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Abstract

In this paper we present numerical methods for the approximation of non-
linear Itô stochastic differential equations on manifolds. For this purpose,
we extend Runge-Kutta–Munthe-Kaas (RKMK) schemes for ordinary differ-
ential equations on manifolds to the stochastic case and analyse the strong
convergence of these schemes. Since these schemes are based on the appli-
cation of a stochastic Runge-Kutta (SRK) scheme in a corresponding Lie
algebra, we address the question under which circumstances the stochastic
RKMK method has the same strong order of convergence as the applied SRK
scheme. To illustrate our answer to this question and the effectiveness of our
schemes, we show some numerical results of applying these methods to a
problem with an autonomous underwater vehicle.

Keywords: stochastic Runge-Kutta method, Runge-Kutta–Munthe-Kaas
scheme, Casimir functions
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1. Introduction1

Let (Θ,F ,P) be a complete probability space and Wt = (W 1
t ,W

2
t , . . . ,W

m
t )

an m-dimensional standard Brownian motion w.r.t. a filtration Ft for t ≥
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0 which satisfies the usual conditions. On a manifold M we consider the
following stochastic differential equation (SDE) for y(t) ∈M,

dy =

((
λ∗f0(y)

)
(y) +

1

2

m∑
i=1

( d
dy

(
λ∗fi(y)

)
(y)
)(
λ∗fi(y)

)
(y)

)
dt

+
m∑
i=1

(
λ∗fi(y)

)
(y) dW i

t , y(0) = y0, (1)

where fi(y) are elements of a corresponding Lie algebra for i = 0, 1, . . . ,m and2

λ∗ maps these elements to X(M), the set of all vector fields on the manifold3

M. We consider (1) as a generic presentation of an Itô SDE on a mani-4

fold, which is in accordance with [6, 19], where corresponding Stratonovich5

presentations of this SDE can be found.6

Our goal in this paper is the formulation of an algorithm for the numeri-7

cal approximation of (1) such that the result will lie on the correct mani-8

fold M as it is well-known that conventional integrators such as stochastic9

Runge-Kutta (SRK) schemes would give approximations that drift off the10

manifold. Having dealt only with special cases of manifolds such as ma-11

trix Lie groups or the unit sphere in previous work [10, 11] we now consider12

a more generalized setting such that numerical approximations for (1) can13

be obtained on any smooth manifold M. For this purpose, we extend the14

Runge-Kutta–Munthe-Kaas (RKMK) schemes for ordinary differential equa-15

tions (ODEs) on manifolds [13] to stochastic Runge-Kutta–Munthe-Kaas16

(SRKMK) schemes, where the main idea is the application of SRK methods17

in a corresponding Lie algebra followed by a projection back to the manifold18

M. Since the Lie algebra is a vector space the linear approximation obtained19

by the SRK scheme will not drift off and due to its projection to M we get20

results on the correct manifold by construction.21

To our knowledge, this approach was first mentioned in [6]. However, a22

convergence analysis was not performed by the authors. A weak convergence23

analysis and an application to the stochastic Landau-Lifshitz equation can24

be found in [1]. Special cases of strong order 1 SRKMK schemes applied to25

Itô SDEs on Lie groups were presented in [16, 7, 9].26

Our contribution to this area of research is a theorem that gives the conditions27

such that the SRKMK method applied to a nonlinear SDE on a manifold has28

the same strong order as the SRK scheme applied in the Lie algebra. This29

theorem can be considered as an extension of corresponding theorems in [10]30
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and in [11], where the former only mentions linear SDEs on matrix Lie groups31

and the latter only deals with a nonlinear SDE involved in the rigid body32

modelling.33

The rest of this paper is structured as follows. In Section 2 we derive in more34

detail the generic presentation of an SDE on a manifold and give examples35

of what this SDE looks like for commonly used manifolds. Then we present36

our main results on the strong numerical approximation of (1) in Section 3.37

Numerical examples are given in Section 4, followed by a conclusion and an38

outlook in Section 5.39

2. Generic presentation of Itô stochastic differential equations on40

manifolds41

Let M be a manifold and TpM be the tangent space at p ∈ M. A vector42

field is an assignment of a tangent vector to each point in M. By X(M) we43

denote the set of all vector fields on M. In order to derive the SDE (1) we44

first give a brief overview of Lie groups and of some related notations.45

2.1. Lie group and Lie algebra46

A Lie group G is a differentiable manifold equipped with a continuous group47

product · : G×G→ G. Here, we will focus on matrix Lie groups, which are48

Lie groups that are also subgroups of the general linear group GL(n).49

Let G be a matrix Lie group, then the tangent space at the identity I is called
the Lie algebra g of the Lie group G, i.e. g = TIG. The Lie algebra is a vector
space equipped with a bilinear, skew-symmetric bracket [·, ·] : g × g → g,
which is called the Lie bracket or the commutator on g and satisfies the
Jacobi identity [

A, [B,C]
]

+
[
C, [A,B]

]
+
[
B, [C,A]

]
= 0.

We denote by adΩ : g → g, adΩ(H) = [Ω, H] = ΩH − HΩ the adjoint
operator, which is used iteratively,

ad0
Ω(H) = H, adkΩ(H) = adΩ

(
adk−1

Ω (H)
)

= [Ω, adk−1
Ω (H)]

for k ≥ 1.50

For more information on Lie groups and Lie algebras we refer the interested51

reader to [3].52
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2.2. The exponential map53

For a matrix Lie group G and its Lie algebra g, the matrix exponential54

given by exp(Ω) =
∑∞

k=0 Ωk/k! maps elements from the Lie algebra to the55

Lie group, i.e. exp: g → G. Furthermore, the exponential map is a local56

diffeomorphism in a neighbourhood of Ω = 0.57

The derivative of the matrix exponential is given by( d

dΩ
exp(Ω)

)
H = d expΩ(H) exp(Ω)

where58

d expΩ(H) =
∞∑
k=0

1

(k + 1)!
adkΩ(H). (2)

According to the classical Lemma of Baker (1905, see e.g. [2, p. 84]) an59

inverse of d expΩ(H) exists, if the eigenvalues of adΩ are different from 2`πi60

with ` ∈ {±1,±2, . . . }. Let Bk denote the Bernoulli numbers defined by61 ∑∞
k=0(Bk/k!)xk = x/(ex − 1), then we have62

d exp−1
Ω (H) =

∞∑
k=0

Bk

k!
adkΩ(H), (3)

which converges for ‖Ω‖ < π.63

2.3. Lie group actions and Lie algebra actions64

A (left) Lie group action is a map Λ: G×M→M which satisfies65

1. Λ(I, p) = p,66

2. Λ
(
g1,Λ(g2, p)

)
= Λ(g1 · g2, p) for g1, g2 ∈ G.67

If Λ is a Lie group action then a (left) Lie algebra action λ : g×M→M is68

defined by λ(v, p) = Λ
(
exp(v), p

)
.69

For the formulation of a generic presentation of an Itô SDE on a manifold70

we use that each element of the Lie algebra g generates a vector field on the71

manifold M. Let λ∗ : g→ X(M) be72

(λ∗v)(p) =
d

dt
λ(tv, p)

∣∣∣
t=0

(4)

for v ∈ g, p ∈M (see [13]).73
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Now, assuming that there exist functions fi : M→ g for i = 0, 1, . . . ,m and74

applying (4) to the image of these functions at y(t) ∈ M we recover the75

drift and diffusion coefficients of the SDE (1). In order to solve this SDE76

numerically we first derive a related SDE in the Lie algebra g.77

Theorem 2.1. Let λ : g×M→M be a Lie algebra action and fi : M→ g78

for i = 0, 1, . . . ,m. Assume that an Itô SDE for y(t) ∈ M is given by (1).79

For t small enough the solution of this SDE is given by y(t) = λ(Ω(t), y0)80

where Ω(t) ∈ g satisfies81

dΩ = d exp−1
Ω

(
f0

(
λ(Ω, y0)

))
dt+

m∑
i=1

d exp−1
Ω

(
fi
(
λ(Ω, y0)

))
dW i

t , Ω(0) = 0.

(5)

We consider this Theorem as an extension of [13, Corollary 9] from ODEs to82

SDEs on manifolds and as an Itô version of [6, Theorem 5.1], where a proof83

in Stratonovich notation can be found.84

2.4. Examples85

In the following we specify Lie algebra actions and the corresponding repre-86

sentation of an Itô SDE for common manifolds.87

1. M = Rn: In this case the Lie algebra action is given by λ(v, p) = v+ p
with (λ∗v)(p) = v. Therefore, we obtain

dy =

(
f0(y) +

1

2

m∑
i=1

f ′i(y)fi(y)

)
dt+

m∑
i=1

fi(y) dW i
t ,

for (1), where well-known SRK methods can be applied for the numer-88

ical approximation.89

2. M = G: If the considered manifold is a matrix Lie group we can choose
λ(v, p) = exp(v)p and (λ∗v)(p) = vp. An SDE with a solution evolving
on G can then be formulated as

dy =

(
f0(y)y +

1

2

m∑
i=1

( d
dy
fi(y)y

)
fi(y)y

)
dt+

m∑
i=1

fi(y)y dW i
t .

3. M = Sym(n): Let M be the space of symmetric matrices and G =
SO(n) the special orthogonal group with g = so(n), the space of skew-
symmetric matrices. Then, we have λ(v, p) = exp(v)p exp(−v) with

5
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(λ∗v)(p) = [v, p] and

dy =

(
[f0(y), y] +

1

2

m∑
i=1

( d
dy

[fi(y), y]
)

[fi(y), y]

)
dt+

m∑
i=1

[fi(y), y] dW i
t ,

is an isospectral flow on Sym(n). An example on how this isospectral90

flow can be used to approximate correlation matrices is presented in91

[12].92

4. M = se(3)∗: Suppose the manifold is given by the dual of the Lie
algebra of the special Euclidean group SE(3) ∼= SO(3) × R3 such that
G = SE(3) and g = se(3). An element of the Lie group SE(3) can be
identified with a 4× 4-matrix

g =

(
R r
O 1

)
,

where R ∈ SO(3), r ∈ R3 and O = (0, 0, 0). In the following we will use93

the shorthand notation g = (R, r) to represent elements of SE(3). To94

denote an arbitrary element v of the Lie algebra se(3) ∼= so(3)×R3 we95

use the notation v = (w, u) with w, u ∈ R3, where we make use of the96

fact that so(3) is isomorphic to R3. The Lie group action Λ: SE(3) ×97

se(3)∗ → se(3)∗ can then be specified by Λ(g, y) =
(
Rπ+ r× (Rρ), Rρ

)
98

for y = (π, ρ) ∈ se(3)∗ and g = (R, r) ∈ SE(3). A more detailed99

investigation of this manifold will be provided in Section 4.100

Since transitive Lie algebra actions can always be found at least locally, any101

SDE on a manifold M can be written in the form of (1) (see [13]). More102

examples can be found in [6].103

3. The stochastic Runge-Kutta–Munthe-Kaas (SRKMK) scheme104

Inspired by the RKMK schemes for ODEs on manifolds [13] we use the SDE105

in the Lie algebra (5) to formulate a numerical approximation method for106

the SDE on the manifold (1).107

Algorithm 3.1 (SRKMK). Divide the time interval [0, T ] uniformly into108

J subintervals [tj, tj+1], j = 0, 1, . . . , J − 1 and define ∆ = tj+1 − tj. The109

following steps are repeated until tj+1 = T .110

1. Initialization step: Let yj be the approximation of yt at time t = tj.111

6
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2. Numerical method step: Compute Ω1 ≈ Ω∆ by applying a stochastic112

Runge-Kutta method to Eq. (5).113

3. Projection step: Define a numerical solution of Eq. (1) as yj+1 =114

λ(Ω1, yj).115

We recall that an approximating process X̂t is said to converge in a strong116

sense with order γ > 0 to the Itô process Xt if there exists a finite constant117

K and a ∆′ > 0 such that118

E[|XT − X̂T |] ≤ K∆γ (6)

for any time discretization with maximum step size ∆ ∈ (0,∆′) [5].119

As the SRKMK scheme requires the evaluation of the infinite series (3) the120

question arises of how many summands of this series have to be computed121

in order to obtain a scheme of strong order γ.122

Theorem 3.2. Let q denote the truncation index in the approximation of (3),123

d exp−1
Ω (H) ≈

q∑
k=0

Bk

k!
adkΩ(H) = H − 1

2
[Ω, H] +

1

12

[
Ω, [Ω, H]

]
+ . . . , (7)

and let the stochastic Runge-Kutta scheme applied to Eq. (5) be of strong124

order γ. Furthermore, assume that (fi ◦ λy0) : g → g fulfills a linear growth125

condition, i.e.126

‖(fi ◦ λy0)(Ωs)‖F ≤ ai + bi‖Ωs‖F for ai, bi <∞, (8)

where we use the notation λy0 : g → M, λy0(Ω) = λ(Ω, y0) = Λ(exp(Ω), y0)127

and i = 0, 1, . . . ,m. If the truncation index q satisfies q ≥ 2γ − 2, then the128

SRKMK scheme for solving Eq. (1) is also of strong order γ.129

Before proving this theorem we provide the following remarks:130

1. The linear growth condition (8) is also an assumption which is needed131

to show the existence and uniqueness of the solution of (5) (see [14,132

Theorem 5.2.1]).133

2. Since Ω1 7→ yj+1 = λ(Ω1, yj) (see the last step of Algorithm 3.1) is a134

smooth mapping it is sufficient to show that the SRK scheme applied135

to (5) is of the strong order γ = (q + 2)/2.136

7
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3. The proof of this theorem can be conducted very similar to the proof137

of Theorem 3.2 in [11] with the main difference being the usage of the138

linear growth condition instead of using properties of the unit sphere,139

which was the considered manifold in the rigid body problem. There-140

fore, we only state the main results of this proof with correspondingly141

made adaptations.142

Proof. We denote by Ω∆ the exact solution of (5) after one time step at143

t = ∆ and by Ωq
∆ the exact solution of the truncated version of (5), where144

the drift and diffusion coefficients are replaced by approximations (7).145

Considering the mean-squared error,

E[‖Ω∆ − Ω1‖F ] ≤
(
E[‖Ω∆ − Ω1‖2

F ]
)1/2

≤
(
E
[
‖Ω∆ − Ωq

∆‖
2
F

])1/2

+
(
E
[
‖Ωq

∆ − Ω1‖2
F

])1/2

,

we see that further steps of the proof have only be conducted for the modelling146

error since the numerical error has strong order γ by construction.147

Hence, we use the Itô isometry, calculate the Frobenius norm of the adjoint
operator and apply Taylor’s theorem to F (x) = x

(
1− cot(x/2)

)
/2 + 2 with

|F q+1(ξ)| ≤ Mq for some Mq < ∞ and for ξ between 0 and x = 2‖Ωs‖F to

8
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get the following estimation(
E
[
‖Ω∆ − Ωq

∆‖
2
F

])1/2

≤
m∑
i=0

(∫ ∆

0

E
[( ∞∑

k=q+1

|Bk|
k!

∥∥ adkΩs

(
fi
(
λy0(Ωs)

))∥∥
F

)2
]
ds

)1/2

≤
m∑
i=0

(∫ ∆

0

E
[∥∥∥fi(λy0(Ωs)

)∥∥∥2

F

( ∞∑
k=q+1

|Bk|
k!

2k‖Ωs‖kF
)2
]
ds

)1/2

≤ 2q+1Mq

(q + 1)!

m∑
i=0

(∫ ∆

0

E
[∥∥fi(λy0(Ωs)

)∥∥2

F

∥∥Ωs

∥∥2(q+1)

F

]
ds

)1/2

≤ 2q+1Mq

(q + 1)!

m∑
i=0

(∫ ∆

0

(
a2
iE
[∥∥Ωs

∥∥2(q+1)

F

]
+ 2aibiE

[∥∥Ωs

∥∥2(q+3/2)

F

]
+ b2

iE
[∥∥Ωs

∥∥2(q+2)

F

])
ds

)1/2

≤ 2q+1Mq

(q + 1)!

m∑
i=0

(∫ ∆

0

O(sq+1)ds

)1/2

= O
(
∆(q+2)/2

)
,

where the last line is obtained by applying the Itô-Taylor expansion according148

to [5, Proposition 5.9.1].149

4. Numerical Example150

We consider an autonomous underwater vehicle, more precisely, an ellipsoidal
rigid body submerged in an ideal fluid (see e.g. [4]). Assuming that the
vehicle is perturbed by a Wiener process, the dynamics can be described by
(1) with m = 1 and y = (π, ρ) ∈ se(3)∗, where π ∈ so(3)∗ represents the
angular momentum and ρ ∈ (R3)∗ the linear momentum [6]. The considered
manifold se(3)∗ is the dual of the Lie algebra se(3) ∼= so(3)×R3 of the group
of rigid body motions. We utilise the isomorphism between the so(3) and R3

via the hat map, ·̂ : R3 → so(3),

θ =

θ1

θ2

θ3

 7→ θ̂ =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 ,

9
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such that θ̂z = θ × z for θ, z ∈ R3. A closed-form expression for the ex-
ponential map expso(3) from so(3) to the corresponding Lie group SO(3) is
given by the Rodrigues formula (see e.g. [8, p. 291]). It can also be used to
compute the exponential map expse(3) : se(3)→ SE(3) for Ω = (θ, ζ),

expse(3)(Ω) =

(
Θ 1

‖θ‖2
(
(I −Θ)(θ × ζ) + θθ>ζ

)
O 1

)
,

where Θ = expso(3)(θ̂) [15].151

Let fi : se(3)∗ → se(3), fi(y) = (wi(y), ui(y)), be given by the angular ve-
locity wi(y) = I−1

i π and the linear velocity ui(y) = M−1
i ρ, where Ii =

diag(αi1, αi2, αi3) is the moment of inertia and Mi = diag(βi1, βi2, βi3) is
the mass matrix for i = 0, 1. Based on the Lie group action Λ in the fourth
example in Section 2.4 the vector fields or rather the coefficients of (1) read(

λ∗fi(y)
)
(y) = (π × wi + ρ× ui, ρ× wi), i = 0, 1.

To solve (1) numerically with these coefficients we implemented some SRKMK152

methods in the software package MATLAB, where we used the Euler-Maruyama153

scheme, Rößler’s scheme of strong order 1 [18] and Rößler’s scheme of strong154

order 1.5 [17] in the second step of Algorithm 3.1 in order to compute an155

approximation for (5). We chose the initial value y0 = (π0, ρ0) with π0 =156

(
√

2,
√

2, 0)> and ρ0 = (0,
√

2,
√

2)>, the moments of inertia I0 = diag(3, 1, 2)157

and I1 = diag(1, 0.5, 1.5) and the mass matrices M0 = diag(20, 55, 101) and158

M1 = diag(55, 78, 120). For the implementation of the different SRK schemes159

in the second step of Algorithm 3.1 we followed the conditions in Theorem 3.2,160

i.e. we set the truncation index q = 0 for the Euler-Maruyama and Rößler’s161

strong order 1 scheme and q = 1 for the strong order 1.5 scheme by Rößler.162

The estimation of the absolute error between a reference solution and the163

approximations ŷT obtained with the SRKMK methods using the step sizes164

∆ = 2−` for ` = 14, 13, 12, 11, 10, 9, 8, 7 can be viewed as a log-log plot in165

Figure 1. It shows that the strong convergence order of the SRK scheme is166

preserved although only the first summands of (7) are evaluated. For the167

reference solution yrefT we used Rößler’s strong order 1.5 scheme with a step168

size of ∆ = 2−16 and we used a closed-form expression for (3) applied in se(3)169

which can be found in [15].170

As in [6] we evaluate the Casimir functions C1 = π>ρ and C2 = |ρ|2 to171

indicate how far the trajectories stray from the manifold se(3)∗. Figure 2172

10
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10 -4 10 -3 10 -2

step size 

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

gEM

gSRK1

gSRK1.5
0.5

1.5

Figure 1: Simulation of the strong convergence order for M = 1000 paths. Geometry-
preserving versions of the Euler-Maruyama (gEM), Rößler’s strong order 1 SRK (gSRK1)
and Rößler’s strong order 1.5 scheme (gSRK1.5) are shown with solid lines while the
dashed lines are corresponding reference slopes.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

10
-15
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-10
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10
0

lo
g

(e
rr

o
r 

in
 C

a
s
im

ir
s
)

Figure 2: Distance of a sample path of Rößler’s order 1 scheme (SRK1, solid lines) applied
directly to (1) and its geometry-preserving counterpart (gSRK1, dashed lines). Blue lines
correspond to the error in C1 while red lines indicate the error in C2.

shows that the SRKMK scheme preserves the Casimir functions within ma-173

chine precision while the corresponding SRK method applied directly to (1)174

clearly violates the conserved quantities already after the first time steps.175

5. Conclusion176

In this work we extended Munthe-Kaas methods such that they can be ap-177

plied to solve nonlinear Itô SDEs on manifolds. Furthermore, we formulated178

conditions for these SRKMK schemes to inherit the strong convergence order179

of the underlying SRK scheme in the Lie algebra. We specified the considered180

representation of an Itô SDE for some commonly used manifolds and anal-181

ysed the application of SRKMK schemes more thoroughly for the manifold182

se(3)∗. The numerical results confirm our theorem on the strong convergence183

order and show that SRKMK schemes preserve conserved quantities of the184

underwater vehicle problem, namely the Casimir functions, whereas SRK185

schemes fail to conserve these quantities.186

In future work we would like conduct a more detailed investigation of the187

weak convergence of SRKMK schemes since this work only covers the strong188
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convergence.189
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