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Detecting and Learning the Unknown in
Semantic Segmentation
Robin Chan1, Svenja Uhlemeyer1, Matthias Rottmann1, and Hanno Gottschalk1

Abstract. Semantic segmentation is a crucial component for perception in automated driving. Deep
neural networks (DNNs) are commonly used for this task and they are usually trained on a closed set
of object classes appearing in a closed operational domain. However, this is in contrast to the open
world assumption in automated driving that DNNs are deployed to. Therefore, DNNs necessarily
face data that they have never encountered previously, also known as anomalies, which are extremely
safety-critical to properly cope with.

In this work, we first give an overview about anomalies from an information-theoretic perspective.
Next, we review research in detecting semantically unknown objects in semantic segmentation. We
demonstrate that training for high entropy responses on anomalous objects outperforms other recent
methods, which is in line with our theoretical findings. Moreover, we examine a method to assess
the occurrence frequency of anomalies in order to select anomaly types to include into a model’s set
of semantic categories. We demonstrate that these anomalies can then be learned in an unsupervised
fashion, which is particularly suitable in online applications based on deep learning.

1 Introduction

Recent developments in deep learning have enabled scientists and practitioners to advance in a broad
field of applications that were intractable before. To this end, deep neural networks (DNNs) are mostly
employed which are usually trained in a supervised fashion with closed-world assumption. However,
when those algorithms are deployed to real-world applications, e.g., artificial intelligence (AI) systems
used for perception in automated driving, they often operate in an open-world setting where they
have to face diversity of the real world. Consequently, DNNs are likely exposed to data which is
”unknown” to them and therefore possibly beyond their capabilities to process. For this reason, having
methods at hand, that indicate when a DNN is operating outside of its learned domain to seek for human
intervention, is of utmost importance in safety-critical applications.
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Detecting and Learning the Unknown in Semantic Segmentation

A generic term for such a task is anomaly detection, which is generally defined as recognizing when
something departs from what is regarded as normal or common. More precisely, identifying anoma-
lous examples during inference, i.e., new examples that are ”extreme” in some sense as they lie in low
density regimes or even outside of the training data distribution, is commonly referred to as out-of-
distribution (OoD) or novelty detection in deep learning terminology. The latter is in close connection
to the task of identifying anomalous examples in training data, which is contrarily known as outlier
detection; a term originating from classical statistics to determine whether observational data is pol-
luted. Those outlined notions are often used interchangeably in deep learning literature. Throughout
this work, we will stick to the general term anomaly and only specify when distinguishing is relevant.

For the purpose of anomaly detection, plenty of methods, ranging from classical statistical ones have
been developed in the past. For the nowadays most challenging computer vision tasks tackled by deep
learning, where both the model weights and output are of high dimension (in the millions), specific
approaches to anomaly detection are mandatory.

Classical methods such as density estimation fail due to the curse of dimensionality. Early approaches
identify outliers based on the distance to their neighbors [KNT00; RRS00], i.e., they are looking
for sparse neighborhoods. Other methods consider relative densities to handle clusters of different
densities, e.g., by comparing one instance either to its k-nearest neighbors [Bre+00] or using an ε-
neighborhood as reference set [Pap+03]. However, the concept of neighborhoods becomes meaning-
less in high dimensions [AHK01]. More advanced approaches for high-dimensional data compute
outlier degrees based on angles instead of distances [KSZ08] or even identify lower-dimensional sub-
spaces [AY01; Kri+09].

In deep-learning-driven computer vision applications, novelties are typically regarded as more rele-
vant than outliers. In semantic segmentation, i.e., pixel-level image classification, novelty detection
may even refer to a number of sub-tasks. On the one hand, we might be concerned with the detec-
tion of semantically anomalous objects. This is also known as anomaly segmentation in the case of
semantic segmentation. On the other hand, we also might be concerned with the detection of changed
environmental conditions that are novel. The latter may be effects of a domain shift and include change
in weather, time of day, seasonality, location and time. In this work, we focus only on semantically
novel objects as anomalies.

In general, an important capability of AI systems is to identify the unknown. However, when striving
for improved self-reflection capabilities, anomaly detection is not sufficient. Another important capa-
bility for real-world deployment of AI systems is to realize that some specific concept appears over and
over again and potentially constitutes a new (or novel) object class. Incremental learning refers to the
task of learning new classes, but, especially in semantic segmentation, mostly in a strictly supervised
or semi-supervised fashion where data for the new class is labeled with ground truth [MZ19; Cer+20].
This is accompanied by an enormous data collection and annotation effort. In contrast to supervised
incremental learning, humans may recognize a novelty of a given class that appears over and over
again very well, such that in the end a single feedback might be sufficient to assign a name to a novel
class. Ideally, this is accomplished in an unsupervised manner, like [HZ21] for image classification.
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Detecting and Learning the Unknown in Semantic Segmentation

In this work, we first introduce anomaly detection from an information-based perspective in Section 2.
We provide theoretical evidence that the entropy is a suitable quantity for anomaly detection, particu-
larly in semantic segmentation. In Section 3, we review recent developments in the fields of anomaly
detection and unsupervised learning of new classes. We give an overview on existing methods, both in
the context of image classification and semantic segmentation. In this setting, we examine an approach
to train semantic segmentation DNNs for high entropy on anomaly data in Section 4. We compare this
approach against other established and recent state-of-the-art anomaly segmentation methods, and em-
pirically show the effectiveness of entropy maximization in identifying unknown objects. Lastly, we
investigate an unsupervised learning technique for novel object classes in Section 5. In this light, we
further provide an outlook how the latter approach can be combined with entropy maximization to
handle the unknown at run time in automated driving.

2 Anomaly Detection Using Information and Entropy

Anomaly detection is a common routine in any data analysis task. Before training a statistical model
on data, the data should be investigated whether the underlying distribution generating the data is
polluted by anomalies. In this context, anomalies can generally be understood as samples that do not
fit into a distribution. Such anomalous samples can, e.g., be generated in the data recording process
either by extreme observations, by errors in recording and transmission, or by the fusion of datasets
that use different systems of units. Most common for the detection of anomalies in statistics is the
inspection of maximum and minimum values for each feature, or simple univariate visualization via
box-whisker plots or histograms.

More sophisticated techniques are applied in multivariate anomaly detection. Here, anomalous sam-
ples do not necessarily have to contain extreme values for single features, but rather an untypical
combination of them. One of the application areas for multivariate anomaly detection is, e.g., fraud
detection.

In both outlined cases, an anomaly z ∈ Rd can be qualified as an observation that occurs at a location
of extremely low density of the underlying distribution p(z) or, equivalently, has an exceptionally high
value of the information

I(z) = − log p(z) . (1)

Here, two problems occur: First, it is generally not specified what is considered as exceptionally high.
Second, p(z) and thereby I(z) are generally unknown. Regarding the latter issue, however, the esti-
mate Î(z) = − log p̂(z) can be used which in turn relies on estimating p̂(z) from data associated to
the probability density function p(z). Estimation approaches for p̂(z) can be distinguished between
parametric and non-parametric ones.

The Mahalanobis distance [Mah36] is the best known parametric method for anomaly detection which
is based on information of the multivariate normal distribution N . In fact, if z ∼ N(µ,Σ) with mean
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Detecting and Learning the Unknown in Semantic Segmentation

µ ∈ Rd and positive definite covariance matrix Σ ∈ Rd×d, then

I(z) = − log

(
1

(2π)d/2(detΣ)1/2
exp

(
− 1

2
(z− µ)TΣ−1(z− µ)

))
(2)

=
d

2
log(2π) +

1

2
log(detΣ) +

1

2
(z− µ)TΣ−1(z− µ) =

1

2
(dΣ(z,µ))

2 + c , (3)

where
dΣ(z,µ) :=

√
(z− µ)TΣ−1(z− µ) (4)

denotes the Mahalanobis distance. The estimation Î(z) is obtained by replacing µ and Σ by the
arithmetic mean µ̂ and the empirical covariance matrix Σ̂, respectively, and likewise dΣ(z,µ) by the
empirical Mahalanobis distance dΣ̂(z, µ̂).

In contrast, non-parametric techniques of anomaly detection rely on non-parametric techniques to
estimate p(z). Here, a large variety of methods from histograms, kernel estimators and many others
exist [Kle09]. We note, however, that the non-parametric estimation of densities and information
generally suffers from the curse of dimensionality. To alleviate the latter issue in anomaly detection,
estimation of information is often combined with techniques of dimensionality reduction, such as, e.g.,
principal component analysis [HTF07] or autoencoders [SY14].

When using non-linear dimensionality reduction with autoencoders, densities obtained in the latent
space depend on the encoder and not only on the data itself. This points towards a general problem
in anomaly detection. If p(z) is the density of a random quantity z and z′ = ϕ(z) is an equivalent
encoding of the data z using a bijective and differentiable mapping ϕ : Rd 7→ Rd, the change of
variables formula [Rud87; Asa+21]

p(z′) = p(z) · | det (Jz′z) | = p(z) · | det
(
Jzϕ

−1(z)
)
| (5)

implies that the information of z′ is

I(z′) = − log (p(z))− log
(∣∣det (Jzϕ

−1(z)
)∣∣) , (6)

where Jzϕ
−1(z) denotes the Jacobian matrix of the inverse function ϕ−1. Thus, whenever a high

value of I(z) indicates an anomaly, there always exists another equivalent representation of the data
z′, where the information I(z′) is low. In other words, if z is remote from other instances zj of a
dataset and therefore considered an anomaly, there will be a transformation z′ = ϕ(z) that brings z′
right into the center of the data z′j = ϕ(z)j . In fact, via the Rosenblatt transformation [Ros52] any
representation z of the data can be expressed via a representation z′ = ϕ(z) where I(z′) is constant
over all data points. This stresses the importance to understand, that an anomaly always refers to
probability and encoding of the data z. This is true for both the original data and its approximated
lower-dimensional representation.

As a side remark, autoencoders designed from neural networks have been very successfully applied
in anomaly detection. Encoder and decoder networks possess the universal approximation property
[Cyb89]. Furthermore, common training losses like the reconstruction error are invariant under a
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Detecting and Learning the Unknown in Semantic Segmentation

change of the representation on latent spaces. Therefore, additional insights seem to be required to
explain the empirical success of anomaly detection with autoencoders which is, however, not the scope
of this work.

Another way of looking at the issue of anomaly detection in the context of different representations
of same data is an explicit choice of a reference measure. This reference measure represents to which
extent, or how likely, data is contaminated by potential anomalies. Suppose we can associate the prob-
ability density panom(z) to the reference measure, then we can base anomaly detection on the quotient
of densities, i.e., the odds p(z)

panom(z)
, and apply a threshold whenever this ratio is low or, equivalently,

when the relative information

I rel(z) := − log

(
p(z)

panom(z)

)
= I(z)− Ianom(z) (7)

is high. We note that the relative information is independent under changes of the representation
z′ = ϕ(z) as the − log | det(Jzϕ

−1(z))| term from Equation (6) occurs once with positive sign in
I(z′) and once with negative sign in −Ianom(z′) and therefore cancels. Thus, the choice of a reference
measure and the choice of a representation for the data is largely equivalent.

In practical situations, panom(z) is often represented by some data {zanom
i }i∈T ′ that are either simulated

or drawn from some data source of known anomalies. A binary classifier p̂(anom|z) can then be
trained on basis of proper data {zi}i∈T and anomalous data {zanom

i }i∈T ′ . The assumed prior probability
p(anom) for anomalies, i.e., the degree of contamination, acts as a threshold for the estimated odds.
Equivalently, the estimate of the relative information

Î rel(z) = − log

(
p̂(z)

p̂anom(z)

)
Bayes’ Theorem

= − log

(
p̂(non-anom|z)p(z)

p(non-anom)
· p(anom)

p̂(anom|z)p(z)

)
(8)

= − log

(
1− p̂(anom|z)
p̂(anom|z)

· p(anom)

1− p(anom)

)
(9)

= − log

(
1− p̂(anom|z)
p̂(anom|z)

)
− log

(
p(anom)

1− p(anom)

)
(10)

= − log

(
1− p̂(anom|z)
p̂(anom|z)

)
+ c (11)

with the prior log-odds c = − log
(

p(anom)
1−p(anom)

)
being a parameter controlling the threshold for the

binary classifier p̂(anom|z).

If specifying what is an exceptionally high value for the information I(z) or relative information I rel(z),
the distinction between the detection of outliers in the training data and the detection of novelties during
inference has to be taken into account. In outlier detection, observations, which have high (relative)
information but which are in agreement with the extreme value of the (relative) information

Imax = max
i∈T

I(zi) or I rel max = max
i∈T

I rel(zi), (12)

5
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Detecting and Learning the Unknown in Semantic Segmentation

are usually intentionally not eliminated. An outlier z for the level of significance 0 < α < 1 can then
be detected using the condition

P{zi}i∈T (I
max > I(z)) ≤ α or P{zi}i∈T (I

rel max > I rel(z)) ≤ α. (13)

Note again that the distribution of I rel(zj) has to be estimated to derive the associated distribution
for the extreme values, see, e.g., [DF07], and also I rel(z) requires the estimation p̂(z) or p̂anom(z).
Therefore, a quantification of the epistemic uncertainty is essential for a proper outlier detection. Given
the already mentioned problems of density estimation in high dimension, epistemic uncertainties may
play a major role, unless a massive amount of data is available.

For the case of novelty detection taking place at inference, a comparison of the information of a single
instance I rel(z) with the usual distribution of information Pzi seems to be in order, which leads to the
novelty criterion for level of significance 0 < α < 1

Pzi(I(zi) > I(z)) ≤ α or Pzi(I
rel(zi) > I rel(z)) ≤ α. (14)

As a variant to this criterion, I rel(zi) could also be replaced by the extreme value statistics over the
number of inferences alleviating the problem of generating false novelties by multiple testing. What
has been stated on the necessity to quantify the epistemic uncertainty for the case of outlier detection
equally applies for novelty detection.

While anomaly detection is generally seen as a sub-field of unsupervised learning, some specific effects
occur in the case of novelty detection in supervised learning. During the phase of inference, the data
z = (y,x) contain an unobserved component y ∈ S, which, e.g., represent the instance’s label in
a classification problem for the classes contained in S. Using the decomposition p(z) = p(y,x) =

p(y|x)p(x), one obtains the (relative) information from

I(z) = I(y|x) + I(x), or I rel(z) = I(y|x) + I rel(x)− Ianom(y|x), (15)

where I(y|x) = − log(p(y|x)), Ianom(y|x) = − log(panom(y|x)) is the conditional information on the
right hand side. Often, for the data of the reference measure panom(z), the labels are not contained in
S. In this case, one uses a non-informative conditional distribution panom(y|x) = 1

|S| . If this is done,
the last term of Equation (15) becomes a constant that can be integrated into a threshold parameter.

The (relative) information cannot be computed without knowing y. Therefore, the conditional expec-
tation is used as an unbiased estimate, yielding the expected information

EI(x) = Ey∼p(y|x)(I
rel(z)) = E(x) + I rel(x) + brel, (16)

whereE(x) =
∑

y∈S p(y|x)I(y|x) is the expected information, or entropy, of the conditional distribu-
tion p(y|x) and brel is zero for the information and equal to − log(|S|) for the relative information with
non-informative conditional distribution panom(y|x). Note that E(x) is bounded by log(|S|). There-
fore, under normal circumstances, the term I rel(x) will outweigh E(x) by far. However, in problems
like semantic segmentation, each component of x is assigned a label from S . This implies solving

6
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Detecting and Learning the Unknown in Semantic Segmentation

|I| classification problems, where I denotes the pixel space of x, thus the maximum value for E(x)

yields |I| log(|S|).

Therefore, the first term in Equation (16) contains significant contributions, especially in situations
where |I| is large. The second term, I rel(x) loses importance under the hypothesis that the probability
of the inputs x does not vary greatly. Despite this hypothesis could be supported by fair sampling
strategies, it requires further critical evaluation. But at least to a significant part, the expected infor-
mation as an anomaly measure with regard to instance x is given by a dispersion measure, namely
the entropy of the conditional probability. As the entropy can be well estimated using a supervised
machine learning approach to estimate p̂(y|x) from the data {zj}j∈T , this part of the information is
well accessible in contrast to I rel(x), which requires density estimation in high dimension.

Lastly in this section, let us give a remark on the role of anomaly data {zanom
j }j∈T ′ = {xanom

j }j∈T ′ .
If such data is available, it is desirable to train the machine learning model p̂(y|x) to produce high
values forE(xanom

j ) so that the tractable part of the expected informationEI(x) shows good separation
properties. This requirement can be inserted to the loss function, as it has been proposed in [HAB19;
Hen+19] for classification. In fact, as the entropyE(x) is maximized by the uniform (non-informative)
label distribution p(y|xanom

j ) = 1/|S|, the aforementioned loss will favor this prediction on anomalous
inputs {xanom

j }j∈T ′ . In this work, in Section 4, we will investigate this approach for the computer
vision task of semantic segmentation, after having reviewed related work based on deep learning in
the following section.

3 Related Work

After the introduction to anomaly detection from a theoretical point of view, we now turn to anomaly
detection in deep learning. In this section, we review research in the direction of detecting and learning
unknown objects in semantic segmentation.

3.1 Anomaly Detection in Semantic Segmentation

An emerging body of works explores the detection of anomalous inputs on image data, where the task is
more commonly referred to as anomaly or out-of-distribution (OoD) detection. Anomaly detection was
first tackled in the context of image classification by introducing post-processing techniques applied
to softmax probabilities to adjust the confidence values produced by a classification model [HG17;
Lee+18a; LLS18; HAB19; MH20]. These methods have proven to successfully lower confidence
scores for anomalous inputs at image-level, which is why they were also adapted to anomaly detection
in semantic segmentation [ACS19; Blu+19], i.e., to anomaly segmentation by treating each single
pixel in an image as a potential anomaly. Although those methods represent good baselines, they
usually do not generalize well to segmentation, e.g., due to the high prediction uncertainties at object
boundaries. The latter problem can, however, be mitigated by using segment-wise prediction quality
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Detecting and Learning the Unknown in Semantic Segmentation

estimates [Rot+20], an approach which has also demonstrated to indicate anomalous regions within
an image [ORF20].

Recent works have proposed more dedicated solutions to anomaly segmentation. Among the resulting
methods, many originate from uncertainty quantification. The intuition is that anomalous regions in
an image correlate with high uncertainty. In this regard, early approaches estimate uncertainty using
Bayesian deep learning, treating model parameters as distributions instead of point estimates [Mac92;
Nea96]. Due to the computational complexity, approximations are mostly preferred in practice, which
comprise, e.g., Monte-Carlo dropout [GG16], stochastic batch normalization [Ata+19], or an ensem-
ble of neural networks [LPB17; GDS20]; with some of them also being extended to semantic segmen-
tation in [BKC17; KG17; MG19]. Even when using approximations, Bayesian models still tend to be
computationally expensive. Thus, they are not well suited to real time semantic segmentation which
is required for safe automated driving.

This is why tackling anomaly segmentation with non-Bayesian methods are more favorable from a
practitioner’s point of view. Some approaches therefore include tuning a previously trained model
to the task of anomaly detection, by either modifying its architecture or exploiting additional data.
In [DT18], anomaly scores are learned by adding a separate branch to the neural network. In [HMD19;
MH20] the network architecture is not changed but auxiliary outlier data, which is disjoint from the
actual training data, is induced into the training process to learn anomalies. The latter idea motivated
several works in anomaly segmentation [Blu+19; Bev+19; JRF20; CRG21]. Nonetheless, such mod-
els have to cope with multiple tasks, hence possibly leading to a performance loss with respect to
the original semantic segmentation task [Van+21]. Moreover, when including outlier datasets in the
training process, it cannot be guaranteed that the chosen outlier data is a good proxy for all possible
anomalies.

Another recent line of works performs anomaly segmentation via generative models that reconstruct
original input images. These methods assume that reconstructed images will better preserve the ap-
pearance of known image regions than that of unknown ones. Anomalous regions are then identified
by means of pixel-wise discrepancies between the original and reconstructed image. Thus, such an ap-
proach is specifically designed to anomaly segmentation and has been extensively studied in [CM15;
MVD17; Lis+19; Xia+20; Lis+21; Bia+21]. The main benefit of these approaches is that they do
not require any OoD training data, allowing them to generalize to all possible anomalous objects.
However, all these methods are limited by the integrated discrepancy module, i.e., the module that
identifies relevant differences between the original and reconstructed image. In complex scenes, such
as street scene images for automated driving, this might be a challenging task due to the open world
setting.

Regarding the dataset landscape, only few anomaly segmentation datasets exist. The LostAndFound
dataset [Pin+16] is a prominent example which contains anomalous objects in various streets in Ger-
many while sharing the same setup as Cityscapes [Cor+16]. LostAndFound, however, considers chil-
dren and bicycles as anomalies, even though they are part of the Cityscapes training set. This was
filtered and refined in Fishyscapes [Blu+19]. Another anomaly segmentation dataset accompanies
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Detecting and Learning the Unknown in Semantic Segmentation

the CAOS benchmark [Hen+20], which considers three object classes from BDD100k [Yu+20] as
anomalies. Both, Fishyscapes and CAOS, try to mitigate low diversity by complementing their real
images with synthetic data.

Efforts to provide anomalies in real images have been made in [Lis+19] by sourcing and annotating
street scene images from the web and in [Lis+21; Sin+20] by capturing and annotating images with
small objects placed on the road. Just recently, the datasets published alongside the SegmentMeIfY-
ouCan benchmark [Cha+21] build upon those works, particularly contributing to broad diversity of
anomalous street scenes as well as objects.

3.2 Incremental Learning in Semantic Segmentation

Building upon the detection of anomalies, training data can be enriched in order to learn novel classes.
To avoid training from scratch, several approaches tackle the task of incremental or even continu-
ous learning, which can be understood as adapting to continuously evolving environments. Besides
learning novel classes, incremental learning also encompasses adapting to alternative tasks or other
domains. A comprehensive framework to compare these different learning scenarios is provided in
[VT19].

When learning novel classes, the primary issue incremental learning approaches face is a loss of the
original performance on previously learned classes, that is commonly known as catastrophic forget-
ting [MC89]. To overcome this problem, a model needs to be both, ”stable” and ”plastic”, i.e., the
model needs to retain its original knowledge while being able to adapt to new environments. The
complexity of meeting these requirements at the same time is called the stability-plasticity-dilemma
[AR05]. In this regard, proposed solution strategies can be separated into three categories, which are
either based on architecture, regularization, or rehearsal. Most of these methods have been applied to
image classification first.

Architecture strategies employ separate models for each sequential incremental learning task, com-
bined with a selector to determine which model will be used for inference [Pol+01; Che+19; ARC20].
However, these approaches suffer from data imbalances, consequently standard classification algo-
rithms tend to favor the majority class. Approaches to mitigate skewed data distributions are usually
based on over- or undersampling. Another line of works, such as [Rus+16; RPR19], employ ”grow-
ing” models, i.e., enlarging the model capacity by increasing the number of model parameters for
more complex tasks. In [ACT17], the authors propose an automated approach to select the proper
task-specific model at test time. More efficient approaches were introduced in [GK16; Yoo+18], that
restrict the adaptation of parameters to relevant parts of the model in terms of the new task. The
Self-Net [CME19] is made up of an autoencoder that learns low-dimensional representations of the
models belonging to previously learned tasks. By that, retaining existing knowledge via approximating
the old weights instead of saving them directly is accompanied with an implicit storage compression.
The incremental adaptive deep model developed in [Yan+19] enables capacity scalability and sustain-
ability by exploiting the fast convergence of shallow models at the initial stage and afterwards utilizing
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Detecting and Learning the Unknown in Semantic Segmentation

the power of deep representations gradually. Other procedures perform continuous learning, e.g., us-
ing a random-forest [Hu+19], an incrementally growing DNN, retaining a basic backbone [SAR20],
or nerve pruning and synapse consolidation [Pen+21].

Regularization strategies can be further distinguished between weight regularization, i.e., measuring
the importance of weights, and distillation, i.e., transferring a model’s knowledge into another. The
former identifies parameters with great impact on the original tasks that are suppressed to be updated.
Elastic weight consolidation (EWC) [Kir+17] is one representative method, evaluating weight impor-
tance based on the Fisher information matrix, while the synaptic intelligence (SI) method [ZPG17]
calculates the cumulative change of Euclidean distance after retraining the model. Both regularization
methods were further enhanced, e.g., by combining them [Cha+18; AM19], or by including unlabeled
data [Alj+18]. Another idea to maintain model stability was adapted in [Zen+21; Far+19], updating
gradients based on orthogonal constraints. Bayesian neural networks are applied in [Lee+18b] to
approximate a Gaussian distribution of the parameters from a single to a combined task.

Distillation is a regularization method, where the knowledge of an old model can be drawn into a new
model to partly overcome catastrophic forgetting. Knowledge distillation, proposed in [HVD14], was
originally invented to transfer knowledge from a complex into a simple model. The earliest approach,
which applies knowledge distillation to incremental learning, is called learning without forgetting
(LwF) [LH18]. A combination of knowledge distillation and EWC was proposed in [Sch+18]. Further
approaches based on distillation loss are, e.g., [Jun+18; Yao+19; Kim+19; Lee+19].

Rehearsal or pseudo-rehearsal-based methods, which were already proposed in [Rob95], mitigate
catastrophic forgetting by allowing the model to review old knowledge whenever it learns new tasks.
While rehearsal-based methods retain a subset of the old training data, pseudo-rehearsal strategies
construct a generator during retraining, which learns to produce pseudo-data as similar to the old train-
ing data as possible. Hence, they provide the advantages of rehearsal even if the previously learned
information is unavailable. Methods reusing old data are, e.g., incremental classifier and representa-
tion learning (iCaRL) [Reb+17], which simultaneously learns classifiers and feature representation,
or the method presented in [Cas+18], which proposes a representative memory. The bias correction
(BiC) method [Wu+19] keeps old data in a similar manner, but handles the data imbalance differ-
ently. Most pseudo-rehearsal approaches include generative adversarial networks (GANs) [OOS17;
Wu+18; Mel+19; Ost+19] or a variational autoencoder (VAE) [Shi+17]. The method presented in
[Hou+18] combines distillation and retrospective (DR), whereby baseline approaches such as LwF
are outperformed by a large margin.

Only few works exist, such as [TTA19; Kli+20; MZ21; URG22], that adapt incremental learning
techniques to semantic segmentation. Most of them adjust knowledge distillation using only a small
portion or even none of old data. One challenge of continuous learning for semantic segmentation is
that images may contain unseen as well as known classes. Hence, annotations that are restricted to
some task assign a great amount of pixels to a background class, exhibiting a semantic distribution
shift. The authors of [Cer+20] provide a framework that mitigates biased predictions towards this
background class. In general, existing works rely on supervision for incremental learning.
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Detecting and Learning the Unknown in Semantic Segmentation

4 Anomaly Segmentation

The task of anomaly detection in the context of semantic segmentation, i.e., identifying anomalies
at pixel-level, is commonly known as anomaly segmentation. For this task several approaches have
been proposed that are either based on uncertainty quantification, generative models, or training strate-
gies specifically tailored to anomaly detection. In this work, we will first review some of those well-
established methods and, subsequently, report a performance comparison with respect to their capabil-
ity of identifying anomalies. In particular, we will demonstrate empirically that entropy maximization
yields great performance on this segmentation task, which is in accordance to the statement of the
entropy’s importance from the information-based perspective as presented in Section 2.

4.1 Methods

Let x ∈ IH×W×3, I = [0, 1], denote (normalized) color images of resolution H × W . Feeding
those images to a semantic segmentation network F : IH×W×3 → RH×W×S , the model produces
pixel-wise class scores y = (yi,s)i∈I,s∈S = F(x) ∈ RH×W×S , with the set of pixel locations de-
noted by I = {1, . . . , H} × {1, . . . ,W} and the set of trained (hence known) classes denoted by
S = {1, . . . , S}. The corresponding predicted segmentation mask is given by m = (mi)i∈I ∈
{1, . . . , S}H×W , where for mi = argmaxs∈S yi,s ∀ i ∈ I the maximum a-posteriori probability prin-
ciple is applied. Regarding the task of anomaly segmentation, the ultimate goal is then to obtain a
score map a = (ai)i∈I ∈ RH×W that indicates the presence of an anomaly at each pixel location i ∈ I
within image x, i.e., the higher the score the more likely there should be an anomaly.

Each of the methods employed in this section provides such score maps. Their underlying segmen-
tation networks (DeepLabV3+, [Che+18]) are all trained on Cityscapes [Cor+16], i.e., objects not
included in the set of Cityscapes object classes are considered as anomalies since they have not been
seen during training and thus are unknown. The anomaly detection methods, however, differ in the
way how the scores are obtained, which is why we briefly introduce the different techniques in the
following.

Maximum softmax probability: The most commonly-used baseline for anomaly detection at image
level is thresholding at the maximum softmax probability (MSP) [HG17]. Therefore, this method
assumes that anomalies are attached a low confidence or, equivalently, high uncertainty. Using MSP
in anomaly segmentation, the score map is computed via

ai = 1−max
s∈S

softmax(yi) ∀ i ∈ I . (17)

ODIN: A simple extension to improve MSP is applying temperature scaling as well as adding pertur-
bations, which is known as out-of-distribution detector for Neural networks (ODIN) [LLS18]. In more
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Detecting and Learning the Unknown in Semantic Segmentation

detail, let t ∈ R>0 be a hyperparameter for temperature scaling and let ε ∈ R≥0 be a hyperparameter
for the perturbation magnitude. Then, the input x is modified as

x̃ = (x̃i)i∈I with x̃i = xi − ε sign

(
− ∂

∂xi

logmax
s∈S

softmax
(yi

t

))
∀ i ∈ I , (18)

yielding prediction ỹ = F (x̃) for which thresholding is applied at the MSP, i.e., the anomaly score
map is given by

ai = 1−max
s∈S

softmax(ỹi) ∀ i ∈ I . (19)

Mahalanobis distance: This anomaly detection approach estimates how well latent features fit to
those observed in the training data. Let (L − 1) denote the penultimate layer of a network F with L

layers. In [Lee+18a] the authors have shown that training a softmax classifier fits a class-conditional
Gaussian distribution for the output features fL−1. Hence, under that assumption

P
(
y
(L−1)
i

∣∣∣ yi,s = 1
)
= N

(
y
(L−1)
i

∣∣∣ µs,Σs

)
∀ i ∈ I , (20)

wherey(L−1) = fL−1(x) ∈ RH×W×CL−1 denotes the feature map of the penultimate layer given inputx,
and y the corresponding one-hot encoded final target. The minimal Mahalanobis distance dΣs(x,µs)

is then an obvious choice for an anomaly score map

ai = min
s∈S

dΣs(x,µs) = min
s∈S

(y
(L−1)
i − µs)

TΣ−1
s (y

(L−1)
i − µs) ∀ i ∈ I , (21)

cf. Equation (2). Note that the class means µs ∈ RCL−1 and class covariances Σs ∈ RCL−1×CL−1 are
generally unknown, but can be estimated by means of the training dataset.

Monte-Carlo dropout: In semantic segmentation, Monte Carlo dropout represents the most promi-
nent technique to approximate Bayesian neural networks. According to [MG19], (epistemic) uncer-
tainty is measured as the mutual information which might serve as anomaly score map, i.e.,

ai = −
∑
s∈S

(
1

R

∑
r∈R

p
(r)
i,s

)
log

(
1

R

∑
r∈R

p
(r)
i,s

)
− 1

R

∑
s∈S

∑
r∈R

p
(r)
i,s log p

(r)
i,s ∀ i ∈ I, (22)

with p
(r)
i = (p

(r)
i,s )s∈S = softmax(y

(r)
i ) in the sampling round r ∈ R = {1, . . . R}. Typically,

8 ≤ R ≤ 12.

Void classifier: Neural networks can be trained to output confidences for the presence of anomalies
[DT18]. One approach in this context is adding an extra class to the set S of previously trained classes
of a semantic segmentation network, which then also requires annotated anomaly data to learn from.
To this end, the void class in Cityscapes is a popular choice as proxy for all possible anomaly data
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Detecting and Learning the Unknown in Semantic Segmentation

[Blu+19], in particular if the segmentation model was originally trained on Cityscapes. Thus, the
softmax output of the additional class s = S + 1 represents the anomaly score map, i.e.,

ai = softmaxs=S+1(y
′
i) ∀ i ∈ I , (23)

where y′ = (y′
i)i∈I = (y′i,s)i∈I,s∈{1,...,S+1} = F′(x),F′ : IH×W×3 → RH×W×(S+1).

Learned embedding density: Let fℓ(x) ∈ RHℓ×Wℓ×Cℓ denote the feature map, or equivalently fea-
ture embedding, at layer ℓ ∈ L = {1, . . . , L} of a semantic segmentation network. By employing
normalizing flows, the true distribution of features p(fℓ(x)) ∈ IHℓ×Wℓ , where x ∈ X train is drawn
from the training dataset, can be trained via maximum likelihood, i.e., normalizing flows learn to
produce the approximation p̂(fℓ(x)) ≈ p(fℓ(x)) [Blu+19]. At test time, the negative log-likelihood
measures how well features of a test sample fit to the feature distribution observed in the training data,
yielding the anomaly score map

a = uplin (−log p̂(fℓ(x))) (log applies log element-wise) (24)

with uplin : RHℓ×Wℓ → RH×W denoting (bi-)linear upsampling.

Image resynthesis: After obtaining the predicted segmentation mask m ∈ {1, . . . , S}H×W , m =

(mi)i∈I , this output can be further processed by a generative model G : {1, . . . , S}H×W → IH×W×3

aiming to reconstruct the original input image, i.e., x′ = G(m) ≈ x. This process is also called image
resynthesis, and the intuition is that reconstruction quality for anomalous objects is worse than for
those on which the generative model is trained on. To determine pixel-wise anomalies, a discrepancy
network [Lis+19] D : {1, . . . , S}H×W × IH×W×3 × IH×W×3 → RH×W can then be employed, which
classifies whether one pixel is anomalous or not, based on information provided by m,x′, and x. Here,
D is trained on intentionally triggered classification mistakes that are produced by flipping classes on
predicted segmentation masks. The anomaly score map is given by the output of the discrepancy
network, i.e.,

a = D(m,x′,x) = D(m,G(m),x) . (25)

SynBoost: The image resynthesis approach is limited by the employed discrepancy module D. In
[Bia+21], the authors proposed to extend the discrepancy network by incorporating further inputs
based on uncertainty, such as the pixel-wise softmax entropy

Hi(x) = −
∑
s∈S

softmaxs(yi) log(softmaxs(yi)) ∀ i ∈ I, (26)

and the pixel-wise softmax probability margin

Mi(x) = 1−max
s∈S

(softmax(yi)) + max
s∈S\{mi}

(softmax(yi)) ∀ i ∈ I . (27)
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Detecting and Learning the Unknown in Semantic Segmentation

Furthermore, D is trained on anomaly data provided by the Cityscapes void class. Thus, the anomaly
score map is given by

a = D(m,x′,x,H(x),M(x)) = D(m,G(m),x,H(x),M(x)) . (28)

with H(x) = (Hi(x))i∈I and M(x) = (Mi(x))i∈I .

Entropy maximization: A desirable property of semantic segmentation networks is that they attach
high prediction uncertainty to novel objects. To this end, the softmax entropy, see Equation (26), is one
intuitive uncertainty measure. The segmentation network can be trained for high entropy on anomalous
inputs via the multi-criteria training objective [CRG21]

J total = (1− λ)E(y,x)∼D
[
JCE(F(x),y)

]
+ λEx∼Danom

[
Janom(F(x))

]
, (29)

where D denotes non-anomaly training data (labels available) and Danom denotes anomaly training
data (no labels available). In this approach, the COCO dataset [Lin+14] represents a set of so-called
known unknowns, which is used as proxy for Danom with the aim to represent all possible anomaly
data. Moreover, λ ∈ I is a hyperparameter controlling the impact of each single loss function on
the overall loss J total. For non-anomaly data, the loss function is chosen to be the commonly-used
cross-entropy JCE, while for anomaly data, i.e., for known unknowns, we have

Janom(F(x)) = − 1

H ·W
∑
i∈I

1

S

∑
s∈S

log softmaxs(yi) , x ∼ Danom . (30)

Therefore, minimizing Janom is equivalent to maximizing the softmax entropy since both reach their
optimum when the softmax probabilities are uniformly distributed, i.e., softmaxs(yi) = 1

S
∀ s ∈

S, i ∈ I. After training, the anomaly score map is then given by the (normalized) softmax entropy

ai =
1

logS
Hi(x) = − 1

logS

∑
s∈S

softmaxs(yi) log(softmaxs(yi)) ∀ i ∈ I . (31)

From an information-based point of view, the entropy contains significant contribution to the expected
information. This particularly applies for instance predictions in semantic segmentation, which moti-
vates the entropy maximization approach for the detection of unknown objects, cf. Section 2.

4.2 Evaluation and Comparison of Anomaly Segmentation Methods

Discriminating between anomaly and non-anomaly is essentially a binary classification problem. In
order to evaluate the pixel-wise anomaly detection capability, we use the receiver operating charac-
teristic (ROC) curve as well as the precision recall (PR) curve. While for the ROC curve the true
positive rate is plotted against the false positive rate at varying thresholds, in the PR curve precision is
plotted against recall at varying thresholds. Note that we consider anomalies as the positive class, i.e.,

14
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Input & annotation MSP ODIN Mahalanobis MC dropout

Void classifier Embedding density Image resynthesis SynBoost Entropy max.

Fig. 1. Qualitative comparison of anomaly score maps for one example image of RoadAnomaly21.
Here, red indicates high anomaly scores while blue indicates low ones. The ground truth
anomaly instance is highlighted by green contours. Note that the region of interest is restricted
to the road, highlighted by red contours in the annotation.

correctly identified anomaly pixels are considered as true positive. In both curves, the degree of sep-
arability is then measured by the area under the curve (AUC), where better separability corresponds
to a higher AUC.

The main difference between these two performance metrics is how they cope with class imbalance.
While the ROC curve incorporates the number of true negatives (for the computation of the false
positive rate), in PR curves true negatives are ignored and, consequently, more emphasis is put on
finding the positive class. With the anomaly score maps as defined in Section 4.1, in our case, finding
the positive class corresponds to identifying anomalies.

As evaluation datasets, we use LostAndFoundNoKnown [Blu+19] and RoadObstacle21 [Cha+21],
which are both part of the public SegmentMeIfYouCan1 anomaly segmentation benchmark. LostAnd-
FoundNoKnown consists of 1043 road scene images where obstacles are placed on the road. This
dataset is a subset of the prominent LostAndFound dataset [Pin+16] but considers only obstacles from
object classes which are disjoint to those in the Cityscapes labels [Cor+16]. More precisely, images
with humans and bicycles are removed such that the remaining obstacles in the dataset also represent
anomalies to models trained on Cityscapes. Similar scenes can be found in RoadObstacle21. That
dataset was published alongside the SegmentMeIfYouCan benchmark and contains 327 road obstacle
scene images with diverse road surfaces as well as diverse types of anomalous objects. Both datasets
restrict the region of interest to the road where anomalies appear. This task is extremely safety-critical
as it is mandatory in automated driving to make sure that the drivable area is free of any hazard. All
anomaly segmentation methods introduced in the preceding Section 4.1 are suited to be evaluated on
these datasets. We provide a visual comparison of anomaly scores produced by the tested methods in
Figure 1. We report numerical results in Table 1 and in the corresponding Figure 2.

1www.segmentmeifyoucan.com
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LostAndFoundNoKnown RoadObstacle21
Method AuPRC ↑ AuROC ↑ FPR95TPR ↓ AuPRC ↑ AuROC ↑ FPR95TPR ↓
Maximum Softmax 30.1 93.0 33.2 10.0 95.5 17.9
ODIN 52.9 95.1 30.0 11.9 96.0 16.4
Mahalanobis 55.0 97.5 12.9 19.5 95.1 21.7
Monte Carlo Dropout 36.8 92.2 35.5 4.9 83.5 50.3
Void classifier 4.8 79.5 47.0 10.4 89.7 41.5
Embedding density 61.7 98.0 10.4 0.8 81.0 46.4
Image resynthesis 42.7 96.4 17.4 37.5 98.6 4.7
SynBoost 81.7 98.3 4.6 71.3 99.4 3.2
Entropy maximization 77.9 98.0 9.7 76.0 99.7 1.3

Table 1. Pixel-wise anomaly detection performance on the datasets LostAndFoundNoKnown and
RoadObstacle21, respectively. The main evaluation metric represents the area under
precision-recall curve (AuPRC). Moreover, the area under receiver operating characteris-
tic (AuROC) and the false positive rate at a true positive rate of 95% (FPR95TPR) are reported
for further insights.

In general, we observe that anomaly detection methods originally designed for image classification,
including MSP, ODIN and Mahalanobis, do not generalize well to anomaly segmentation. As the
Mahalanobis distance is based on statistics of the Cityscapes dataset, the anomaly detection is likely to
suffer from performance loss under domain shift. The same holds for Monte Carlo dropout and learned
embedding density, particularly resulting in poor performance in RoadObstacle21, where various road
surfaces are available. Therefore, those methods potentially act as domain shift classifier rather than
as detector of unknown objects.

The detection methods based on autoencoders, namely image resynthesis and SynBoost, show to be
better suited for the task of anomaly segmentation, clearly being superior to all the approaches that
already have been discussed. Autoencoders are limited by their discrepancy module, and we observe
that anomaly detection performance significantly benefits from incorporating uncertainty measures, as
done by SynBoost. Only entropy maximization reaches similar anomaly segmentation performance,
even outperforming SynBoost in RoadObstacle21. This again can be explained by the diversity of
road surfaces, which detrimentally affects the discrepancy module.

As a final remark, we draw attention to the use of anomaly data. The void classifier follows the same
intuition as entropy maximization by including known unknowns, but cannot reach nearly as good
anomaly segmentation performance. We conclude that the COCO dataset is better suited as proxy
for anomalous objects than the Cityscapes unlabeled objects. Moreover, the results of that method
empirically demonstrate the impact of the entropy in anomaly segmentation, which is in accordance
to the statement of the entropy’s importance from the information perceptive described in Section 2.
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Monte Carlo Dropout Void Classifier Learned Embedding Density

Image Resynthesis SynBoost Entropy Maximization

0 0.2 0.4 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

False positive rate

T
ru
e
p
os
it
iv
e
ra
te

LostAndFoundNoKnowns

0 0.2 0.4 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

Recall

P
re
ci
si
o
n

LostAndFoundNoKnowns

0 0.2 0.4 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

False positive rate

T
ru
e
p
os
it
iv
e
ra
te

RoadObstacle21

0 0.2 0.4 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

Recall

P
re
ci
si
on

RoadObstacle21

Fig. 2. Receiver operating characteristic (left column) and precision recall (right column) curves for
LostAndFoundNoKnowns (top row) and RoadObstacle21 (bottom row), respectively. Dashed
red lines indicate the performance of random guessing, i.e., the ”no-skill” baseline. The degree
of separability between anomaly and non-anomaly is measured by the area under the curve.
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Anomaly score / entropy Entropy maximization Entropy maximization
threshold + thresholding + thresholding + meta classifier

ai ≥ τ, i ∈ I FP ↓ FN ↓ F1 ↑ δ in % ↓ FP ↓ FN ↓ F1 ↑ δ in % ↓
τ = 0.30 8,068 191 0.26 0.30 290 308 0.82 0.06
τ = 0.40 4,035 289 0.39 0.11 251 359 0.81 0.03
τ = 0.50 1,215 415 0.60 0.04 145 447 0.80 0.02
τ = 0.60 327 613 0.69 0.02 49 619 0.76 0.02
τ = 0.70 135 879 0.61 0.01 21 881 0.63 0.01

Table 2. Detection errors at object level for LostAndFound anomalies at different anomaly score / en-
tropy thresholds τ (to generate anomaly segmentation masks). The quantities false-positives
(FP) and false-negatives (FN) are reported at segment level, with anomalies as positive class.
The F1 summarizes these quantities into an overall measure. By δ we denote the performance
loss on the original task, which is the semantic segmentation of Cityscapes. In this context,
we consider a performance loss of 1% as acceptable, particularly in regard of a significantly
improved anomaly detection performance.

4.3 Combining Entropy Maximization and Meta Classification

Meta classification is the task of discriminating between a true positive prediction and a false positive
prediction. For semantic segmentation, this idea was originally proposed in [Rot+20]. By means of
hand-crafted metrics, which are based on dispersion measures, geometry features, or location informa-
tion, all derived from softmax probabilities, meta classifiers have shown to reliably identify incorrect
predictions at segment level. More precisely, connected components of pixels sharing the same class
label are considered as segments in this context, and a false positive segment then corresponds to a
segment-wise intersection-over-union (IoU) of zero.

The meta classification approach can straightforwardly be adapted to post-process anomaly segmen-
tation masks. This seems particularly reasonable in combination with entropy maximization. Since
entropy maximization generally increases the sensitivity towards predicting anomalies, it is possible
that the entropy is also increased at pixels belonging to non-anomalous objects. In the latter case, this
would yield false positive anomaly instance predictions, which, however, can be identified and dis-
carded afterwards by meta classification. The concept of trading false-positive detection for anomaly
detection performance is motivated by [Cha+20]. Moreover, meta classifiers are expected to consid-
erably benefit from entropy maximization, since in the original work [Rot+20] the entropy as metric
has already been observed to be well correlated to the segment-wise IoU.

In our experiments on LostAndFound [Pin+16], we employ a logistic regression as meta classifier
that is applied as a post-processing step on top of softmax probabilities. We observe that the meta
classifier is capable of reliably removing false-positive anomaly instance predictions, which in turn
significantly improves detection performance of anomalous objects. The meta classification perfor-
mance is reported in Table 2, a visual example is given in Figure 3. We note that meta classification
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Without meta classifier Prediction quality rating With meta classifier

Fig. 3. Meta classification as quality rating of anomaly instance predictions. Before applying the meta
classifier (left), the anomaly segmentation mask contains anomaly instance predictions (orange
segments), with some false-positives on the road. Based on softmax probabilities, the meta
classifier performs a prediction quality rating (middle, red corresponds to poor quality), which
is then used to remove false positive anomaly instance predictions (right). Note that the region
of interest is restricted to the road, where ground truth anomalous objects (or obstacles) are
indicated by green contours.

is applied to segmentation masks as input. Therefore, the output of the combination of entropy max-
imization and meta classification does not yield pixel-wise anomaly scores to compare against the
methods presented in Section 4.1.

The idea of meta classification can even be used to directly identify potential anomalous objects in
the semantic segmentation mask, see [ORF20], which will be subject to discussion in the following
section about unsupervised learning of unknown objects.

5 Discovering and Learning Novel Classes

If certain types of anomalies appear frequently, it might be reasonable to include them as additional
learnable classes of the segmentation model [ORF20]. In this section, we examine an unsupervised
learning method in order to further process anomaly predictions with the goal to produce labels cor-
responding to novel classes. Afterwards, we will perform an incremental learning approach to train
a model on novel classes by means of the retrieved unsupervised labels. This overall procedure has
originally been proposed in [URG22].

5.1 Unsupervised Identification and Segmentation of a Novel Class

Consider the dataset Dtest ⊆ X of unlabeled images x = (xi)i∈I ∈ IH×W×3, along with a seman-
tic segmentation network F : IH×W×3 → RH×W×S trained on the set of classes S = {1, . . . , S}.
Moreover, let a = (ai)i∈I ∈ RH×W denote a score map, as introduced in Section 4, which assigns
the degree of anomaly to each pixel i ∈ I in image x. In this section, we employ the unsupervised
anomaly segmentation technique described as a three-step procedure in what follows.
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1. Image embedding: Image retrieval methods are commonly applied to construct a database of
images that are visually related to a given image. On that account, such methods must quantify visual
similarities, i.e., measuring the discrepancy or ”distance” between images. A simple idea is aver-
aging over the pixel-wise differences. However, this approach is extremely sensitive towards data
transformation such as rotation, variation in light, or different resolutions. More advanced approaches
make use of visual descriptors that extract the elementary characteristics of the visual contents, e.g.,
color, shape, or texture. These methods are invariant to data transformation, i.e., they perform well
in identifying images representing the same item. If we want to detect different instances of the same
category, deep learning methods represent the state-of-the-art. In this regard, convolutional neural
networks (CNNs) achieve very high accuracy in image classification tasks. These networks extract
features of the images, that are stable regarding transformations as well as the represented object it-
self, i.e., objects of the same category result in similar feature vectors. We now adapt this idea to
identify anomalies that belong to the same class.

Let Ka|x denote the set of connected components within (a
(τ)
i )i∈I , a

(τ)
i := 1{ai≥τ} ∀ i ∈ I for a

given threshold τ ∈ R, after processing image x. Furthermore, let K :=
⋃

x∈X Ka|x denote the set
of all predicted anomaly components in Dtest. For each component k ∈ Ka|x, we tailor the input
x to the image crop x(k) = (xi)i∈I′ , I ′ ⊆ I by means of the bounding box around k ∈ Ka|x. By
feeding the crop x(k) to an image classification network G, we map x(k) onto its feature vector g(k) :=

GL−1(x
(k)) ∈ Rn, n ∈ N for all k ∈ K. Here, GL−1 denotes the output of the penultimate layer of G.

2. Dimensionality reduction: Feature vectors extracted by CNNs are usually very high-dimensional.
This evokes several problems regarding the clustering of such data. The first issue is known as curse
of dimensionality, i.e., the amount of required data explodes with increasing dimensionality. Further-
more, distance metrics become less precise. Dimensionality reduction approaches project the feature
vectors onto a low-dimensional representation, either by feature elimination, selection, or extraction.
The latter creates new independent features as a combination of the original vectors and can be further
distinguished between linear and non-linear techniques. A linear feature extraction approach, named
principal component analysis (PCA) [Pea01], aims at decorrelating the components of the vectors by a
change of basis, such that they are mostly aligned along the first axes. Thereby, little information is lost
if we drop the last components. A more recent non-linear method is t-distributed stochastic neighbor
embedding (t-SNE) [MH08], which uses conditional probabilities representing pairwise similarities.
Let us consider two feature vectors g(k), g(k′) with k, k′ ∈ K and let pk|k′ ∈ I denote their similarity
under a Gaussian distribution. Employing a Student t-distribution with one degree of freedom in the
low-dimensional space then provides a second probability qk|k′ ∈ I. Hence, t-SNE aims at minimizing
the following sum (or Kullback-Leibler divergence) [MH08]∑

k∈K

∑
k′∈K

pk|k′ log

(
pk|k′

qk|k′

)
(32)

using gradient descent. We first perform dimensionality reduction via PCA, which is then followed by
t-SNE. In our experiments, we observe that this combination of methods improves the effectiveness of
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Detecting and Learning the Unknown in Semantic Segmentation

mapping anomaly predictions onto a two-dimensional embedding space. Here, the embedding ideally
creates neighborhoods of visually related anomalies.

3. Novelty segmentation: If anomalies of the same category are detected more frequently, they
are expected to form a bigger cluster in the embedding space. Those clusters can be identified by
employing algorithms such as density-based spatial clustering of applications with noise (DBSCAN)
[Est+96]. This algorithm supports the idea of non-supervision since it does not require any information
of the potential anomaly data, such as e.g., the number of clusters. To this end, DBSCAN divides data
points into core points, border points, and noise, depending on the size of the neighborhood ε ∈ [0,∞)

and the minimal number of a core point’s neighbors δ ∈ N.

More precisely, let g̃(k) ∈ R2 denote the two-dimensional representation of x(k). Then, g̃(k) is con-
sidered as a core point, if the corresponding point-wise density ρ(g̃(k)) := |{g̃(k′) : ∥g̃(k) − g̃(k′)∥ <

ε, k′ ∈ K}| ≥ δ, i.e., the ε-neighborhood of g̃(k) contains at least δ points including itself. We
denote the neighborhood of a core point by g̃(̊k), which corresponds to a component k̊ ∈ K, as
Bk̊ := {g̃(k′) : ∥g̃(̊k) − g̃(k′)∥ < ε, k′ ∈ K}. If g̃(k) is not a core point but belongs to a core point’s
neighborhood, we call it a border point. Otherwise, i.e., if g̃(k) is neither a core point nor within a core
point’s neighborhood, we call it noise.

Finally, a cluster Cj ⊂ K, j ∈ J := {1, . . . , J} of components is formed by merging overlapping
neighborhoodsBk̊, yielding J ∈ N clusters in total. In other words, clusters are formed from connected
core points and their neighborhoods’ border points. Given ρ(g̃(k)), we can determine the cluster density
of Cj , e.g.,

as the maximum max
k∈Cj

ρ(g̃(k)) , or as the average
1

|Cj|
∑
k∈Cj

ρ(g̃(k)) .

The cluster C∗ ⊂ K, which is the cluster of highest density given a sufficient cluster size, is then
selected to be further processed. To this end, let us consider the predicted segmentation mask F(x) =

m = (mi)i∈I , where mi = argmaxs∈S yi,s, i ∈ I. The pseudo labels ỹ = (ỹi)i∈I for the originally
unlabeled x are then obtained by setting ỹi = S+1 if pixel location i belongs to a component k ∈ C∗,
and ỹi = mi otherwise.

5.2 Class-Incremental Learning

Let Ỹ denote the set of pseudo labels, then the training data for some novel class S + 1 can be repre-
sented by DS+1 ⊆ Dnovel × Ỹ , where Dnovel denotes the set of previously-unseen images containing
novel classes. By extending the semantic segmentation network F to F+ : IH×W×3 → RH×W×(S+1)

and retraining F+ on DS+1, we perform incremental learning to add a novel and previously unknown
class to the semantic space of F.
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Segmentation prediction of the initial model Prediction quality rating

Fig. 4. Predicted semantic segmentation mask of the initial model’s prediction (left) and correspond-
ing segment-wise quality estimation (right) for one example from the Cityscapes test split.
Green color indicates a high segment-wise IoU, red color indicates a low one.

Regularization: Knowledge distillation is a subcategory of regularization strategies aiming to mit-
igate a catastrophic forgetting, i.e., these strategies try to mitigate performance loss on the previously-
learned classes S = {1, . . . , S} while learning the additional class S + 1. In [MZ19], the authors
adapted incremental learning techniques to the task of semantic segmentation. Among others, they
introduced the overall objective

J total(x, ỹ) = (1− λ) JCE(F+(x), ỹ) + λ JD(F+(x),F(x)), λ ∈ I , (33)

where (x, ỹ) ∈ DS+1. Here, JCE denotes the common cross-entropy loss over the enlarged set of class
indices S+ := {1, . . . , S + 1} and JD the distillation loss. The latter loss is defined as

JD(F+(x),F(x)) := − 1

H ·W
∑
i∈I

∑
s∈S

softmaxs(yi) log(softmaxs(y
+
i )) (34)

with y = F(x) and y+ = F+(x). Knowledge distillation can be further improved by freezing the
weights of the encoder part of F+ during the training procedure [MZ19].

Rehearsal: If the original training data Dtrain ⊆ X × Y of network F is available, in incremental
learning such data is usually re-integrated into the training set of the extended network F+, i.e., the
training samples are drawn from Dtrain∪DS+1. To save computational costs of training and to balance
the amount of old and new training data, established methods, e.g., [Rob95], only use a subset of
Dtrain. This subset is typically obtained by randomly sampling a set from Dtrain that matches the size
of |DS+1|.

In combination with knowledge distillation, rehearsal strategies can be employed to mitigate a loss of
performance on classes that are related to the novel class. This issue may arise e.g., through visual
similarity such as between classes like bus and train, or due to class affiliation as in the case of bicycle
and rider. Relevant classes can be identified by their frequency of being predicted on the relabeled
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Fig. 5. Relative frequency of old classes being predicted by the initial model on pixels that are assigned
to the novel class. Thus, the subset of Dtrain

CS included in the retraining should mainly involve
bicycles, motorcycles, and cars.

pixels, i.e.,
νtot
s :=

∑
(x,ỹ)∈DS+1

∣∣{i ∈ I |mi = s ∧ ỹi = S + 1}
∣∣ ∀ s ∈ S , (35)

and hence
νrel
s :=

νtot
s∑

s′∈S ν
tot
s′

∀ s ∈ S . (36)

The subset of Dtrain is then randomly sampled under the constraint that there are at least νrel
s |DS+1|

images containing the class s for all s ∈ S.

5.3 Experiments and Evaluation

In the following experiments, we will employ a DeepLabV3+ [Che+18] model with an underlying
WiderResNet38 [Zhu+19] backbone for semantic segmentation. This network is initially trained on
a set of 17 classes, which we will extend by a novel class. The already trained classes are the Cityscapes
training classes except pedestrian and rider, i.e., we exclude any human in the training process of our
initial semantic segmentation network F.

The initial model was trained on the Cityscapes [Cor+16] training data. For the incremental learn-
ing process, we use a portion of those data and combine them with the generated disjoint training set
DS+1 containing previously unseen images and pseudo labels on novel objects. Here, the images from
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Prediction of initial model Novel class in validation image Prediction of extended model

Fig. 6. Comparison of the predicted semantic segmentation masks before (left) and after (right) adapt-
ing the model to the novel human class (orange) for one example of the Cityscapes validation
split (middle). Here, the novel components are highlighted in orange, green contours indicate
the ground truth annotation of the novelty.
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re IoU 97.34 80.63 88.91 47.24 51.03 52.90 55.44 66.66 89.95 56.29 93.76 00.00 90.61 69.66 76.90 70.35 24.45 54.57 68.63 64.82
Precision 98.35 89.39 92.80 74.57 66.76 72.68 75.04 86.22 93.60 77.66 96.38 00.00 92.97 80.23 88.59 83.33 28.57 59.30 79.79 75.36
Recall 98.96 89.16 95.50 56.32 68.41 66.02 67.98 74.61 95.85 67.17 97.18 00.00 97.27 84.09 85.35 81.87 62.92 87.24 80.94 76.44

af
te

r IoU 97.46 80.78 89.30 47.48 49.31 53.25 55.28 65.72 90.17 54.53 93.47 41.42 91.21 69.30 72.52 62.06 30.45 57.72 68.24 66.75
Precision 98.68 89.31 93.11 78.33 69.48 73.74 76.02 88.99 94.21 75.66 95.69 59.73 95.26 84.88 87.26 91.68 64.38 76.01 84.28 82.91
Recall 98.75 89.43 95.62 54.67 62.95 65.70 66.96 71.54 95.46 66.13 97.57 57.48 95.45 79.06 81.11 65.76 36.61 70.57 76.08 75.05

Table 3. Evaluation of the Cityscapes validation split before and after incremental learning the novelty
human (highlighted in gray) with knowledge distillation and rehearsal. The classes pedes-
trian and rider are aggregated to the novel class human. All other classes are treated as
background, i.e., they are ignored during training, regarding the data from DS+1.

DS+1 are drawn from the Cityscapes test data. For evaluation purposes, we use the Cityscapes vali-
dation data. Hence, during the incremental learning process only known objects are presented to the
model except humans and a few instances, such as the ego-car or mountains in an image background,
belonging to the Cityscapes void category.

We use the idea of meta classification, similarly as introduced in Section 4.3, to rate the prediction
quality of predicted semantic segmentation masks. Here, the meta task is used to estimate the segment-
wise IoU first, see Figure 4, on which we apply thresholding (at τ = 0.5) to determine potential
anomalies, cf. [ORF20]. We employ gradient boosting as meta model, which achieves a coefficient of
determination of R2 = 82.51% in estimating the segment-wise IoU on the Cityscapes validation split.

In accordance to Section 2 and as already observed in Section 4.3, the softmax entropy is again one
of the main metrics included in the meta model to identify anomalous predictions. Thus, the entropy
shows to have great impact on meta classification performance, which, similarly, has also been ob-
served in [Cha+20; CRG21].
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Detecting and Learning the Unknown in Semantic Segmentation

Fig. 7. A comparison of anomaly scores obtained by meta classification (left) and entropy (right) on
an image from RoadObstacle21. The dog on the image is the anomaly of interest (indicated by
green contours), which would have been overlooked by meta classification but entirely detected
by the entropy.

Given anomaly segmentation masks, we perform image embedding using the encoder of the image
classification network DenseNet201 [Hua+17], that is pretrained on ImageNet [Den+09]. Next, we
reduce the dimensionality of the resulting feature vectors to 50 via PCA and further to 2 by applying
t-SNE. In [ORF20], a qualitative and quantitative evaluation of different embedding approaches is
provided. Note that t-SNE is non-deterministic, i.e., we obtain slightly different embedding spaces for
different runs. In our experiments, employing DBSCAN with parameters ε = 2.5 and δ = 15 produces
a human-cluster including 91 components from 76 different images. The most frequently predicted
class of these components are car, motorcycle, and bicycle with νrel

11 = 24.84%, νrel
15 = 26.69% and

νrel
16 = 33.53%, respectively, see Figure 5.

We train the extended model F+ as described in Section 5.2 for 70 epochs, weighting the loss functions
in Equation (33) equally, i.e., λ = 0.5. The extended model is capable of retaining its initial knowledge
by achieving an mIoU score of 68.24% on the old classes when evaluating on the Cityscapes validation
data. This yields a marginal loss of only 0.39% compared to the initial model F. At the same time,
F+ predicts the novel human class with a class IoU of 41.42%, without a single annotated human
instance in the training dataDS+1. A visual example of the applied unsupervised novelty segmentation
approach is provided in Figure 6, more details on the numerical evaluation is given in Table 3.

5.4 Outlook on Improving Unsupervised Learning of Novel Classes

In the preliminary experiments presented in this section, we have demonstrated that a semantic seg-
mentation network can be extended by a novel class in an unsupervised fashion. As a basis to start, the
investigated unsupervised learning approach requires anomaly segmentation masks. Currently, these
are obtained by meta classification [Rot+20], which is, however, not a method specifically tailored for
the task of anomaly segmentation. In other words, the obtained masks are possibly inaccurate. To be
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even more precise on the limitation of plain meta classification, this method is only able to find anoma-
lies when the segmentation model produces a (false positive) object prediction on those anomalies.
By design, meta classifiers cannot find overlooked instances, e.g., obstacles on the road that also have
been classified as road. As an illustration of this issue, we refer to Figure 7.

Having now several anomaly segmentation methods at hand, which we, e.g., introduced in Section 4.1,
it seems obvious to replace the underlying anomaly segmentation method by a more sophisticated one
as future work. In this light, given the decent performance of the examined unsupervised learning
method relying only on meta classification, combining this method with entropy maximization rep-
resents a particularly promising approach to further improve the presented novelty training, cf. again
Section 4.3.

Conclusions

Semantic segmentation as a supervised learning task is typically performed by models that operate on
a given set containing a fixed number of classes. This is in clear contrast to the open world scenarios to
which practitioners contemplate the usage of segmentation models. There are important capabilities
that standard segmentation models do not exhibit. Among them is the capability to know when they
face an object of a class they have not learned – i.e., to perform anomaly segmentation – as well
as the capability to realize that similar objects, presumably of the same (yet unknown) class, appear
frequently and should be learned either as a new class or be attributed to an existing one. In this work,
we have seen first promising results for two tasks, for anomaly segmentation as well as for the detection
and unsupervised learning of new classes.

For anomaly segmentation, we considered a number of generic baseline methods stemming from im-
age classification as well as some recent anomaly segmentation methods. Since the latter clearly
outperforms the former, this stresses the need for the development of methods specifically designed
for anomaly segmentation. With the entropy maximization method, we have demonstrated empiri-
cally as well as theoretically that good proxies in combination with training on anomaly examples
for high entropy could be key to anomaly segmentation capabilities. Particularly on the challenging
RoadObstacle21 dataset with diverse street scenarios, entropy maximization yields great performance,
outperforming many other established methods. While there exists a moderate number of datasets for
anomaly segmentation, there is clearly still the need of additional datasets. The number of possible
unknown object classes not covered by these datasets is evidently enormous. Furthermore, also the
vast variety of possible environmental conditions and further domain shifts that may occur, possibly
also in combination with unknown objects, continuously demand their exploration.

For detection and unsupervised learning of new classes, we have demonstrated in preliminary experi-
ments that a combination of well-established dimensionality reduction and clustering methods along
with the advanced uncertainty quantification method for semantic segmentation called MetaSeg is well
able to detect unknown classes of which objects appear relatively frequently in a given test set. Indeed,
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MetaSeg can also be used to define segmentation proposals for pseudo ground-truths of new classes,
which can also be learned incrementally by the segmentation model. For the considered scenario of
subsequently learning humans within the Cityscapes dataset, this approach yields an reasonable seg-
mentation performance on the novel class without significantly losing performance on the original
classes. This examined methodology may help to incorporate new classes into existing models with
low human labeling effort. The necessity for this will occur repeatedly in future. An example are the
electric scooters that have recently arisen in several metropolitan areas across the globe. This is an
example for a global phenomenon. However, also local phenomena, such as boat trailers at the coast,
could be of interest. Such classes could be initially incorporated into an existing model using the
presented methodology in this work. Afterwards, the initial performance could be further improved
with active learning approaches, such as presented in [Col+21], still requiring only a small amount of
human labeling effort. It is also an open question, to which extent the proposed method can be used
iteratively to improve the performance on a new class. Also for this track of research, the lack of data
for pursuing that task is a limiting factor as of now.
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