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Non-isothermal particles suspended in a fluid lead to complex interactions – the particles13
respond to changes in the fluid flow, which in turn is modified by their temperature anomaly.14
Here, we perform a novel proof-of-concept numerical study based on tracer particles that15
are thermally coupled to the fluid. We imagine that particles can adjust their internal16
temperature reacting to some local fluid properties and follow simple, hard-wired active17
control protocols. We study the case where instabilities are induced by switching the18
particle temperature from hot to cold depending on whether it is ascending or descending19
in the flow. A macroscopic transition from a stable to unstable convective flow is achieved,20
depending on the number of active particles and their excess negative/positive temperature.21
The stable state is characterized by a flow with low turbulent kinetic energy, strongly stable22
temperature gradient, and no large-scale features. The convective state is characterized by23
higher turbulent kinetic energy, self-sustaining large-scale convection, and weakly stable24
temperature gradients. The particles individually promote the formation of stable temperature25
gradients, while their aggregated effect induces large-scale convection.When the Lagrangian26
temperature scale is small, a weakly convective laminar system forms. The Lagrangian27
approach is also compared to a uniform Eulerian bulk heating with the same mean injection28
profile and no such transition is observed. Our empirical approach shows that thermal29
convection can be controlled by pure Lagrangian forcing and opens the way for other data-30
driven particle-based protocols to enhance or deplete large-scale motion in thermal flows.31
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1. Introduction34

Thermally driven flows play an important role in both nature and industry. They are35
notoriously hard to predict and control. In the presence of gravity, temperature fluctuations36
cause density fluctuations, which in turn drive convective motions through buoyancy in the37
atmosphere (Markowski 2007; Salesky & Anderson 2018), in oceans (Marshall & Schott38
1999), and especially in idealized systems such as Rayleigh-Bénard convection (Ahlers et al.39
2009; Lohse & Xia 2010), and horizontal convection (Gayen et al. 2014).40

It is well known that the two-way interactions between particles suspended in a fluid41
and the fluid phase itself are complex and highly nonlinear. They exhibit behaviour such42
as preferential concentration due to ejection from vortical regions (Cencini et al. 2006;43
Squires & Eaton 1991) and modification of turbulence (Yang & Shy 2005). The dynamics44
of particles suspended in turbulence plays an important role in several natural as well as45
industrial processes, for example in the dispersal of pollutants (Fernando et al. 2010), clouds46
(Falkovich et al. 2002; Mazin 1999), planet formation (Bec et al. 2014), combustion of jet47
sprays (Irannejad et al. 2015).48

When suspended particles are thermally coupled to the fluid and are non-isothermal,49
the particles cause local temperature fluctuations in the fluid, which in turn can further50
modify a turbulent flow, either purely by thermal action or also in conjunction with the51
momentum-coupling (Carbone et al. 2019) while momentum coupling alone can also alter52
the heat-transfer dynamics of a thermal flow (Elperin et al. 1996). Modification of specific53
thermal flows due to suspended, thermal particles has also been studied, for example in54
the Rayleigh-Bénard convection (Park et al. 2018), where heavy particles with fixed initial55
temperatures are introduced into a Rayleigh-Bénard convection system. In this case, the56
particles are found to enhance vertical heat transfer, an effect that is most pronounced when57
the particle concentration is greatest due to turbulence (preferential concentration), while58
attenuating turbulent kinetic energy due to momentum-coupling. Furthermore, the feasibility59
of achieving control of Rayleigh-Bénard convection solely by applying small temperature60
or velocity fluctuations has been studied (Tang & Bau 1994). Here, deviations from the61
stable profiles near the thermal boundaries are detected and compensated, leading to stable62
Rayleigh-Bénard flows well above the critical Rayleigh number and also the possibility of63
control of flow patterns is given. Increasing the critical Rayleigh number and delaying the64
onset of convection can further be improved by applying reinforcement learning techniques65
to apply the temperature fluctuations near the boundary, as shown by (Beintema et al. 2020).66

External radiation acting solely by heating particles suspended in a flow have shown to67
modify the global motion and to induce turbulent thermal convection. The work of Zamansky68
et al. (2014, 2016) considered a transparent fluid with suspended inertial particles subject to69
a constant radiation and at local thermal equilibrium with the fluid. Convection induced in70
such a system was found to be driven by individual plumes rising out of each particle with71
turbulent kinetic energy being the largest in the presence of a strong particle preferential72
concentration where the plumes of individual particles are reinforced by one-another due to73
their spatial proximity. This eventually led to a sustained turbulent thermal convection, albeit74
with the temperature of the system constantly increasing due to the permanently applied75
incident radiation.76

Internally heated convection (IHC) – induced and sustained by the application of a bulk77
heating term in a fluid – has also been studied as an idealised theoretical model by Wang78
et al. (2021). They consider a uniformly heated domain with the top and bottom walls kept79
at the same constant temperature. In this scenario, the bulk attains a stationary temperature80
depending on the strength of the heating and other parameters such as gravity or the height81
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of the domain, while the fixed temperature boundaries works as a sink of heat, ensuring that82
the temperature does not increase indefinitely.83

The study of fluid systems where the heating in the bulk rather than boundary forcing is84
the dominant mode of thermal forcing has important implications for several natural systems.85
For example, in the mantle of the earth, the radiogenic heating from the decay of radioactive86
elements plays a significant role in addition to the heat transfer from the hotter inner core (Lay87
et al. 2008). The atmosphere of Venus which contains a high amount of sulphurous gases88
absorbs a large part of the incoming solar radiation, making this the dominant mode of heat89
transfer (Tritton 1975) in contrast to the earth where the majority of the radiation is absorbed90
by the land surface and in-turn forces the atmosphere. The mantle of Venus is driven in large91
part by internal heating (Limare et al. 2015). Finally, in industrial applications, chiefly in the92
interior of liquid-metal batteries, convection due to internal heating is of crucial importance93
(Kim et al. 2013).94

In this study we set up a "theoretical experiment" to study the possibility of controlling the95
global properties of a thermal flow by applying temperature fluctuations locally along particle96
trajectories. In our proposed idealisation, the particles are equipped with a hard-wired active97
protocol capable of releasing or absorbing heat by setting the temperature of each Lagrangian98
tracer as a function of the local velocity field of the underlying fluid background. Our system99
is internally heated/cooled by these virtual particles so that the average heating term Φ is100
statistically zero and hence the average temperature attained by the fluid is unchanged by the101
forcing. The heat injection by the particles is the only energy source for the system, since102
the horizontal boundaries are periodic and the top and bottom walls are adiabatic. The aims103
of the set-up are multifold. First, as a proof of concept, we wish to demonstrate that it is104
possible to invent hard-wired Lagrangian protocols that can cause global flow transitions.105
Second, we hope to trigger more studies using phenomenological or data-driven approaches106
to achieve control of complex systems. Finally, by acting on thermal plumes, we hope one107
can better understand their role in determining the organisation of the global flow.108

The remainder of the article is organised in the following manner. In Section 2, we109
introduce the model equations for the system, the particle temperature protocol and describe110
the numerical experiments conducted. In Section 3, we present and discuss our main findings111
from the numerical experiments and finally in Section 4, we present our conclusions as well112
as possible future directions for further investigation.113

2. Methods114

The protocol for particle forcing is as follows: virtual tracer particles are initially randomly115
placed in a 2D region of length 𝐿𝑥 and height 𝐿𝑧 with a fluid at rest. The initial temperature116
of the fluid is set to an unstable configuration with warmer temperatures at the bottom of117
the domain and colder temperatures at the top of the domain. The particles are idealised to118
have an infinite heat capacity and a temperature determined by an imposed protocol in which119
rising particles moving vertically upward are warm with a positive temperature 𝑇+, while120
the temperature of falling particles is set to −𝑇+ (see figure 1) so the average temperature121
of the fluid remains constant. The temperature of the fluid near the particle relaxes to the122
temperature of the particle at a rate proportional to the difference between the local fluid123
temperature 𝑇 and the particle temperature 𝑇𝑝, with a relaxation time 𝜏 = 1/𝛼.124
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Figure 1: An overview of the methods applied in the study. The domain consists of
adiabatic walls at the top and bottom while the lateral boundaries are periodic. In inset (i)
and (ii), we show a rising hot particle with temperature 𝑇+ and a falling cold particle with

temperature −𝑇+ respectively.

2.1. Fluid Equations of Motion125

The fluid velocity 𝒖 = (𝑢, 𝑣) and temperature 𝑇 follow the equations126

∇ · 𝒖 = 0, (2.1)127

𝜕𝑡𝒖 + (𝒖 · ∇)𝒖 = −∇𝑝 + 𝜈∇2𝒖 − 𝛽𝑇 𝒈, (2.2)128

𝜕𝑇

𝜕𝑡
+ 𝒖 · ∇𝑇 = 𝜅∇2𝑇 −

𝑁𝑝∑︁
𝑖=1

(
𝛼𝑖 (𝒓, 𝑡)

[
𝑇 (𝒓, 𝑡) − 𝑇𝑖 (𝑡)

] )
. (2.3)129

where (2.1) and (2.2) are the incompressible Navier-Stokes equations for a fluid with unit130
density and average temperature 𝑇0 = 0 with a buoyancy-force term according to the131
Boussinesq approximation, where the density variations are small and enter the equations132
only via the gravity-force term. Here 𝑝 is the fluid pressure, 𝜈 is the kinematic viscosity, and133
𝛽 is the thermal expansion coefficient. Temperature is advected and diffused by Equation134
(2.3) where 𝜅 the thermal conductivity and the last term on the rhs is a heat source term (i.e.,135
a thermal forcing) that depends on the particles (see later).136

The domain is periodic in the horizontal 𝑥-direction while the top and bottom walls at137
𝑧 = 0 and 𝑧 = 𝐿𝑧 are adiabatic with 𝒖 = 0, that is138

𝜕𝑧𝑇 |𝑧=0 = 𝜕𝑧𝑇 |𝑧=𝐿𝑧
= 0, (2.4)139

𝒖(𝑧 = 0) = 𝒖(𝑧 = 𝐿𝑧) = 0. (2.5)140

Note that the only source of energy injected into the system is the heat supplied by the141
particles.142

Focus on Fluids articles must not exceed this page length
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2.2. Equations of Particle Motion143

Each particle is assumed to be a point-like tracer. The 𝑁𝑝 particles with positions144
{𝒓1, 𝒓2, . . . , 𝒓𝑁𝑝

} and temperatures {𝑇1, 𝑇2, . . . , 𝑇𝑁𝑝
} follow the local fluid velocity145

𝑑𝒓𝑖
𝑑𝑡

= 𝒖(𝒓𝑖 (𝑡), 𝑡). (2.6)146

To mimic an effective particle size, concerning its thermal properties, we imagine that147
each particle exerts a thermal forcing on the fluid in its immediate vicinity up to a cut-off148
distance 𝜂. The feedback of the particle is defined as a local heat injection term proportional149
to the difference between the underlying fluid temperature, at the location of the particle, and150
the instantaneous particle temperature. Furthermore, to have a smooth thermal forcing, we151
assume that the strength of the coupling 𝛼𝑖 (with dimension inverse of time) between the 𝑖-th152
particle and the fluid at time 𝑡 and position 𝒓 has the form of a Gaussian with a peak at the153
particle location 𝒓𝑖 (𝑡) (see inset (ii) of Fig. 1), given by154

𝛼𝑖 (𝒓, 𝑡) =
{
𝛼0 exp

(
− |𝒓−𝒓 𝑖 (𝑡) |2

2𝑐2

)
, if |𝒓 − 𝒓𝑖 (𝑡) | ⩽ 𝜂,

0, if |𝒓 − 𝒓𝑖 (𝑡) | > 𝜂.
(2.7)155

Here, 𝛼0 is the coupling strength at the particle location and 𝑐 is the size of the virtual particle156
(referred to as particle size). In fact, 𝑐 determines the sharpness of the peak of the Gaussian157
function 𝛼𝑖: the Gaussian peaks more sharply and falls off more quickly for smaller 𝑐. On158
the other hand, 𝜂 is simply a cut-off length for the thermal forcing by the particle. Thus, the159
thermal forcing due to the 𝑖-th particle Φ𝑖 at location 𝒓 is160

Φ𝑖 (𝒓, 𝑡) = −𝛼𝑖 (𝒓, 𝑡)
[
𝑇 (𝒓, 𝑡) − 𝑇𝑖 (𝑡)

]
, (2.8)161

and the total thermal forcing at a given location 𝒓 due to all 𝑁𝑝 particles reads162

Φ(𝒓, 𝑡) = −
𝑁𝑝∑︁
𝑖=1

(
𝛼𝑖 (𝒓, 𝑡)

[
𝑇 (𝒓, 𝑡) − 𝑇𝑖 (𝑡)

] )
. (2.9)163

To summarise, each particle influences a fixed region surrounding itself and when two164
particles are within distance 2𝜂, their thermal effects are additive in the overlapping region.165

2.3. Particle Temperature Policy166

The temperatures of the particles are determined by a binary policy where the 𝑖-th particle167
has either a positive value 𝑇+ or a negative value −𝑇+ depending on the sign of the vertical168
velocity of the particle 𝑣𝑖 (𝑡):169

𝑇𝑖 =

{
𝑇+, if 𝑣𝑖 > 0,
−𝑇+, if 𝑣𝑖 < 0.

(2.10)170

Since the particle is a tracer, 𝑣𝑖 is the same as the vertical velocity of the fluid at the particle171
location 𝑣(𝒓𝑖 , 𝑡). 𝑇+ is a parameter that sets the temperature scale of the system. By heating172
the upward moving fluid regions and conversely, cooling the downward moving regions, this173
policy should enhance thermal convection by amplifying any updrafts or downdrafts if they174
exist. Particles are coupled to each other via their effects on the fluid and because of the flow175
thermal diffusivity.176
Our policy leads to a sharp discontinuity in the particle temperature when the particle177

changes direction. Furthermore, the temperature would rapidly fluctuate between 𝑇+ and −𝑇+178
at the top and bottom walls where the velocity is very small and the flow is mainly horizontal.179
To ensure that this doesn’t affect our results, we verified that setting𝑇𝑖 = 0 for particles within180
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Parameter 𝐿𝑥 𝐿𝑦 𝜈 𝜅 𝛼0 𝑇+ 𝑔 𝑐 𝛽 𝑁𝑝

Range 864 432 1
1500

1
1500

[0.0001−
0.005]

[2.5 × 10−8 −
0.05] 8 × 10−6 [0.5 −√

2] 1 [48 −
960]

Table 1: List of parameters used in the study along with the range of values in simulation
units.

one grid length from the top and bottom walls, where the vertical velocity of the particle181
fluctuates rapidly from small positive values to small negative values, leads to (statistically)182
the same flows. We have also verified that all results reported below are robust against small183
change of the above protocol, e.g. by setting a threshold velocity 𝑣0 such that 𝑇𝑖 = 0 when184
|𝑣 | < 𝑣0.185

2.4. Numerical Experiments186

The fluid equations (2.1)–(2.3) are solved by the Lattice-Boltzmannmethod (see Appendix A187
for details), together with the particle evolution as a tracer given by equation (2.6). The188
particle evolution is solved by the two-step Adams-Bashforth method. We start from an189
initially unstable vertical temperature profile of190

𝑇 (𝑧) = 𝑇+ tanh
( 𝐿𝑧

2
− 𝑧

)
. (2.11)191

The two-way coupled particle-fluid system is evolved until the flow reaches a statistically sta-192
tionary kinetic energy independent of the initial conditions for the flow velocity, temperature193
and particles positions. All measurements and analyses are performed at this steady state for194
different sets of parameters, varying 𝑇+, 𝑁𝑝, 𝛼0, and 𝑐. The cut-off distance for the particles195
𝜂 is kept constant throughout the study.196
All results presented in this study are for a 2D fluid domain resolved with 864 grid points197

in the horizontal direction and 432 grid points in the vertical direction. With the Lattice198
Boltzmann grid spacing Δ𝑥 = 1, we have 𝐿𝑥 = 864 and 𝐿𝑧 = 432. The particles have a fixed199
cut-off distance 𝜂 = 3 in computational units, while their size 𝑐, is varied. 𝛼0 is varied from200
10−4 to 5 × 10−3 in simulation units. The temperature 𝑇+ is varied over several orders of201
magnitude. All temperatures in this study are reported in units of 𝑇𝑠/0.025 where 𝑇𝑠 is the202
temperature in simulation units. Thus, 𝑇 = 0.1 corresponds to a temperature of 𝑇𝑠 = 0.0025203
in simulation units. This convention is chosen solely to make it easier to compare the scales204
of the various 𝑇+ and make the manuscript more readable. The values of the parameters are205
summarised in table 1.206
In order to have dimensionless quantities, we define a typical velocity 𝑢0, given by207

𝑢0 =

√︄
𝑐𝑔𝛽

𝛼0

𝛼0 + 𝜅

2𝑐2
𝑇+, (2.12)208

where 𝑐 is the size of the particle as defined in equation (2.7). The form (2.12) was suggested209
by studying the evolution of single particles experiments at varying 𝛼0 and 𝑐, where the rms210
value of the vertical particle velocity was found to scale as in (2.12). In particular, we find211
that the particle velocity statistics remain independent of the domain height 𝐿𝑧 , justifying212
the choice of 𝑐 as the length scale of the system. The fluid near the particle relaxes to the213
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temperature of the particle, and this relatively hotter/cooler local plume rises/falls. The tracer214
particle in turn responds to the fluid and accelerates at a rate that depends on the temperature215
anomaly, gravity 𝑔 and 𝛽. This is similar to other thermal flows such as Rayleigh-Bénard216
convection. The local heating is high when 𝑐 is large because a wider region around each217
particle is thermally forced. The quantity218

𝑇𝑎 =
𝛼0

𝛼0 + 𝜅

2𝑐2
𝑇+ (2.13)219

is interpreted as an effective temperature reached in the vicinity of each particle. The empirical220
prefactor 𝛼0/(𝛼0+ 𝜅

2𝑐2 ) by which𝑇+ is multiplied is a constant that gives the rate of relaxation221
of the fluid temperature to the particle temperature compared with the rate at which heat is222
diffused away from the particle by conduction, which is proportional to 𝜅/𝑐2. When 𝛼0 → 0,223
then 𝑇𝑎 → 0, because the fluid is no longer coupled to the particle and there is no energy224
input to the system. When 𝛼0 ≫ 𝜅/𝑐2, then 𝑇𝑎 → 𝑇+, meaning the fluid attains the local225
particle temperature. For large 𝜅, the heat is rapidly conducted away from the tracer so that226
effective temperature is lower, where again 𝑇𝑎 → 0 when 𝜅 → ∞ while the case of small 𝜅227
is similar to that of large 𝛼0. In our study, 𝛼0 and 𝜅/𝑐2 are of comparable magnitude.228
Furthermore, we define the normalized turbulent kinetic energy 𝐸𝑘 (𝑡) of the system as229

𝐸𝑘 (𝑡) =
1
2

〈
|𝒖(𝑡) |2

〉
𝑉

𝑢20𝑁𝑝

, (2.14)230

where ⟨·⟩𝑉 represents the average over the entire domain at a given time. We also define with231

an overline 𝐸 𝑘 as the average normalized turbulent kinetic energy (TKE), i.e.232

𝐸 𝑘 =
〈
𝐸𝑘 (𝑡)

〉
𝑡
, (2.15)233

where ⟨·⟩𝑡 denotes the time average after the flow reaches a statistically stationary regime. If234
the particles are sparse and their motion is independent of each other, the kinetic energy of the235
system would simply be a sum of the motion of the individual particles and we would expect236
𝐸𝑘 to remain constant. However, if the motions of the particles are not merely additive, but237
cause a large-scale flow in the system, we would expect 𝐸𝑘 to increase as a function of 𝑁𝑝.238

3. Results239

3.1. Stable and Convective Configurations240

First, we vary the number of virtual particles 𝑁𝑝. Figure 2 shows four cases, where we241
visualize snapshots of the temperature and velocity fields. Thereby the rising particle242
temperature 𝑇+, particle-fluid coupling strength 𝛼0 and particle size 𝑐 are fixed. The figure243
indicates that there are two distinct stationary typical configurations. The first, which we244
term stable, is shown in the top panels (a) and (b) of figure 2. In this state, kinetic energy245
is low and large scale circulation is absent. Particles are either nearly still and close to246
the top and bottom walls or they execute a slow vertical motion independently one from247
the others, propelled by their higher or lower temperature compared to the bulk. When the248
particle concentration reaches beyond a certain threshold, the individual thermal effect of the249
particles aggregates and triggers a transition to a second state shown in the bottom panels250
(c) and (d) of figure 2. This convective state enjoys a large scale circulation, the presence251
of rising and falling plumes with the particles trajectories synchronized with the large-scale252
recirculation regions. In figure 2, this transition occurs for 𝑁𝑝 ∼ 150.253
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Figure 2: Snapshots of the temperature field 𝑇 (𝒓, 𝑡)/𝑇+ at a given instant of time for
𝑇+ = 0.1, 𝛼0 = 0.005, 𝑐 = 1 and at changing 𝑁𝑝 = 120, 140, 160, 180 in panels (a), (b), (c)
and (d), respectively. The colour palette varies from red to blue where red indicates 𝑇 = 𝑇+
and blue indicates 𝑇 = −𝑇+. The black arrows show the velocity field with the length of
the arrow representing the relative magnitude of the velocity with identical scaling for all
four panels. The top panels show a stable configuration while the bottom panels show a

convective configuration.

Figure 3: Time evolution of 𝐸𝑘 (𝑡) for flows with (a) 𝑇+ = 0.02, (b) 𝑇+0.1 and (c) 𝑇+ = 1.0
with 𝛼0 = 0.005 and 𝑐 = 1 kept fixed. Stable configurations are plotted in blue while
convective configurations are plotted in red. The time is in simulation time units.

In figure 3 we show the time evolution of the TKE for parameters before and after the254
transitions. Panels (a), (b) and (c) corresponds to 𝑇+ = 0.02, 𝑇+ = 0.1 and 𝑇+ = 1.0,255
respectively, with 𝛼0 and 𝑐 remaining fixed. The blue curves represent stable configurations256
while the red curves represent convective configurations. The kinetic energy first increases257
due to the unstable temperature gradient imposed on the initial condition. At later times, the258
thermal forcing by the tracers is dominant and the flow attains a statistically stationary kinetic259
energy where 𝐸𝑘 (𝑡) either shows a large value (red curves), corresponding to a convective260
flow shown qualitatively in figure 2 or a low value (blue curves) corresponding to a quasi261
stable flow.262
Two further points are note-worthy about the transition from figure 3. Firstly, the transition263

is abrupt:it is enough to add very few particles to hvae a jump ≳ 5 in the normalised264
kinetic energy. It should be noted that the expression of 𝐸𝑘 (𝑡) is normalized by 𝑁𝑝 in the265
denominator, so the absolute increase in kinetic energy is even greater. Secondly, the critical266
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𝑁𝑝 depends slightly on 𝑇+, where for larger 𝑇+, the transition occurs at a slightly larger 𝑁𝑝.267
We see that in panel (a) with 𝑇+ = 0.02, the transition lies between 𝑁𝑝 = 120 and 𝑁𝑝 = 140268
while in panel (c) with 𝑇+ = 1.0, the transition lies between 𝑁𝑝 = 160 and 𝑁𝑝 = 180, with269
the case of 𝑇+ = 0.1 in panel (b) showing an intermediate behavior. This weak dependence270
on 𝑇+ which will be further commented upon later. It has been verified that the transitions271
are robust by replacing the initial unstable profile with an initial temperature field of 𝑇 = 0272
everywhere with particles being either hot or cold with probability 0.5 each.273

Figure 4: Time-averaged vertical temperature profile divided by 𝑇+ plotted against the
vertical height for various 𝑁𝑝 close to the transition 𝑁𝑝 for 𝑇+ = 0.02 (a), 𝑇+ = 0.1 (b)
and 𝑇+ = 1.0 (c). Stable configurations are plotted in blue while convective configurations

are shown in red.

In figure 4, we show a comparison of the normalised time-averaged vertical temperature274

profiles 𝑇 (𝑧) for the same set of flows given by275

𝑇 (𝑧) =
〈
𝑇 (𝒓, 𝑡)

〉
𝑥,𝑡

𝑇+
, (3.1)276

where ⟨·⟩𝑥,𝑡 represents the time-average at a given height 𝑧. Notice that the temperature277
gradients for the stable flows (blue) show a strongly stable profile (𝜕𝑧𝑇 > 0) while the278
convective flows still show an overall stable temperature profile but with weaker gradients279
so that the temperature difference between the top and the bottom adiabatic walls are much280
smaller. In the presence of a large-scale circulation, the temperature field is more effectively281
transported and mixed throughout the domain. We also see that with increase in𝑇+, the stable282
configurations show a flatter temperature profile for the corresponding 𝑁𝑝 of lower 𝑇+ flows,283
i.e., for example, the red curves in panel (c) are much flatter than those in panel (a).284

The dual-nature of the effect of the virtual particles is observed here – the particles tend285
to make the flow more stable by carrying heat away from the lower half of the domain286
while carrying heat towards the upper half of the domain. Thus, the larger 𝑇+ is, the more287
stable the system becomes. However, when a certain threshold of particles is reached, the288
situation changes – the virtual particles together create a persistent large-scale flow and now289
the convection is strong enough to overcome the stable temperature gradient.290
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Figure 5: Time averaged normalized TKE 𝐸𝑘 as a function of 𝑁𝑝 for various 𝑇+ (shown in
legend) for 𝛼0 = 0.005 and 𝑐 = 1. The inset (in the lower right corner) shows the behavior
of a flow with 𝑇+ = 0.1 very close to the transition 𝑁𝑝 . Also shown are instantaneous
snapshots of the temperature field for a stable configuration (bottom) and a convective
configuration (top right). The error bars indicate the standard deviation of the temporal
fluctuations of 𝐸𝑘 (𝑡) around the average kinetic energy in the stationary regime.

In figure 5, we take a closer look at the transition by plotting the average normalised TKE291
of the flows as defined in equation (2.15) against 𝑁𝑝, for the same 𝛼0 as above, for various292
𝑇+. The sharp increase of TKE at a transition 𝑁𝑝 is once again clearly visible. We empirically293

define a value of 𝐸0
𝑘
= 0.225 indicated by the horizontal red line as the transition point where294

for stable end states, 𝐸𝑘 < 𝐸0
𝑘
and vice-versa for the convective end state. The sharpness of295

the transition is examined more closely in the inset of the figure for a given 𝑇+. It is seen296
that the transition occurs for an increase of just one single particle. The dependence of the297
transition on 𝑇+ is weak, for 𝑇+ varying over 2 orders of magnitude the transition occurs at298
nearly the same 𝑁𝑝.299

3.2. Large-scale Circulation and Heat Transfer300

While the existence of the large-scale circulation is apparent from the visualisations of the301
temperature and velocity fields, it is possible to infer its presence quantitatively from the fluid302
energy spectrum. In particular, we consider the spectrum in the horizontal direction taken at303
the mid-plane 𝑧0 = 𝐿𝑧/2, given by304

𝐸𝒖 (𝑘𝑥) =
1
2

〈���̂�(𝑘𝑥 , 𝑧0, 𝑡)��2〉
𝑡
, (3.2)305

and �̂�(𝑘𝑥 , 𝑧0, 𝑡) are the Fourier coefficients of the field 𝒖 and ⟨·⟩𝑡 denotes the time averaging.306
We denote by 𝐸1 the energy contained in the first Fourier mode with wavenumber 𝑘𝑥 =307
2𝜋/𝐿𝑥 , 𝐸2 is used for energy of the second mode (𝑘𝑥 = 4𝜋/𝐿𝑥), and so on. Moreover, we308

Rapids articles must not exceed this page length
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define 𝐸tot as the sum of the energy contained in all the Fourier modes,309

𝐸tot =

𝑁𝑘∑︁
𝑖=1

𝐸𝑖 , (3.3)310

where 𝑁𝑘 is the Fourier mode corresponding to the smallest resolved length-scale. The311
strength of the large-scale circulationwith a rising plume and a falling plume can bemeasured312
by the value 𝐸1/𝐸tot (Xi et al. 2016), which measures the fraction of energy contained in313
the first mode, that is the smallest wave number. This corresponds to a cosine mode for314
the velocity field in the bulk, which is a close approximation when there exist two counter-315
rotating vortices. When such a large-scale flow is present, we would have 𝐸1/𝐸tot ≫ 0,316
while if the flow lacks large-scale convection, we would have a flatter energy spectrum with317
𝐸tot ≫ 𝐸1 and 𝐸1 ∼ 𝐸2.318

(a) (b)

(c)

Figure 6: (a) 𝐸1/𝐸tot for varying 𝑁𝑝 for various values of 𝑇+. Error bars show the
temporal fluctuations of 𝐸1/𝐸tot (b) Nu for varying 𝑁𝑝 for various values of 𝑇+. The black
solid line shows a linear scaling with 𝑁𝑝 . (c) Plot of the average normalised Nusselt
number NuΦ against the average normalised thermal energy injection 𝜖𝑇 for flows with
varying parameters. Stable flows are marked with blue filled circles, convective with red

filled hexagons and the two black lines scale as (𝜖𝑇 )1.2

In figure 6(a), we plot the strength of the large-scale circulation 𝐸1/𝐸tot for varying 𝑁𝑝.319
We see clearly here that corresponding to a jump in the magnitude of the TKE seen in320
figure 5, there is also a similar large increase in the ratio of kinetic energy contained in the321

largest-scale. Given that 𝐸 𝑘 takes into account the typical velocity of a single particle as322
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well as the number of particles, the excess kinetic energy clearly comes from the large-scale323
circulation that arises after the transition, a cumulative particle effect.324
Figure 6(b) shows the dimensionless Nusselt number, Nu, defined as325

Nu =

〈
𝑣𝑇 − 𝜅 𝜕𝑇

𝜕𝑧

〉
𝑉,𝑡

𝜅Δ𝑇
𝐿𝑧

, (3.4)326

where ⟨·⟩𝑉,𝑡 represents average over the entire domain and time, 𝑣 is the vertical fluid velocity327

and Δ𝑇 is the time-averaged temperature difference between the top and bottom walls given328
by329

Δ𝑇 = ⟨𝑇 (𝑥, 𝐿𝑧)⟩𝑥,𝑡 − ⟨𝑇 (𝑥, 0)⟩𝑥,𝑡 . (3.5)330

Here, the Nusselt number is defined in analogy with Rayleigh-Bénard convection: it is the331
ratio of heat transfer due to convection and the heat transfer by conduction with the difference332
that the temperature jump is taken in the opposite sense because of the presence of a stable333
mean profile. Due to the adiabatic boundary conditions imposed at the top and bottom walls334
(𝜕𝑧𝑇 = 0) along with the no-slip boundary condition for the velocity (𝒖 = 0), the value of the335
Nusselt number is 0 at the top and bottom walls. Thus, the boundary walls do not contribute336
to the heat transfer. The Nusselt number naturally increases proportionally with the number337
of particles.338
We see in figure 6(b) that the value ofNu increases gradually with increase in 𝑁𝑝, followed339

by a large increase around the transition 𝑁𝑝 and then settling to a roughly linear increase with340
𝑁𝑝 in the convective regime. The reason for the large increase of Nu at the transition is two-341
fold. Firstly, the increase in TKE overall leads to an increase in the convective heat transfer342
which further increases 𝑣𝑇 . Secondly, with more effective mixing of the temperature and a343

weakly stable temperature gradient, Δ𝑇 in the denominator also has a smaller magnitude.344
Another way to quantify the heat transfer is to divide it by the typical forcingΦmultiplied345

by the length-scale of the system. This is similar to the normalisation procedure of (Wang346
et al. 2021) applied to internally heated convection (with volume forcing). The effective347
temperature𝑇𝑎 defined in equation (2.13) was introduced as a typical value of the temperature348
attained by the fluid in the vicinity of the particle with an associated length-scale 𝑐 for each349
particle. In a similar vein, 𝛼0(𝑇+ − 𝑇𝑎) can be considered the typical thermal forcing acting350
on the fluid. We use two dimensionless response parameters of the system. First, we define351
the normalised Nusselt number NuΦ given by352

NuΦ =

〈
𝑣𝑇 − 𝜅 𝜕𝑇

𝜕𝑧

〉
𝑉,𝑡

𝑐𝛼0(𝑇+ − 𝑇𝑎)
. (3.6)353

NuΦ measures the heat transfer by convection relative to the input typical thermal forcing354
multiplied by the length scale of the system.355
In the stationary regime, the thermal dissipation rate 𝜖𝑇 is given by ⟨Φ𝑇⟩𝑉,𝑡 (see356

Appendix C) and is normalised as357

𝜖𝑇 =
⟨Φ𝑇⟩𝑉,𝑡

𝛼0(𝑇+ − 𝑇𝑎)𝑇+
. (3.7)358

The normalisation factor is once again the typical forcingmultiplied by the temperature scale.359
In figure 6(c) we plot the normalised Nusselt number NuΦ against the normalised thermal360

dissipation 𝜖𝑇 , quantifying the measured convective response of the fluid to the measured361
input thermal forcing for varying 𝑇+, 𝑐, 𝛼0 and 𝑁𝑝. It is seen that there exists a global scaling362
of these two quantities for both the flow regimes, stable and convective with a rough scaling363
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of NuΦ ∝ (𝜖𝑇 )1.2. However, the higher magnitude of the normalised Nusselt number in the364
convective case differentiates it from the stable flows.365

The above findings are consistent with a situation that can be briefly described as such366
– individual particles thermally coupled to the fluid have a small zone of influence and367
release or absorb heat in their immediate vicinity. Thus, each particle contributes to the368
thermal injection into the domain as well as the vertical heat transfer across the domain.369
The heat injection as well as vertical heat transfer increase with the increase in number of370
particles. In the stable regime, the main effect of the particles is to maintain the strongly371
stable temperature gradient. At the transition to the convective regime, the development of372
the large-scale convective flow patterns and more turbulent flow leads to a large increase in373
the heat transfer relative even to the thermal energy injection, while also seeing a weaker374
stable vertical temperature gradient across the domain.375

3.3. Comparison with Eulerian imposed thermal forcing376

We consider a thermal fluid system with a thermal forcing 𝜙(𝑧) uniformly applied at all377
times. The forcing is a close approximation of the measured forcing Φ in the Lagrangian378
system with the particles in the domain as shown in figure 7. Defining 𝑄(𝑧), the numerator379
of the Nusselt number, as the average net heat transfer in the positive 𝑧 direction at height 𝑧380
given by381

𝑄(𝑧) =
〈
𝑣(𝒓, 𝑡)𝑇 (𝒓, 𝑡) − 𝜅𝜕𝑧𝑇 | (𝒓 ,𝑡)

〉
𝑥,𝑡
, (3.8)382

where ⟨·⟩𝑥,𝑡 indicates the time and spatial averages at a given height 𝑧, notice that averaging383
equation (2.3) over time gives384 〈

Φ(𝑧)
〉
𝑥,𝑡

= 𝜕𝑧𝑄(𝑧). (3.9)385

Figure 7: The measured value of the average vertical profile of thermal forcing
Φ = −𝛼(𝑇 − 𝑇𝑝) for (a) a stable flow and for (b) a convective flow (b) compared to the

imposed vertical profile of the thermal forcing.
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(a) (b)

Figure 8: (a) The normalised temperature profile for a stable Lagrangian flow (blue)
compared with the measured temperature profile of a flow with an imposed profile of
thermal forcing. (b) The normalised temperature profile for a convective Lagrangian flow
(red) compared with the measured temperature profile of a flow with an imposed profile of

thermal forcing

Figure 9: Snapshots of the temperature fields: (a) a stable Lagrangian flow (upper left), (c)
a convective Lagrangian flow (lower left), and the two uniformly forced flows to mimic the
stable (b) and convective flows (d) in right column. The temperature fields 𝑇 are divided
by the respective 𝑇+. The black arrows show the velocity field. The length of the arrows
indicate the magnitude of the velocity field within each panel – the arrow lengths are

scaled differently for different flows to allow for the clearest viewing of the flow structure.

The comparison is made for one stable and one convective flow. Given identical vertical386
profiles of thermal forcing (see figure 7), one would expect that the resulting temperature387
profile and hence the nature of the flows would remain identical. However, as shown388
in figure 8, the temperature profiles show a dramatic difference, with the Eulerian flows389
showing an unstable temperature profile similar to the Rayleigh-Bénard Convection. Further,390
as shown in figure 9, even when the thermal forcing matches the measured value from a stable391
configuration, the Eulerian flow with uniform thermal forcing shows a convective behavior392
with clear, well-defined hot and cold plumes and an unstable temperature gradient. Even in393
the convective case, the corresponding Eulerian flow is convective. Thus, the presence of the394
stable temperature gradients and the two typical configurations outlined previously is not a395
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result of the net thermal forcing applied on the system but of the particular Lagrangian nature396
of the thermal tracers and the two-way coupling with the fluid.397

3.4. Anomalous Behavior for Small 𝑇+398

We have already noted in previous sections that there is weak dependence of the transition399
of the system on the value of 𝑇+. In particular, it was observed that for larger 𝑇+, the400
transition occurs at a larger 𝑁𝑝 and the stable configurations for larger 𝑇+ have relatively401
flatter temperature gradients. One would conclude then that for any given 𝑁𝑝, there exists a402
𝑇+ small enough such that the system is convective. However, at very small 𝑇+, the system403
attains a third columnar state where the temperature profile is still stable (𝜕𝑧𝑇 > 0) and the404
system has a weak convective flow (see snapshot in figure 10 (b)).405

(a) (b)

Figure 10: (a) The ratio of kinetic energy contained in the first Fourier mode 𝐸1/𝐸tot
(dashed lines) and 𝐸2/𝐸tot (solid lines) to the total energy contained in all modes for

𝑁𝑝 = 140 and 𝑁𝑝 = 240 plotted against 𝑇+. Inset shows the averaged normalised TKE 𝐸𝑘

for the same parameters and the horizontal line represents 𝐸𝑘 = 𝐸0
𝑘
. (b) A snapshot of the

temperature field for a columnar flow with 𝑁𝑝 = 240 and 𝑇+ = 10−5. The colour palette
varies from red to blue where red indicates 𝑇 = 𝑇+ and blue indicates 𝑇 = −𝑇+.

In figure 10 (a), we plot the fraction of energy contained in the first Fourier mode (𝐸1/𝐸tot)406
as well as the second Fourier mode (𝐸2/𝐸tot) to understand the large-scale behavior of407
the flow. We can see clearly that for smaller 𝑇+, the second mode dominates the kinetic408
energy while the energy contained in the first mode approaches 0. This is the case until409
a transition 𝑇+, where now the flow turns convective from columnar, with a dominance of410
𝐸1. At larger 𝑇+ for 𝑁𝑝 = 240 (orange, filled symbols), we see that while 𝐸2/𝐸tot remains411
small, the value of 𝐸1/𝐸tot shows a decreasing trend. This is because as 𝑇+ is increased, the412
flow becomes more turbulent and small-scale velocity features begin to appear, increasing413
the energy contained at higher modes. For 𝑁𝑝 = 140 (cyan, empty symbols), the flow is414

columnar for 𝑇+ ≲ 10−3 and transitions to convective at 𝑇+ ∼ 0.02, as evidenced by the415
values of 𝐸1/𝐸tot and 𝐸2/𝐸tot. However, on increasing 𝑇+ further, the flow again moves to416
a stable configuration, as evidenced by the fact that 𝐸1 ∼ 𝐸2 which indicates the lack of417
any large-scale velocity flow. This transition is due to the effect already observed, that for418
increasing 𝑇+, the 𝑁𝑝 of transition from stable to convective is greater.419
The inset of figure 10(a) shows the normalised TKE plotted for the two given 𝑁𝑝 and420

varying 𝑇+. Notice that at small 𝑇+, when the flow is columnar, it is characterised by a smaller421
normalised TKE and kinetic energy smoothly approaches 0 as 𝑇+ → 0.422
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4. Conclusions and Discussion423

We have performed numerical simulations of an idealized non-isothermal 2D fluid system424
under the Boussinesq approximation with suspended tracer particles. The particles act as425
heat sources or sinks depending on their vertical velocity. The particles are coupled to the426
fluid only thermally, the fluid is forced only by the action of the particles. Individually, each427
particle aids in the transport of heat away from the bottom of the domain towards the top of428
the domain, thus working to create a thermally more stable system. However, under certain429
conditions, the cumulative effect of the particles overpowers the tendency towards stability430
and the result is a system with a large-scale convective flow pattern with increased turbulent431
kinetic energy, larger heat transfer across the domain, maximum energy in the largest Fourier432
modes and a (weakly) stable vertical temperature gradient. Themain parameters of the system433
are the temperature of the hot, rising particles 𝑇+, the number of particles 𝑁𝑝, the strength434
of the thermal coupling between the fluid phase and the particles 𝛼0 and the size of the435
particle 𝑐. Increasing 𝑁𝑝, 𝑐 and 𝛼0 makes the flow increasingly convective while increasing436
𝑇+ weakly contributes to making the flow more stable.437
This Lagrangian protocol is compared with a system with a uniform thermal forcing438

identical to the measured Lagrangian forcing and it is found that the temperature profiles of439
the Eulerian system is unstable rather than stable and a convective flow always develops.440
Extension to 3D set-ups and to cases with larger domain and/or a larger number of441

particles to study whether the intensity of turbulence can be increased indefinitely would442
also be interesting.443

444
Independently of the possibility to realize a protocol like the one we studied here in a445

realistic experimental set-up, out study is meant to gain a new insight about the impact446
of Lagrangian control on turbulent convection. A real-world example would be a cloud447
of droplets moving along with an updraft – the droplet remains uniformly hotter than the448
surroundings due to condensation ofwater onto its surface and similarly, falling cloud droplets449
constantly lose water to the atmosphere thus remaining cooler while moving downward.450
Our study also opens several further interesting avenues for investigation including -but451

not limited to- the formulation of similar protocols where the properties of the suspended452
particles is optimized by a data-driven approach to attain complex controls and modulation453
of fluid flows.454
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Appendix A. Numerical Methods465

A.1. Lattice Boltzmann Method466

The fluid equations are solved by the Lattice Boltzmann method with two sets of populations467
using a standard D2Q9 grid.468

𝑓𝑖 (𝒓 + 𝒄𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖 (𝒓, 𝑡) −
𝑓𝑖 − 𝑓 eq

𝜏 𝑓
Δ𝑡 + 𝑆𝑖Δ𝑡, (A 1)469

𝑔𝑖 (𝒓 + 𝒄𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑔𝑖 (𝒓, 𝑡) −
𝑔𝑖 − 𝑔eq

𝜏𝑔
Δ𝑡 + 𝑞𝑖Δ𝑡. (A 2)470

471

The evolution of the two sets of populations 𝑓 and 𝑔, representing the fluid and the thermal472
phase respectively, follow the Lattice Boltzmann equations with a Bhatnagar–Gross–Krook473
(BGK) collision operator. The vectors 𝒄𝑖 for 𝑖 = 1, . . . , 9 are the discrete particle velocities,Δ𝑡474
is the lattice time-step, so that 𝒄𝑖Δ𝑡 go from each lattice point to the 8 nearest neighbouring475
lattice points in the uniform 2D grid and 𝒄0 = 0. 𝑆𝑖 and 𝑞𝑖 represent the momentum476
forcing (buoyancy) and the thermal forcing respectively. The time-step and the grid spacing477
respectively Δ𝑡 = Δ𝑟 = 1, as is the standard practice. 𝑓 eq and 𝑔eq are the equilibrium478
population distributions as defined in He et al. (1998) given by479

𝑓 eq = 𝑤𝑖𝜌

(
1 + 𝒖 · 𝒄𝑖

𝑐2𝑠
+ (𝒖 · 𝒄𝑖)2

2𝑐4𝑠
− 𝒖 · 𝒖
2𝑐2𝑠

)
, (A 3)480

𝑔eq = 𝑤𝑖𝑇

(
1 + 𝒖 · 𝒄𝑖

𝑐2𝑠
+ (𝒖 · 𝒄𝑖)2

2𝑐4𝑠
− 𝒖 · 𝒖
2𝑐2𝑠

)
, (A 4)481

482

where 𝑤𝑖 are the weights for each population set by the grid used, D2Q9 in this study. 𝑐𝑠 is483
the lattice speed of sound set by the choice of 𝒄𝑖 .484
𝜏 𝑓 and 𝜏𝑔 are respectively the fluid and the thermal relaxation times which set the values485

for kinematic viscosity 𝜈 and thermal conductivity 𝜅 as486

𝜈 = 𝑐2𝑠 (𝜏 𝑓 − 0.5), (A 5)487

𝜅 = 𝑐2𝑠 (𝜏𝑔 − 0.5). (A 6)488489

To account for the buoyancy force term, theGuo-forcing scheme (Guo et al. 2002) is employed490
with491

𝑆𝑖 =

(
1 − Δ𝑡

2𝜏 𝑓

)
𝑤𝑖

( 𝒄𝒊 − 𝒖

𝑐2𝑠
+ (𝒄𝒊 · 𝒖)𝒄𝒊

𝑐4𝑠

)
· 𝑭, (A 7)492

where 𝑭 is the physical force vector.493
The fluid hydrodynamic quantities at each point in space and time are obtained from the494

various moments of the populations as495

𝜌 =
∑︁
𝑖

𝑓𝑖 , (A 8)496

𝒖 =
1
𝜌

∑︁
𝑖

𝑓𝑖𝒄𝑖 +
𝑭

2𝜌
. (A 9)497

498

The ease of implementation of the Guo-forcing scheme is from the fact that the velocity 𝒖499
that enters the expression for 𝑓 eq in equation (A 3) is the same as the hydrodynamic velocity500
obtained in equation (A 9). This isn’t the case for other forcing schemes.501
The addition of a heat source term (thermal forcing term) is performed according to (Seta502
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2013) with503

𝑞𝑖 =

(
1 − 1
2𝜏𝑔

)
𝑤𝑖ΦΔ𝑡, (A 10)504

whereΦ = −𝛼(𝑇 −𝑇𝑝) is the required source term. The temperature is then obtained at each505
lattice grid point from the thermal populations 𝑔𝑖 as506

𝑇 =
∑︁
𝑖

𝑔𝑖 +
(
1 − 1
2𝜏𝑔

)
Φ. (A 11)507

The no-slip boundary condition for the velocity at the top and bottom walls are imposed508
using the bounce-back method (Ladd 1994). The adiabatic boundary condition for the top509
and bottom walls are imposed using the Inamuro method for setting the normal flux at a510
boundary for an advected scalar in a fluid (Yoshino & Inamuro 2003) by setting the flux511
equal to 0.512

Appendix B. Effects of varying 𝛼0 and 𝑐513

It is clear from themain text that an increase in the number of particles 𝑁𝑝 strongly pushes the514
system towards the convective configuration while increasing 𝑇+ weakly causes the system515
to tend towards stability. The other ways a phase change from a stable configuration to a516
convective configuration can be triggered is by increasing the fluid-particle coupling strength517
𝛼0 or the size of the particle 𝑐, both of which serve to increase the typical velocity 𝑢0.518

(a) (b)

Figure 11: (a) Normalised vertical temperature profiles for 𝑇+ = 0.01, 𝑁𝑝 = 180 for
different 𝛼. The red curves correspond to convective flows while the blue curves represent
the stable flows. (b) Normalised TKE for 𝑇+ = 0.02 plotted against 𝑁𝑝 for 3 values of 𝛼0.

Horizontal red line represents 𝐸0
𝑘
= 0.225.
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Figure 12: Normalised TKE for varying virtual particle size 𝑐 for two different 𝛼0.

The former effect can be gauged in figure 11. In panel (a), we see the behavior of519
the temperature profile for varying 𝛼0. It has already been seen that the stable regime520
is characterised by a strongly stable temperature profile while the convective regime is521
characterised by a weakly stable temperature gradient. The temperature profile remains522
nearly identical for changing values of 𝛼0 except when the flow changes from stable (blue523
curves) to convective (red curves). We also note that the time taken for the flow to relax524
from the initial unstable configuration (see equation (2.11)) to the eventual stationary state525
is larger for smaller 𝛼0. It indicates that for a given temperature scale 𝑇+ and 𝑁𝑝, there exists526

a temperature difference Δ𝑇 for which the flow is stable independent of 𝛼0. Panel (b) of the527

same figure where we plot the average normalised TKE 𝐸 𝑘 shows the transition from stable528
to convective for 3 different 𝛼0. That the increase in TKE corresponds to the transition from529
stable to convective was verified from visualisations of the flow field as well as the strength530
of the large-scale circulation as already discussed in Section 3.2. We see that decreasing531
𝛼0 increases the 𝑁𝑝 of the transition and still note that the empirical value of 𝐸0𝑘 for the532
transition holds.533

Increasing 𝑐 too shows a similar effect, as clear in figure 12 where keeping the other534
parameters fixed, a transition to convective configuration is triggered by enlarging the size535
of the individual virtual particle.536

Appendix C. Thermal Dissipation537

We define the thermal dissipation rate as standard in the turbulence literature as538

𝜖𝑇 ≡ 𝜅
〈
(𝜕𝑖𝑇 (𝒙, 𝑡))2

〉
𝑉
, (C 1)539

and note that in the statistically stationary regime, the thermal dissipation is equal to the540
thermal injection. We have the heat equation given by541

𝜕𝑡𝑇 + 𝒖 · ∇𝑇 = 𝜅∇2𝑇 +Φ. (C 2)542

Following (Siggia 1994) and as shown explicitly by Ching (2014, pp. 5-7) for the Rayleigh-543
Bénard convection, we multiply equation (C 2) with 𝑇 and average over the entire domain544
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and time to give
545

1
2
𝑑⟨𝑇2⟩𝑉,𝑡

𝑑𝑡
+ 1
2
〈
𝒖 · ∇(𝑇2)

〉
𝑉,𝑡

−
〈
Φ𝑇

〉
𝑉,𝑡

546

= 𝜅
〈
𝑇∇2𝑇

〉
𝑉,𝑡

= 𝜅
〈
∇ · (𝑇∇𝑇)

〉
𝑉,𝑡

− 𝜅
〈
|∇𝑇 |2

〉
𝑉,𝑡

, (C 3)547

and then use the stationary condition (𝜕𝑡 ⟨·⟩𝑉,𝑡 = 0) and the incompressibility (∇ · 𝒖 = 0)548
condition to give549 〈

𝒖 · ∇(𝑇2)
〉
𝑉
=
〈
∇ · (𝒖𝑇2)

〉
𝑉
= 0. (C 4)550

Then, equation (C 3) becomes551

𝜅
〈
|∇𝑇 |2

〉
𝑉,𝑡

= 𝜅
〈
∇ · (𝑇∇𝑇)

〉
𝑉,𝑡

+
〈
Φ𝑇

〉
𝑉,𝑡

, (C 5)552

or553

𝜖𝑇 = 𝜅
〈
∇ · (𝑇∇𝑇)

〉
𝑉,𝑡

+
〈
Φ𝑇

〉
𝑉,𝑡

(C 6)554

The first term of 𝜖𝑇 can further be simplified using the Gauss theorem and writing it in terms555
of a surface integral556

𝜅
〈
∇ · (𝑇∇𝑇)

〉
𝑉,𝑡

=
𝜅

𝐿𝑧

[〈
𝑇𝜕𝑧𝑇

〉
𝑧=𝐿𝑧

−
〈
𝑇𝜕𝑧𝑇

〉
𝑧=0

]
. (C 7)557

In this study, we set 𝜕𝑧𝑇 = 0 at 𝑧 = 0 and 𝑧 = 𝐿𝑧 . Thus, finally we get simply558

𝜖𝑇 = ⟨Φ𝑇⟩𝑉,𝑡 . (C 8)559
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