary, obviously their h-values
are continuous in ξ around ξ = 0.

Finally, we want to show the solution sets to a family of parameters with the reversed
behavior as in the previous case, that is, we prescribe a certain (approximate) larger
h-value and tune parameters so that the smaller solution’s h-value tends to 0.

Recalling the shape of the function s from Section 5.1, we find that α = 1 being a zero
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(a) e1 = −15
2 (b) e1 = −5

Figure 12: Solution sets with e2 = 0 and the respective values of e1. Note how
the lower asymptotic curve for large x admits the same asymptotic approximation
as the curves of constant ξ (here with ξmc = 0 and ξcc = 1

6) for e1 = −15
2 , and

lies below this asymptote for e1 > −15
2 .

of s is equivalent with e1 = −15
2 . Hence, for this value of e1, we have a solution curve

which is asymptotically equivalent with any curve of constant ξ at large x. Moreover,
for any value for e1 larger than −15

2 but still sufficiently close we have an asymptotic
solution curve below the curves of constant ξ. If we now approach e1 → −15

2 from above
the solution set intersects the curve of minimal coupling at larger values of x, and hence
at smaller and smaller values of h. This situation is depicted in Figure 12.

Also, we have shown in Lemma 5.22 that on the curve of minimal coupling ξ = 0 the
values of F are determined by

(0,∞)→ R, x 7→ F
(
x, 1√

x

)
= −

(
1
4 + e1

30

)
x− e2

30 + 2
3 + F̃ (x)

with some concave function F̃ that fulfills F̃ (x) → −∞ as x → 0 and F̃ (x) → 0 as
x→∞, cf. Section 5.4. From this we conclude that, if e2 is small enough (cf. Figure 12),
then there exist two zeros for e1 > −15

2 , and the zero with the larger x-value diverges to
+∞ as e1 approaches −15

2 from above. Consequently, the h-value of the corresponding
solution of our equation tends to 0. The solution with the larger value for h essentially
remains unaffected. By choosing a smaller e2, we can freely adjust the h-value of the
larger solution. Finally, by the same argument as above we can, moreover, observe a
third solution if we tune ξ to positive values close to 0, and the h-value of this solution
diverges as ξ → 0.

Note that in last scenario we can first adjust the middle solution by tuning e2, then
the large one by tuning ξ and, finally, the small one by tuning e1. Thereby, one can in
principle obtain an arbitrary triplet of positive numbers as the de Sitter solutions in a
particular setting.
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Besides our given examples one can find several other parameter regimes with a similar
behavior.

To conclude, our model is sufficiently flexible to guarantee, by a suitable choice of
parameters, that for any two values of h there exist de Sitter solutions with these h values
as the corresponding de Sitter rates. In particular, these two values can be prescribed
using an arbitrary mass for the field.

8. Conclusion and outlook

Significantly improving upon earlier results in [29] on semiclassical de Sitter solutions,
which were limited to vacuum solutions with vanishing QSE tensor, we have given an
extensive and complete analysis of the consistency equation (16) to obtain a complete
picture of cosmological de Sitter / Bunch-Davies solutions to the SCE.

Our main result is the description of the solution set of cosmological de Sitter / Bunch-
Davies solutions as a union of analytic curves in the parameter space of the coupling to the
scalar curvature ξ and the expansion rate H as a function of renormalization parameters.
Also, as a function of the renormalization parameters, we have obtained a description of
the structure of solution set as the union of up to three analytic curves in the plane of
(ξ,H) values or in the related (x, h)-plane. The techniques applied to generate this map
range from elementary solutions of algebraic equations, over the asymptotic analysis of
certain analytic functions, continuity arguments based on the implicit function theorem
to the reduction of analytic varieties. Note that a large number of solutions do not
require a positive cosmological constant Λ > 0 and even for particular cases with Λ < 0
there exist solutions to the SCE with a positive rate of expansion, due to the nature of
the QSE tensor. This is particularly interesting in the massless case, where this effect
cannot simply be blamed on a positive renormalized cosmological constant.

Based on these findings, in particular on the explicit asymptotic expansions of the
solution curves, we have identified parameter settings which are compatible with multiple
de Sitter solutions, both with very large and very small rates of expansion.

In such settings, studying the Lyapunov stability of the de Sitter solutions is a natural
next step. While for the case of conformal coupling with massless fields the dissertation
of [27] clarifies the situation to a certain extent, the situation in the general case seems
to be largely open.

Note that the question of Lyapunov stability can be answered on several levels. For
special cases with a decoupling of the state degrees of freedom from the SCE like in [21, 27]
this can be answered by the standard analysis of a dynamical system in finite dimension.
Whenever the state dynamics couples non-trivially to the SCE, stability can either be
answered in a reduced, cosmological setting [22, 36] or in the setting of the full SCE.
See [35] for some investigations on stability in the case of a toy model and [19, 25] for
linearization techniques of the full SCE system.

It would be especially attractive to find unstable directions for de Sitter solutions with
high expansion rates and stability for de Sitter solutions with low expansion rate in the
situations described in Section 7. Whether this is achievable or not, at present remains
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an open research question.
Finally, the inclusion of more general kinds of matter, modeled by fermionic fields or

gauge fields, as well as the inclusion of positive or negative spatial curvature certainly is
also of interest.

Acknowledgement. Robert L. Bryant is gratefully acknowledged for providing the
argument in Appendix B. The authors thank Paolo Meda, Nicola Pinamonti and Hendrik
Herrmann for interesting discussions.

A. Properties of the Bunch-Davies Digamma terms f

In this appendix we collect a few properties of the function

f : (0,∞)→ R, x 7→ ψ(0)
(

3
2 −

√
9
4 − x

)
+ ψ(0)

(
3
2 +

√
9
4 − x

)
(57)

as defined in Section 4, with the Digamma function ψ(0) = Γ′/Γ.
At first, we want to be a bit more precise on its definition. Note that a priori the

mapping in (57) defines a meromorphic function f̃ on a slit plane, that is, on the complex
plane C from which a half-ray starting in 9

4 was removed. However, one can show that
the particular values of that function do not depend on the choice of which ray was
removed, hence (57) defines a meromorphic function on C\{9

4}. In a final step, one can

show that f̃(9
4) := 2ψ(0) defines a holomorphic continuation to the point in question

and (57) defines a meromorphic function on C whose poles lie at {−n2 − 3n |n ∈ Z≥0}.
In particular, by restricting f = f̃

∣∣
(0,∞)

(57) defines a (real) analytic function on the

positive real axis.
Studying the poles and residues of the Gamma function we find that f̃ has a pole of

order 1 in 0 ∈ C. Employing the chain rule for residues we find that Res0 f̃ = −3 and we
conclude the asymptotic equivalence

f(x) ∼ −3

x
as x→ 0.

On the other hand, we have asymptotically

f(x) ∼ log(x) as x→∞

which immediately follows from Lemma 1 in the appendix of Juárez-Aubry’s article [29].
More precisely, the latter lemma shows that

|f(x)− log(x)| ≤ 3

x

for all x > 9
4 . The proof of the latter lemma can easily be extended to see that
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f(x) < log(x) and thus
f(x)− log(x) ∈ [− 3

x , 0) (58)

for all x > 9
4 .

Without proof we state the first few Puiseux coefficients of f − log in the limit x→∞
as

f(x) ∈ log(x)− 4

3x
− 11

15x2
− 92

315x3
+O( 1

x4
).

At last, we can show that f is strictly increasing by estimating its derivative and,
moreover, by comparing the values f(2) = 1 − 2γ < 0 and f(9

4) = 4 + 2ψ(0)(1
2) =

4− 4 log(2)− 2γ > 0 (with the Euler-Mascheroni number γ) we find that it must have
its only zero in the interval (2, 9

4) (numerically ≈2.1646).
As an orientation, Figure 3.(a) in the text shows a plot of f together with its asymptotics

from above.

B. Lemma on the reduction of analytic varieties

The following result is used in Theorem 4.2 to prove that de Sitter solutions to the SCE
form a union of analytic curves in the x-h-plane. The argument was provided by Robert
L. Bryant from Duke University, Durham, North Carolina by private communication.

Lemma B.1. Let F : R2 → R be analytic such that F (0, 0) = 0 and let Fn be the
lowest-order non-vanishing homogeneous term in F ’s Taylor expansion around (0, 0), say
Fn is a homogeneous polynomial of degree n ∈ N. Suppose that all linear polynomials
occurring in the factorization of Fn into irreducibles (over R) are pairwise distinct, say
these are m ≤ n in number. Then there exists a neighborhood U 3 (0, 0) such that

U ∩
{

(x, y)
∣∣F (x, y) = 0

}
=

m⋃

i=1

γi(Ji)

with regularly parameterized analytic curves γi : Ji → U (defined on some intervals Ji ⊂
R), i = 1, . . . ,m, which only intersect in (0, 0) and which are each linearly approximated
around (0, 0) by the zero set of one of the linear factors of Fn.

Remark B.2. (i) In other words, the analytic variety defined as the zero set of F can,
locally around (0, 0), be decomposed into m non-singular analytic subvarieties.

(ii) The assumption of the lemma is clearly imposed by the (partially numeric) results
of section 4.3. That is, an indefinite Hessian of F has two distinct eigenvectors,
which allows an affine linear coordinate transformation such that

F (x, y) ∈ xy +O(‖(x, y)‖3).

This representation of F , moreover, shows that there is an open neighborhood U
of (0, 0) in the given coordinates such that ∇F 6= 0 on U\{(0, 0)}, that is, the zero
(0, 0) of ∇F is isolated.
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(iii) Note that the claim of distinct linear factors is necessary, otherwise the analytic
variety defined by x2 = y3 provides a counter example.

Proof. By the assumptions of the lemma, one finds a linear coordinate transformation
after which F takes the form

F (x, y) = x · Fn−1(x, y) +
∞∑

k=n+1

Fk(x, y),

where each Fk is a homogeneous polynomial of order k, k = n − 1 or k ≥ n + 1, and
where x does not divide Fn−1 in R[x, y]. Moreover, this power series converges on a
neighborhood of the origin.

By a blow-up substitution x 7→ xy we obtain

F (xy, y) = yn ·
(
x ·Gn−1(x, y) +

∞∑

k=n+1

yk−nGk(x, y)

)
=: yn ·G(x, y),

where Gk(x, y) := Fk(xy,y)
yn are again polynomials of two variables, k = n − 1 or k ≥

n + 1. The map (x, y) 7→ G(x, y) defines another analytic function around the origin
with G(0, 0) = 0 and the assumption that x does not divide Fn−1(x, y) implies that
∂xG(0, 0) 6= 0. Consequently, the zero set of G is, locally around (0, 0), given by the
graph of an analytic curve of the form

J1 7→ R2, y 7→
(
g(y), y

)
,

J1 ⊂ R and g : J1 → R analytic. Moreover, inverting the blow-up substitution yields
that F vanishes on the graph of the analytic curve

γ1 : J1 7→ R2, y 7→
(
y · g(y), y

)
, (59)

hence the analytic function

L1 : (x, y) 7→ x− y · g(y)

is a prime factor of F in the ring

R :=
{
H ∈ R[[x, y]]

∣∣H converges on some open neighborhood of (0, 0)
}

of formal power series which converge around (0, 0). Note that G(0, 0) = 0 implies
g(0) = 0 and thus γ is, up to order O(y2), approximated by the zero set of (x, y) 7→ x,
that is, of the factor of F ’s lowest-order (non-vanishing) homogeneous term (LOHT) in
consideration. Moreover, note that by (59) we have |γ′| ≥ 1, i.e. |γ′| is bounded away
from zero.

However, since L1 is a factor of F we can decomposed F into a product

F (x, y) = L1(x, y) ·H1(x, y),
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for some H1 ∈ R. By this product representation, multiplying the LOHTs of L1 and H1

must result in the LOHT of F (in R[x, y]). Since the LOHT of L1 is just x, the LOHT
of H1 consequently equals Fn−1(x, y).

Finally, one can linearly transform the coordinates x and y to single our one of the
remaining linear factors of Fn−1(x, y) as x again and repeat the above factorization
procedure. Note that in the step specifying G’s zero set around (0, 0) we particularly
restricted our considerations to the stripe defined by y ∈ J1 (and even just an open
subset of this stripe around (0, 0)), and this new domain for the subsequent factorization
step is linearly transformed as well.

Eventually, after m steps we end up with a factorization

F (x, y) = H(x, y) ·
m∏

j=1

Lj(x, y) (60)

(H = Hm), where each Li vanishes on an analytic curve γi : Ji → R2. Hereby, we can
find a sufficiently small open neighborhood U of (0, 0) such that each of the power series
in (60) converges on U and such that for each i ∈ {1, . . . ,m} and each (x, y) ∈ U

Li(x, y) = 0 if and only if (x, y) ∈ γi(Ji).

Again, multiplying the LOHTs of each factor on the RHS of (60) must result in the
LOHT of F , called Fn in the lemma. By construction of the Li, each of them has a
LOHT equal to the respective linear prime factor of Fn. Consequently, the LOHT of
H is the product of the remaining non-linear prime factors of Fn. Hence, either Fn has
no second-order prime factors, then H is a unit in R[[x, y]] and as such is non-zero on
a neighborhood of (0, 0), w.l.o.g. on U , or Fn has second-order prime factors, then the
LOHT of H is precisely the product of these. In the latter case, H is non-zero on a
(0, 0)-pointed neighborhood of (0, 0), w.l.o.g. on U\{(0, 0)}, where we used that each
second-order prime factor is non-zero on, w.l.o.g., U\{(0, 0)}. In any case, H is non-zero
on U\{(0, 0)}.

Concluding, by the factorization representation (60) of F and the aforementioned
properties of the factors, the zeros of F in the open neighborhood U are precisely the
images of the analytic curves γ1, . . . , γm.
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