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ERROR ESTIMATES FOR A SPLITTING INTEGRATOR FOR1

SEMILINEAR BOUNDARY COUPLED SYSTEMS∗2

PETRA CSOMÓS† , BÁLINT FARKAS‡ , AND BALÁZS KOVÁCS§3

Abstract. We derive a numerical method, based on operator splitting, to abstract parabolic4
semilinear boundary coupled systems. The method decouples the linear components which describe5
the coupling and the dynamics in the bulk and on the surface, and treats the nonlinear terms by6
approximating the integral in the variation of constants formula. The convergence proof is based on7
estimates for a recursive formulation of the error, using the parabolic smoothing property of analytic8
semigroups and a careful comparison of the exact and approximate �ows. Numerical experiments,9
including problems with dynamic boundary conditions, reporting on convergence rates are presented.10

Key words. Lie splitting, error estimates, boundary coupling, semilinear problems11

AMS subject classi�cations. 47D06, 47N40, 34G20, 65J08, 65M12, 65M1512

1. Introduction. In this paper we derive a Lie-type splitting integrator for ab-13

stract semilinear boundary coupled systems, and prove �rst order error estimates for14

the time integrator by extending the results of [8] from the linear case. The main idea15

of our algorithm is to decouple the two nonlinear problems appearing in the original16

coupled system, while maintaining stability of the boundary coupling. More precisely,17

we combine the splitting scheme presented in [8] with the appropriate handling of the18

nonlinear terms. We use techniques from operator semigroup theory to prove the19

�rst-order convergence in the following abstract setting.20

We consider the abstract semilinear boundary coupled systems of the form:21

(1.1)





u̇(t) = Amu(t) + F1(u(t), v(t)) for 0 < t ≤ tmax, u(0) = u0 ∈ E,
v̇(t) = Bv(t) + F2(u(t), v(t)) for 0 < t ≤ tmax, v(0) = v0 ∈ F,

Lu(t) = v(t) for 0 ≤ t ≤ tmax,

22

where Am, B are linear operators on the Banach spaces E and F , respectively, F1,23

F2 are suitable functions, and the two unknown functions u and v are related via the24

linear coupling operator L acting between (subspaces of) E and F . A typical setting25

would be that L : E → F is a trace-type operator between the space E (for the bulk26

dynamics) and the boundary space F (for the surface dynamics). The precise setting27

and assumptions for (1.1) will be described below.28

This abstract framework simultaneously includes problems which have been ana-29

lysed on their own as well. For instance, abstract boundary feedback systems, see [9],30

[10], [6] and the references therein, �t into the above abstract framework where the31

equations in E and F representing the bulk and boundary equations. Such examples32

arise, for instance, for the boundary control of partial di�erential equation systems,33
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2 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

see [27, 28], and [26], [13, Section 3], and [1, Section 3]. These problems usually in-34

volve a bounded feedback operator acting on u, which can be easily incorporated into35

the nonlinear term F2 above. We further note, that semilinear parabolic equations36

with dynamic boundary conditions, see [46, 12, 16, 7, 44, 29, 39, 15, 25], etc., and37

di�usion processes on networks with boundary conditions satisfying ordinary di�er-38

ential equations in the vertices, see [33, 34, 40, 36, 35], etc., both formally �t into this39

setting. In both cases, however, the feedback operator is unbounded.40

In this paper we propose, as a �rst step into this direction, a Lie splitting41

scheme for abstract semilinear boundary coupled systems, where the semilinear term42

F = (F1,F2) is locally Lipschitz (and might include feedback). An important fea-43

ture of our splitting method is that it separates the �ows on E and F , i.e. separates44

the bulk and surface dynamics. This could prove to be a considerable computational45

advantage if the bulk and surface dynamics are fundamentally di�erent (e.g. fast and46

slow reactions, linear�nonlinear coupling, etc.). In general, splitting methods simplify47

(or even make possible) the numerical treatment of complex systems. If the operator48

on the right-hand side of the initial value problem can be written as a sum of at49

least two suboperators, the numerical solution is obtained from a sequence of sim-50

pler subproblems corresponding to the suboperators. We will use the Lie splitting,51

introduced in [4], which, from the functional analytic viewpoint, corresponds to the52

Lie�Trotter product formula, see [43], [14, Corollary III.5.8]. Splitting methods have53

been widely used in practice and analysed in the literature, see for instance the survey54

article [31], and see also, e.g., [41, 24, 42, 22], etc. In particular, for semilinear partial55

di�erential equations (PDEs) with dynamic boundary conditions, two bulk�surface56

splitting methods were proposed in [25]. The numerical experiments of Section 6.357

therein illustrate that both of the proposed splitting schemes su�er from order reduc-58

tion. Recently, in [3], a �rst-order convergent bulk�surface Lie splitting scheme was59

proposed and analysed.60

In the present work we start by the variation of constants formula and apply61

the Lie splitting to approximate the appearing linear operator semigroups. More62

precisely, we will identify three linear suboperators: two describing the dynamics in63

the bulk and on the surface, respectively, and one corresponding to the coupling.64

Then, either the solutions to the linear subproblems are known explicitly, or can be65

e�ciently obtained numerically. We will show that the proposed method is �rst-order66

convergent for boundary coupled semilinear problems. The proposed method does67

not su�er from order reduction, and is therefore suitable for PDEs with dynamic68

boundary conditions, cf. [25], see the experiment in Section 5.2. However, due to the69

unbounded boundary feedback operator, our present results do not apply to this case70

directly. Nevertheless, we strongly believe that the developed techniques presented in71

this work provide further insight into the behaviour of operator splitting schemes of72

such problems. This is strengthened by our numerical experiments.73

The convergence result is based on studying stability and consistency, using the74

procedure called Lady Windermere's fan from [21, Section II.3], however, these two75

issues cannot be separated as in most convergence proofs, since this would lead to76

sub-optimal error estimates. Instead, the error is rewritten using recursion formula77

which, using the parabolic smoothing property (see, e.g., [14, Theorem 4.6 (c)]), leads78

to an induction process to ensure that the numerical solution stays within a strip79

around the exact solution. A particular di�culty lies in the fact that the numerical80

method for the linear subproblems needs to approximate a convolution term in the81

exact �ow [8], therefore the stability of these approximations cannot be merely estab-82
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 3

lished based on semigroup properties. Estimates from [8] together with new technical83

results yield an abstract �rst-order error estimate for semilinear problems (with a log-84

arithmic factor in the time step), under suitable (local Lipschitz-type) conditions on85

the nonlinearities. By this analysis within the abstract setting we gain a deep oper-86

ator theoretical understanding of these methods, which are applicable for all speci�c87

models (e.g. mentioned above) �tting into the framework of (1.1). Numerical experi-88

ments illustrate the proved error estimates, and an experiment for dynamic boundary89

conditions complement our theoretical results.90

The paper is organised as follows.91

In Section 2 we introduce the used functional analytic framework, and derive the92

proposed numerical method. We also state our main result, namely, the �rst-order93

convergence, the proof of which along with error estimates takes up Sections 3 and 4.94

Section 5 presents numerical experiments illustrating and complementing our the-95

oretical results.96

2. Setting and the numerical method. We consider two Banach spaces E97

and F , sometimes referred to as the bulk and boundary space, respectively, over the98

complex �eld C. The product space E×F is endowed with the sum norm, or any other99

equivalent norm, rendering it a Banach space and the coordinate projections bounded.100

Elements in the product space will be denoted by boldface letters, e.g. u = (u, v) for101

u ∈ E and v ∈ F . We �rst discuss a convenient framework established in [6] to102

treat linear boundary coupled problems. Then we treat the nonlinearities, derive the103

numerical method, and present the main result of the paper.104

General framework. We will now de�ne the abstract setting for linear bound-105

ary coupled systems, established in [6], i.e. for (1.1) with F1 = 0 and F2 = 0. We will106

also list all our assumptions on the linear operators in (1.1).107

The following general conditions�collected using Roman numerals�will be as-108

sumed throughout the paper:109

(i) The operator Am : dom(Am) ⊆ E → E is linear.110

(ii) The linear operator L : dom(Am) → F is surjective and bounded with respect111

to the graph norm of Am on dom(Am).112

(iii) The restriction A0 of Am to ker(L) generates a strongly continuous semigroup113

T0 on E.114

(iv) The operator B generates a strongly continuous semigroup S on F .115

(v) The operator matrix
(
Am
L

)
: dom(Am)→ E × F is closed.116

We recall from [6, Lemma 2.2] that L|ker(Am) is invertible, and its inverse, often117

called the Dirichlet operator, given by118

D0 := L|−1
ker(Am) : F → ker(Am) ⊆ E,(2.1)119

120

is bounded, and that121

dom(Am) = dom(A0)⊕ ker(L).122

Let us brie�y recall the following example from [8] (see Examples 2.7 and 2.8123

therein), which is also one of the main motivating examples of [6]; we refer also to124

[19, 18, 5] for facts concerning Lipschitz domains.125

Example 2.1 (Bounded Lipschitz domains). Let Ω ⊆ Rd be a bounded domain126

with Lipschitz boundary ∂Ω, E = L2(Ω) and F = L2(∂Ω).127

(a) Consider the following operators: Am = ∆Ω with domain dom(Am) := {f : f ∈128

H1/2(Ω) with ∆Ωf ∈ L2(Ω)}, and Lf = f |∂Ω the Dirichlet trace of f ∈ dom(Am)129

This manuscript is for review purposes only.
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4 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

on ∂Ω (see, e.g., [32, pp. 89�106]). Then L is surjective and actually has a130

bounded right-inverse D0, which is the harmonic extension operator, i.e. for any131

v ∈ L2(∂Ω) the function u = D0v solves (uniquely) the Poisson problem ∆Ωu = 0132

with inhomogeneous Dirichlet boundary condition Lu = v. The operator A0 is133

strictly positive and self-adjoint operator generating the Dirichlet-heat semigroup134

T0 on E.135

(b) One can also consider the Laplace�Beltrami operator B := ∆∂Ω on L2(∂Ω), which136

(with an appropriate domain) is also a strictly positive, self-adjoint operator, see137

[19, Theorem 2.5] or [17] for details.138

In summary, we see that the abstract framework of [6], hence of this paper, covers139

interesting cases of boundary coupled problems on bounded Lipschitz domains.140

We now turn our attention towards the semigroup, and its generator, correspond-141

ing to the linear problem. Consider the linear operator142

(2.2) A :=

(
Am 0
0 B

)
with dom(A) :=

{(
x
y

)
∈ dom(Am)× dom(B) : Lx = y

}
.143

For y ∈ dom(B) and t ≥ 0 de�ne the convolution144

(2.3) Q0(t)y := −
∫ t

0

T0(t− s)D0S(s)Byds.145

For all y ∈ dom(B) we also de�ne Q(t)y, and using integration by parts, see [6], we146

immediately write147

(2.4) Q(t)y := −A0

∫ t

0

T0(t− s)D0S(s)yds = Q0(t)y +D0S(t)y − T0(t)D0y.148

We see that Q0(t) : dom(B) → E and Q(t) : dom(B) → E are both linear operators149

on dom(B) and bounded when dom(B) is endowed with the graph norm.150

The next result, recalled from [6], characterizes the generator property ofA, which151

in turn is in relation with the well-posedness of (1.1), see Section 1.1 in [34].152

Theorem 2.2 ([6, Theorem 2.7]). Within this setting, let the operators A, D0153

be as de�ned in (2.2) and (2.1), and suppose that A0 is invertible. The operator A154

is the generator of a C0-semigroup if and only if for each t ≥ 0 the operator Q(t)155

extends as a bounded linear operator to F and satis�es156

(2.5) lim sup
t↓0

‖Q(t)‖ <∞.157

The semigroup T generated by A is then given as158

(2.6) T (t) =

(
T0(t) Q(t)

0 S(t)

)
.159

In other words, if the conclusion of Theorem 2.2 holds, then the linear problem u̇ = Au160

is well-posed and the solution with initial value u0 = (u0, v0) is given by the semigroup161

as T (t)u0.162

We further add to the list of general conditions (i)�(v) by further assuming:163

(vi) The operators A0 and B are invertible.164

(vii) The operators A0 and B generate bounded analytic semigroups.165

This manuscript is for review purposes only.
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 5

Remark 2.3. (a) By Corollary 2.8 in [6] the assumption in (vii) implies that A is166

the generator of an analytic C0-semigroup on E × F .167

(b) The invertibility of A0 or B is merely a technical assumption which slightly sim-168

pli�es the proofs and assumptions, avoiding a shifting argument.169

(c) In principle, one can drop the assumption of B being the generator of an analytic170

semigroup. In this case minor additional assumptions on the nonlinearity F are171

needed, and the error bound for the numerical method will look slightly di�erently.172

We will comment on this in Remark 4.1 below, after the proof of the main theorem.173

(d) The fact that A0 generates a bounded analytic semigroup T0 implies the bound174

supt≥0 ‖tA0T0(t)‖ ≤M , see, e.g., [14, Theorem 4.6 (c)].175

For further details on analytic semigroups we refer to the monographs [38, 30, 14,176

20].177

The abstract semilinear problem. We now turn our attention to semilinear178

boundary coupled problems (1.1). In particular we will give our precise assump-179

tions related to the solutions of the semilinear problem, and to the nonlinearity180

F = (F1,F2) : D → E × F .181

Assumptions 2.4. The function u := (u, v) : [0, tmax]→ E×F , tmax > 0, is a mild182

solution of the problem (1.1), written on E × F as183

(2.7) u̇ = Au+ F(u),184

i.e. it satis�es the variation of constant formula:185

(2.8) u(t) = T (t)u0 +

∫ t

0

T (t− s)F(u(s))ds.186

We further assume that the exact solution u has the following properties:187

(1) The function F : Σ→ E × F is Lipschitz continuous on the strip188

Σ := {v ∈ E × F : ‖u(t)− v‖ ≤ R for some t ∈ tmax} ⊆ D189

around the exact solution with constant `Σ.190

(2) The second component F2 : Σ → dom(B) is Lipschitz continuous on Σ, with191

constant `Σ,B .192

(3) For each t ∈ [0, tmax] v(t) = u(t)|2 ∈ dom(B2), and supt∈[0,tmax] ‖B2v(t)‖ <∞.193

(4) The second component along the solution satis�es F2(u(t)) ∈ dom(B2) for each194

t ∈ [0, tmax], and supt∈[0,tmax] ‖B2F2(u(t))‖ <∞.195

(5) Furthermore, F ◦ u is di�erentiable and (F ◦ u)′ ∈ L1([0, tmax];E × F ).196

The numerical method. We are now in the position to derive the numerical197

method. For a time step τ > 0, for all tn = nτ ∈ [0, tmax], we de�ne the numerical198

approximation un = (un, vn) to u(tn) = (u(tn), v(tn)) via the following steps.199

Step 1. We approximate the integral in (2.8) by an appropriate quadrature rule.200

Step 2. We approximate the semigroup operators T by using an operator splitting201

method. Due to its special form (2.6), this includes the approximation of202

the convolution Q0, de�ned in (2.4), by an operator V . The choice of V is203

determined by the used splitting method, see [8, Section 3] and below.204

In what follows we describe the numerical method by using �rst-order approximations205

in Steps 1�2, and show its �rst-order convergence. We note here that the application206

of a correctly chosen exponential integrator could be inserted as a preliminary step,207

This manuscript is for review purposes only.
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6 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

see [23]. Since it eliminates the integral's dependence on u(s), the quadrature rule208

simpli�es in Step 1. This approach, however, leads to the same numerical method as209

Steps 1�2.210

Before proceeding as proposed, for all τ > 0, we rewrite formula (2.8) at t = tn =211

tn−1 + τ as212

u(tn) = T (τ)u(tn−1) +

∫ τ

0

T (τ − s)F(u(tn−1 + s))ds.(2.9)213
214

Now, according to Step 1, we approximate the integral by the left rectangle rule215

leading to216

u(tn) ≈ T (τ)u(tn−1) + τT (τ)F(u(tn−1)) = T (τ)
(
u(tn−1) + τF(u(tn−1))

)
,217

for any tn = nτ ∈ (0, tmax].218

In Step 2, we apply the Lie splitting, which, according to [8], results in the ap-219

proximation of the convolution operator Q0(t) by an appropriate V (t) (to be speci�ed220

later). Altogether, we approximate the semigroup operators T (τ) by221

(2.10) T (τ) =

(
T0(τ) V (τ) +D0S(τ)− T0(τ)D0

0 S(τ)

)
.222

We remark that T (τ) = R−1
0 T(τ)R0 holds with the notations introduced in [8]:223

T(τ) =

(
T0(τ) V (τ)

0 S(τ)

)
and R0 =

(
I −D0

0 I

)
.224

This leads to the numerical method approximating u at time tn = nτ ∈ [0, tmax]:225

(2.11) un := L(τ)(un−1) := T (τ)
(
un−1 + τF(un−1)

)
,226

with u0 := (u0, v0).227

The actual form of operator V (τ) depends on the underlying splitting method.228

Here, we will use the Lie splitting of the operator A0 := R0AR−1
0 , proposed in [8,229

Section 3]. Namely, we split up the operator A0 =: A1 +A2 +A3 with230

A1 =

(
A0 0
0 0

)
, A2 =

(
0 −D0B
0 0

)
, A3 =

(
0 0
0 B

)
,231

and dom(A1) = dom(A0)× F , dom(A2) = E × dom(B), dom(A3) = E × dom(B). It232

was shown in [8, Prop. 3.2.] that the operator partsA1|E×dom(B), A2 andA3|E×dom(B)233

generate the strongly continuous semigroups234

T1(τ) =

(
T0(τ) 0

0 I

)
, T2(τ) =

(
I −τD0B
0 I

)
, T3(τ) =

(
I 0
0 S(τ)

)
,235

respectively, on E × dom(B). Then the application of the Lie splitting as T (τ) =236

R−1
0 T1(τ)T2(τ)T3(τ)R0 leads to the formula (2.10) with237

(2.12) V (τ) = −τT0(τ)D0BS(τ).238

Thus, the Lie splitting transfers the coupled linear problem into the sequence of239

simpler ones. First we solve the equation v̇ = Bv on dom(B) by using the original240

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 7

initial condition v0, then we propagate the solution by T2(τ), which serves as an initial241

condition to the homogeneous problem u̇ = A0u on E. To get an approximation at242

tn = nτ , the semilinear expressions and the terms coming from the �diagonalisation�243

should be treated. Then the whole process needs to be cyclically performed n times.244

We note that the approximation Q0(τ) ≈ V (τ) = −τT0(τ)D0BS(τ) can also245

be obtained by using an appropriate convolution quadrature, i.e. by approximating246

T0(τ − ξ) from the left (at ξ = 0) and S(ξ) from the right (at ξ = τ).247

Upon plugging in the splitting approximation (2.12) into the convolution Q0(τ),248

and by introducing the intermediate values249

ũn = un−1 + τF1(un−1, vn−1),250

ṽn = vn−1 + τF2(un−1, vn−1),251252

the method (2.11) reads componentwise as253

(2.13)
un = T0(τ)

(
ũn−1 −D0

(
ṽn−1 + τBvn

))
+D0vn,

vn = S(τ)ṽn.
254

This formulation only requires two applications of the Dirichlet operator D0 per time255

step. We point out that the two terms with the Dirichlet operator can be viewed256

as correction terms which correct the boundary values of the bulk-sub�ow along the257

splitting method.258

The main result. We are now in the position to state the main result of this259

paper, which asserts �rst order (up to a logarithmic factor) error estimates for the260

approximations obtained by the splitting integrator (2.11) (with (2.12)) separating261

the bulk and surface dynamics in E and F .262

Theorem 2.5. In the above setting, let u : [0, tmax] → E × F be the solution of263

(1.1) subject to the conditions in Assumptions 2.4 and consider the approximations264

un at time tn determined by the splitting method (2.11) (with (2.12)). Then there265

exists a τ0 > 0 and C > 0 such that for any time step τ ≤ τ0 we have at time266

tn = nτ ∈ [0, tmax] the error estimate267

(2.14) ‖u(tn)− un‖ ≤ C τ | log(τ)|.268

The constant C > 0 is independent of n and τ > 0, but depends on tmax, on constants269

related to the semigroups T0 and S, as well as on the exact solution u.270

The proof of this result will be given in Section 4 below. In the next section we271

state and prove some preparatory and technical results needed for the error estimates.272

Recall that the splitting method (2.11), written componentwise (2.13), decouples273

the bulk and surface �ows, which can be extremely advantageous if the two subsys-274

tems behave in a substantially di�erent manner. We remind that, when applied to275

PDEs with dynamic boundary conditions, naive splitting schemes su�er from order276

reduction, see [25, Section 6], and a correction in [3].277

We make the following remark about the logarithmic factor in the above error278

estimate. Inequality (2.14) implies that for any ε ∈ (0, 1) we have ‖u(tn) − un‖ ≤279

C ′ τ1−ε with another constant C ′. This amounts to saying that the proposed method280

has convergence order arbitrarily close to 1, and in fact this is also what the numerical281

experiments show. Indeed, numerical experiments in Section 5 illustrate the �rst-282

order error estimates of Theorem 2.5, including an example with dynamic boundary283

conditions, Section 2.5, without any order reductions.284

This manuscript is for review purposes only.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

8 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

3. Preparatory results. In this section we collect some general technical results285

which will be used later on in the convergence proof. After a short calculation, or by286

using the results in Section 3 of [8], we obtain287

T (τ)k =

(
T0(kτ) −T0(kτ)D0 +D0S(kτ) + Vk(τ)

0 S(kτ)

)
,(3.1)288

where Vk(τ)y =
k−1∑

j=0

T0((k − 1− j)τ)V (τ)S(jτ)y,289

290

see [8, equation (3.9)]. Now we are in the position to prove exponential bounds for291

the powers of T (τ).292

Lemma 3.1. There exist a constant M > 0 such that for τ > 0 and T (τ) de�ned293

in (2.10) (with (2.12)), and for any (x, y) ∈ E×dom(B) and k ∈ N with kτ ∈ [0, tmax]294

‖T (τ)k
(
x
y

)
‖ ≤M‖

(
x
y

)
‖+M‖By‖.295

Moreover, if S is a bounded analytic semigroup, then we have296

‖T (τ)k
(
x
y

)
‖ ≤M(1 + log(k))‖

(
x
y

)
‖.297

Proof. From the sum norm on the product space E × F , we have298

‖T (τ)k
(
x
y

)
‖ = ‖T0(kτ)x+ T0(kτ)D0y +D0S(kτ)y + Vk(τ)y‖+ ‖S(kτ)y‖299

≤ ‖T0(kτ)x‖+ ‖T0(kτ)D0y‖+ ‖D0S(kτ)y‖+ ‖Vk(τ)y‖+ ‖S(kτ)y‖.300301

The exponential boundedness of the semigroups T0 and S, and the boundedness of302

D0 directly yield303

‖T0(kτ)x‖+ ‖T0(kτ)D0y‖+ ‖D0S(kτ)y‖ ≤M
(
‖x‖+ ‖y‖

)
,304

and ‖S(kτ)y‖ ≤M‖y‖.305306

It remains to bound the term Vk(τ)y. We obtain307

‖Vk(τ)y‖ ≤ τ
k−1∑

j=0

‖T0((k − 1− j)τ)T0(τ)D0BS(τ)S(jτ)y‖308

≤ τ
k−1∑

j=0

‖T0((k − j)τ)D0S((j + 1)τ)By‖309

≤ τ

k−1∑

j=0

M‖By‖ ≤M‖By‖,310

311

which completes the proof of the �rst statement.312

If S is a bounded analytic semigroup, then we improve the last estimate to313

‖Vk(τ)‖ =
k−1∑

j=0

‖T0

(
(k − 1− j)τ

)
V (τ)S(jτ)‖314

= τ

k−1∑

j=0

‖T0

(
(k − j)τ

)
‖ ‖D0BS(τ)S(jτ)‖315
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 9

≤M1M2‖D0‖ τ
k−1∑

j=0

1

(j + 1)τ
≤M(1 + log(k)).316

317

By putting the estimates together, the assertions follows.318

We recall the following lemma from [8].319

Lemma 3.2 ([8, Lemma 4.4]). There is a C ≥ 0 such that for every τ ∈ [0, tmax],320

for any s0, s1 ∈ [0, τ ], and for every y ∈ dom(B2) we have321

∥∥∥
∫ τ

0

T0(τ−s)A−1
0 D0S(s)Byds−τT0(τ−s0)A−1

0 D0S(s1)By
∥∥∥ ≤ Cτ2(‖By‖+‖B2y‖).322

Using the above quadrature estimate we prove the following approximation lemma.323

Lemma 3.3. For (x, y) ∈ E × dom(B2) and j ∈ N \ {0} we have324

∥∥T (τ)j
(
T (τ)− T (τ)

)(
x
y

)∥∥ ≤ Cτ2‖A0T0(jτ)‖
(
‖By‖+ ‖B2y‖

)
.325

Proof. Using the formula (3.1) for T (τ)j and a direct computation for the di�er-326

ence T (τ)− T (τ), we obtain327

T (τ)j
(
T (τ)− T (τ)

)(
x
y

)
328

= T (τ)j
(∫ τ

0

T0(τ − ξ)D0BS(ξ)ydξ − τT0(τ)D0BS(τ)y , 0

)>
329

=

(
T0(τ)j

(∫ τ

0

T0(τ − ξ)D0BS(ξ)ydξ − τT0(τ)D0BS(τ)y

)
, 0

)>
330
331

for all (x, y) ∈ E × dom(B). We can further rewrite the �rst component as332

T0(jτ)

(∫ τ

0

T0(τ − ξ)D0BS(ξ)ydξ − τT0(τ)D0BS(τ)y

)
333

= A0T0(jτ)

(∫ τ

0

T0(τ − ξ)A−1
0 D0BS(ξ)ydξ − τT0(τ)A−1

0 D0BS(τ)y

)
.334

335

We have336
∥∥T (τ)j

(
T (τ)− T (τ)

)(
x
y

)∥∥337

=

∥∥∥∥A0T0(jτ)

(∫ τ

0

T0(τ − ξ)A−1
0 D0BS(ξ)ydξ − τT0(τ)A−1

0 D0BS(τ)y

)∥∥∥∥338

≤ ‖A0T0(jτ)‖
∥∥∥∥
∫ τ

0

T0(τ − ξ)A−1
0 D0BS(ξ)ydξ − τT0(τ)A−1

0 D0BS(τ)y

∥∥∥∥,339
340

therefore an application of Lemma 3.2 with s0 = 0 and s1 = τ proves the assertion.341

Lemma 3.4. For t, s ∈ [0, tmax] we have342

‖A−1
0 T0(t)−A−1

0 T0(s)‖ ≤M |t− s|.343344

Proof. Resorting to the Taylor expansion we have for x ∈ E that345

A−1
0 T0(t)x−A−1

0 T0(s)x =

∫ t

s

T0(r)A−1
0 A0xdr =

∫ t

s

T0(r)xdr,346

which readily implies ‖A−1
0 T0(t)x−A−1

0 T0(s)x‖ ≤M‖x‖|t− s|, and hence the asser-347

tion.348
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10 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

Lemma 3.5. Let f : [0, tmax]→ E be Lipschitz continuous and consider349

(T0 ∗ f)(t) :=

∫ t

0

T0(t− r)f(r)dr, t ∈ [0, tmax].350

Then for all t, s ∈ [0, tmax] we have351

‖(T0 ∗ f)(t)− (T0 ∗ f)(s)‖ ≤ C|t− s|‖f‖Lip.352

Proof. For t, s ∈ [0, tmax], we have353

∥∥(T0 ∗ f)(t)− (T0 ∗ f)(s)
∥∥ =

∥∥∥
∫ t

0

T0(r)f(t− r)dr −
∫ s

0

T0(r)f(s− r)dr
∥∥∥354

≤
∫ s

0

‖T0(r)(f(t− r)− f(s− r))‖dr +

∫ t

s

‖T0(r)f(t− r)‖dr355

≤ C1|t− s|s‖f‖Lip + C1|t− s|‖f‖∞ ≤ C|t− s|‖f‖Lip.356357

Let |1 and |2 denote the projection onto the �rst and second coordinate in E×F .358

Lemma 3.6. For tmax > 0 there is a C ≥ 0 such that for every (x, y) ∈ E ×359

dom(B), t, s ∈ [0, tmax] we have360

∥∥(T (t)− T (s)
)(
x
y

)
|1
∥∥ ≤ C (‖x‖+ ‖y‖+ ‖By‖),361

and
∥∥(T (t)− T (s)

)(
x
y

)
|2
∥∥ ≤ C |t− s|‖By‖.362

363

Proof. We have364

(
T (t)− T (s)

)(
x
y

)
|2 =

∫ t

s

S(r)Bydr365
366

and the second asserted inequality follows at once.367

On the other hand, for the �rst component368

(
T (t)− T (s)

)(
x
y

)
|1 = T0(t)x− T0(s)x+Q(t)y −Q(s)y369

= T0(t)x− T0(s)x+D0S(t)y −D0S(s)y − T (t)D0y + T (s)D0y −Q0(t)y +Q0(s)y,370371

and we obtain372

∥∥(T (t)− T (s)
)(
x
y

)
|1
∥∥ = 2M‖x‖+ 4M‖D0‖‖y‖+ |t− s|M2‖D0‖‖By‖,373

374

and the �rst inequality is also proved.375

Lemma 3.7. For tmax > 0 there is a C ≥ 0 such that for every (x, y) ∈ E ×376

dom(B2), t, s ∈ [0, tmax], τ > 0, 0 ≤ jτ ≤ tmax we have377

∥∥T (τ)j
(
T (t)− T (s)

)(
x
y

)∥∥ ≤C |t− s|‖A0T0(jτ)‖(‖x‖+ ‖y‖+ ‖By‖)378

+ C |t− s|(‖y‖+ ‖By‖+ ‖B2y‖).379380

Proof. From (3.1) we obtain381

T (τ)j
(
T (t)− T (s)

)(
x
y

)
|2 =

∫ t

s

S(jτ + r)Bydr and382
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 11

T (τ)j
(
T (t)− T (s)

)(
x
y

)
|1 = T0(jτ)

(
T0(t)x− T0(s)x+Q(t)y −Q(s)y

)
383

− T0(jτ)D0

∫ t

s

S(r)Bydr +D0S(jτ)

∫ t

s

S(r)Bydr + Vj(τ)

∫ t

s

S(r)Bydr384

= I1 + I2 + I3 + I4,385386

where I1, . . . , I4 denote the four terms in the order of appearance. By Lemma 3.4387

‖I1‖ ≤ ‖A0T0(jτ)‖
(
‖A−1

0 (T0(t)− T0(s))‖‖x‖+ ‖A−1
0 (Q(t)−Q(s))y‖

)
388

≤ C‖A0T0(jτ)‖|t− s|‖x‖+ ‖A0T0(jτ)‖‖A−1
0 (Q(t)−Q(s))y‖,389390

so we need to estimate ‖A−1
0 (Q(t) − Q(s))y‖. Since A−1

0 Q has the appropriate con-391

volution form, Lemma 3.5 implies392

‖A−1
0 (Q(t)−Q(s))y‖ =

∥∥∥(T0 ∗D0S)(t)− (T0 ∗D0S)(s)
∥∥∥ ≤ C1|t− s|‖D0‖‖By‖.393

394

Altogether we obtain395

‖I1‖ ≤ C2|t− s|‖A0T0(jτ)‖(‖x‖+ ‖y‖+ ‖By‖).396

For I2 and I3 we have397

‖I2‖+ ‖I3‖ ≤ C3|t− s|‖By‖.398

To estimate I4 we recall from the proof of Lemma 3.1 that ‖Vj(τ)z‖ ≤ C4‖Bz‖ (for399

jτ ≤ [0, tmax]), so that400

‖I4‖ ≤ C4

∥∥∥B
∫ t

s

S(r)Bydr
∥∥∥ ≤ C5|t− s|‖B2y‖.401

Finally, the estimates for I1, . . . , I4 together yield the assertion.402

4. Proof of Theorem 2.5. The proof of our main result is based on a recursive403

expression for the global error, which involves the local error and some nonlinear404

error terms. The recursive formula is obtained using a procedure which is sometimes405

called Lady Windermere's fan [21, Section II.3]; our approach is inspired by [37], [45,406

Chapter 3]. The local errors are weighted by T (τ)j , therefore a careful accumulation407

estimate�heavily relying on the parabolic smoothing property�is required. In order408

to estimate the locally Lipschitz nonlinear terms we have to ensure that the numerical409

solution remains in the strip Σ (see Assumptions 2.4). This will be shown using an410

induction process, which is outlined as follows:411

• We shall �nd τ0 > 0 and a constant C > 0 such that for any 0 < τ ≤ τ0 if412

u0,u1, . . . ,un−1 belong to the strip Σ and tn = nτ ≤ tmax, then413

‖u(tn)− un‖ ≤ Cτ | log(τ)|.414

• Since C > 0 is a constant independent of n and τ , we can take τ0 > 0415

su�ciently small such that for each τ ≤ τ0 we have Cτ | log(τ)| ≤ R, the416

width of the strip Σ, therefore by the previous step we have un ∈ Σ.417

• Since u0 belongs to the strip and since τ0 and C > 0 are independent of n,418

the proof can be concluded by induction.419
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12 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

Within the proof we will use the following conventions: The positive constant420

M comes from bounds for any of the analytic semigroups T0, S, or T : For each421

t ∈ (0, tmax]422

(4.1) ‖T0(t)‖, ‖S(t)‖, ‖T (t)‖ ≤M, and ‖t A0 T0(t)‖ ≤M.423

Here the last estimate is usually referred to as the parabolic smoothing property of424

analytic semigroups, cf. Remark 2.3 (c). By C > 0 we will denote a constant that425

is independent of the time step, but may depend on other constants (e.g. parameters426

of the problem) and on the exact solution (hence on the initial condition). Within a427

proof we shall indicate a possible increment of such appearing constants by a subscript:428

C1, C2, . . . , etc.429

Proof of Theorem 2.5. For the local Lipschitz continuity of the nonlinearity F ,430

we will prove that the numerical solution remains in the strip Σ around the exact431

solution u(t) using an induction argument.432

We estimate the global error u(tn)−un, at time tn = nτ ∈ (0, tmax], by expressing433

it using the local error elocn = u(tn)−L(τ)(u(tn−1)) as follows:434

u(tn)− un = u(tn)−L(τ)
(
u(tn−1)

)
+L(τ)

(
u(tn−1)

)
−L(τ)

(
un−1

)
435

= elocn + T (τ)
(
u(tn−1) + τF(u(tn−1))

)
− T (τ)

(
un−1 + τF(un−1)

)
436

= elocn + T (τ)
(
u(tn−1)− un−1

)
+ τT (τ)εFn−1,437438

with the nonlinear di�erence term εFn = F(u(tn))−F(un). By resolving the recursion439

we obtain440

(4.2)
u(tn)− un = elocn + T (τ)

(
u(tn−1)− un−1

)
+ τT (τ)εFn−1

= elocn + T (τ)elocn−1 + T (τ)2
(
u(tn−2)− un−2

)
+ τT (τ)2εFn−2 + τT (τ)εFn−1

...

= elocn +
n−1∑

j=1

T (τ)jelocn−j + τ
n∑

j=1

T (τ)jεFn−j + T (τ)n
(
u(0)− u0

)
.

441

Since we have u0 = u(0), the last term vanishes.442

We now start the induction process. Let us assume that the error estimate (2.14)443

holds for all k ≤ n− 1 with nτ ≤ tmax, i.e., for a K > 0 independent of τ and n, we444

have445

(4.3) for k = 0, . . . , n− 1, ‖u(tk)− uk‖ ≤ K τ | log(τ)|.446

Below, we will show that the same error estimate also holds for n as well. We note447

that, via u0 = u(0), the assumed error estimate trivially holds for n− 1 = 0.448

We will now estimate the remaining terms of (4.2) in parts (i)�(iii), respectively.449

The estimates (4.3) for the past values for k only appear in part (iii).450

(i) We rewrite the local error elocn by using the forms (2.9) and (2.11) of the exact451

and approximate solutions, respectively, and by Taylor's formula and (5) as452

elocn = u(tn)−L
(
u(tn−1)

)
453

= T (τ)u(tn−1) +

∫ τ

0

T (τ − s)F(u(tn−1 + s))ds− T (τ)
(
u(tn−1) + τF(u(tn−1))

)
454
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 13

= T (τ)u(tn−1) +

∫ τ

0

T (τ − s)F(u(tn−1))ds455

+

∫ τ

0

T (τ − s)
∫ s

0

(F ◦ u)′(tn−1 + ξ)dξds− T (τ)
(
u(tn−1) + τF(u(tn−1))

)
456

=
(
T (τ)− T (τ)

)(
u(tn−1) + τF(u(tn−1))

)
+

∫ τ

0

(
T (τ − s)− T (τ)

)
F(u(tn−1))ds457

+

∫ τ

0

T (τ − s)
∫ s

0

(F ◦ u)′(tn−1 + ξ)dξds.

(4.4)

458
459

In what follows we will estimate the three terms separately.460

We will bound the �rst term by using the boundedness of the semigroups T0 and461

S. Denote (x, y) = u(tn−1) + τF(u(tn−1)) and write462

(
T (τ)− T (τ)

)(
x
y

)
=

(
0 Q0(τ)− V (τ)
0 0

)(
x
y

)
463

= Q0(τ)y − V (τ)y = −
∫ τ

0

T0(τ − ξ)D0BS(ξ)ydξ + τT0(τ)D0BS(τ)y.464
465

Whence we conclude466

∥∥(T (τ)− T (τ)
)(
x
y

)∥∥ ≤ τ2M2‖D0‖‖By‖ ≤ C1τ‖B(v(tn−1) + τF2(u(tn−1)))‖.467

The second term in (4.4) can be estimated by Lemma 3.6, and using (4), as468
∫ τ

0

∥∥∥
(
T (τ − s)− T (τ)

)
F(u(tn−1))

∥∥∥ds ≤C2τ
(
‖F(u(tn−1))‖+ ‖BF2(u(tn−1))‖

)
.469

470

While, using the exponential boundedness of T and (5), the third term in (4.4)471

is directly bounded by472
∫ τ

0

∫ s

0

∥∥∥T (τ − s)(F ◦ u)′(tn−1 + ξ)
∥∥∥dξds ≤Mτ‖(F ◦ u)′‖L1([tn−1,tn])473

≤Mτ‖(F ◦ u)′‖L1([0,tmax]).474475

Therefore, we �nally obtain for the local error that476

(4.5) ‖elocn ‖ ≤ C3τ.477

(ii) Since in each time step the local error is O(τ) and we have O(1/τ) time steps,478

a more careful analysis is needed for the the second term in (4.2). We �rst rewrite479

this term by the variation of constants formula (2.9) and the numerical method in the480

form (2.11):481

(4.6)
n−1∑

j=1

T (τ)jelocn−j =
n−1∑

j=1

T (τ)j
(
u(tn−j)− T (τ)

(
u(tn−j−1)− τF(u(tn−j−1))

))

=
n−1∑

j=1

T (τ)j
(
T (τ)− T (τ)

)
u(tn−j−1)

+
n−1∑

j=1

T (τ)j
(∫ τ

0

T (τ − s)F(u(tn−j−1 + s))ds− τT (τ)F(u(tn−j−1))
)
.

482
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14 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

We rewrite the second term on the right-hand side of (4.6) using Taylor's formula:483

T (τ)j
(∫ τ

0

T (τ − s)F(u(tn−j−1 + s))ds− τT (τ)F(u(tn−j−1))
)

484

= T (τ)j
∫ τ

0

(
T (τ − s)F(u(tn−j−1 + s))− T (τ)F(u(tn−j−1))

)
ds485

= T (τ)j
(∫ τ

0

(T (τ − s)− T (τ))F(u(tn−j−1))486

+

∫ τ

0

T (τ − s)
∫ s

0

(F ◦ u)′(tn−j−1 + ξ)
)

dξds487

=

∫ τ

0

T (τ)j
(
T (τ − s)− T (τ)

)
F(u(tn−j−1))ds+ τT (τ)j

(
T (τ)− T (τ)

)
F(u(tn−j−1))488

+

∫ τ

0

∫ s

0

T (τ)jT (τ − s)(F ◦ u)′(tn−j−1 + ξ)dξds.489
490

Combining the two identities above, for (4.6) we obtain:491

(4.7)

n−1∑

j=1

T (τ)jelocn−j =
n−1∑

j=1

(
δ1,j + δ2,j + δ3,j

)

with δ1,j = T (τ)j
(
T (τ)− T (τ)

)(
u(tn−j−1) + τF(u(tn−j−1))

)
,

δ2,j =

∫ τ

0

T (τ)j
(
T (τ − s)− T (τ)

)
F(u(tn−j−1))ds,

δ3,j =

∫ τ

0

∫ s

0

T (τ)jT (τ − s)(F ◦ u)′(tn−j−1 + ξ)dξds.

492

For the term δ1,j , upon setting (x, y) = u(tn−j−1) + τF(u(tn−j−1)) in Lemma493

3.3 and (3), (4), we obtain the following estimate for j = 1, . . . , n− 1:494

‖δ1,j‖ ≤ C4τ
2‖A0T0(jτ)‖

(∥∥B
(
v(tn−j−1) + τF2(u(tn−j−1))

)∥∥(4.8)495

+
∥∥B2

(
v(tn−j−1) + τF2(u(tn−j−1))

)∥∥
)
.496

497

For the term δ2,j , setting (x, y) = F(u(tn−j−1)) in Lemma 3.7 and (4), we obtain498

the estimate for j = 1, . . . , n− 1:499

(4.9)

‖δ2,j‖ ≤ C5τ
2‖A0T0(jτ)‖

(
‖F(u(tn−j−1))‖+ ‖BF2(u(tn−j−1))‖

)

+ C6τ
2
(
‖F2(u(tn−j−1))‖+ ‖BF2(u(tn−j−1))‖+ ‖B2F2(u(tn−j−1))‖

)
.

500

The term δ3,j is directly estimated by using Lemma 3.1 and (5), for j = 1, . . . , n−501

1, as502

(4.10)

‖δ3,j‖ ≤
∫ τ

0

∫ s

0

C7(1 + log(j))
∥∥∥T (τ − s)(F ◦ u)′(tn−j−1 + ξ)

∥∥∥dξds

≤MC7(1 + log(j))

∫ τ

0

∫ s

0

‖(F ◦ u)′(tn−j−1 + ξ)‖dξds

≤ τMC7(1 + log(j))‖(F ◦ u)′‖L1([tn−j−1,tn−j ]).

503
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 15

Finally, we combine the bounds (4.8), (4.9), (4.10), respectively, for δk,j , k =504

1, 2, 3, then collecting the terms we obtain505

(4.11)∥∥∥∥
n−1∑

j=1

T (τ)jelocn−j

∥∥∥∥ ≤
n−1∑

j=1

(
‖δ1,j‖+ ‖δ2,j‖+ ‖δ3,j‖

)

≤ C8τ
n−1∑

j=1

1

j

(
‖Bv(tn−j−1)‖+ ‖B2v(tn−j−1)‖

)

+ C8τ
n−1∑

j=1

1

j

(
‖F(u(tn−j−1))‖+ ‖BF2(u(tn−j−1))‖

)

+ C9τ
2
n−1∑

j=1

(
‖F2(u(tn−j−1))‖+ ‖BF2(u(tn−j−1))‖+ ‖B2F2(u(tn−j−1))‖

)

+ C10τ log(n)‖(F ◦ u)′‖L1([0,tmax])

≤ C11(1 + log(n))τ + C12τ ≤ C13τ log(n+ 1),

506

where we have used the parabolic smoothing property (4.1) of the analytic semigroup507

T0 to estimate the factor by ‖A0T0(jτ)‖ ≤M/(jτ).508

(iii) The errors in the nonlinear terms are estimated by using Lemma 3.1 and the509

local Lipschitz continuity of F in the appropriate spaces ((1) and (2)), in combination510

with the bounds (4.3) for the past, as511

(4.12)∥∥∥∥τ
n∑

j=1

T (τ)jεFn−j

∥∥∥∥ ≤ τ
n∑

j=1

∥∥∥T (τ)j
(
F(u(tn−j))−F(un−j)

)∥∥∥

≤ τ
n∑

j=1

M
∥∥F(u(tn−j))−F(un−j)

∥∥+ τ
n∑

j=1

M
∥∥B
(
F2(u(tn−j))−F2(un−j)

)∥∥

≤ τ

n−1∑

k=0

M`Σ‖u(tk)− uk‖+ τ

n−1∑

k=0

M`Σ,B‖u(tk)− uk‖ ≤ C14τ

n−1∑

k=0

‖u(tk)− uk‖,

512

recalling that `Σ and `Σ,B are the Lipschitz constants on Σ, see Assumptions 2.4 (1)513

and (2). For the last inequality, we used here that (uk)n−1
k=0 belongs to the strip Σ so514

that the Lipschitz continuity of F can be used, see (1) and (2).515

The global error (4.2) is bounded by the combination of the estimates (4.5), (4.11),516

and (4.12) from (i)�(iii), which altogether yield517

(4.13)

‖u(tn)− un‖ ≤ C3τ + C13 log(n+ 1)τ + C14τ
n−1∑

k=0

‖u(tk)− uk‖

≤ C15 log(n+ 1)τ + C14τ
n−1∑

k=0

‖u(tk)− uk‖.
518

A discrete Gronwall inequality then implies519

(4.14) ‖u(tn)− un‖ ≤ C15eC14tmax log(n+ 1)τ ≤ C| log(τ)|τ,520

for tn = τn ∈ [0, tmax], with the constant C := 2C15eC14tmax > 0. Then for a τ0 > 0521

su�ciently small such that for each τ ≤ τ0 we have C| log(τ)|τ ≤ R, then un ∈ Σ522
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16 P. CSOMÓS, B. FARKAS, AND B. KOVÁCS

and the error estimate (2.14) is satis�ed for n as well. Hence (4.3) holds even up to523

n instead of n− 1. Therefore, by induction, the proof of the theorem is complete.524

Remark 4.1. (a) Theorem 2.5 remains true, with an almost verbatim proof as525

above, if B is merely assumed to be the generator of a C0-semigroup. This526

requires the following additional condition:527

(5′) The function B ◦ F2 ◦ u is di�erentiable and (B ◦ F2 ◦ u)′ ∈ L1([0, tmax];F ).528

This is relevant only for the term δ3,j in the inequality (4.10) when one applies529

the stability estimate from Lemma 3.1.530

(b) Time-dependent nonlinearities can also be allowed and the same error bound holds531

without essential modi�cation of the previous proof. Of course, the conditions532

(1), (2), (4) and (5) in Assumption 2.4, involving F and F2 need to be suitably533

modi�ed. For example the functions F(t, ·) need to be uniformly Lipschitz for534

t ∈ [0, tmax] (and even this can be relaxed a little), and the function f de�ned by535

f(t) := F(t,u(t)) needs to be di�erentiable, etc.536

(c) The assumptions (3) and (4) involving the domain dom(B2) may seem a little537

restrictive. However, in some applications these conditions are naturally satis�ed:538

For example if F is �nite dimensional (such is the case for �nite networks, see [36]539

or [40]). At the same time, these conditions seem to be optimal in this generality,540

and play a role only in the local error estimate of the Lie splitting, i.e., in Lemma541

3.2 and its applications. Indeed, at other places the conditions involving dom(B2)542

are not needed.543

5. Numerical experiments. We have performed numerical experiments for544

Example 2.1: Let Ω be the unit disk with boundary Γ = {x = (x1, x2) ∈ R2 : ‖x‖2 =545

1}, with γ denoting the trace operator, and ν denoting the outward unit normal �eld.546

Let us consider the boundary coupled semilinear parabolic partial di�erential equation547

(PDE) system u : Ω × [0, tmax]→ R and v × [0, tmax] : Γ → R satisfying548

(5.1)





∂tu = ∆u+ F1(u, v) + %1 in Ω,

∂tv = ∆Γ v + F2(u, v) + %2 on Γ,

γu = v on Γ,

549

where the two nonlinearities are F1(u, v) = u2 and F2(u, v) = vγu, and where the550

two inhomogeneities %1 and %2 are chosen such that the exact solutions are known to551

be u(x, t) = exp(−t)x2
1x

2
2 and v(x, t) = exp(−t)x2

1x
2
2 (which naturally satisfy γu = v).552

The boundary coupled PDE system (5.1) �ts into the abstract framework (1.1) in553

the sense of Example 2.1. We note that Theorem 2.5 still holds for (5.1) with the554

time-dependent inhomogeneities %i, see Remark 4.1 (c).555

We performed numerical experiments using the splitting method (2.11), writ-556

ten componentwise (2.13), which is applied to the bulk�surface �nite element semi-557

discretisation, see [11, 25], of the weak form of (5.1). The bulk�surface �nite element558

semi-discretisation is based on a quasi-uniform triangulation Ωh of the continuous559

domain Ω, such that the discrete boundary Γh = ∂Ωh is also a su�cient good ap-560

proximation of Γ . By this construction the traces of the �nite element basis functions561

in Ωh naturally form a basis on the boundary Γh, i.e. {γhφj} forms a boundary ele-562

ment basis on Γh. For more details we refer to [11, Section 4 and 5], or [25, Section 3].563

Altogether this yields the matrix�vector formulation of the semi-discrete problem, for564
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SPLITTING FOR SEMILINEAR BOUNDARY COUPLED SYSTEMS 17

the nodal vectors u(t) ∈ RNΩ and v(t) ∈ RNΓ ,565

(5.2)





MΩu̇ + AΩu = F1(u,v) + %1,

MΓ v̇ + AΓv = F2(u,v) + %2,

γu = v,

566

where MΩ and AΩ are the mass-lumped mass matrix and sti�ness matrix for Ωh,567

and similarly MΓ and AΓ for the discrete boundary Γh, while the nonlinearities568

F i and the inhomogeneities %i are de�ned accordingly. The discrete trace operator569

γ ∈ RNΓ×NΩ extracts the nodal values at the boundary nodes. For all these quantities570

we have used quadratures of su�ciently high order such that the quadrature errors571

are negligible compared to all other spatial errors. For mass lumping in this context,572

and for its spatial approximation properties, we refer to [25, Section 3.6].573

The two semigroups in (2.13) are known, and are computed using the expmv574

Matlab package of Al-Mohy and Higham [2], in the above matrix�vector formulation575

(5.2) the (diagonal) mass matrices are transformed to the identity, i.e. ÃΩ = M−1
Ω AΩ ,576

and similarly for ÃΓ , and all other terms. The numerical experiments were performed577

for this transformed system. In this setting the operatorD0 in (2.1) corresponds to the578

harmonic extension operator, which we compute here by solving a Poisson problem579

with inhomogeneous Dirichlet boundary conditions.580

5.1. A convergence experiment. We performed a convergence experiment581

for the above boundary coupled PDE system. Using the splitting integrator (2.11),582

in the form (2.13), we have solved the transformed system (5.2) for a sequence of583

time steps τk = τk−1/2 (with τ0 = 0.2) and a sequence of meshes with mesh width584

hk ≈ hk−1/
√

2.585

In Figure 1 we report on the L∞(L2(Ω)) and L∞(L2(Γ )) error of the two compo-586

nents, comparing the (nodal interpolation of the) exact solutions and the numerical587

solutions. In the log-log plot we can observe that the temporal convergence order588

matches the predicted convergence rate O(τ | log(τ)|) of Theorem 2.5, note the dashed589

reference line O(τ) (the factor | log(τ)| is naturally not observable). In the �gures590

each line (with di�erent marker and colour) corresponds to a �xed mesh width h,591

while each marker on the lines corresponds to a time step size τk. The precise time592

steps and degrees of freedom values are reported in Figure 1.593

5.2. A convergence experiment with dynamic boundary conditions. We594

performed the same convergence experiment for a partial di�erential equation with595

dynamic boundary conditions, cf. [25], let u : Ω × [0, tmax]→ R solve the problem596

(5.3)

{
∂tu = ∆u+ fΩ(u) + %1 in Ω,

∂tu = ∆Γu− ∂νu+ fΓ (u) + %2 on Γ,
597

using the same domain, exact solution, nonlinearities, etc. as above.598

Problem (5.3) is equivalently rewritten as a boundary coupled PDE system (5.1),599

where the two nonlinearities are given by600

F1(u, v) = fΩ(u) = u2 and F2(u, v) = −∂νu+ fΓ (u) = −∂νu+ (γu)2.601602

That is, the the nonlinear term F2 incorporates the coupling through the Neumann603

trace −∂νu. The numerical method (2.11), written componentwise (2.13), is applied604

to this formulation with the nonlinearity F2 containing the Neumann trace operator.605
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Fig. 1. Temporal convergence plot for the splitting scheme (2.13) applied to the boundary

coupled PDE system (5.1), L∞(L2)-norms of u and v components on the left- and right-hand sides,

respectively.

In Figure 2 we report on the L∞(L2(Ω)) and L∞(L2(Γ )) error of the bulk and606

surface errors, comparing the (nodal interpolation of the) exact solutions and the607

numerical solutions. (Figure 2 is obtained exactly as it was described for Figure 1,608

the precise time steps and degrees of freedom values can be read o� from Figure 2.)609

Although in this case, due to the unboundedness of the Neumann trace operator in610

F2(u, v) = −∂νu+ fΓ (u), the conditions of Theorem 2.5 are not satis�ed, in Figure 2611

we still observe a convergence rate O(τ) (note the reference lines). Qualitatively we612

obtain the same plots for L∞(H1(Ω)) and L∞(H1(Γ )) norms.613

Note that our splitting method does not su�er from any type of order reduction,614

in contrast to the splitting schemes proposed in [25], see Figure 1 and 2 therein. In615

[3] the same order reduction issue was overcome by a di�erent approach, using a616

correction term.617

10-3 10-2 10-1

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1

10-4

10-3

10-2

10-1

100

Fig. 2. Temporal convergence plot for the splitting scheme applied to the PDE with dynamic

boundary conditions (5.3), L∞(L2)-norms of u and γu components on the left- and right-hand sides,

respectively.
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