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Abstract

For the semantic segmentation of images, state-of-the-
art deep neural networks (DNNs) achieve high segmenta-
tion accuracy if that task is restricted to a closed set of
classes. However, as of now DNNs have limited ability to
operate in an open world, where they are tasked to iden-
tify pixels belonging to unknown objects and eventually to
learn novel classes, incrementally. Humans have the ca-
pability to say: “I don’t know what that is, but I’ve al-
ready seen something like that”. Therefore, it is desirable
to perform such an incremental learning task in an unsuper-
vised fashion. We introduce a method where unknown ob-
jects are clustered based on visual similarity. Those clusters
are utilized to define new classes and serve as training data
for unsupervised incremental learning. More precisely, the
connected components of a predicted semantic segmenta-
tion are assessed by a segmentation quality estimate. con-
nected components with a low estimated prediction quality
are candidates for a subsequent clustering. Additionally,
the component-wise quality assessment allows for obtaining
predicted segmentation masks for the image regions poten-
tially containing unknown objects. The respective pixels of
such masks are pseudo-labeled and afterwards used for re-
training the DNN, i.e. without the use of ground truth gen-
erated by humans. In our experiments we demonstrate that,
without access to ground truth and even with few data, a
DNN’s class space can be extended by a novel class, achiev-
ing considerable segmentation accuracy.

1. Introduction
Semantic segmentation is a computer vision task that

terms the classification of image data on pixel level. State-
of-the-art approaches are based on deep convolutional neu-
ral networks (DNNs) [10,62,72], benefiting from finely an-
notated datasets, e.g. for automated driving [11, 20, 46, 69].
However, DNNs for semantic segmentation are usually
trained on a predefined, closed set of classes. This closed
world setting assumes, that all classes present during test-

Image & novelty annotation Prediction quality estimation

Prediction of the initial DNN Prediction of the extended DNN (ours)

Figure 1. Comparison of the semantic segmentation predictions
of an initial DNN (bottom left) whose semantic space does not
include the category bus and a DNN which is incrementally ex-
tended by this novel class (bottom right, novel class in orange)
for an image from the Cityscapes dataset. The novel class is high-
lighted in orange (top left). Further, the initial prediction exhibits a
low prediction quality (top right) on pixels belonging to the novel
objects, which is indicated by red color.

ing were already included in the training set. In an open
world setting, this assumption does not hold. In particular
for safety-critical open-world applications like perception
systems for automated driving, it is indispensable that neu-
ral networks recognize previously unseen objects instead of
wrongly assigning them to one-of-the-known classes. In
addition, they must constantly adapt to evolving environ-
ments.

Some terms often used interchangeably for anomaly are
outlier, out-of-distribution (OoD) object and novelty. As
there is no clear convention on how to distinguish these
terms, we define them as subcategories of anomalies: out-
liers and OoD objects denote noise or samples drawn from
another distribution than the model was trained on, respec-
tively. In this work, we are seeking novelties, which we de-
fine as previously-unseen objects that constitute a new con-
cept, i.e., objects of the same category appear frequently.
In automated driving, detecting and learning those novel
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classes becomes necessary, e.g., due to new appearances
like e-scooters or due to local specialities like boat trailers
near the sea. The concept of detecting and learning novel-
ties was first introduced in [4] as open world recognition.
Open world recognition for different computer vision tasks
is an emerging research area [4, 6, 26, 57], still only little
explored for unsupervised methods [21, 45], yet.

We propose a new and modular procedure for learning
new classes of novel objects without any handcrafted anno-
tation:

1. Anomaly segmentation to detect suspicious objects,

2. clustering of potentially novel objects,

3. creation of so-called pseudo labels, and

4. incremental learning of novel classes.

In the following, we will outline each of these four steps in
more detail.

For the first step, we post-process the predictions of
an underlying semantic segmentation DNN via a meta re-
gressor, that estimates the quality of the predicted seg-
ments (connected components of pixels in the segmentation
mask), similar as proposed in [38, 53, 54]. The segment-
wise quality score is obtained on the basis of aggregated dis-
persion measures and geometrical information, i.e., without
requiring ground-truth. The predicted segmentation mask
on anomalous objects is often split into several segments.
To this end, we first aggregate neighboring segments, i.e.,
segments that have at least one adjacent pixel each, with
quality estimates below some threshold, into (potentially)
anomalous objects.

For the second step, we adapt the idea introduced in [48]
to gather segments with poor prediction quality and to clus-
ter them into visually related neighborhoods. Therefore, all
anomalies (of sufficient size) are cropped out in the RGB
images and the resulting image patches are fed into a convo-
lutional neural network (CNN), e.g. for image classification.
To obtain comparable information about the anomalies, we
then extract the features provided by the penultimate layer
of the CNN, i.e., right before the final classification layer.
By reducing the dimensionality of these features up to two,
we enable the use of low-dimensional, unsupervised clus-
tering techniques, such as [17, 39].

As third, we obtain pseudo labels for novel classes in
an automated manner: each (large / dense enough) cluster
constitutes a novel category, and each pixel belonging to a
clustered object is assigned to the appropriate (not neces-
sarily named) class. More precisely, the prediction of the
segmentation model is updated at those pixel positions to
the next “free” label ID.

Finally, the segmentation network is incrementally ex-
tended by these novel classes (see Fig. 1 for an example). To

this end, we apply established incremental learning meth-
ods [23, 52]. However, these are mainly examined for su-
pervised learning tasks, while we do not include any hand-
labeled new data. This last two steps were never done in
literature so far.

To outline our contributions, we demonstrate in our ex-
periments that our method is able to incrementally extend a
neural network by novel classes without collecting or anno-
tating novelties manually. To the best of our knowledge, we
are the first to introduce an unsupervised approach for open
world semantic segmentation with DNNs. Fine-tuning neu-
ral networks on automatically created pseudo-labels instead
of human-made annotations is economically valuable. We
observe in all experiments, that even a poor labeling qual-
ity is sufficient to learn novel classes, achieving IoU values
around 40%. Further, the amount of new data was less than
100 images, respectively. Unsupervised open world seman-
tic segmentation therefore is a powerful tool for open world
applications, that provides an enormous potential for future
improvement.

2. Related Work
In this section, we first review anomaly detection meth-

ods and briefly go into class discovery approaches. Then
we describe different strategies for class-incremental learn-
ing. Finally, we give an overview of existing work on open
world computer vision tasks.

Novelty Detection. The detection of anomalous objects
in general is a key task in many machine learning appli-
cations. Early works estimate the prediction uncertainty,
either by uncertainty measures derived from the softmax
probability [22, 35], or employing Bayesian neural net-
works (BNNs) [28]. Concerning computational costs, it is
preferred to approximate Bayesian inference using Monte
Carlo dropout [19, 44] or ensembles [31]. Uncertainty-
based approaches can be further improved by integrating
anomalous data into the training procedure [8, 14]. An-
other line of works employs generative models such as
autoencoders (AEs) [2, 3, 12, 36] or generative adversar-
ial models (GANs) [1, 47, 55, 70] to reconstruct or synthe-
sise images and measure the reconstruction quality. Vari-
ous novelty detection methods with variational AEs are de-
scribed in [61], not only reconstruction-, but also density-
or distance-based. A benchmark for anomaly segmentation,
i.e. anomaly detection methods for semantic segmentation,
was recently published in [7], providing a cleaner compar-
ison of proposed methods. Given a set of anomalies, the
prevailing approach for class discovery is to form clusters
based on some similarity measure or intrinsic features with
traditional clustering methods [15, 16, 25, 33, 59, 65, 66, 71,
73]. A more detailed survey of image clustering has been
published in [37].
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Figure 2. In novelty detection, to discover novel classes, anomalies belonging to the same class must be grouped together. Therefore, we
use an image classification model to extract features of the detected image patches (outlined in red) and reduce their dimension up to two.
By that, we obtain a two-dimensional feature space with visually related neighborhoods, were we employ clustering methods to discover
novel classes.

Class-Incremental Learning. The term class-
incremental learning refers to the extension of a neural
network’s semantic space by further, previously unknown,
classes. This extension is achieved by fine-tuning a model
on additional, usually human-annotated data [27,30,34,42],
whereas in this work we only provide pseudo labels for
these new images. The primary issue to tackle when
re-training a neural network is to mitigate the performance
loss on previously learned classes, commonly known
as catastrophic forgetting [40]. To this end, we employ
two different strategies: first, we penalize large varia-
tions of the softmax output (compared to the one of the
original network) [23], second we utilize a subset of the
previously-seen training data [52].

The first strategy belongs to the category of regulariza-
tion based approaches, or more specifically to knowledge
distillation methods. These were originally developed to
distill knowledge from sophisticated into simpler models
[23], i.e., for model compression. Thereupon, distillation
methods have been evolved for incremental learning in im-
age classification [27, 29, 32, 34, 67], some of which were
later adapted to semantic segmentation [30, 42, 43, 58].

The second approach belongs to so-called (pseudo) re-
hearsal methods [52], were either old training data is in-
cluded in the re-training process [5, 51, 64], or very similar
pseudo-data [41, 49, 50, 56, 63] instead.

Open World. The open world setting was first introduced
in [4] for image classification. The authors formally de-
fine the solution of open world recognition problems as a
tuple, consisting of a recognition function, a novelty detec-
tor, a labeling process and an incremental learning func-
tion. Ideally, these steps should be automated, however,
most approaches presume a supervised setting, i.e., they re-
quire ground-truth for detected novelties. In summary, open
world recognition covers the entire process from discover-
ing up to learning novel classes.

A supervised solution for open world object detection

is presented in [26], based on contrastive clustering, an
unknown-aware proposal network and energy based un-
known identification. A similar approach was proposed
in [6] for open world semantic segmentation, where novel
classes are learned via few-shot learning. In [21], an unsu-
pervised method to obtain pseudo labels for image classi-
fication based on cluster assignments is introduced. There
exists also some prior work for unsupervised open world se-
mantic segmentation [45], however, the segmentation mask
is obtained via agglomerative clustering of superpixels and
there is no update of the neural network at all. While it is
capable of creating ad hoc novel classes unsupervisedly on
given images, it does not create a consistent semantic cate-
gory over multiple images.

Our work introduces an open world semantic segmenta-
tion framework, where a neural network is incrementally
extended by novel classes. These classes are discovered
and labeled without any human effort. Therefore, our work
goes beyond all existing approaches in this research area.

3. Discovery of Unknown Semantic Classes
Whether a class is novel or not depends on the neural

network’s underlying set of known classes C = {1, . . . , C}.
Let f : X → (0, 1)|H|×|W|×|C| be a semantic segmentation
DNN which is trained on the classes in C, mapping an im-
age x ∈ X ⊆ [0, 1]|H|×|W|×3 onto its softmax probabilities
for each pixel z ∈ H ×W . Then, fz,c(x) ∈ (0, 1) denotes
the probability with which the model f assigns some pixel
z to a class c ∈ C. As decision rule, we apply the argmax
function, i.e., we obtain the semantic segmentation mask
m(x) ∈ C|H|×|W| with mz(x) = argmaxc∈C fz,c(x). In
the following, we will estimate the prediction quality on a
segment-level instead of pixel-wise, employing a meta re-
gression approach that was first introduced in [53]. On that
account, we denote a segment, i.e., a connected component
of pixels that share the same class in m(x), as k ∈ K(x).



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Image from A2D2 Semantic segmentation prediction Prediction quality estimation Pseudo ground-truth

Figure 3. Novelty segmentation: Example for obtaining pseudo ground-truth with regard to some image patch (outlined in red). If segments
inside the red box exhibit quality estimates below some predefined threshold, they are “re-labeled” in the segmentation mask.

Uncertainty Metrics and Prediction Quality Estimation.
We consider novelties as none-of-the-known objects, i.e.,
they differ semantically from the model’s training data. As-
suming that the segmentation DNN produces unstable pre-
dictions on these unexplored entities, various measurable
phenomena occur. For instance, the model exhibits a high
prediction uncertainty. This is quantified by dispersion
measures as the softmax entropy, probability margin or vari-
ation ratio, which we compute pixel-wise via

Ez(f(x)) = −
1

log(|C|)
∑

c∈C
fz,c(x) log(fz,c(x)) , (1)

Dz(f(x)) = 1−max
c∈C

fz,c(x) + max
c∈C\{mz(x)}

fz,c(x) , (2)

Vz(f(x)) = 1−max
c∈C

fz,c(x) , (3)

respectively. These are then averaged over the segments
k ∈ K(x). Moreover, we examine some geometrical prop-
erties of the segments, such as their size, i.e., the number
of pixels |k| contained in k, their shape or their position in
the image. For in-depth details on the constructed metrics,
we refer to [53]. By feeding these metrics into a meta re-
gression model, we obtain prediction quality estimates for
each segment k ∈ K(x), which we denote by s(k) ∈ [0, 1].
These quality estimates approach the true segment-wise In-
tersection over Union (IoU) with reasonably high accuracy
[53]. To fit the meta regressor, we compute the metrics plus
the true IoU values of all segments included in the training
data of the segmentation network. This meta model is then
applied to unseen data, i.e., data that was not included in
the training of f , for the purpose of anomaly segmentation.
Here, we consider a segment k to be anomalous, if its qual-
ity score is below some predefined threshold τ ∈ [0, 1], i.e.,
if s(k) < τ . By that, we identify individual segments as
unknown, however, the segmentation mask of unknown ob-
jects usually consists of several segments, i.e., of different
predicted classes. As we can uniquely assign each pixel z to
a segment k(z), we obtain a binary pixel-wise classification
mask a ∈ {0, 1}|H|×|W| via

az = 1{s(k(z))<τ} ∀z ∈ H ×W , (4)

where the class label 1{s(k(z))<τ} = 1 indicates anomalous
pixels. Finally, the connected components in the anomaly

mask amerge adjacent anomalous segments into anomalous
objects. Under ideal conditions,

1. the semantic segmentation network performs perfectly
on in-distribution data,

2. the meta model detects all (but only) unknowns, and

3. novel objects of different classes are separable.

Embedding and Clustering of Image Patches. Image
clustering usually takes place in a lower dimensional latent
space due to the curse of dimensionality. To this end, we
feed image patches tailored to the anomalies into an im-
age classification CNN, which is trained on the ImageNet
dataset [13] with 1000 classes. Their feature representations
are further compressed, resulting in a two-dimensional em-
bedding space as illustrated in figure 2 (left). We apply two
commonly used dimensionality reduction techniques. For
complexity reasons, we compute the first 50 principal com-
ponents [18] before deploying the better performing t-SNE
method [60] with Euclidean distance as similarity measure.

This procedure for image embedding is adopted from
[48], where the authors evaluated several feature extrac-
tors, distance metrics and feature dimensions. We employ
the best performing setup in this quantitative analysis to
obtain clusters of visually related image patches. Beyond
that, we identify these clusters using the DBSCAN [17]
algorithm. This clustering method requires two hyperpa-
rameters, namely the radius ε ∈ R that defines a neigh-
borhood Bε(·) and a threshold Nmin ∈ N regarding the
number of data points within this ε-neighborhood. Let
E = {e1, e2, . . .} ⊂ R2 denote the set of the embedded
features. Then, an embedding is considered a core point, if
and only if it has at least Nmin neighbors, i.e.,

ei ∈ E is core point ⇔
|{ej ∈ E : ej ∈ Bε(ei)}| ≥ Nmin .

(5)

The algorithm further distinguishes between border points,
i.e., embeddings that are not core points themselves, but be-
long to a core point’s neighborhood, and noise else. To mit-
igate the risk of failures, i.e., objects from a different cate-
gory in the novel clusters, we only consider the core points.
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Figure 4. Histogram plot showing the relative frequencies of pre-
dicted classes for instances of the novel class, together with an
exemplary image.

We further reject embeddings representing image patches
that are smaller than some predefined size. The cluster with
the most remaining core points (or all clusters that involve
“enough” core points) will be used to extend the segmenta-
tion network by new classes (figure 2, right).

Novelty Segmentation. Using pseudo labels instead of
manually annotated targets is a cost-efficient (in the sense
of human effort) method of training neural networks on un-
labeled data. For the sake of simplicity we assume that
exactly one cluster is returned by the aforementioned pro-
cedure. For some image x ∈ X , we denoted the pre-
dicted segmentation mask by m(x) and the respective seg-
ments by K(x). Let Knovel(x) ⊆ K(x) describe the set
of segments k ∈ K(x) that are also included in the con-
sidered cluster. If Knovel(x) 6= ∅, i.e., image x (probably)
contains the novel class, we include the tuple (x, ỹ(x)) ∈
X × {1, . . . , C + 1}|H|×|W| into the re-training data DC+1

for learning the novel class C + 1. Here, ỹ(x) denotes the
pseudo label, where

ỹz(x) =

{
C + 1 , if k(z) ∈ Knovel(x)

mz(x) , otherwise
. (6)

An example for acquiring pseudo ground-truth for one im-
age is given in Fig. 3. In the following section we extend
the segmentation DNN f by fine-tuning it on DC+1.

4. Extension of the Model’s Semantic Space
In this section we describe our approach to semantic in-

cremental learning with the pseudo ground-truth acquired
by novelty segmentation. Starting from our initial seg-
mentation model f , we are seeking an extended model
g : X → (0, 1)|H|×|W|×(C+1) that retains the knowledge
of f while additionally learning the novel class C + 1. De-
note the extended semantic space by C+ = C ∪ {C +1}. In

more detail, we replace the ultimate layer of f and reinitial-
ize only the affected weights to obtain the initial model g for
re-training, i.e., the model we train on the newly collected
data DC+1. As loss function we apply a weighted cross en-
tropy loss [68], denoted by lce,ω . The class-wise weights
ωc ∈ (0, 1], c ∈ C+, are recalculated for each batch based
on the inverse class frequency to alleviate class imbalances.

To mitigate the problem of catastrophic forgetting [40],
we pursue two strategies, namely knowledge distillation
[23] and rehearsal [52].

Knowledge distillation in class-incremental learning
aims at minimizing variations of the softmax output re-
stricted to only the old classes c ∈ C. This is realized by
an additional distillation loss function [43] ld, where

ld(g(x), f(x))

:= − 1

|H||W|
∑

z∈H×W

∑

c∈C
fz,c(x) log(gz,c(x)) .

(7)

Overall, we aim at minimizing the objective

L := λ E[lce,ω(g(x), ỹ(x))]
+(1− λ) E[ld(g(x), f(x))], λ ∈ [0, 1]

(8)

with λ regulating the impact of the distillation loss.
Rehearsal methods propose to replay (some of) the data

Dtrain ⊂ X×C|H|×|W| seen during the training of the initial
model f . We select a subset Dknown ⊆ Dtrain that contains
as much data as DC+1. This subset is chosen largely at
random, but in such a way that it involves classes, that are

1. not or rarely present in DC+1 (class frequency), or

2. similar or related to the novel class.

As there is no measure for the second case, we identify
those classes by considering the frequency, with which a
class is predicted by f on pixels assigned to the novel
class. This is, for all data (x, ỹ(x)) ∈ DC+1 and classes
c ∈ C, we sum up the number of pixels z ∈ H ×W where
ỹz(x) = C + 1 ∧ mz(x) = c. An example is given in
Fig. 4, where the classes truck, train and car are the most
frequently predicted classes for instances of the novel class
bus.

5. Experimental Setup & Evaluation
We evaluate our approach on the task of detecting and

incrementally learning novel classes in traffic scenes, for
which there exist large datasets such as Cityscapes [11] and
A2D2 [20]. To this end, all evaluated segmentation DNN’s
were trained on a training split and only on a subset of all
available classes. We then perform our experiments on a
test split of the same dataset on which the DNN was trained
in order to extent it by exactly one novel class. We mea-
sure the performance of the extended models computing the
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evaluation metrics intersection over union (IoU), precision
and recall for a validation set.

Experimental Setup. As segmentation DNNs we em-
ploy the DeepLabV3+ [10] and the PSPNet [72]. The first
is trained for different subsets of known classes on the
Cityscapes dataset. Moreover, both models are pretrained
on Cityscapes with all 19 classes and then fine-tuned on the
A2D2 dataset. Here we use a label mapping between both
datasets through which 14 classes remain.

We perform four experiments: For the first two experi-
ments, a DeepLabv3+ [10] with a WideResNet38 backbone
is trained on the Cityscapes dataset, where 1) the classes
person & rider and 2) the class bus are excluded. In a
third experiment, a DeepLabv3+ as well as a PSPNet [72]
based on a ResNet50 backbone are fine-tuned on the A2D2
dataset, for which we specified subsets for training, testing
and validation, including 2975, 1355 and 451 annotated im-
ages, respectively. Finally, we also apply our method to the
A2D2 dataset without prior fine-tuning, i.e., under a domain
shift, employing a DeepLabV3+ trained on Cityscapes. Our
experiments follow a hierarchical structure with increasing
complexity:

1. Construction of a “well” separated category (human),

2. Construction of a category in the midst of known sim-
ilar categories (bus),

3. Construction of a new category under domain shift
with ground truth for known classes (guardrail, with
fine-tuning),

4. Construction of a new category under domain shift
without ground truth (guardrail, without fine-tuning).

Each of those initial DNNs is employed to predict the se-
mantic segmentation masks for the images contained in the
respective test set. For the segment-wise prediction quality
estimation introduced in Sec. 3, we apply a gradient boost-
ing model to obtain the quality scores s(k) ∈ [0, 1] for each
segment k ∈ K(x) and image x in the test set. The thresh-
old in Eq. (4) is set to τ = 0.5, i.e., a segment k ∈ K is
considered as anomalous, if s(k) < 0.5. To extract features
of the detected anomalies, we employ a DenseNet201 [24],
trained on the ImageNet dataset [13] with 1000 classes.
Note that the DBSCAN hyperparameters have to be selected
dependent on the density of the desired clusters.

For the class-incremental extension of an initial DNN f ,
we replace its final layer to obtain a larger DNN g (see
Sec. 4). Only the decoder of this model is trained for 70
epochs on the newly collected data DC+1 together with
the replayed data Dknown. We use random crops of size
1000×1000 pixels, the Adam optimizer with a learning rate
of 5 · 10−5 and a weight decay of 10−4. Further, the learn-
ing rate is adjusted after every iteration via a polynomial

learning rate policy [9]. The distillation loss and the cross-
entropy loss are weighted equally in the overall loss func-
tion defined in Eq. (8), i.e. λ = 0.5 (analogously to [42]).

As the four experiments struggle with different issues,
the experimental setup slightly differs. For the first case, we
construct the novel category human, which is “well” separa-
ble from all known classes, to enhance the purity of the “hu-
man cluster” and to simplify the learning of novel objects.
However, we observe that the DNN tends to “overlook”
many humans, i.e., they are assigned to the class predicted
in the background, e.g. to the road class. As a consequence,
the segment-wise anomaly detection fails to detect such per-
sons, which is why these will be assigned to other classes
in our acquired pseudo ground-truth. To not distract the ex-
tended segmentation network, we modify the pseudo labels
by ignoring all known classes c ∈ C during the incremen-
tal training procedure. The bus class added in the second
experiment is closely related to other classes in the vehicle
category, such as truck, train and car, which complicates
the construction of pure clusters. We mitigate the impact of
objects from similar classes by discarding all objects from
the cluster that consist of only one segment in the predicted
segmentation. The last two experiments deal with an addi-
tional domain shift from urban street scenes in Cityscapes
to countryside and highway scenes in A2D2. To bridge
this gap, we fine-tune the initial DNN on our A2D2 train-
ing set, which, however, requires A2D2 ground-truth for the
known classes. Without fine-tuning, the prediction quality
and thereby the quality of our pseudo ground-truth suffers.
On that account, we discard images that are generally rated
as badly predicted, i.e. where the relative amount of pixels
with a low quality estimate exceeds 1/3 of the image in to-
tal. Moreover, we renounce the replay of previously-seen
data, since this prevents the DNN from adapting to the new
domain.

Evaluation of Results. We provide a qualitative compar-
ison of different models for all four experiments in Tab. 1,
reporting the mean IoU over the known classes and over
the extended class set, denoted as mIoUC and mIoUC+ ,
respectively, as well as the IoU value of the novel class
(IoUnovelty). The models considered in this comparison are
the initial and the extended DNN, where the class space is
extended via our method. For the first and second exper-
iment we further compare our approach with a baseline,
where a DNN is extended using a self-training approach.
That is, we employ a so-called teacher network, which is
already trained on the extended semantic space C+, to pro-
duce pseudo labels for some student network. Thereby, we
obtain a high quality pseudo ground-truth. Apart from this,
the baseline DNN is extended analogously to ours. In addi-
tion, for the first three experiments we provide results of an
oracle, i.e., a DNN, that is initially trained on the extended
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Figure 5. Visualization of the results obtained for the performed experiments, where a DNN is extended by a novel class, respectively. The
top row depicts an example image & ground-truth and the predictions of the initial & extended DNN for the novelty human, the second row
for the novelty bus and the bottom rows for the novelty guardrail with prior fine-tuning. Our approach predicts the novel objects (orange)
with adequate accuracy while the predictions of the initial and the extended DNNs remain similar on previously-known objects.

class set C+ and only with human-annotated ground-truth In
the fourth experiment, we extend the initial DNN by a novel
class derived from a different dataset. To some extent, the
oracle from experiment three (a) can serve as a coarse refer-
ence for experiment four. In Tab. 2 we give a more detailed
overview about all experiments, reporting not only the IoU,
but also the precision and recall values of the novel class as
well as averaged over C and C+. Note that the third experi-
ment is evaluated twice, once for (a) the DeepLabV3+ and
once for (b) the PSPNet. For class-wise evaluation results,
we refer to the Appendix.

In general, we observe that our approach succeeds in in-
crementally extending a DNN by a novel class, while the
performance on previously-known classes remains stable.
On Cityscapes, we achieve IoU values for the novel classes
human and bus of IoUhuman = 41.42% and IoUbus =
41.85%, respectively. While these IoU values are a consid-
erable achievement for a method working without ground
truth, the distinct gaps to the oracle’s IoU values still leave
room for further improvement. Compared to the baseline
DNN, we do not achieve competitive performance in the
first experiment, while in the second experiment, our ap-

proach actually performs slightly better. This is explained
by the fact, that the pseudo ground-truth for the human
class incorporates much more noise than that for the bus
class. In the third experiment we mitigate the domain shift
from Cityscapes to A2D2 by prior fine-tuning of the net-
works, using A2D2 ground-truth. By that, we obtain IoU
values of IoUguardrail = 46.31% for the DeepLabV3+
and IoUguardrail = 18.71% for the PSPNet. We con-
clude, that our approach achieves better results for models
which are initially better-performing. Without fine-tuning
the DeepLabV3+ on A2D2, we obtain an IoUguardrail =
38.20%, while the mean IoU over the previously-known
classes C slightly increases from 59.38% to 60.69%.

6. Conclusion & Outlook
In this work, we have introduced a new and modular

procedure for the class-incremental extension of a seman-
tic segmentation network, were novel classes are detected,
annotated and learned in an unsupervised fashion. While
there already exists an unsupervised open world approach
for semantic segmentation [45], we are the first in this field
to extend a neural network’s semantic space by robust novel
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Model mIoUC IoUnovelty mIoUC+
1. experiment: Cityscapes, human DeepLabV3+
initial DNN 68.63 00.00 64.82
extended DNN (ours) 68.24 41.42 66.52
extended DNN (baseline) 69.43 59.33 68.87
oracle 71.05 72.85 71.15
2. experiment: Cityscapes, bus DeepLabV3+
initial DNN 66.94 00.00 63.42
extended DNN (ours) 67.05 41.85 65.72
extended DNN (baseline) 66.74 41.40 65.41
oracle 69.48 76.66 69.86
3. experiment (a): A2D2, guardrail DeepLabV3+ (fine-tuned)
initial DNN 75.77 00.00 70.72
extended DNN (ours) 71.73 46.31 70.03
oracle 75.23 74.58 75.19
3. experiment (b): A2D2, guardrail PSPNet (fine-tuned)
initial DNN 68.77 00.00 64.19
extended DNN (ours) 65.64 18.71 62.51
oracle 67.71 69.08 67.80
4. experiment: A2D2, guardrail DeepLabV3+ (not fine-tuned)
initial DNN 59.38 00.00 55.42
extended DNN (ours) 60.69 38.20 59.19

Table 1. Comparing overview of all evaluated models, where the
results for our extended DNNs are highlighted in gray. As per-
formance metrics, we provide the mean IoU over the old and new
classes, denoted by mIoUC and mIoUC+ , respectively, and the IoU
value of the novel class, IoUnovelty.

IoU precision recall IoU precision recall
1. experiment: DeepLabV3+
Cityscapes, human initial extended
human 00.00 00.00 00.00 41.42 59.73 57.48
mean over C 68.63 79.79 80.94 68.24 84.28 76.08
mean over C+ 64.82 75.36 76.44 66.75 82.91 75.05
2. experiment: DeepLabV3+
Cityscapes, bus initial extended
bus 00.00 00.00 00.00 41.85 53.99 65.06
mean over C 66.94 79.32 79.55 67.05 82.03 76.50
mean over C+ 63.42 75.15 75.36 65.72 80.56 75.90
3. experiment (a): DeepLabV3+
A2D2, guardrail initial extended
guardrail 00.00 00.00 00.00 46.31 81.61 51.70
mean over C 75.77 87.86 83.47 71.73 89.10 78.01
mean over C+ 70.72 82.00 77.90 70.03 88.60 76.26
3. experiment (b): PSPNet
A2D2, guardrail initial extended
guardrail 00.00 00.00 00.00 18.71 66.37 20.67
mean over C 68.77 84.57 76.79 65.64 85.97 72.50
mean over C+ 64.19 78.93 71.67 62.51 84.66 69.05
4. experiment: DeepLabV3+
A2D2, guardrail initial extended
guardrail 00.00 00.00 00.00 38.20 58.30 52.57
mean over C 59.38 79.50 68.14 60.69 83.91 66.71
mean over C+ 55.42 74.20 63.60 59.19 82.20 65.77

Table 2. Direct comparison of the initial and the extended DNNs
for all conducted experiments. We report the IoU, precision and
recall values for the novel class (highlighted with gray rows), re-
spectively, as well as averaged over the previously-known and the
extended class spaces C and C+.

classes. We performed four hierarchically structured exper-

iments with an increasing level of difficulty. We demon-
strated that our approach can deal with novelties that are
either “well” separated or related to known categories, and
that it is even applicable when the test data is sampled from
a slightly different distribution than the DNN was trained
on. Moreover, we applied two different models in the third
experiment, where the initial DeepLabV3+ already outper-
formed the initial PSPNet. This performance gap is also re-
flected in the model’s ability to learn the novel class, thus we
conclude that our method benefits significantly from high
performance networks.

For future work, we plan to extend a neural network by
multiple classes at once. On that account, suitable datasets
are in demand. Two datasets for the task of anomaly seg-
mentation were recently published in [7], however, these
show a wide variety of anomalous objects. To advance the
research in class-incremental learning, it requires datasets
where novel objects, i.e., objects that do not appear in the
training data, appear frequently in the test data. Besides, we
plan to adapt our approach to video instead of image data,
where anomaly detection includes anomaly tracking over
multiple frames.

Our source code is publicly available under
https://tba.

7. Limitations & Negative Impact
With the procedure presented in this work, we are taking

a first step towards a new machine learning problem. This
first step is highly experimental and our method has not
the technology readiness level to be applied to real-world
problems in a fully automated fashion. Especially from the
safety point of view, a neural network should not be modi-
fied without any supervision, since we can not guarantee to
avoid significant performance drops.
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Figure 6. Histogram plot showing the relative frequencies of pre-
dicted classes for instances of the novel class human.

Supplementary Material

A. Evaluated Models
We performed five experiments that differ in terms of

underlying datasets, network architectures and novelties. In
this section we provide a class-wise evaluation of each ini-
tial and extended DNN, as well as example images for all
evaluated models, i.e., also for the baseline and the oracle
DNNs.

A.1. Experiment 1

For the first experiment, we trained a DeepLabV3+ on
the Cityscapes dataset, excluding the classes pedestrian and
rider, both together constituting the class human. This nov-
elty is well separable from all the known classes as these
belong to different, non-organic categories. As there are no
similar classes, humans are either totally “overlooked” by
the segmentation DNN, i.e., assigned to the class predicted
in their background, or predicted as related classes, e.g. as
bicycle, motorcycle or car (cf. Fig. 6). Since our anomaly
detection method fails to spot overlooked persons, these re-
main mislabeled even in the pseudo ground-truth, thus neg-
atively affecting the incremental training procedure. For an
example we refer to Fig. 7, where a cyclist is assigned to the
background classes road and car. To prevent this issue, we
ignore all known classes c ∈ C present in the pseudo labels.
Our newly collected dataDC+1 contains 76 pseudo-labeled
images. The replayed training data is selected such that at
least 25% - 35% of the images contain cars, motorcycles
and bicycles, respectively.

We evaluated the initial and the extended DNN on the
Cityscapes validation data. Class-wise results are provided
in Tab. 3. Besides the novel class, which achieves an
IoU value of about 40% with nearly 60% precision and
recall, the incremental training has only little impact on
previously-known classes. For many classes, however, we
observe an improvement in precision at the expense of the
corresponding recall values, e.g. for the classes fence, truck
and train. This is also reflected in the mean precision and re-
call values over C, i.e., while precision increases by 4.49%,
recall decreases by 4.86%. Especially the classes motor-
cycle and bicycle gain performance regarding the IoU and

Image patch Predicted segmentation Quality estimation

Figure 7. Image patch, semantic segmentation and prediction qual-
ity estimation for a scene, where a cyclist is overlooked by the
initial DNN.

1. experiment DeepLabV3+
Cityscapes, human initial extended
Class IoU precision recall IoU precision recall
road 97.34 98.35 98.96 97.46 98.68 98.75
sidewalk 80.63 89.39 89.16 80.78 89.31 89.43
building 88.91 92.80 95.50 89.30 93.11 95.62
wall 47.24 74.57 56.32 47.48 78.33 54.67
fence 51.03 66.76 68.41 49.31 69.48 62.95
pole 52.90 72.68 66.02 53.25 73.74 65.70
traffic light 55.44 75.04 67.98 55.28 76.02 66.96
traffic sign 66.66 86.22 74.61 65.72 88.99 71.54
vegetation 89.95 93.60 95.85 90.17 94.21 95.46
terrain 56.29 77.66 67.17 54.53 75.66 66.13
sky 93.76 96.38 97.18 93.47 95.69 97.57
human 00.00 00.00 00.00 41.42 59.73 57.48
car 90.61 92.97 97.27 91.21 95.26 95.54
truck 69.66 80.23 84.09 69.30 84.88 79.06
bus 76.90 88.59 85.35 72.52 87.26 81.11
train 70.35 83.33 81.87 62.06 91.68 65.76
motorcycle 24.45 28.57 62.92 30.45 64.38 36.61
bicycle 54.57 59.30 87.24 57.72 76.01 70.57
mean over C 68.63 79.79 80.94 68.24 84.28 76.08
mean over C+ 64.82 75.36 76.44 66.75 82.91 75.05

Table 3. In-depth evaluation on the Cityscapes validation
data for the first experiment, where we incrementally extend a
DeepLabV3+ by the novel class human on the Cityscapes dataset.
We provide IoU, precision and recall values obtained for both, the
initial and the extended DNN, on a class-level as well as averaged
over the classes in C and C+, respectively.

precision, which is mainly due to human pixels initially
assigned to those classes, while the proportion of bikes
(motor- or bicycles) that are predicted correctly drops sig-
nificantly.

A comparison of all evaluated models in the first exper-
iment is illustrated for an example image in Fig. 8. We ob-
serve a reduction of noise in the model’s predictions, start-
ing from the initial DNN, to the extended DNN, the baseline
and the oracle. Nonetheless, the predicted segmentation of
our extended DNN comes close to those predicted by the
comparative models that both require ground-truth for the
novel class.
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Figure 8. Comparison of the semantic segmentation predictions of all DNNs evaluated in the first experiment for an exemplary scene from
the Cityscapes validation data.

A.2. Experiment 2

The setup of the second experiment is the same as in the
first one (DeepLabV3+, Cityscapes dataset), but excluding
busses from the set of known classes instead of humans.
This novelty belongs to the vehicle category, thus being akin
to other vehicle classes as train or truck. These are also the
classes the objects declared as novel were predicted for the
most part, as we illustrated in Fig. 4. On that account, at
least 50% of the 55 images in DC+1 contain trucks, 30%
trains. As a consequence of the visual relatedness, trucks
and trains that exhibit a low prediction quality, i.e., that are
treated as anomalies, contaminate the cluster of busses in
the two-dimensional embedding space. We observed, that
the segmentation network predicts most of these “detected”
trucks and trains correctly, while it assigns multiple classes,
i.e., multiple segments in the semantic segmentation predic-
tion, to a bus. Thus, we delete anomalies from the embed-
ding space, whose predicted segmentation consists of only
one segment (ignoring segments with less than 500 pixels).

Again, we provide a class-wise evaluation on the
Cityscapes validation split in Tab. 4 and present a compar-
ison of different models for one exemplary street scene in
Fig. 9. Here, large parts of the bus in the foreground are pre-
dicted correctly by our extended DNN. The bus in the back-
ground is even better recognized by our network than by the
baseline and oracle. Analogous to the first experiment, the
most similar classes truck and train show increasing IoU
and precision, but decreasing recall values. Averaged over
the known classes c ∈ C, we again observe improvement in
IoU and precision with a concurrent drop in recall. Aver-
aged over the extended class set C+, all three performance
measures increase after class-incremental learning.

A.3. Experiment 3(a)

The third experiment involves two different network ar-
chitectures. Results for the first one are shown in experi-
ment 3(a), results for the other one in 3(b). We start with
a DeepLabV3+ network trained on the Cityscapes dataset
and aim to detect and learn the guardrail class using images
taken from the A2D2 dataset. To mitigate a performance
drop caused by the domain shift from Cityscapes to A2D2,
we first fine-tune the decoder for 70 epochs on our A2D2
training split, applying the same hyperparameters we used

2. experiment DeepLabV3+
Cityscapes, bus initial extended
Class IoU precision recall IoU precision recall
road 97.63 98.81 98.80 97.51 98.85 98.63
sidewalk 81.60 89.65 90.09 81.40 89.70 89.79
building 90.19 94.50 95.19 90.12 94.35 95.26
wall 48.77 78.07 56.51 44.67 78.75 50.80
fence 53.86 70.97 69.08 52.78 69.68 68.50
pole 55.03 75.71 66.83 54.34 77.36 64.61
traffic light 55.87 77.29 66.84 55.46 78.44 65.44
traffic sign 68.21 87.02 75.94 67.64 88.81 73.94
vegetation 90.35 93.98 95.91 90.21 93.83 95.90
terrain 54.03 79.90 62.53 51.60 71.71 64.79
sky 93.64 96.14 97.30 93.56 96.43 96.91
person 71.65 83.27 83.70 71.11 82.19 84.05
rider 48.77 68.86 62.58 46.60 71.87 57.00
car 91.90 94.65 96.94 91.67 94.91 96.40
truck 47.51 51.19 86.87 53.08 71.51 67.32
bus 00.00 00.00 00.00 41.85 53.99 65.06
train 43.57 48.58 80.88 55.14 71.35 70.83
motorcycle 44.35 61.76 61.13 42.37 70.25 51.63
bicycle 68.00 77.42 84.82 67.61 76.62 85.19
mean over C 66.94 79.32 79.55 67.05 82.03 76.50
mean over C+ 63.42 75.15 75.36 65.72 80.56 75.90

Table 4. In-depth evaluation on the Cityscapes validation data
for the second experiment, where we incrementally extend a
DeepLabV3+ by the novel class bus on the Cityscapes dataset.
We provide IoU, precision and recall values obtained for both, the
initial and the extended DNN, on a class-level as well as averaged
over the classes in C and C+, respectively.

for the incremental training (see Sec. 5). By that, we im-
prove the mean IoU of the initial network from 59.38% to
75.77%. The classes which suffer the most are person, mo-
torcycle and bicycle, which is presumably due to their rare
occurrence on country roads and highways, and therefore,
low frequency in the re-training data, which involves only
30 pseudo-labeled and 30 replayed images. Further details
are provided in Tab. 5.

A.4. Experiment 3(b)

In experiment 3(b), we employ a PSPNet instead of a
DeepLabV3+, for the rest we proceed as in the previous
subsection. Again, the training data consists of 30 images
with pseudo ground-truth and 30 labeled, replayed images
(containing only old classes) from the A2D2 training split.
Note that these 30 images are not the same as in experi-
ment 3(a) due to the different network providing predic-
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Figure 9. Comparison of the semantic segmentation predictions of all DNNs evaluated in the second experiment for an example image
from the Cityscapes validation data.

3. experiment (a) DeepLabV3+
A2D2, guardrail initial extended
Class IoU precision recall IoU precision recall
road 95.59 97.21 98.29 95.83 97.85 97.89
sidewalk 72.01 86.73 80.92 71.84 85.62 81.70
building 87.82 93.58 93.44 85.22 93.76 90.34
fence 59.35 81.59 68.53 56.61 76.74 68.34
pole 56.13 76.39 67.91 54.12 78.61 63.47
traffic light 68.41 85.10 77.72 64.84 85.33 72.97
traffic sign 76.34 86.78 86.38 74.37 90.71 80.51
vegetation 91.61 94.01 97.29 91.90 94.45 97.15
sky 97.96 98.72 99.22 97.87 98.63 99.22
person 67.60 79.28 82.11 63.73 86.91 70.49
car 93.19 96.73 96.22 92.34 96.20 95.84
truck 84.99 88.51 95.53 81.50 85.28 94.84
motorcycle 48.68 84.71 53.37 23.51 92.29 23.98
bicycle 61.08 80.65 71.57 50.48 85.00 55.42
guardrail 00.00 00.00 00.00 46.31 81.61 51.70
mean over C 75.77 87.86 83.47 71.73 89.10 78.01
mean over C+ 70.72 82.00 77.90 70.03 88.60 76.26

Table 5. In-depth evaluation on the A2D2 validation data for the
third experiment, where we first fine-tune and then incrementally
extend a DeepLabV3+ by the novel class guardrail on the A2D2
dataset. We provide IoU, precision and recall values obtained for
both, the initial and the extended DNN, on a class-level as well as
averaged over the classes in C and C+, respectively.

tions of estimated low quality on different images. In to-
tal, the initial and the extended PSPNet are outperformed
by DeepLabV3+, however, both architectures show similar
patterns:

• extended DNN exhibits a high precisionguardrail and a
low recallguardrail

• classes that are mostly affected by re-training: person,
motorcycle, bicycle

• averaged over C and C+, respectively, IoU and recall
values decrease, precision values increase

For more detailed information we refer to Tab. 6.

A.5. Experiment 4

Finally, we perform the same experiment as in 3(a) with-
out prior fine-tuning the initial DNN on A2D2. Conse-
quently, the domain shift causes many noisy predictions, ex-
hibiting low prediction quality estimates. We exclude such
images from the further process based on two criteria:

1. mean quality score (averaged over pixels) less than 0.7

3. experiment (b) PSPNet
A2D2, guardrail initial extended
Class IoU precision recall IoU precision recall
road 95.18 97.10 97.96 95.14 97.08 97.94
sidewalk 66.15 83.68 75.94 62.13 84.04 70.45
building 84.32 92.46 90.54 82.56 94.00 87.15
fence 54.48 76.84 65.18 52.87 75.93 63.52
pole 44.60 63.94 59.59 43.33 63.02 58.10
traffic light 58.94 81.14 68.30 56.07 82.39 63.70
traffic sign 71.30 87.71 79.22 70.19 87.85 77.74
vegetation 90.68 93.12 97.18 89.87 91.99 97.50
sky 97.57 98.44 99.10 97.41 98.38 99.00
person 59.17 82.53 67.64 50.87 82.47 57.03
car 89.39 94.36 94.44 87.84 94.69 92.39
truck 77.83 84.05 91.31 74.64 83.73 87.31
motorcycle 19.73 76.72 20.99 07.76 88.79 07.84
bicycle 53.49 71.82 67.70 48.33 79.23 55.34
guardrail 00.00 00.00 00.00 18.71 66.37 20.67
mean over C 68.77 84.57 76.79 65.64 85.97 72.50
mean over C+ 64.19 78.93 71.67 62.51 80.24 69.05

Table 6. In-depth evaluation on the A2D2 validation data for the
third experiment, where we first fine-tune and then incrementally
extend a PSPNet by the novel class guardrail on the A2D2 dataset.
We provide IoU, precision and recall values obtained for both, the
initial and the extended DNN, on a class-level as well as averaged
over the classes in C and C+, respectively.

Predicted segmentation Quality estimation

Figure 10. Illustration of prediction quality differences (green
color indicates high, red color low prediction quality), caused by
the domain shift from Cityscapes to A2D2, mainly due to weather
conditions.

2. more than 1/3 of all pixels with quality estimate less
than 0.9.

If at least one criterion holds, we reject the image, as illus-
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Figure 11. Comparison of the semantic segmentation predictions of all models incrementally extended by the guardrail class for an example
image from the A2D2 validation split.

4. experiment DeepLabV3+
A2D2, guardrail initial extended
Class IoU precision recall IoU precision recall
road 89.88 92.18 97.30 93.66 95.24 98.26
sidewalk 47.91 76.22 56.33 50.84 82.17 57.14
building 70.94 86.88 79.45 67.38 89.21 73.36
fence 26.08 35.30 49.94 27.52 44.52 41.87
pole 42.59 59.24 60.25 39.69 58.41 55.32
traffic light 47.59 85.85 51.64 44.87 94.30 46.12
traffic sign 54.89 82.49 62.13 54.82 88.13 59.19
vegetation 69.15 96.68 70.83 74.71 94.09 78.39
sky 94.96 98.25 96.59 96.16 96.79 99.33
person 59.77 71.00 79.08 60.88 85.72 67.75
car 90.47 95.72 94.28 90.26 95.07 94.69
truck 62.64 83.61 71.40 67.90 92.92 71.61
motorcycle 28.39 70.82 32.15 35.49 78.73 39.26
bicycle 46.04 78.74 52.57 45.54 79.37 51.65
guardrail 00.00 00.00 00.00 38.20 58.30 52.57
mean over C 59.38 79.50 68.14 60.69 83.91 66.71
mean over C+ 55.42 74.20 63.60 59.19 82.20 65.77

Table 7. In-depth evaluation on the A2D2 validation data for the
third experiment, where we incrementally extend a DeepLabV3+
(trained on Cityscapes) by the novel class guardrail on the A2D2
dataset. We provide IoU, precision and recall values obtained for
both, the initial and the extended DNN, on a class-level as well as
averaged over the classes in C and C+, respectively.

trated in the bottom row of Fig. 10.
Applying our method, we obtain 29 pseudo-labeled im-

ages. The incorporation of data seen during training of the
initial DNN, i.e., the Cityscapes training data, restrains the
network from adapting onto the new domain. We therefore
decided to extend the model only on DC+1.

Class-wise evaluation results are reported in Tab. 7. De-
spite the domain shift, we still achieve an IoU of 38.20% for
the novel class, which is “only” 8.11% less than the value

obtained with prior fine-tuning. However, this DNN still
outperforms the PSPNet from the previous experiment, al-
though no A2D2 ground truth is involved at all. For most
other classes, the IoU values increase or remain roughly the
same. In contrast to the other experiments, the motorcycle
class improves in IoU, precision and recall values.

A visual comparison of the experiments 3(a), 3(b) and
4 is provided in Fig. 11. All three extended DNNs have
learned to predict the novel class to some extent. The
prior fine-tuned networks show similar predictions, though
DeepLabV3+ is much more precise than the PSPNet and
better recognizes the guardrail on the right. The model from
the fourth experiment predicts the left guardrail as fence
(which is not totally mistaken), though it performs better
on the right-hand guardrail than the others. Both oracles
illustrate, that the guardrail class is learnable with high ac-
curacy, still leaving room for improvement of unsupervised
methods.


