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Abstract In this paper, we replace the standard numerical approach of esti-
mating parameters in a mathematical model using numerical solvers for differ-
ential equations with a physics-informed neural network (PINN). This neural
network requires a sequence of time instances as direct input of the network
and the numbers of susceptibles, vaccinated, infected, hospitalized and recov-
ered individuals per time instance to learn certain parameters of the underlying
model, which are used for the loss calculations.

The established model is an extended susceptible-infected-recovered (SIR)
model in which the transitions between disease-related population groups,
called compartments, and the physical laws of epidemic transmission dynamics
are expressed by a system of ordinary differential equations (ODEs). The sys-
tem of ODEs and its time derivative are included in the residual loss function
of the PINN, additional to the data error between the current network output
and the time series data of the compartment sizes. Further, we illustrate how
this PINN approach can also be used for differential equation-based models
such as the proposed extended SIR model, called SVIHR model.

In a validation process, we compare the performance of the PINN with
results obtained with the numerical technique of non-standard finite differences
(NSFD) in generating future COVID-19 scenarios based on the parameters
identified by the PINN. The used training data set covers the time between
the outbreak of the pandemic in Germany and the last week of the year 2021.
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We obtain a two-step or hybrid approach, as the PINN is then used to
generate a future COVID-19 outbreak scenario describing a possibly following
wave of the pandemic. The week at which the prediction starts is chosen in
mid-April 2022.

Keywords physics-informed neural networks · SIR · compartment models ·
COVID-19 · SARS-CoV-2 · epidemiology

1 Introduction

To pursue the goal of developing a method for predicting future epidemiological
trends, a numerical and a data-driven but also mathematical approach are
established to generate COVID-19 scenarios in this paper. All methods are
applied in this work to data on COVID-19-related population group sizes in
Germany, but are also applicable to other countries for which data, that can
be transformed into sizes of model compartments, is available.

The COVID-19 pandemic is currently one of the most discussed topics
around the world. The first cases of severe acute respiratory syndrome coro-
navirus type 2 (SARS-CoV-2) occurred in Asia in December 2019, but were
not reliably identifiable at that time. The People’s Republic of China experi-
enced a peak of about 4,600 cases per day in mid-February 2020, but by March
2020, the epidemic was largely contained in China and other Asian parts of
the world. Europe experienced the first wave of the pandemic in March and
April 2020, with, for example, about 5,840 new daily infections in Germany in
late March and 13,260 new daily infections in France in mid-April 2020.

While infection numbers in Europe were generally low in summer 2020,
peaks were observed in the United States (∼ 67,000 infections/day), Brazil (∼
46,000 infections/day), and India (∼ 93,000 infections/day) at certain times
between July and September 2020. The third wave was characterized by ap-
proximately 35,000 new daily infections in Italy in mid-November 2020, 25,000
new daily infections in Germany around Christmas, 60,000 new daily infec-
tions in the United Kingdom in early January 2021, and severe lockdowns
within Europe in fall 2020 and winter 2020/2021. The summer of 2021 was
characterized by a relaxation of intervention measures in Europe. However,
some countries experienced catastrophic COVID-19 events, such as India with
approximately 390,000 new daily infections in early May 2021 [18].

In November 2021, the fourth wave of the pandemic spread throughout
Europe despite a fully vaccinated proportion of 67.6 % in Germany, 68.9 % in
the United Kingdom, 74.8 % in Italy, 77.7 % in France, and 80.6 % in Por-
tugal [26]. Nearly 40,000 new daily infections were observed in Germany on
November 14th 2021, as well as in the United Kingdom. Achieving even higher
vaccination rates and providing booster vaccinations for all to maintain a high
level of infection protection are policy issues of concern to all countries. The
dangers posed by mutant virus variants such as the delta variant (B.1.617.2),
which was first discovered in India in October 2020 and is now the dominant
variant infecting people in several countries such as Germany, or the omicron



x 3

variant (B.1.1.529) discovered in the autumn of 2021, are also being discussed
in medicine and the literature. According to the Robert Koch-Institute (RKI),
the mRNA vaccines from BioNTech/Pfizer, Moderna, and AstraZeneca are ex-
pected to have a protective effect of approximately 90 % against severe infec-
tion with the alpha (B.1.1.7) variant and 75 % against symptomatic infection
with the delta (B.1.617.2) variant [22].

The mathematical model used in this work to describe the population
dynamics of COVID-19 is a SVIHR model. It is based on a system of ordi-
nary differential equations (ODEs). Most mathematical models describing the
spread of the disease employ classical compartments, which the Susceptible-
Infected-Recovered (SIR) structure is the most basic form of [1]. Mathematical
modeling is helpful to forecast dynamics of infectious diseases. Over the past
almost two years, a variety of compartmental models have been introduced as
enhanced SIR models to study various aspects of the COVID-19 pandemic.

It is clear that SIR models make simplifying assumptions about the pop-
ulation and disease process, which may be a reason to critically question and
debate them. A study of Kharazmi et al. showed that a general disadvantage of
COVID-19 models was the treatment of key parameter values as being fixed
over time [11]. Alternative methods to predict the course of the COVID-19
pandemic exist. They include fitting curves to empirically observed data and
solely data-driven non-numerical approaches. We always have to consider that
the novelty of SARS-CoV-2 leads to many uncertainties in all modelling at-
tempts due to biological features of transmission, viral mutations, pathogen
behavior and of course the unknown exakt number of infections [11]. More-
over, no method can optimally predict the future, but a good model provides
an approximation that is accurate enough to be useful for informing public
policy [29]. The advantage of PINNs, that use physical laws governing the
system in the form of equations, is the ability to be retrained as new data is
collected and update the models over time with inferred parameters [11]. SIR-
type models add a mathematical indication to a neural network, such that the
exclusive data-drivenness is sustained with systematic knowledge on the dis-
ease transmission and behaviour of the population. Depending on the number
and kinds of used compartments and model parameters and their definition,
an SIR-type model can be adapted to specific targets one has with respect to
an implementation. This can for instance be the estimation of future hospital
occupancy, the influence of specific intervention measures and isolation rates
or the rate of asymptomatic infections. Respective transition rates can be fit
in the model. The targets of the implementations and suitability of a certain
model depend on the region or country used for data assimilation because of
different conditions and disease spreads in distinct regions. In our approach,
the country Germany is used for data collection and as the basis of model
establishment, and our focus lies on infection and hospitalization numbers.

In this paper, we do not establish the simplest version of compartment
model. Instead, we develop some kind of extended model, which complements
the basic SIR model by a vaccinated and a hospitalized class. The hospitalized
compartment is added due to the high significance of hospitalization number
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predictions for hospital capacity planning and the assessment of the number
of severely diseased individuals at pandemic times. We do not include an ex-
posed compartment, that is a possible first enhancement to the SIR model and
incorporates infected people who are not (yet) infectious, so pre-symptomatic
and potentially asymptomatic individuals.

In our model, pre-symptomatic individuals are condensed with symptomatic
people in the infected compartment, so that we have a single infected compart-
ment of people not hospitalized. Since determining the proportion of asymp-
tomatic individuals in the total infected population is not our goal at this
point, we do not include a class of infected individuals who are asymptomatic,
but assume at least very mild symptoms in infected individuals. The degree
of infectivity of infected individuals can be controlled by adjusting the trans-
mission rate in the model.

Our model includes a vaccination rate and the proportion of the population
vaccinated each week. Therefore, the model is adaptable to different vaccina-
tion scenarios. In addition, the general transmissibilities of SARS-CoV-2 and
its variants, which are constantly changing, lead to altered protective effects
of available vaccines. The established model includes a transmission rate ex-
plained in the Sec. 2.

The main method used in this work, called Physics-Informed Neural Net-
work (PINN), explained in the Section 3.1, is used to estimate the transmis-
sion rate based on the data available in Germany. The PINN itself combines
a data-driven method (here based on compartment size data, e.g., number of
infections) with the developed ODE system so that it incorporates physical
laws. In other words, this approach trades off between the data-based and
physical loss functions in the training process. This reduces the space of fea-
sible solutions to those that satisfy a ’physical law’ to some degree, i.e., an
SVIHR compartmental model in this case. The ODE system corresponding to
the model serves as an additional constraint in the training phase, which is
encoded by an appropriate additional residual loss term. More specifically, the
PINN loss function consists of the two weighted terms data loss and residual
loss. The data loss is calculated as the difference between the current network
output in terms of infection or hospitalization numbers and the reported 2019
coronavirus pandemic (COVID-19) data covering weeks between March 2020
and December 2021. The residual loss is based on a mathematical model with
a system of ordinary differential equations that describes the main population
dynamics observed during the COVID-19 pandemic. A PINN approach for the
simple SIRD model was proposed by Malinzi et al. [13] and a PINN approach
for a SIR based vaccination model was described by Torku et al. [28]. In con-
trast to this, Zeroual et al. [31] compared different pure deep learning models
for forecasting COVID-19 cases and found the Variational AutoEncoder (VAE)
algorithm to be superior.

Raissi et al. [19] explain that PINNs are neural networks that embed
physics as a regularization term in the loss function. They say that given
a sufficient number of data points and an expressive neural network architec-
ture, they can achieve good approximation accuracy if the given differential
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equation is well-posed and has a unique solution. PINNs can also be viewed
as a surrogate model for solving differential equations by incorporating addi-
tional data or as a data-driven correction (or even discovery) of the underlying
physical system. One motivation for this hybrid approach can be seen in the
observed non-compliance of some of the individuals with social distancing (or
physical distancing) and hygiene rules. This type of behavior is difficult to
formulate in ODEs, but is included in the neural network training data.

Olumoyin et al. [17] use the term Epidemiology-Informed Neural Network
(EINN), which describes a type of feedforward neural network that incorpo-
rates epidemiological dynamics such as lockdown into its loss function. Their
EINN learns solutions for the so-called asymptomatic SIR model, i.e., the pro-
portion of asymptomatic infected individuals to of the total number of infected
individuals.

Shaier et al. [25] use the term Disease-Informed Neural Networks (DINN)
to refer to a type of PINN-based neural network that can be applied to in-
creasingly complex systems of differential equations describing various known
infectious diseases. The DINN formulation learns both the representation of
the underlying system as a neural network and also performs a calibration
(called ’Inverse Parameter Estimation’) for the assumed ODE system model.
In this way, it can be used to predict the infection rates, etc.

Because our PINN operates based on transmission and transition dynamics
in a population affected by COVID-19, estimates transmission rate parame-
ters, and incorporates a transmission rate that can incorporate remedial mea-
sures such as quarantine and contact restrictions, our PINN can be described
as a special type of EINN designed to predict COVID-19 incidence. Because
our PINN uses a system of differential equations to learn the parameters that
generate it, this PINN can also be considered a DINN. Our approach of us-
ing PINN-identified parameters of an ODE system to predict infection and
hospitalization rates by using the PINN itself in a slightly modified form and
a numerical method of NSFD is innovative. The uniqueness of our approach
lies in the fact that we use our PINN for parameter identification and give it
a second input of initial compartment size data to generate accurate future
compartment size scenarios, and then apply a purely numerical method, so
that we can compare the predictions of the data- and ODE-based PINN with
their predictions.

The data used consist of infection and hospitalization rates as well as vacci-
nation, death, and cure rates for Germany obtained from the RKI [20,21]. The
PINN also works on the basis of the established dynamic ODE system, which
forms the core of the model and is developed in Sec. 2. The transmission rate
is one of the most important parameters affecting the occurrence of infections
and thus the established ODE system. Therefore, changes in transmissibility
due to mutations or altered susceptibility of the underlying population are
part of the model-based predictions.

The exact procedures used in this work are described in the Section 3.2 in
the Section 3. In this work, the estimation of certain model-specific parameters
is performed by the PINN mentioned above. A model-specific non-standard
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finite difference scheme (NSFD) serves as numerical integration method used
for comparison and validation.

The data that our implementations are based on cover the calendar weeks
10 in 2020 through 14 in 2022 and originates from the inquiries of the Ger-
man Robert-Koch Institute (RKI). Different weights for the loss terms are
used as examples in the prediction section to analyze the impact of weight
modification.

2 Model Structure

In this work, a SVIHR compartmental model was developed based on the basic
SIR model introduced by Kermack and McKendrick in 1927. The SIR model
consists of three compartments of susceptible (S), infected (I), and recovered
(R) individuals. Susceptible individuals have not yet become infected but may
become ill. Infected individuals have already become infected. In the basic SIR
model, they are also capable of infecting susceptible persons. Therefore, they
are assumed to be infectious and may or may not have symptoms. Recovered
individuals have overcome the disease and are no longer ill.

2.1 The SIR Model in Epidemiology

The basic SIR model assumes that no births or deaths enter the system, that
the population is closed so that no one enters or leaves a compartment from
the outside, and that recovered individuals are completely immune so that
they can never be reinfected. The total size of the population at a time t is
denoted by N(t). The satisfaction of the equation

N(t) = S(t) + I(t) +R(t) with N : [0, T ]→ N,
means that the number of individuals in the system is the sum of the com-
partment sizes at each time point considered t ∈ [0, T ]. The system must have
initial conditions S(0), I(0), R(0) to be well-defined [14, p. 11]. The population
size N(t) is constant if the derivative of N(t) is zero. If there is no natural
death rate and no recruitment or birth rate in the system, or if the natural
death rate and recruitment rate equilibrate, this constancy is given. The indi-
viduals in the system are infected, i.e., they migrate from compartment S to
I at a rate θ(t), which is defined as

θ(t) := β γ(t)
(
1− q

)
I(t) , (1)

where β is the transmission risk and γ(t) is a time-dependent contact rate.
The parameter q symbolizes the degree of strength of intervention, quaran-
tine, and isolation measures implemented. For example, when more infectious
individuals are isolated, fewer further infections occur. The rate

Θ(t) := θ(t)
S(t)

N(t)
(2)

is called a standard incidence rate, and β γ(t) I(t) is the force of infection.
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2.2 The SVIHR Model

The basic model is extended in this work to include a vaccinated compartment
V and a hospitalized compartment H. Infected individuals remain infected for
TI days until they recover, when a proportion ξ of all transiting individuals
are hospitalized. Thus, the rate ω1 at which persons per unit time (week) pass
from compartment I to R is given by

ω1 =
1− ξ
TI

, (3)

and the rate η at which individuals are reach the compartment H per unit of
time is defined as

η =
ξ

TI
. (4)

Hospitalized individuals are assumed to infect susceptible individuals only to a
neglectable degree, owing to their isolated state and good hygienic precautions.
They remain infected for TH days from the time of their hospitalization. A
proportion M of the individuals transiting from the compartment I to H is
assumed to die from disease-related causes. The rate ω2 at which persons per
unit time pass from compartment H to R is given by

ω2 =
1−M
TH

. (5)

If a susceptible person receives its second vaccination against SARS-CoV-
2, it directly reaches the compartment V . The proportion of people is V. Since
vaccination does not guarantee complete immunity to infection, i.e., we speak
of a leaky vaccination, it is assumed that vaccinated individuals in the system
may contract the infection with a small probability. The respective rate at
which vaccinated individuals pass into the infected compartment I is κ θ(t),
where κ denotes the residual probability of infection after vaccination.

BioNTech/Pfizer’s Comirnaty and Moderna’s Spikevax vaccines are about
95 % effective, AstraZeneca’s Vaxzevria vaccine is about 80 % effective, and
Johnson & Johnson’s Janssen vaccine is about 65 % effective. Thus, a leaky-
vaccinated compartment is assumed, rather than an all-or-nothing vaccinated
compartment. Because leakiness was assumed, all vaccinated individuals have
a lower probability of contracting the infection than susceptible individuals
in compartment S. When an all-or-nothing vaccine was assumed, vaccination
provided complete protection from infection to a portion V of the susceptible
class per unit time t, whereas the 1− V portion received no protection.

Finally, we include a constant system inflow, the birth rate Λ (e.g. birth
of new individuals that can get infected, and the natural mortality rate µ.
The corresponding system of ordinary differential equations (ODEs) has the
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following form:

dS(t)

dt
= Λ− θ(t) S(t)

N(t)
− (V + µ)S(t),

dV (t)

dt
= V S(t)− θ(t)κ S(t)

N(t)
− µV (t),

dI(t)

dt
= θ(t)

(
1 + κ

) S(t)

N(t)
−
(
η + ω1 + µ

)
I(t),

dH(t)

dt
= η I(t)− (ω2 + µ)H(t),

dR(t)

dt
= ω1 I(t) + ω2H(t)−µR(t).

(6)

Here, the corresponding total population is now defined as

N(t) = S(t) + V (t) + I(t) +H(t) +R(t).

Since the pandemic has a faster dynamic than the birthrate and the natural
mortality, N(t) can be regarded as a conserved quantity of the above ODE
system, if we set Λ and µ to zero.

The dynamical system described by equation (6) is depicted in Figure 1.
Blue arrows from one compartment to another indicate a transition, where the
compartment from which a red dashed arrow emanates can infect susceptibles.

S I H

R

V

V

θ(t)

κ θ(t)

ω1 ω2

η

µ µ µ

µ

µ

Λ

Fig. 1 Compartment model for the SVIHR model

3 Methods

Data were obtained from the Robert Koch-Institute (RKI) [20, 21] and the
German COVID-19 vaccination dashboard [3]. They refer to the calendar week
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10 in 2020 through 14 in 2022. Our validation is performed on the basis of the
calendar weeks 10 in 2020 through 52 in 2021. The first omicron wave initially
emerged in October 2021 and lasted until the end of December 2021 [18]. Since
the omicron variant was responsible of high infection reaching a peak of almost
3,000 daily infections per 1 million people on March 31st 2022 [18] and our
PINN should be adapted to this variant, the first omicron wave was included
in the data of our validation runs. A local maximal incidence of 691 daily
infections per 1 million inhabitants was attained on December 1st 2021 [18].
Weekly case-hospitalization, case-fatality and vaccination rates were computed
on the basis of the given data sets. The RKI registers deceased individuals,
in whom the SARS-CoV-2 pathogen was detected, as people who died from
COVID-19. In Section 3.1, the approach of PINN is explained. Section 3.2
explains the technical procedure of building the PINN. In Section 3.3 the
technique of Nonstandard Finite Difference Schemes (NSFD) is explained.

3.1 Physics-informed Neural Networks for Compartment Models

The basic concept of physics-informed neural networks (PINN) is to incorpo-
rate the laws of dynamical systems modeled by ordinary or partial differential
equations into a deep learning framework. The loss function of the correspond-
ing neural network includes not solely the so-called loss error related to the
difference between the output of the network and the reported data used, but
also the so-called residual error related to the ODEs or PDEs. The sum of
these two errors is then minimized in the least squares sense.

The weighted loss function consists of the data loss and the residual loss
term As pointed out in [9] the training using the data loss (i.e. measurements,
physics-uninformed) is regarded as supervised learning while the training w.r.t.
the residual loss using the governing differential equation (physics-informed)
is regarded a unsupervised learning.

Let the vector ϑ of all parameters included in (6) be given by

ϑ = [β, γ, q,V, κ, ξ, TI , TH ,M, TH ]> . (7)

The parameters in ϑ can be partitioned into fixed parameters pf and trainable
parameters pt, that we select as follows:

pf := [γ, q,V, ξ, TI , TH ,M, TH ]>,

pt := [β, κ]> .

We selected β and κ as the trainable parameters in the network because no
reliable or clear values for them could be found in studies. A neural network

PINNW
p : R→ R6

has to be defined to be able to discretize the system of ODEs (6). The su-
perscript W stands for the weights used during the forward and backward
propagation in the neural network. We are initially given l points in time
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T = [t1, . . . , tl]
>, that are the obligatory input to the neural network. A first

version of the PINN with exclusively T as the input vector was implemented.
The vector of all n = 6 compartment sizes is given by

Kp(t) = [K1
p(t), . . . ,Knp (t)]> .

We are given reported compartment size data

K̂p(t) = [K̂1
p(t), . . . , K̂np (t)]> .

As the ODEs in the system (6) can be described by dK(t)
dt = −Fp(K) for

t ∈ [t1, tl] it can be defined that

Fp(K) = [F 1
p (K), . . . , Fnp (K)]> ,

where Kjp(t) ∈ C1(R) and F jp ∈ C(R) ∀j ∈ {1, . . . , n}. We want to approximate

the solution Kp = [S, V, I,H,R]> : R → R5 using the PINN performing error
minimization [6].

The parameters W and pt are optimized during the backpropagation pro-
cess of the neural network such that PINNW

p fits the reported data K̂ in a
least-squares sense [6]. Doing so, we obtain the loss error defined by

MSEU :=
1

l

∑l

j=1
||PINNW

p (tj)− K̂j ||2 . (8)

Moreover, the residual error

MSEF :=
1

l

∑l

j=1
||Fp(PINNW

p , tj)||2 (9)

is added to the loss error in the training loop of the PINN, in which the weights
and trainable parameters are updated each step. It holds for the residual error

Fp(PINNW
p , tj) :=

dPINNW
p (t)

dt

∣∣∣
t=tj
− Fp

(
PINNW

p (tj)
)
. (10)

The residual error symbolizes the physics-informed part of the loss function Lα
since it incorporates the system of ODEs. Let α ∈ [0, 1] be a weighting factor
that can be applied to the residual error in the following backward propagation
with loss optimization performed during training. We define that

Lα := αMSEU + (1− α)MSEF (11)

such that the final minimization problem of the neural network becomes

argmin
W,pt

(
Lα
)
.

The code was enhanced by the option of having the initial sizes of the
six compartments corresponding to a specific selected point in time as an
additional input to the PINN. The aim of this was the more precise generation
of infection scenarios that stronger depend on the used starting point in time.
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Thus, we have two inputs T and K0 instead of solely the input T . The training
data in the computation of the loss oer training step remains the same, it is
the compartment sizes for multiple weeks. It is used in the computation of the
loss function and not as the direct input into the network. The second direct
input was added in order to obtain an output that is more variable in terms of
its dependence on initial conditions (the sizes of six compartments). Thus, we
are able to train and test the PINN with respect to different initial conditions.

3.2 Procedures of Building the PINNs

A single feed-forward PINN was used for each of the compartments I and H,
which are those compartments appearing in equations (6) apart from S. This
was done in order that separate parameter vectors pt(t) := [β, κ]> were esti-
mated per run of the neural network for I and H. Among all model parameters,
it is most difficult to assign realistic values to β and κ from raw data. Val-
ues for the case-fatality, the case-hospitalization and the vaccination rate were
computed from the available RKI data [20, 21]. The fixed model parameters
were computed as V = 0.013517486, ξ = 0.079718848 and M = 0.026720524
from the given data sets [20, 21]. According to the RKI, contagiosity strongly
recedes after a mean of 10 days of infectedness [23]. In a paper concerning the
hospitalization of COVID-19 cases compared to flu epidemics, the mean dura-
tion of COVID-19-induced hospitalization in Germany was 10 days, whereby
the length of hospital stay of people transferred to an intensive care unit was
16 days and the hospital sojourn time for ventilated individuals was 18 days on
average [27]. We set the parameter concerning the length of stay in the infected
state to TI = 1.42 weeks, and used a slightly higher value of TH = 1.5 weeks
for the hospital sojourn time in our implementations. We selected the trans-
mission rate β and the transmission variation coefficient for the vaccinated κ
as trainable parameters. In further implementations or using a different model,
other or more model parameters could be selected as trainable.

We used three hidden linear layers with 5 neurons each for parameter
identification part and 6 hidden layers with 350 neurons each for the com-
partment size prediction part of the PINN. A linear output layer was applied
to obtain a compartment size output, and a ReLU output layer was used for
the trained parameter vector. ReLu or tanh functions were used as activa-
tion functions per layer. The Adam algorithm was selected as optimizer. The
used learning rate was lr = 0.003. Different layers and activation function
were tested and compared with respect to output compartment size curves.
The selected ones yielded the most reasonable size ranges. The ReLU output
layer was used for the parameter vector prediction particularly because non-
negative values were wanted. The PINN for later compartment size scenario
generation received the additional input K0 := [S0, V 0, I0, H0, D0, R0]>. Here,
the activation function used for the second layer of the infection or hospital-
ization number part was changed into the tanh-function. In order to compute
the derivative dPINNW

p (t)/dt the PyTorch automatic differentiation package
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torch.autograd.grad was used. It computes and returns the sum of gradi-
ents of the respective compartment size tensor PINNW

p (t) with respect to the
input time tensor t. Results of the compartment size and trainable parameter
vector predictions of the PINN are described in Sec. 4.

Subsequently, the prognosticated parameters β and κ were used as the in-
puts to a nonstandard finite difference (NSFD) scheme in a validation process.
NSFD schemes are explained in Section 3.3. They preserve certain properties
like the positivity or the asymptotic behaviour of the analytic solution of dif-
ferential equations on the discrete level. Their most important characteristic is,
in many cases, the complete absence of the elementary numerical instabilities
which plague common finite difference schemes [15].

In the whole validation procedure, the errors between the predictions ob-
tained through these two methods and the actual available data were analyzed
and compared. The corresponding results can be found in Section 4.1. For the
PINN implementations the PyTorch Library was used.

3.3 Nonstandard Finite Difference Schemes

NSFD methods for the numerical integration of differential equations had their
origin in a paper by Mickens published in 1989 [15]. In this section, an NSFD
scheme is constructed to satisfy the essential positivity condition and the con-
servation law for Λ = µ = 0 which leads as a byproduct to the stability of the
scheme. The interested reader may also check that the equilibrium points of the
ODE model also appear in the proposed NSFD-scheme. We recall that schemes
such as those based on Runge-Kutta methods can produce ’false’ or ’spurious’
fixed-points, which are not fixed points of the original ODE system, cf. [16].
Finally, we will determine the so-called denominator function, such that we
obtain the correct long-time behaviour. We refer to [30], where we established
an NSFD scheme for a similar compartment model as here. We implemented a
simultaneous parameter estimation using a nonlinear least squares minimiza-
tion of the error between time series compartment size data and the result of
the NSFD-based integration of the respective system of ODEs. This does not
equal the data or residual loss of our PINN approach that we use in this paper.
With the optimized parameters and the NSFD scheme, we generated future
COVID-19 scenarios. Here, we are now able to compare NSFD results to the
results obtained using neural networks. A numerical scheme for a system of
first-order differential equations is called NSFD scheme if at least one of the
following conditions [15] is satisfied:

– The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives appearing in the differential equations.

– Discrete representations for derivatives must, in general, have nontrivial
denominator functions. Here, the first-order derivatives in the system are
approximated by the generalized forward difference method (forward Euler
method) dun

dt ≈
un+1−un

φ(h) , where un ≈ u(tn) and φ ≡ φ(h) > 0 is the so-
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called denominator function such that φ(h) = h+O(h2), with h the step
size.

– The nonlinear terms are approximated by non-local discrete representa-
tions, for instance by a suitable function of several points of a mesh, like
u2(tn) ≈ unun+1 or u3(tn) ≈ u2

nun+1.
– Special conditions that hold for either the ODE and/or its solutions should

also hold for the difference equation model and/or its solution.

In NSFD schemes, derivatives must be modeled by discrete analogues that
take the form, cf. [15]

du(t)

dt
→ un+1 − ψ(h)un

φ(h)
, (12)

where tn = nh, un is the approximation of u(tn), and ψ(h) = 1 +O(h).
The purpose of this more general time discretization (12) in NSFD schemes,

is to properly model the asymptotic long-time behaviour of the solution. To
do so, we reconsider the total population N = S+V + I +H +R of the ODE
system (6), now without neglecting Λ and µ. Adding the equations of (6), we
easily obtain the following differential equation describing the dynamics of the
total population N

dN(t)

dt
= Λ− µN(t) . (13)

It is solved by

N(t) =
Λ

µ
+
(
N(0)− Λ

µ

)
e−µt = N(0) +

(
N(0)− Λ

µ

)
(e−µt − 1), (14)

with N(0) = S(0) + V (0) + I(0) + H(0) + R(0). From (14) we immediately
deduce that we have in the long term limt→∞N(t) = Λ/µ. Let us briefly
note that this link between the transient dynamics and their ’natural’ limiting
systems can be used to reduce the dimension of this model, cf. [2]. Next, adding
the equations in the discrete NSFD model (20) yields

Nn+1 −Nn

φ(h)
= Λ− µNn+1, (15)

i.e.

Nn+1 =
Nn + φ(h)Λ

1 + φ(h)µ
= Nn −

(
Nn − Λ

µ

) φ(h)µ

1 + φ(h)µ

= Nn +
(
Nn − Λ

µ

)( 1

1 + φ(h)µ
− 1
)
.

(16)

The denominator function can be derived by comparing Equation (15) with
the discrete version of Equation (14), that is

Nn+1 = Nn +
(
Nn − Λ

µ

)
(e−µh − 1), h = ∆t, (17)
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such that the (positive) denominator function is defined by

1

1 + φ(h)µ
= e−µt, (18)

i.e.

φ(h) =
eµh − 1

µ
=

1 + µh+ 1
2µ

2h2 + . . .− 1

µ
= h+

µh2

2
+ . . . = h+O(h2).

(19)
Note that the conservation property requires all the denominator functions
φ(h) for the compartments to be the same.

An even more accurate way to compute the denominator function would
take into account the transition rate Υi at which the ith compartment is entered
by individuals for all model compartments Ki, i = 1, 2, . . . [5]. In this case the
parameter µ occurring in the denominator function in Equation (19) would
be replaced by a parameter 1/T ∗. T ∗ could be determined as the minimum of
the inverse transition parameters:

T ∗ = min
i=1,2,...

{ 1

Υi

}
.

With the aid of equation (12) of the denominator function, the NSFD
discretization can be established, which is provided in Eq. (20).

Sn+1 − Sn

φ(h)
= Λ− β In Sn+1 − (V + µ)Sn+1,

V n+1 − V n

φ(h)
= V Sn+1 − β κ In Sn+1 − µV n+1,

In+1 − In

φ(h)
= β (1 + κ) In+1 Sn+1 − (η + ω1 + µ) In+1,

Hn+1 −Hn

φ(h)
= η In+1 − (ω2 + µ)Hn+1,

Rn+1 −Rn

φ(h)
= ω1 In+ 1 + ω2H

n+1 − µRn+1,

(20)

with φ(h) given by (19). Observe that although the initial scheme (20) can be
considered implicit, the variables at the (n + 1)-th discrete-time level can be
explicitly calculated in terms of the previously known variable values as given
in the sequence of the equations above, i.e. we can rewrite it as an explicit
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form

Sn+1 =
Sn+φ(h)Λ

1 + φ(h) (β In + µ)
,

V n+1 =
V n + φ(h)Sn+1 (V − β κ In)

1 + φ(h)µ
,

In+1 =
In

1 + φ (η + ω1 + µ− β (1 + κ)Sn+1)
,

Hn+1 =
φ(h) η In+1 +Hn

1 + φ (ω2 + µ)
,

Rn+1 =
Rn + φ(h) (ω1 I

n+1 + ω2H
n+1)

1 + φ(h)µ
.

(21)

The calculation must be done in exactly this order. All parameters appearing in
these type of epidemic models are always non-negative. This is the convention
used in fields related to the spread of diseases. From the explicit representation
(20) it is easy to deduce that this scheme preserves the positivity, given some
natural conditions on the parameters.

4 Results

The results are separated into the validation of the PINN for infection and
hospitalization number prediction, given in Section 4.1 and Section 4.2. A
prediction of infection numbers of our PINN for different assignments of the
parameter weighting the two loss terms is provided in 4.3.

The trained PINN identifies the parameters β and κ. The data set K̂ =
[Ŝ, V̂ , Î, Ĥ, R̂]> is used in the loss computation. The wanted vector of trainable
parameters obtained from the trained neural network varied between different
test runs. The size of the respective compartment I or H, the size of which is
obtained as a second output of the PINN, partly depends on the architecture
of the network, that was improved during the validation process. Values of the
two trainable parameters obtained from PINN are later used as the inputs to
further Python codes used for the formation of future SARS-CoV-2 scenarios.

4.1 Validation Process: Infection Rates

At first, we investigated which values the PINN estimated for the two trainable
parameters. The PINN identified κ ∈ [0.0005, 0.0015] and β ∈ [0.07·10−8, 0.52·
10−8] within 200 trainings if only 5,000 training iterations were used. If 20,000
training iterations were used, the PINN identified κ ∈ [0.0009, 0.0011] and
β ∈ [0.19 · 10−8, 0.22 · 10−8] within another 200 trainings. The decrease of
the identified interval shows a positive effect of the increase in the number
of training iterations on the performance of the PINN in terms of parameter
identification. As input to the NSFD scheme, we used κ = 0.001 and attempted
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β ∈ [0.18 · 10−8, 0.22 · 10−8] to investigate and compare resulting curves with
the reported data.

Figure 2 shows the loss obtained in a run of the PINN for the estimation
of the trainable parameters and the size of the compartment I.

Fig. 2 Trends of the errors MSEU , MSEF and the loss L0.5 = 1
2
MSEU + 1

2
MSEF in 1,000

observed training iterations of the PINN for the estimation of β and κ.

It can be seen that the data loss MSEU , computed as the mean squared
error between reported and network-generated compartment size data using
the Python function MSELoss, decreases by more than 90 % between the
first and the 640th training iteration. This means that the updated sizes of the
compartment I approaches the reported infection numbers by weight updates
of the neural network during training in these iterations. Then it remains on a
level of approximately 0.17 · 109. The residual loss MSEF increases from 1.079
to a maximal value of 2.838 ·109 during the same number of iterations, is then
very marginally reduced to around 2.710 · 109 and remains on this level. As a
consequence of this, the training loss decreases from 5.8 · 109 in the beginning
to 2.2 · 109 in the 640th training pass, remaining on this level, and was thus
reduced by 62 %. The obtained sizes of the loss, MSEU and MSEF over the
course of several iterations of one training depend, among others, on the size
of α, but a decreasing loss was observed in all performed trainings with differ-
ent α and for both the prediction of infection and hospitalization numbers. In
Fig. 2 the x-axis contains only 1,000 iterations to put the focus on the initial
behaviour of the three functions, but we actually used 20,000 iterations in the
following validation part.

Secondly, we conducted a validation by measuring how close the prediction
of our PINN with different assignments of the weighting parameter α approx-
imated the reported data. The target was to work out which weighting of the
data and residual loss in the loss function lead to the best approximation, and
also generally evaluate the suitability of our PINN for predictions.
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Our PINN uses labelled training data, i.e. compartment sizes K̂p assigned
to specific weeks ti, i ∈ {1, . . . , l}, in every training iteration. As training
data are not unlabelled here, we cannot describe our PINN approach as an
unsupervised neural network. Nonetheless, our PINN is not a typical kind of
supervised classification network, but learns the course of an infectious disease
in a data- and model-driven way. As a consequence, our validation does not
consist of a sensitivity or specificity analysis, that is typically conducted for
supervised neural networks. We focus on the investigation of the predicted
trends with their local maxima and minima during the course of the pandemic
from August 2021. We also compute errors to be able to more specifically
compare the results obtained with different weighting parameter values.

The time period that predictions refer to, which is 27 or 35 calendar weeks
here, always has to be considered. A predicted time period of half or two
thirds of a year is reasonable with respect to COVID-19 scenarios because it
covers approximately one large wave of the pandemic, that may have several
local peaks and usually has one global peak. So in the context of COVID-
19, the term long-term prediction can be associated with the prediction of
one following wave that is dominated by infections with a specific variant of
the virus. A short-term prediction can be described as a forecast of e.g. the
next local peak within a wave then. Another interpretation of a short-term
prediction is a forecast based on certain most current data, which could be
data referring to the last experienced wave or high peak during the pandemic.
In our following validation, we do not restrict the training data to the most
recent peak of the omicron wave, but still incorporate all three experienced
peaks during the omicron wave into our training data. A corresponding aim is
that the PINN shall be able to foresee peaks in height of the ones substantially
caused by omicron infections and is simultaneously adapted to a variety of
virus variants.

It is also significant to take into account the data set which the train-
ing procedure works with. Depending on different viral mutations and also
state intervention or compliance of the population during the course of the
pandemic, the underlying data set varies, certain parameters in the system
of ODEs must be adapted and possible predictions change. For instance, the
high infection rates during the B.1.1.529 (omicron) wave with 58,107 daily
new infections on November 28th 2021 (local maximum), 192,396 daily new
infections on February 10th 2022 and 251,509 daily new infections on March
31st 2022 (global maximum) cannot be foreseen if not enough weeks in which
the omicron variant was dominant are included [18]. We incorporated data
reaching until the end of the year 2021, which was after the first COVID-19
wave with a dominant omicron variant.

Figure 3 shows the weekly infection rates published by the RKI and the
respective prediction of the PINN for three different choices of the weighting
parameter α in three different diagrams. In all three plots, three forecasts
obtained from using the NSFD scheme based on three different choices of the
transmission risk parameter β are included.
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Fig. 3 Infection numbers obtained from the reported data (black), the training of the
PINN (red) or the NSFD scheme with distinct transmission risk parameter values (blue,
cyan, green) from the 78th regarded week (34th calendar week in 2021) for three different
assignments of the weighting parameter α (α = 0.5, 0.9, 0.95). The used training data cover
the calendar weeks 10 in 2020 through 52 in 2021 (1st through 96th regarded week)

In Fig. 3, the points in time at which real local peaks (black curve) were
attained are the 91st regarded week (calendar week 47, 2021) with 403,329
weekly new infections, the 102nd regarded week (calendar week 6, 2022) with
1,307,475 weekly new infections and the 108th regarded week (calendar week
12, 2022) with 1,571,595 weekly new infections. We note that the choice of the
parameter β has a considerable effect on performance of the NSFD scheme.
In the approximation of the NSFD scheme, a larger β leads to a higher and
earlier reached peak. Exact errors with respect to the reported data are indi-
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cated in Table 1. The NSFD scheme seems to be substantially suited for the
prediction of specific sizes of maxima during the course of the pandemic, as
well as smooth increases of infection numbers. In contrast to that, the PINN
based on the data and residual loss is able to capture smaller peaks and os-
cillations also within small time periods of a few weeks. The figure may lead
to the view that the residual loss might not be crucial since high values of α
result in better approximations, but Table 1 shows that a complete omission
of the physics-informed part is not the best choice. The computation of the
residual loss during the training procedure enables us to incorporate method-
ical information and knowledge about the disease, which solely data-driven
methods do not include.

Fig. 3 implies that a larger hyperparameter α i.e. a greater influence of
the data loss in the loss function leads to a better approximation of the peak
heights. The height of the first local maximum in calendar week 47 is not
captured and it is predicted two weeks too early, but a larger α results in an
improvement such that around 220,000 infections are predicted with α = 0.95.
In this case, the NSFD scheme with β = 1.98e.9 accounts for the actual peak
height of around 400,000 (exactly: 403,329) weekly infections in the 91st re-
garded week. In contrast to the first, the second maximum of around 1.3 million
weekly infections during the omicron phase is approximated very closely by
our PINN if α > 0.9 is selected. This can be seen in the second and third visu-
alized diagram. A strong increase is predicted in the end of the 94th regarded
week, although it actually started in the 96th week, but the red an black curve
approach each other until they meet in the 101st regarded week (calendar week
5, 2022). Weighting the two loss terms equally, i.e. setting α = 0.5, the second
local maximum is predicted as only 800,000 infections such that there is a gap
of 500,000 to the reported data. The behaviour of the respective predicted
curve in regard of increases and decreases is similar to the curve predicted
using α > 0.9.

The local minimum after the second peak of the black curve is captured best
by the NSFD scheme with β = 1.98e-9 again. The PINN approach predicts a
too small local minimum (625,000 with α = 0.95). However, the PINN is able
to approximate the third peak (global maximum), whereas the NSFD scheme
shows a very slight decrease again. This stresses that the PINN approach
is more suited to account for quick changes in the data than the numerical
discretization.

As a part of our validation process, we computed the absolute difference
between the reported data and compartment size output of the PINN as

diff =
∑k

j=1
diffj , (22)

where

diffj = ||K̂j − PINNW
p j
|| ∀ j = 1, . . . , k , (23)
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size of α in PINN diff (regularized by 1e-6) MSEdiff (regularized by 1e-11)
0.3 6.5338 0.64343
0.5 5.3861 0.57782
0.65 4.6681 0.53966
0.9 3.4886 0.48237
0.93 3.4015 0.47992
0.945 3.3726 0.47811
0.9475 3.3601 0.47772
0.95 3.3551 0.47601

0.9525 3.3599 0.47746
0.955 3.3717 0.47799
0.96 3.4683 0.48099
0.97 3.5714 0.48289
0.98 3.7614 0.49263
0.99 3.9904 0.49852

size of β in NSFD diff (regularized by 1e-6) MSEdiff (regularized by 1e-11)
1.95e-9 5.7471 0.71234
1.98e-9 4.8266 0.50868
2.00e-9 5.2971 0.62172
2.04e-9 8.9822 1.58271
2.08e-9 13.8549 2.63107
2.12e-9 18.8948 6.80091

Table 1 Absolute and mean squared errors between the reported infection data and infec-
tion rate outputs of the PINN with training data covering the calendar weeks 10 in 2020
through 52 in 2021, or the NSFD scheme, if distinct weighting or transmission risk parameter
values are used.

and the mean squared error as

MSEdiff =
1

k

k∑
j=1

diffj
2 , (24)

where k is the number of weeks for which the output of the PINN and the
reported data shall be compared.

In Table 1, the errors for the validation runs of the infection rate predic-
tion are expressed for distinct assignments of the weighting parameter α. We
selected k = 29 to compare the reported and predicted infection numbers be-
tween the 34th calendar week in 2021 and the 10th calendar week in 2022.

Table 1 proves that the size of both errors increases stronger the smaller
α is selected compared to 0.9. We obtain values of diff smaller than 3.5 if
we choose α ∈ [0.9, 0.96] and values of MSEdiff smaller than 0.5 if we choose
α ≥ 0.9. We can observe that both errors increase again for α > 0.95 here. The
errors for α = 0.93 are slightly smaller than for α = 0.96, and the errors for
α = 0.9 are smaller than for α = 0.99. This indicates that a small decrease of
the computed errors can be achieved by weighting the loss MSEF 5 % instead
of 0 % (or e.g. 7 % instead of 3 %) in the loss function. A weight of 0 for MSEF
would be given if we did not include any residual loss.

We are regarding a specific scenario with 43 weeks as the training basis and
29 weeks as the validation basis. As already seen in Fig. 3, assigning β = 1.98e-
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9 in the NSFD scheme yields a predicted curve that meets the local maximum
in the 91st regarded week and the local minimum in the 104th/105th regarded
week. The obtained error diff is almost half as small as for β = 2.04e-9, and
MSEdiff is more than 3 times smaller. The total difference diff is slightly larger
than for the PINN with α = 0.65 and smaller than for the PINN with α = 0.5.

Regarding the errors diff for β = 2.08e-9 or β = 1.12e-9 (13.8549 or 18.8948,
respectively), it is obvious that a good choice of the transmission risk param-
eter is highly relevant for the performance of the NSFD in the forecast. We
modified the transmission risk manually here in order to show the effect on
the approximation quality. Optimization algorithms, in which model param-
eters are optimized during a process of minimization of the error between
reported and numerically predicted data, exist. Our focus is the comparison
of PINN predictions with NSFD forecasts based on our compartment model
with selected transmission risks in this paper. The NSFD method is eligible
for approximating a segment of reported COVID-19 data, substantially a local
or global peak. The error reduction is extremely dependent on the parameter
choice. As described in the analysis of Fig. 3, the PINN approach seems to
be much better suited than the NSFD scheme to predict local fluctuations
observed in the reported data and make short-term predictions.

Fig. 4 shows the total differences diffj (following: errors) between the re-
ported COVID-19 infection rates and predictions with the PINN and NSFD
corresponding to Fig. 3.

The visualization of the differences to the reported data resulting from
the choices α = 0.5, 0.95 or β = 1.98e-9, 2.00e-9, 2.04e-9 in Fig. 4 verifies
the corresponding results of Table 1. The errors of both methods with any
choice of α or β is comparatively small i.e. below 0.2e6 during the first 10
predicted weeks. We must take into account that the prediction refers to the
time at which the highest infection rates experienced during the whole COVID-
19 pandemic occurred. Consequently, prediction errors will be larger than in
other time periods since the outbreak of COVID-19, that could be regarded.

It can be seen that the niveau of the error of the NSFD with β = 1.98e-9
remains below 0.5e6 throughout the 29 weeks, whereas an error peak of 0.88e6
is reached in the 17h regarded week if we use β = 2.04e-9. With a higher
transmission risk, the NSFD achieves a higher predicted peak.

Data until the third and global maximum of 1, 571, 595 weekly infections
are considered, and β = 2.04e-9 is the only transmission risk choice among the
three visualized choices which yields a peak of 1.5 million weekly infections.
Thus, the blue curve (β = 2.04e-9) in Fig. 4 is on the lowest level from the
27th regarded week. We obtain comparatively very small errors with the NSFD
scheme at times at which peaks are attained in the reported data.

The error between the NSFD predictions and the reported data is largest at
the local minimum between the first and second omicron wave around calendar
week 52 in 2021. The error between the PINN prediction and the reported data
is largest at the local minimum between second and third omicron wave around
calendar week 9 in 2022.
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Fig. 4 Errors between the reported data and the infection numbers obtained with the
NSFD scheme with three different assignments of the transmission risk parameter β, and
the PINN with weighting parameter α = 0.5 (upper diagram) or α = 0.95 (lower diagram),
and for the 29 calendar weeks starting from August 23rd 2021 (34rd calendar week in 2021).

The comparatively large error of 1e6 with α = 0.5 or 0.73e6 with α = 0.95
(PINN approach) in the 28th regarded week is reasoned by the great difference
to the reported data (black curve) in the calendar weeks 9 and 10 in 2022
in Fig. 3. The local minimum is predicted as too small by the PINN here.
Nevertheless, the PINN actually predicts a local minimum, whereas the NSFD
approach predicts a maximum or slightly decreasing infection rates right after
a reached maximum here.

Altogether, the PINN with α = 0.95 yields the smallest error level among
the five parameter selections (α = 0.5, 0.9, β = 1.98e-9, 2.00e-9,2.04e-9) during
the 29 regarded weeks. It remains below 0.25e-6 until the 25th regarded week.

4.2 Validation Process: Hospitalization Rates

Results of the prediction of hospitalization rates are discussed in the sequel.
Table 2 displays the errors defined in Equations (22) and (24) for the vali-
dation runs of the hospitalization rate prediction for distinct assignments of
the weighting parameter α. We selected k = 35 to compare the reported and
predicted hospitalization numbers between the 31st calendar week in 2021 and
the 14th calendar week in 2022.
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size of α diff (regularized by 1e-5) MSEdiff (regularized by 1e-8)
0.3 4.7669 1.990189
0.5 3.6339 1.291875
0.65 3.6018 1.273610
0.9 2.0726 0.783272
0.93 1.7738 0.704100
0.94 1.3623 0.310871
0.945 1.1439 0.180857
0.9475 1.2032 0.230114
0.95 1.4719 0.415736

0.9525 1.5091 0.448027
0.955 1.5917 0.602143
0.96 1.7551 0.688926
0.97 2.2789 0.858422
0.98 2.7267 0.925258
0.99 2.7442 0.935908

Table 2 Absolute and mean squared errors between the reported hospitalization data and
hospitalization rate outputs of the PINN with training data covering the calendar weeks 10
in 2020 through 52 in 2021 if distinct weighting parameter values are used.

We can see in Table 2 that the performance of the PINN is strongly im-
proved for values α > 0.9, but deteriorates for α > 0.96. This is a similar
result as in Table 1, where the best manually generated result was obtained
with the assignment α = 0.95.

In the forecast of hospitalization numbers, we obtain smaller errors than in
Table 1 since the number of weekly hospitalizations is much smaller than the
number of weekly infections. The peak in hospitalizations during the previous
course of the COVID-19 pandemic was 12,658 weekly hospitalizations in the
calendar week 51 in 2020. The highest peak since August 2021, i.e. during the
time of dominance of the omicron variant, was 11,153 in the calendar week 11
in 2022.

It can be noted that the smallest error diff in Table 2 is 1.1439e-5 and the
smallest error MSEdiff is 0.180857e-8. Both are achieved for α = 0.945. The
error diff for α = 0.945 is only 31 % of the error obtained with α = 0.5 and
24 % of the error generated with α = 0.3.

The error diff for α = 0.93 is 20.7 % larger than for α = 0.95, whereas the
error diff for α = 0.9 is 24.5 % smaller than for α = 0.99. In the prediction of
hospitalization rates through our PINN, we can thus notice a clearer disad-
vantage in neglecting the residual loss, i.e. setting α = 1, than in the forecast
of infection rates.

Figure 5 shows the hospitalization rates between August 2021 and April
2022 predicted by the PINN with α = 0.945 compared to the reported data
corresponding to this time period.

The increase in hospitalization between the 75th and 91st regarded week
(calendar weeks 31 through 47 i.e. August 2nd until November 28th 2021) has a
peak at 10,894 weekly hospitalizations. The PINN predicts an increase at that
time as well, but a stronger increase peaking at 16,500 hospitalizations in the
87th regarded week. A small decrease of 673 weekly hospitalizations is visible
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Fig. 5 Hospitalization numbers obtained from the reported data (black) or the training of
the PINN (red) from the 75th regarded week (31st calendar week in 2021) for α = 0.945.

in the reported data between the 80th and 84th regarded week, after which the
curve increases stronger than before (1,306 weekly hospitalizations between
calendar week 41 and 47). The prediction of the PINN shows a flattening in
the 83rd and 84th regarded week. It also displays an increase of 1,250 weekly
hospitalizations between the 81st and 87th regarded week. In the 91st regarded
week, the PINN curve exhibits a local maximum of almost 15,000, which is
almost 4,000 too many hospitalizations.

Between the 91st and 98th regarded week (calendar weeks 47 in 2021
through 4 in 2022), the PINN curve approaches the curve of reported data
and crosses it at 6,662 infections in the calendar week 3 in 2022. Further
overlapping points are 9,957 hospitalizations in the 103rd and 9,924 hospital-
izations in the 106th regarded week, that both occur during an increase in
hospitalization numbers in both the reported and predicted data between the
98th and 107th regarded week, with a short decrease of 374 hospitalizations
visible in the reported data between the 104th and 105th week.

In the prediction of the PINN, the 9,924 hospitalizations in the 106th re-
garded week define a maximum, whereas a local peak of 11,153 hospitalizations
is observable in the reported data one week later. Both curves decline with ap-
proximately the same slope after reaching their respective peak. Subsequently,
the curve generated with the reported data ends at 6,813 hospitalizations in
the 110th regarded week (calendar week 14 in 2022) and the predicted curve
terminates at 4,000 hospitalizations.

With respect to that, the error effected by the PINN in this scenario attains
a maximal value of 9,500 in the 86th regarded week. It becomes minimal in the
77th, 103rd and 106th regarded week, when the two curves cross each other.

4.3 Infection Scenario predicted by the PINN

We finally let the PINN predict infection numbers with training data covering
the calendar weeks 10 in 2020 through 14 in 2022. We used α = 0.95 for the
weighting parameter. The calendar week 14 in 2022 ended on April 10th 2022.
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The RKI registered 970,745 weekly infections in that week. Owing to the clear
downward trend since March 31st2022 visible in the latest data, we assumed
a strong decline in infection numbers until the end of May 2022 [18]. In the
calendar week 22 in the year 2021, 20,689 new infections were registered by
the RKI [20]. Our following prediction starts in the end of May 2022. Figure 6
visualizes scenarios generated with our PINN with seven distinct selections of
the weighting parameter.

Fig. 6 Forecast of infection numbers (size of the infected compartment) from the end of
May 2022 with the PINN.

We can see in both diagrams in Fig. 6 that low infection rates are predicted
for the whole summer of the year 2022. The weekly rates are below 20,000
during the calendar weeks 22 through 42 in 2022. Sharply increasing infection
numbers are forecasted from November 2022, and a maximum is predicted
in late January 2023. This is the same for all of the shown selections of the
parameter α. We can see in the lower diagram, that almost 175,000 weekly
infections are obtained at the peak with α = 0.95, which is the value of α
that yielded the best approximation in the validation part. The number of
infections is similar to the calendar week 44 in 2021, when 177,889 infections
were registered by the RKI.

The lower diagram implies a great range in infection rates between choices
of α between 0.5 and 0.95, whereas the upper diagram indicates a very small
range between choices of α between 0.9 and 0.98 in the PINN approach. This
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corresponds to our results from Table 1. Using α = 0.5 i.e. a 50 % inclusion of
the residual loss in the loss function, the predicted maximum is only 100,000
infections. With α = 0.65, the peak is 125,000 and with α = 0.80, it is 148,000
infections. Over the course, a range between the curves of up to 50,000 is
observable. In contrast to that, the maximal range between any two curves in
the upper diagram is 10,000. It occurs in the calendar week 45.

After a local peak forecasted as 138,000 infections with α = 0.95 in Febru-
ary 2023, infection rates are predicted to decline almost as sharply as they
increased, reaching a local minimum the beginning of April in 2023. This min-
imum is predicted to be 5,000 infections if α = 0.95 is used as the value of
the weighting parameter. Despite the inclusion of the two omicron-induced
maxima of February and March 2022 (1,307,475 and 1,571,595 weekly new
infections), our PINN does not predict as high infection numbers for the end
of the year 2022. To be able to better classify the prediction, it has to be
considered that the maximal infection rate during the second half of the year
2021 was 403,329 infections in the last week of November, and the maximum
during the first half of the year 2021 was 145,494 in the first week of January.
It also be minded that a constant vaccination rate is assumed in the model.

Figure 7 shows a prediction of infection rates of the NSFD scheme from
the end of May 2022. This time, we used a time-dependent function β(t) for
the transmission rate. This function has got the trigonometric shape

β(t) = β0

(
1 + c sin

( t+ t0
π
2

))
. (25)

Here, β0 is the initial transmission risk. It was set β0 = 1.99e − 9, and we
assigned t0 = 25. The parameter c is responsible for the amplitude of the
resulting function. It was modified, as the fixed parameter β in our previous
implementations, in order to obtain different predictions.

Fig. 7 Forecast of infection numbers (size of the infected compartment) from the end of
May 2022 with the NSFD scheme.

It can be observed in Figure 7 that the time-variability with a sine function
in the transmission rate leads to more than one peak over the course of time.
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Nonetheless, only one peak is detectable per wave, as in our previous predic-
tions with the NSFD scheme. Using c = 0.07, we have maxima in the 38th and
72nd regarded week, which correspond to late February and late October 2023.
With c = 0.05, the maxima are reached in the 39th and 71st regarded week.
Using c = 0.03, the peaks are attained in the 42nd and 70th regarded week. It
is interesting to note that the second reached peak is higher than the first one
in all three cases, but the difference in peak height is approximately 30,000
for c = 0.07, 15,000 for c = 0.05 and 3,000 for c = 0.03. Moreover, the first
observed peak is achieved at a similar time as in the prediction of the PINN
in Fig. 6, where it was reached in the 34th regarded week. If we use α = 0.95
in the forecast of the PINN, the peak in Fig. 6 with a size of almost 175,000
is on a similar level as the first observable maximum in the given predictions
with the NSFD scheme in Figure 7. Their heights are approximately 190,000
with c = 0.07, 185,000 with c = 0.05 and 182,000 with c = 0.03. Figure 7
illustrates that a local minimum is attained in the 54th regarded week i.e. in
early June 2023. This is the case for all three assignments of the parameter c.
If we set c = 0.03, the is reached at approximately 168,000 weekly infections.
Using c = 0.05, the reached value is 145,000. With c = 0.03, we obtain only
127,000 weekly infections at the minimum.

5 Conclusion and Outlook

We have presented a data- and physics-driven deep learning algorithm that
identifies the transmission parameter β and the parameter κ, which represents
the proportion of transmissibility in the vaccinated population, in a system of
ordinary differential equations of a compartmental model describing popula-
tion dynamics at pandemic times. For this purpose, we used a physics-informed
neural network (PINN) whose loss function combines a weighted data loss with
a weighted residual loss, which in turn is based on the compartment model
applied to the respective current network output.

Using COVID-19 infection, hospitalisation, vaccination and mortality data
from Germany, we calculated the prediction error of a non-standard finite dif-
ference scheme (NSFD) [15] and the PINN we developed. During a validation
process, we slightly adjusted the parameters of the NSFD scheme and the
network architecture of the PINN so that we obtained resulting plots that
approximate the trend of the real course of infection numbers.

Depending on the choice of the transmission rate, the performance of the
NSFD scheme varies in approximating the course of the pandemic. Slight
changes can lead to large changes in the prediction in terms of the slope and
the height reached by the peak of the curve. For example, a 4e-10 increase in
transmission risk from 2.00e-9 to 2.04e-9 resulted in a maximum reached two
weeks earlier and 0.32e6 higher, and a 2e-10 decrease in risk from 2.00e-9 to
1.98e-9 resulted in a maximum reached one week later and 0.9e5 smaller (see
Fig. 3). The scenarios drawn in our validation part can be described as long-
term predictions in the way that data from the outbreak of the pandemic in
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Germany until the end of 2021 are used in the training set. We did not include
data from just a single peak within a wave or a single wave here, as we wanted
an algorithm that was adapted to a wide range of virus variants. It should
also be adapted to the behaviour of SARS-CoV-2 in all four seasons, which
would not be given if only one wave or even one local peak were included in
the training data.

PINN seem better suited to account for multiple local maxima within a
wave than the NSFD scheme, as it is able to capture outliers or small oscilla-
tions in a given set of real infection or hospitalisation data and transfer them
into its prediction. The clear advantage of PINN over discrete numerical meth-
ods is its data orientation, so that it does not rely solely on a mathematical
model described by a system of differential equations, which certainly cannot
capture all aspects or dynamics of infectious disease. The importance of data
loss is evidenced by the fact that predictions of our PINN with assignments
α > 0.9, i.e. a clearly dominant influence of the data error MSEU , led to re-
sulting curve predictions that were closer to the reported data of the 30 weeks
considered than with assignments α < 0.9. Indeed, our results, particularly
those in Table 1, show a sharp decline in PINN performance for decreasing
values of the weighting parameter.

With regard to the prediction of the NSFD scheme, the inclusion of time
variability in the transmission rate showed that the NSFD scheme is able to
accommodate the prediction of more than one wave, each with a maximum.
It is important that the parameters used in the time-dependent transmission
function are chosen appropriately. If the NSFD scheme were to be used for an
actual prediction of the next wave of the COVID-19 pandemic, the parameters
c would need to be reliably estimated.

Nevertheless, the residual term allows us to incorporate systematic knowl-
edge about the spread and transmission dynamics of the disease into our neural
network. The differential equations make the network a physically informed
and partially mathematical approach. No mathematical model is able to per-
fectly describe an infectious disease such as COVID-19 because, for example,
new mutant variants emerge and intervention measures or population com-
pliance change over time, and not every epidemiological detail relevant to
transmission is known. However, the values of certain fixed parameters can
be derived from elaborate studies, knowledge of a possible next mutation, in-
tervention or vaccination strategy can be incorporated, and SIR-type models
provide clues to transition dynamics that the neural network can work with.
Our variant of the SIR model, i.e. the SVIHR model, was developed because we
wanted to include leaky vaccination to account for the reduced infectiousness
of individuals in the fully vaccinated case, and we wanted to focus on predict-
ing the number of hospitalisations as an important part of pandemic-related
policy and hospital occupancy planning.

We found similar best values for the residual and data loss weight param-
eter when observing infection and hospitalisation rates. Our results show the
best performance of PINN for α = 0.95 in terms of predicting infection rates
and α = 0.945 for predicting hospitalisation rates, implying a non-negligible
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weight of 5 % and 5.5 %, respectively, of residual loss in the loss function used
during the training procedure.

In our future work, time-varying functions for vaccination and transmission
rate will be included to account for seasonal and variant-dependent fluctua-
tions, cf. [8]. In addition, the prediction of hospitalisation rates can be refined
by including more precise knowledge than the transmission risk, the hospi-
talisation rate and the average length of stay in a hospital. For example, the
Bayesian method could be a tool to estimate the weekly demand for hospital
beds. We will also incorporate an adaptive learning rate into our code.
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