
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 21/36

Hanno Gottschalk, Matthias Rottmann and Maida Saltagic

Does Redundancy in AI Perception Systems
Help to Test for Super-Human Automated

Driving Performance?

December 10, 2021

http://www.imacm.uni-wuppertal.de



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Does Redundancy in AI Perception Systems
Help to Test for Super-Human Automated
Driving Performance?
Hanno Gottschalk1, Matthias Rottmann1, and Maida Saltagic2

Abstract While automated driving is often advertised with better-than-human driving performance,
this work reviews that it is nearly impossible to provide direct statistical evidence on the system level
that this is actually the case. The amount of labeled data needed would exceed dimensions of present
day technical and economical capabilities. A commonly used strategy therefore is the use of redun-
dancy along with the proof of sufficient subsystems’ performances. As it is known, this strategy is
efficient especially for the case of subsystems operating independently, i.e., the occurrence of errors is
independent in a statistical sense. Here, we give some first considerations and experimental evidence
that this strategy is not a free ride as the errors of neural networks fulfilling the same computer vision
task, at least for some cases, show correlated occurrences of errors. This remains true, if training data,
architecture, and training are kept separate or independence is trained using special loss functions.
Using data from different sensors (realized by up to five 2D projections of the 3D MNIST data set) in
our experiments is more efficiently reducing correlations, however not to an extent that is realizing the
potential of reduction of testing data that can be obtained for redundant and statistically independent
subsystems.

1 Introduction
The final report of the ethics committee on automated and connected driving [FBB+17] at the German
Federal Ministry of Transportation and Digital Infrastructure, starts with the sentences3 "Partially and
fully automated traffic systems serve first and foremost to improve the safety of all road users. [...]
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Protecting people takes precedence over all other utilitarian considerations. The goal is to reduce harm
up to complete prevention. The approval of automated systems is only justifiable if, in comparison
with human driving performance, they promise at least a reduction of damage in the sense of a positive
risk balance". This pronounced statement sets highest safety goals. In this article, we contemplate the
feasibility of a justification based on direct empirical evidence.
If it comes to automated driving, the elephant in the room is the outrageous amount of data that is
needed to empirically support the safety requirement set up by the ethics committee with a direct
measurement. This article, however, is not the elephant’s first sighting, see, e.g., [KP16], where it
is shown that hundreds of millions to billions of test kilometers are required for statistically valid
evidence on better-than-human driving performance by automated vehicles. While in this article the
basic statistical facts on the measurement of the probability of rare events are revisited and adapted
to a German context, we slightly extend the findings by estimating the data required for testing of
AI-based perception functionality using optical sensors along with an estimate of the labeling cost for
a sufficient test database.
What is new in this article is a statistical discussion and preliminary experimental evidence on redun-
dancy as a potential solution to the aforementioned problem. The decomposition of the system into
redundant subsystems, each one capable to trigger the detection of other road users without fusion
or filtering, largely reduces the amount of data needed to test each subsystem. However, this is only
true if failure of the subsystems is statistically independent of the other subsystems. This leads to the
question (a) how to measure independence and (b) whether the actual behavior of neural networks
supports the independence assumption.
A study on the role of independence in ensembles of deep neural networks was presented in [LWC+19],
where the goal was rather (1) to improve performance by selecting ensemble members according to
different diversity scores and (2) to obtain robustness against adversarial attacks. In [WLX+20], a
number of different consensus algorithms, i.e., ensemble voting algorithms, are compared according
to different evaluation metrics. Also in that work, networks are trained independently and selected
afterwards.
In our own studies of independence of the occurrence of error events in the prediction of neural net-
works, we provide experiments for classification with deep neural networks on the academic datasets
EMNIST [CATvS17], CIFAR10 [Kri09], and 3D-MNIST4. We consider networks with increasing de-
gree of diversity with respect to training data, architecture, and weight initialization. Even the most
diverse networks exhibit Pearson correlation close to 0.60, which clearly contradicts the hypothesis of
independence. Also, re-training committees of up to 5 networks with special loss functions to increase
independence between committee members by far does not achieve the k-out-of-n performance pre-
dicted for independent subsystems [Zac92, ME14]. While it is possible to bring the mean correlation
down to zero by special loss functions in the training, this, at least in our preliminary experiments,
at the same time deteriorates the performance of the committee members. As the main take away,
redundancy does not necessarily provide a solution to the testing problem.

4https://www.kaggle.com/daavoo/3d-mnist
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In this article, we do not aim at presenting final results, but only to provide a contribution to an in-
evitable debate.
The remainder of this work is organized as follows: In the next section, we evaluate some numbers
from the traffic by motor vehicles in the last pre-pandemic year in Germany, 2019. In Section 3, we
recall some basic facts on the statistics of rare events of an entire system or a system of redundant
subsystems. While independent redundant subsystems largely reduce the amount of data required for
testing, we also consider the case of correlated subsystems for which the data requirements scale down
less neatly. Also, we discuss the amount of data required to actually prove sufficiently low correlation.
In Section 4, we test neural networks for independence or correlation for simple classification prob-
lems. Not surprisingly, we find that such neural networks actually provide correlated error schemes
and the system performance falls far behind the theoretically predicted performance for the error of
statistically independent classifiers. This holds true even if we train networks to behave independently
or feed the networks with different (toy) sensors. This demonstrates that independence cannot be taken
for granted and it might be even hard to achieve through training methods. We give our conclusions
and provide a brief outlook on other approaches that have potential to resolve the issue of outrageous
amounts of labeled data for a direct assurance case in the final Section 5.

2 How Much Data is Needed for Direct Statistical Evidence of
Better-Than-Human Driving?

We focus on the loss of human life as the most important safety requirement. Our frame of reference
is set by the traffic in Germany in the year 2019. For this year, the Federal Ministry of Transport
and Digital Infrastructure reports 3,046 fatalities which results in 4.0 fatalities per billion kilometers
driven on German streets in total and 1.1 fatalities per billion kilometers on motorways, see [Ger20,
p. 165] for these and more detailed data.
If we neglect that some accidents do not involve human drivers, that in deadly accidents oftentimes
more than one person is killed and that a large number of those killed did not cause the fatal accident,
we obtain a lower bound of at least 250 million kilometers driven per fatality caused by the average
human driver. Research on how much this is underestimating the actual distance is recommended but
beyond the scope of this work. For an upper bound we multiply this number by an ad hoc safety factor
of 10.
Assuming an average velocity in the range of 50 to 100 km/h, this amounts to an average time of about
2.5 to 50 million hours or 285 to 5,700 years of permanent driving until the occurrence of a single
fatal accident. If a camera sensor works at a frame rate of 20 to 30 fps, (1.8 to 54)× 1011 frames are
processed by the AI-system in this time, corresponding to 0.18 to 5.4 exabyte (1 exabyte = 1 × 1018

bytes) of data, assuming 1 megabyte per high resolution image.
Several factors can be identified that would leverage or discount the amount of data required for a
direct test of better-than-human safety. We do not claim that our selection of factors is exhaustive
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and new ideas might change the figures in the future. Nevertheless, here we present some factors that
certainly are of importance.
First, due to strong correlation of consecutive frames, the frame rate of 20 to 30 fps presumably can be
reduced for labeled data. Here, we take the approach that correlation probably is high if the automated
car has driven less than one meter, but after 10 meters driven there is probably not much correlation
left that one could infer the safety of the automated car and its environment from the fact that it was
safe 10 m back. At the same time, this approach eliminates the effect of the average traveling speed.
One could argue further that on many frames no safety-relevant instance of other road users is given and
one could potentially avoid labeling such frames. However, from the history of fatal accidents with the
involvement of autopilots we learn that such accidents could even be triggered in situations considered
to be non-safety-critical from a human perspective, see, e.g., [Nat20]. As a direct measurement of
safety should not be based on assumptions, unless they can be supported by evidence, we do not
suggest to introduce a discounting factor as we would have to assume without proof that we could
separate hazardous from non-hazardous situations. This of course does not exclude that a refined
methodology is developed in the future that is capable to provide this separation and we refer to the
extensive literature on corner cases, see, e.g., [BBLFs19, BTLFs20, BTLFs21, HBR+21].
On the other hand, as we will present in Section 3, a statistically valid estimate on the frequency of
rare events requires a leverage factor of at least 3 to 10 applied on the average number of frames per
incident, see Section 3.1 for the details and precise values.
Further, in the presence of a clear trend of the reduction of fatalities in street traffic [Ger20] (potentially,
partially due to AI-based assistance systems already) a mere reproduction of the present day level of
safety in driving does not seem to be sufficient. Without deeper ethical or scientific justification, we
assume that humans expect an at least 10 to 100 times lower failure rate of robots than they would
concede themselves, while at the same time, we recommend further ethical research and political
debate on this critical number. Even with a reduction number of 100, the approximately 30 fatalities
due to autonomous vehicles would well exceed the risk of being struck by lightning causing ∼ 4

fatalities per year in Germany5, which often is considered as a generally acceptable risk.
In addition, several failure modes exist aside AI-based perception that cause fatalities in transportation.
We therefore must not reserve the entire cake of acceptable risk to perception-related errors, only.
Instead, here we suggest a fraction of 1

10
to 1

2
of the entire acceptable risk for perception-related root

causes of fatalities. Also at this place, we recommend more serious research, ethical consideration,
and public debate.
Drawing all this together, we obtain a total number of frames that ranges in between 1.50 trillion frames
in the best case scenario to 23,000 trillion frames, or 1.5 to 23,000 exabyte (in the year of reference
2019 the entire internet contained 33,000 exabyte6 of data). This computation is summarized from
Table 1.

5https://www.vde.com/de/blitzschutz/infos/bitzunfaelle-blitzschaeden#statistik
6Here, for clarity, we use powers of 10, e.g., 1000, instead of powers of 2, e.g., 1024.
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Note that replacing fatalities with injuries reduces the amount of data by roughly a factor of one hun-
dred (exact number for 2019 4/509) [Ger20].
A direct measurement of reliability of an AI-perception system requires labeled data and the time to
annotate a single frame by a human ranges from a couple of minutes for bounding box labeling up
to 90 minutes for a fully segmented image [Sch19]. Working with the span of 5 to 90 minutes per
annotated frame and a span of wages from a minimum wage of 9.19 Euro for Germany in our year of
reference 2019 as lower bound to 15 EUR as upper bound, the cost of labeling a single image ranges
between 0.775 and 22.5 EUR.
The total cost for labeling of test data to produce direct statistical evidence therefore ranges between
1.16 trillion in the best case and 51,800 trillion Euro in the worst case. This compares to 3.5 trillion
Euro of Germany’s gross domestic product in 2019.
We conclude in agreement with [KP16] that direct and assumption-free statistical evidence of safety of
the AI-based perception function of an automated vehicle that complies with the safety requirements
derived from the ethics committee’s final report is largely infeasible with the present day technology.
Certainly, this does not say anything about whether an AI-based system for automated driving actually
would be driving better-than-human. Many experts, including the authors, believe it could be, at
least in the long run. But the subjective believe of technology-loving experts — in the absence of
direct evidence — is certainly insufficient to give credibility to the promise of enhanced safety due to
automated driving in the sense of the ethics committee’s introductory statement.
This of course does not exclude that safety arguments which are based on indirect forms of evidence,
are reasonable and possible, if they are based on assumptions that can be and are carefully checked.
In fact, in the following, we discuss one such potential strategy based on redundancy and report some
problems and some progress with this approach applied to small, academic examples.

3 Measurement of Failure Probabilities

3.1 Statistical Evidence for Low Failure Probability

In this subsection we provide the mathematical reasoning for the leverage factor of 2.99 to 9.21 that
accounts for statistical evidence. Let us denote by p the actual probability of a fatal accident for
one single kilometer of automated driving. We are looking for statistical evidence that p ≤ ptol =
ftol ·phuman, where ftol is a debit factor for enhanced safety of robots and multiple technical risks. From
Table 1 we infer that ftol ∈ [ 1

1000
, 1
20
] taking into account the fraction of perception risk from total

risk and the additional safety due to automated driving, cf. Section 2. Here, phuman ≈ 1
250,000,000

is the
(estimated, upper bound) probability of a fatal accident caused by a human driver per driven kilometer.
With p̂ = Nobs

Ntest we denote the estimated probability of a fatal accident per kilometer driven for the
autonomous vehicle based on the observed number of fatal accidents Nobs on Ntest kilometers of test
driving. We want to test for the alternative hypothesis H1 that p is below ptol at a level of confidence

5
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Table 1. Factors and numbers that influence the data requirement for a statistically sound assurance
case by direct testing. Safety factors (↑) multiply and reduction factors (↓) divide the number
of frames/cost.

Description ↑↓ Quantity Quantity Unit Source Frames Frames
Lower Bound Upper Bound Lower Bound Upper Bound

Meters to fatal 2.50× 1011 2.50× 1012 m [Ger20]
accident (2019) & ad hoc
Meters driven ↓ 1 10 m/f ad hoc 2.50× 1010 2.50× 1012

per frame assumption
Factor for ↑ 2.99 9.21 factor Section 7.49× 1010 2.30× 1013

stat. evidence α = 5% α = 0.01% 3.1
Add. safety by ↑ 10 100 factor ad hoc 7.49× 1011 2.30× 1015

autom. driving assumption
Fraction of perception ↓ 1

10
1
2

factor ad hoc 1.50× 1012 2.30× 1016

risk from total risk assumption
Cost (EUR) Cost (EUR)
lower bound upper bound

Labeling time ↑ 5 90 min [Sch19]
per frame & ad hoc

Hourly wages ↑ 9.19 15 EUR/h minimum wage GER
2019 & ad hoc

Cost per frame ↑ 0.775 22.5 EUR/f 2 rows above
Total cost EUR frames× 1.16× 1012 5.18× 1017

cost per frame

1 − α with α ∈ (0, 1) a small number, e.g., α = 5%, 1%, 0.1%, 0.01% or even smaller. We thus
assume the null hypothesis H0 that p ≥ ptol using that under the null hypothesis Nobs ∼ B(Ntest, ptol)
is Bernoulli distributed with probability ptol and Ntest repetitions. The exact one-sided Bernoulli test
rejects the null hypothesis and accepts H1 provided that

1− α ≤ PN∼B(Ntest,ptol)(N > Nobs) = 1− PN∼B(Ntest,ptol)(N ≤ Nobs)

= 1−
Nobs∑

j=0

(
Ntest
j

)
(ptol)

j (1− ptol)
Ntest−j .

(1)

The reasoning behind (1) is the following: Assume H0, i.e., the true probability of a fatal accident due
to the autonomous vehicle would be higher than ptol. Then, with high probability of at least 1− α we
would have seen more fatal accidents than just Nobs, which we actually observed. This puts us in front
of the alternative to either believe that in our test campaign we just observed an extremely rare event
of probability α, or to discard the hypothesis H0 that the safety requirements are not fulfilled.
Let us suppose for the moment that the outcome of the test campaign is ideal, i.e., no fatal accidents
are observed at all, i.e., Nobs = 0. In this ideal case, (1) is equivalent to

α ≥ (1− ptol)
Ntest ⇔ − ln(α)

Ntest
≤ − ln (1− ptol) ≈ ptol, (2)

6
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where we used the 1st order Taylor series expansion of the natural logarithm at 1, which is highly
precise as ptol is small. Thus, even in the ideal case of zero fatalities observed, Ntest ≥ − ln(α)

ptol
is

required. For α ranging between 5% and 0.01%, − ln(α) roughly ranges between 3 (numerical value
2.9976) and 10 (numerical value 9.2103). This explains the back of the envelope estimates in Section
2.
Note that the approach of [KP16] differs as it is based on a rate estimate for the Poisson distribution.
Nevertheless, as binominal and Poisson distribution for low probabilities approximate each other very
well, this difference is negligible, as the difference is essentially proportional to the event of two or
more fatal incidents in one kilometer driven.

3.2 Test Data for Redundant Systems

Assuming independence of subsystems: Let (x, y) be a pair of random variables, wherex ∈ X rep-
resents the input data presented to two neural networks h1 and h2, and y ∈ Y denotes the corresponding
ground truth label. We assume that (x, y) follows a joint distribution P possessing a corresponding
density p. For each neural network, the event of failure is described by

Fi := {hi(x) ̸= y} , i = 1, 2,

with 1Fi
being their corresponding indicator variables that are equal to one for an event in Fi and zero

else. If and only if we assume independence of the events Fi, we obtain
E[1F1 · 1F2 ] = P(F1 ∩ F2) = P(F1) · P(F2) = E[1F1 ] · E[1F2 ] ,

which implies that the covariance fulfills
COV(1F1 , 1F2) = E[1F1 · 1F2 ]− E[1F1 ] · E[1F2 ] = 0 .

This is easily extended to n neural networks hi(x), i ∈ I = {1, . . . , n} and their corresponding failure
sets Fi. Under the hypothesis of independence of the family of events Fi, we obtain

psystem = E

[∏

i∈I
1Fi

]
=
∏

i∈I
P(Fi) =

∏

i∈I
psub,i,

where psystem is the probability of failure of a system of #I = n redundant neural networks working
in parallel, where failure is defined as all networks being wrong at the same time [ME14] and psub,i =
P(Fi) is the probability of failure for the i-th subsystem hi(x).
Let us suppose for convenience that the probability for the subsystems hi(x) are all equal, psub,i = psub.
Then psystem = pnsub. In order to give evidence that psystem < ptol, it is thus enough to provide evidence
for psub = psub,i < p

1
ntol for i ∈ I. subsystem testing to a confidence of (1 − α) on the system level

requires a higher confidence at the subsystem level, which, by a simple Bonferroni correction [HS16],

7
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can be conservatively estimated as (1 − α
n
). Consequently, by (2) the amount of data for testing the

subsystem hi(x) is given by

− ln
(
α
n

)

Ntest,i
> p

1
ntol ⇔ Ntest,i > − ln

(
α
n

)

p
1
ntol

. (3)

As p 1
ntol is much larger than ptol, the amount of testing data required is radically reduced, even if one

employs n separate test sets for all n subsystems. By comparison of (2) and (3), the factor of reduction
is roughly

γn =
Ntest

nNtest,i
=

1

n p
1− 1

ntol
(
1− ln(n)

ln(α)

) .

E.g., for n = 2 in the best case scenario, α = 5%, and ftol = 1
20

the reduction factor is γ2 = 28,712,
which reduces the corresponding 1.5× 1012 frames to 52.2 million frames. This already is no longer
an absolutely infeasible number. For the worst case scenario, α = 0.01% and ftol = 1

1000
, the reduction

factor is γ2 = 232,502, resulting in 98.9 billion frames, which seems out of reach, but not to the extent
of 2.3× 1016 frames.
Keeping the other values fixed, n = 3 even yields a reduction factor of γ3 = 974,672 in the best
case scenario and γ3 = 11,818,614 in the worst case scenario, resulting in 1, 54 million frames in the
best and 1, 95 billion frames in the worst scenario. These numbers look almost realizable, given the
economic interests at stake.
However, the strategy based on redundant subsystems comes with a catch. It is only applicable, if
the subsystems are independent. But this is an assumption that is not necessarily true. We therefore
investigate, what happens, if the errors of subsystems are not independent.

Assuming no independence of subsystems: In this case, the covariance of the error indicator vari-
ables 1Fi

is not equal to zero and can be regarded as a measure of the joint variability for the random
variables 1Fi

. The normalized version of the covariance is the Pearson correlation
ρ(1F1 , 1F2) =

COV(1F1 , 1F2)

σ(1F1) · σ(1F2)
∈ [−1, 1],

where σ(1Fi
) =

√
psub,i(1− psub,i) denotes the standard deviation of 1Fi

, which is supposed to be
greater than zero for i = 1, 2. The correlation measures the linear relationship between the random
variables 1Fi

and takes values ±1 if the relationship between the random variables is deterministic.
Let us first consider a system with two redundant subsystems in parallel, hi(x), i = 1, 2, where we
however drop the assumption of independence. Then we obtain

psystem = E[1F1 · 1F2 ]

= COV(1F1 , 1F2) + E[1F1 ] · E[1F2 ]

= ρ(1F1 , 1F2)
√

psub,1(1− psub,1)
√

psub,2(1− psub,2) + psub,1psub,2.

(4)

8
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Assuming again equal failure probabilities for the subsystems psub = psub,1 = psub,2 and using 1 −
psub ≈ 1 as a good approximation as psub for a safe system is very small, we obtain from (4)

psystem ≈ ρ(1F1 , 1F2)psub + p2
sub, (5)

i.e., we can only expect a reduction of the frames needed for testing which is comparable to the case,
where statistical independence holds, if ρ(1F1 , 1F2) is of the same small order of magnitude as psub.
If, e.g., we assume an extremely weak correlation of ρ(1F1 , 1F2) = 0.01, we can essentially neglect
the p2sub-term as psub ≪ 0.01 and realize that the reduction factor essentially is 1

ρ(1F1
,1F2

)
= 100, only.

Thus, even for such a pretty uncorrelated error scheme, the number of frames required for testing
would be lower bounded by 1.5 × 1010 to 2.3 × 1014 frames, even neglecting Bonferroni correction
and independent test sets which make up a multiplication factor B2 = n(1− log(n)

log(α)
) yielding B2 = 2.46

and B2 = 2.15, respectively. With these effects taken into account, we arrive at 36.9 billion frames in
the best scenario and 4.94× 1014 frames in the worst, where even the lower number of frames seems
hardly feasible.
A related computation for n = 3 yields, to leading order using (5) and approximating the complement
of small probabilities with one and neglecting terms of order p2sub, we obtain to highest order

psystem = E [1F1 · 1F2 · 1F3 ]

≈ ρ(1F1∩1F2
, 1F3)

√
E [1F1 · 1F2 ] psub + E [1F1 · 1F2 ] psub

≈ ρ(1F1∩1F2
, 1F3)

√
(ρ(1F1 , 1F2)psub + p2sub) psub

+
(
ρ(1F1 , 1F2)psub + p2

sub
)
psub

≈ ρ(1F1∩1F2
, 1F3)

√
ρ(1F1 , 1F2)psub .

(6)

If we thus assume that both correlations ρ(1F1∩1F2
, 1F3) between the failure of subsystem h3(x) and

the composite redundant subsystem from h3(x) and h2(x) are both equal to 0.01, we obtain a total
reduction factor of roughly 1

ρ(1F1∩1F2
,1F3

)
√

ρ(1F1
,1F2

)
= 1,000, which still leads to roughly 1.50× 109 -

2.30×1013 frames, even without Bonferroni correction and independent test sets for subsystems. With
both taken into account the amount of data ranges between 5, 04 billion frames in the best scenario to
9.43× 1013 frames in the worst, where only the figure obtained in the best case, based on problematic
choices, seems remotely feasible. However, in the presence of domain shifts in time and location, it
seems questionable if the road of testing weakly correlated subsystems is viable (supposed they are
weekly correlated).
We also note that correlation coefficients as low as ρ = 0.01 are rarely found in nature and in addition
it requires empirical testing to provide evidence for a low correlation. The correlations we measure
in Section 4 for the case of simple classification problems miss this low level by at least an order of
magnitude, leading to an extra factor of at least 10 in the above considerations.

9
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3.3 Data Requirements for Statistical Evidence of Low Correlation

In the preceding section we have analyzed that low correlation between sub-systems efficiently reduces
the data required for testing better-than-human safety of autonomous vehicles. However, to achieve
this, e.g., in the case of two redundant subsystems, the correlation has to be in the order of magnitude
of psub = p

1
2tol. Statistical evidence for such a low level of correlation requires data itself. Let us

suppose the ideal situation once more that a correlation coefficient is strictly zero ρ = 0 and we would
like to compute the number of pairs of observations of the random variables (1F1 , 1F2) that is needed
to prove that ρ is in the order of magnitude psub, as required for a decent downscaling of the number of
test data frames. In other words, we have to estimate a number of samples needed to provide statistical
evidence at a given significance level α that ρ(1F1 , 1F2) is less than psub = p

1
2tol.

As shown by Raymond Fisher and others, see, e.g., [LL88], the quantity Ẑ = 1
2
log
(

1+ρ̂
1−ρ̂

)
is asymptot-

ically normally distributed with expected value 1
2
log(1+ρ

1−ρ
) = 0 in our case, where we assumed ρ = 0.

The standard deviation is given by
√

1
Ntest−3

. Here, ρ̂ stands for the empirical correlation coefficient of
the pair of observations [HS16].
A two-sided confidence interval for a given level of confidence 1 − α for the observed value ẑ of Ẑ
thus is given by

ẑ± = ẑ ± z1−α
2

√
1

Ntest − 3
, (7)

where z1−α
2

is the 1− α
2

quantile of the standard normal distribution. Transforming back (7), we obtain
lower and upper bounds

ρ̂± =
exp(2ẑ±)− 1

exp(2ẑ±) + 1
. (8)

Under our best case hypothesis ρ = 0, the boundaries ẑ± of the confidence interval converge to zero,
we may apply the δ-rule with the derivative d

dz
exp(2z)−1
exp(2z)+1

∣∣∣
z=0

= 4 exp(2z)
(exp(2z)+1)2

∣∣∣
z=0

= 1. Let us consider
the width W of the confidence interval for ρ for the best possible outcome obtained for ẑ = 0. By
(8) and the δ-rule, asymptotically for large Ntest it is given by W = 2z1−α

2

√
1

Ntest−3
. Even if this is

the case, to infer that |ρ| ≤ psub with confidence 1 − α, one requires, for the case of two subsystems
z1−α

2

√
1

Ntest−3
≤ psub = p

1
2tol. If Ntest is large, we can neglect the −3 term and obtain for the best case

Ntest ≈
z21−α

2

ptol
. (9)

Not unexpectedly, this brings back the bad scaling behavior observed in (2) and the related problematic
data requirements, which are essentially the same as for the non-redundant, direct approach. The
numbers for z21−α

2
for α = 5% . . .α = 0.01% range between 2.706 and 13.831 which essentially

confirms the range of roughly 3 . . .10 for the statistical safety factor obtained from (1) and (2).
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4 Correlation Between Errors of Neural Networks in Computer
Vision

As of now, deep neural networks (DNNs) for perception tasks are far away from being perfect. Mo-
tivated by common practices in reliability engineering, redundancy, i.e., the deployment of multiple
system components pursuing the same task in parallel, might be one possible approach towards im-
proving the reliability of a perception system.
Redundancy can enter into perception systems in many ways. Assume a system setup with multiple
sensors, e.g., camera, LiDAR, and Radar. There are multiple options to design a deep-learning-driven
perception system processing the different sensors’ data. A non-exhaustive list of designs may look
as follows:

1. Only a single sensor is processed; this is done by a single DNN;
2. Only a single sensor is processed; this is done by a committee of DNNs;
3. All sensors are processed by a single-sensor-fusing DNN;
4. All sensors are processed by a committee of sensor-fusing DNNs;
5. Each sensor is processed by a separate DNN, the results are fused afterwards;
6. Each sensor is processed by a committee of DNNs, the results are fused afterwards.

Except for the first design, all other designs incorporate redundancy. Herein, there are two types of re-
dundancy, redundancy via multiple sensors (all pursuing the same task of perceiving the environment)
and redundancy via multiple DNNs.
Certainly, approach one is only eligible for direct testing, see Section 3.1 and the same is true for
the ’early fusion’ approach 3. All the other approaches could potentially benefit from redundancy, if
independence or low corrrelation of the errors can be assumed. Therefore, the degree of independence,
which can be understood and quantified as the degree of uncorrelatedness, is a quantity of interest for
safety and also for testing, see Section 3.2. However, as explained in Section 3.2, in order to use
redundancy as a part to the solution of the testing problem outlined in Section 2, correlation has to be
extremely low.
For the case of simple DNNs processing the same sensor’s data, we give evidence that such low cor-
relation in general does not hold. The evidence we find rather points in the opposite direction that it is
hard to obtain correlation that is below 0.5, even if the training datasets and network architecture are
kept well separated. On the other hand one could try to train DNNs such that their failure events are
uncorrelated.
In this section, we show preliminary numerical results on MNIST (handwritten digits), EMNIST (also
containing handwritten letters), and 3D-MNIST for

• training DNNs for independence / less correlated failure events;

11



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving

Performance?

• the role of different sensors (by viewing 3D-MNIST examples from different directions).
Although our findings do not directly apply to physically more diverse sensors like Camera, LiDAR
and Radar, these preliminary results indicate that independence of DNN-based perception systems
cannot be taken simply for granted, even if different sources of data are employed.

4.1 Estimation of Reliability for Dependent Subsystems

Most commonly, the so-called active parallel connection of n subsystems is used, wherein the entire
system (meaning the ensemble of DNNs) is assumed to be functional iff at least one subsystem (which
corresponds to one committee member hi) is functional. However, the active parallel connection is
not the only decision rule of interest which can be applied to the committee hi, i = 1, . . . , n. For
instance, considering a pedestrian detection performed by a committee hi that detects a pedestrian
if at least one of the DNNs does so. For increasing n we would expect an increase in false positive
detections, therefore facing the typical trade-off of false positives and false negatives. In order to steer
this trade-off, we use k-out-of-n systems that are functional iff at least k out of n components hi are
functional, i.e., at most n− k components fail. Hence, we are interested in the event

{
n∑

i=1

1Fi
< n− k

}

and its probability which is the probability of the k-out-of-n system being functional. The reliability
of k-out-of-n systems can be expressed analytically in terms of the reliability of its components, see
also [Zac92]. For k = 1, this boils down to the active parallel connection.
If we assume independence of the failure events Fi and that all networks fail with equal probability
P(Fi) = psub,i = psub, then the probability that at least k-out-of-n networks are functional can be
calculated via

P

(
n∑

i=1

1Fi
< n− k

)
=

n∑

j=k

(
n

j

)
(1− psub)j · pn−j

sub = 1− FB(k − 1;n, 1− psub), (10)

where FB denotes the distribution function of the binomial distribution. This quantity serves as a
reference in our experiments.

4.2 Numerical Experiments

In this section, we conduct first experiments using the datasets EMNIST, CIFAR10, and 3D-MNIST.
The original dataset MNIST [LCB98] contains 60,000 gray scale images of size 28×28 displaying
handwritten digits (10 classes). EMNIST is an extension of MNIST that contains handwritten digits
and characters of the same 28×28 resolution. Of that dataset we only considered the characters (26

12
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Table 2. Correlation coefficients and average accuracies for EMNIST and CIFAR10. The configu-
rations read as defined in (11). All runs have been performed 10 times, all numbers are
averaged over these 10 runs and the standard deviation over these 10 runs are given.

EMNIST CIFAR10
Config. ρ(1F1 , 1F2) avg. acc. (%) ρ(1F1 , 1F2) avg. acc (%)

111 0.71±0.01 91.17±0.05 0.73±0.01 72.27±0.45
110 0.71±0.00 91.17±0.06 0.74±0.01 72.19±0.22
101 0.71±0.01 91.13±0.04 0.74±0.01 72.08±0.43
100 0.71±0.01 91.13±0.05 0.74±0.01 72.14±0.36
011 0.58±0.01 89.65±0.14 0.66±0.02 66.10±0.74
010 0.58±0.01 89.76±0.08 0.65±0.01 66.08±0.35
001 0.57±0.01 89.74±0.07 0.66±0.01 66.29±0.65
000 0.58±0.01 89.62±0.13 0.65±0.01 66.30±0.38

classes) of which there are 145,600 available. We used 60,000 images for training, 20,000 for valida-
tion, and the rest for testing. CIFAR10 contains 60,000 RGB images of size 32×32 categorized into 10
classes (from the categories animals and machines). We used the default split of 50,000 training and
10,000 test examples. A quarter of the training set we reserved for validation. 3D-MNIST contains
point clouds living on a 163-lattice. The dataset contains 10,000 training and 2,000 test examples.
We used convolutional DNNs implemented in Keras [C+15] with simple architectures, if not stated
otherwise they contain 2 convolutional layers with 32 and 64 3×3-filters, respectively, each of them
followed by a leakyReLU activation and 2×2 max pooling, and finally a single dense layer. For train-
ing, we used a batch size of 256, weight decay of 10−4, and the Adam optimizer [KB15] with default
parameters, except for the learning rate. We started with a learning rate of 10−2, trained until stagna-
tion and repeated that with a learning rate of 10−3.

Reducing correlations with varying training data, architecture, and weight initializers: First,
we study to what extent independence can be promoted by varying the training data, architecture and
weight initializers in an active parallel system with n = 2 DNNs. To this end, we split the training
data and validation data into two disjoint chunks, consider another network, where we add a third
convolutional layer with 128 filters, again followed by leakyReLU and max pooling, and use the Glorot
uniform and Glorot normal initializers with default parameters. For the sake of brevity, we introduce
a short three-bit notation indicating the boolean truth values corresponding to the questions

(same data?, same architecture?, same initializer?). (11)
For instance, 101 stands for two DNNs being trained with the same data, having different architectures,
and using the same initializer. We report results in terms of average accuracy estimating 1

n

∑n
i=1(1−

P(Fi)) and joint accuracy estimating 1− P(
⋂n

i=1Fi).
Table 2 shows in all cases correlation coefficients much greater than zero. Corresponding χ2 tests
with significance level α = 0.05 in all cases rejected the hypothesis that the DNNs’ are indepen-
dent. Noteworthily, varying the initializer or the network architecture barely changes the results while

13
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Table 3. Correlation coefficients ρ(1F1 , 1F2) for different quantiles of softmax entropy computed on
EMNIST and CIFAR10. The configurations read as defined in (11). The experiments have
been repeated 10 times, the corresponding standard errors are of the order of 0.01.

EMNIST CIFAR10
Entropy bin 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Config. Correlation coefficients
111 1.0 1.0 1.0 1.0 0.99 0.94 0.71 0.45 1.0 0.99 0.94 0.79 0.64 0.57 0.45 0.26
110 1.0 1.0 1.0 1.0 0.99 0.95 0.71 0.45 1.0 1.0 0.96 0.79 0.67 0.55 0.44 0.31
101 1.0 1.0 1.0 1.0 0.99 0.94 0.71 0.43 1.0 0.99 0.94 0.78 0.67 0.55 0.43 0.36
100 1.0 1.0 1.0 0.99 1.0 .095 0.71 0.45 1.0 0.99 0.95 0.79 0.64 0.51 0.46 0.36
011 1.0 1.0 0.99 0.98 0.90 0.71 0.40 0.28 0.99 0.94 0.81 0.65 0.6 0.44 0.37 0.27
010 1.0 1.0 1.0 0.98 089 0.73 0.43 0.26 1.0 0.95 0.82 0.64 0.5 0.44 0.40 0.25
001 1.0 1.0 0.98 0.96 0.90 0.73 0.40 0.25 0.99 0.94 0.83 063 0.54 0.43 0.37 0.27
000 1.0 1.0 0.99 0.98 0.90 0.72 0.42 0.27 0.99 0.95 0.80 0.65 0.53 0.45 0.35 0.23

changing the training data seems to have the biggest impact, clearly reducing the correlation coeffi-
cient. A reduction in correlation also reduces the average performance of the networks. For the sake
of comparability, all networks were only trained with half of the training data, since otherwise the
configurations with equal data would have the advantage of working with twice the amount of training
data compared to the configuration with different training data.
Next, we study in this setting whether we can achieve at least conditional independence. To this end,
we aim at conditioning to the difficulty of the task by conditioning to softmax entropy quantiles. More
precisely, we compute the entropy of the softmax distribution of all data points of both networks. We
then sum the entropy values for each data point over the two networks and group all examples into 8
equally sized bins according to ascending summed entropy.
Table 3 shows that the higher the softmax entropy gets, the less the DNNs failures are correlated. This
goes down to correlation coefficients of 0.25 for EMNIST and 0.23 for CIFAR10, when considering
the softmax entropy bin no. 8 with the highest entropy values. Still, χ2 tests reveal that the correlations
are too strong to assume independent failures.

Training two networks for enhanced independence: Since the measures considered so far do not
lead to success, we explicitly try to decorrelate the failures of the DNNs. To this end, we incorporate
an additional loss function into training, added to the typically used empirical cross-entropy loss. Let
p(y|x, hi) denote the probability estimated by the DNN hi, that the class y is the correct one given the
input x. One possible approach is to explicitly enforce a prediction of h1 different to that of h2 if the
latter fails and vice versa. This can be achieved by minimizing the following quantity

−E(x,y)∼P[1hi(x)̸=y log(1− p(hi(x)|x, hj)) + 1hj(x)̸=y log(1− p(hj(x)|x, hi)]
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Fig. 1. Study of the influence of the loss weight λ on averaged accuracy and joint accuracy on the
EMNIST dataset.

with its empirical counter part

Ji,j({(xm, ym)}m=1,...,M) = − 1

M

M∑

m=1

1hi(xm )̸=ym log(1− p(hi(xm)|xm, hj)) (12)

+ 1hj(xm )̸=ym log(1− p(hj(xm)|xm, hi)) ,
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Table 4. Correlation coefficients under independence training for different quantiles of softmax en-
tropy computed on EMNIST and CIFAR10.

EMNIST CIFAR10
Entropy bin 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

λ Correlation coefficients
7.5 1.0 1.0 0.99 0.96 0.90 0.59 0.35 0.07 0.89 0.76 0.63 0.53 0.47 0.39 0.32 0.21
0.0 1.0 1.0 1.0 1.0 0.99 0.95 0.72 0.44 1.0 0.99 0.94 0.80 0.64 0.57 0.42 0.33

where {(xm, ym)}m=1,...,M denotes a sample of M data points (xm, ym). In our experiments, we use
a penalization coefficient / loss weight λ and add λ · J1,2({(xm, ym)}m=1,...,M) to the empirical cross-
entropy loss. In further experiments not presented here, we also used other loss functions that explicitly
enforce anti-correlated outputs or even independence of the softmax distributions. However, these loss
functions led to uncontrollable behavior of the training pipeline, in particular when trying to tune the
loss weight λ. Therefore, we present results for the loss function in (12).
Figure 1 (top) depicts the correlation as well as the average accuracy for different values of λ, ranging
from 0 to extreme values of 200. For increasing values of λ, we observe a clear drop in performance
from an initial average accuracy of more than 91% for λ = 0 down to roughly 72% for λ = 200. At
the same time, the correlation decreased to values below 0.3 which, however, is still not enough to
assume independence as being confirmed by our χ2 tests. While the average accuracy monotonously
decreases, it can be observed that the joint accuracy peaks around λ = 7.5, see Figure 1 (bottom).
The prediction of the DNN committee is pooled by summing up softmax probabilities over both DNN
class-wise and then selecting the class with maximal sum. The joint accuracy is given by the accuracy
of the committee with that decision rule. While the joint accuracy for an ordinarily trained committee
with λ = 0 is about 93.5%, this can be improved by tenderly decorrelating the DNNs to a correlation
coefficient around 0.5 which yields an increase of almost 1 percent point. At the same time there is a
mild decrease in average accuracy.
Concluding this section, we again study conditional independence for 8 softmax entropy bins (cho-
sen according to equally distributed softmax entropy quantiles), this time comparing independence
training λ = 7.5 with ordinary training λ = 0, see Table 4. We observe a considerable decrease
in correlation in bin no. 8 (representing the highest softmax entropy) for the EMNIST data down to
0.07. In comparison, the decrease for CIFAR10 is rather mild. However, also this small correlation
coefficient of 0.07 is not sufficient for assuming conditional independence.

Training several networks for independence: We now present results when training an ensemble
of n = 5 networks. To this end, we sum up the cross-entropy losses of the n = 5 models and add the
penalization term

λ · 2

n− 1

n∑

i=2

i−1∑

j=1

Ji,j({(xm, ym)}m=1...,M) (13)
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Table 5. Correlation coefficients for an ensemble of 5 networks trained on EMNIST for independence
and a baseline ensemble where each network was trained individually. All results are aver-
aged over 30 runs.

Loss weight λ 0 10−1 100 101 102 Baseline model Theoretical
Mean correlation 0.70 0.69 0.65 0.53 0.43 0.67 0.00

Single
network
accuracy

k = 1 0.92 0.92 0.91 0.88 0.73 0.91
k = 2 0.92 0.92 0.91 0.91 0.91 0.91
k = 3 0.92 0.92 0.91 0.88 0.60 0.91
k = 4 0.92 0.92 0.91 0.87 0.51 0.91
k = 5 0.92 0.92 0.91 0.85 0.39 0.91

Ensemble
accuracy /
Mean
k-out-of-5
accuracy

k = 1 0.92 / 0.96 0.92 / 0.96 0.91 / 0.96 0.88 / 0.97 0.73 / 0.93 0.91 / 0.96 1.00
k = 2 0.92 / 0.94 0.92 / 0.94 0.92 / 0.94 0.92 / 0.93 0.91 / 0.78 0.92 / 0.94 0.99
k = 3 0.92 / 0.92 0.92 / 0.92 0.92 / 0.92 0.92 / 0.90 0.90 / 0.64 0.92 / 0.92 0.96
k = 4 0.93 / 0.90 0.93 / 0.90 0.92 / 0.89 0.92 / 0.85 0.90 / 0.49 0.92 / 0.90 0.72
k = 5 0.93 / 0.86 0.93 / 0.86 0.92 / 0.84 0.92 / 0.76 0.90 / 0.30 0.92 / 0.85 0.32

which is a straight forward combinatorial generalization of the previously used penalty term. Therein,
λ again denotes the loss weight which varies during our experiments.
Besides k-out-of-5 accuracies, we consider also accuracies from single networks and ensemble accu-
racies. The corresponding ensemble prediction is obtained by summing up the softmax probabilities
(via the class-wise sum over the first k ensemble members) and then taking the argmax.
Figure 2 depicts results of our training for independence with 5 models in terms of k-out-of-5 accuracy.
When stating mean accuracy, this refers to the average over 30 runs. For a loss weight of λ = 101, we
observe in the left panel that the 1-out-of-5 accuracy of our independence training is slightly above
the accuracy of the baseline ensemble which was trained regularly, i.e., each network was trained in-
dependently. Note that this is different to λ = 0, where all networks are still trained jointly with
a common loss function which is the sum of the cross-entropy losses. The right-hand panel shows
that the 1-out-of-5 accuracy peaks at a mean correlation (the average correlation over the errors of all
networks i < j) of 0.4. Decorrelating the networks’ errors further towards zero-mean correlation is
possible, however the 1-out-of-5 accuracy decreases. The k-out-of-5 accuracy for k > 1 suffers even
more from decorrelating the networks’ errors. Note that, in practice, 1-out-of-5, e.g., for a pedestrian
detection, might additionally suffer from overproduction of false positives and could be impractical.
That hypothesis is indeed supported by Table 5, which shows that for larger loss weights λ ≥ 1 the
individual network accuracies become heterogeneous. In particular, network 5 suffers from extremely
low accuracy at λ = 102, which is, however, still far away from zero-mean correlation. For the sake
of completeness, we give two examples of correlations between the individual models since we only
reported mean correlations so far, see Figure 3. Comparing the right hand panel with Table 5, we
see that the well-performing network no. 2 exhibits comparatively small correlation coefficients with
the other networks’ errors. Surprisingly, the worse performing models’ errors show higher correlation
coefficients which reveals that in that case they often err jointly on the same input examples. Addi-
tionally, we provide theoretical k-out-of-5 accuracies according to (10) where we choose psub equal
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Fig. 2. Experiments with the EMNIST dataset. Left: mean k-out-of-5 accuracy (averaged over 30
repetitions) for an ensemble of five networks as a function of the loss weight λ. The solid
lines depict the accuracies of the ensembles trained for independence with loss weight λ, the
dashed lines depict baseline ensemble accuracies trained without incorporating the loss from
(13). Right: k-out-of-5 accuracy for a single run as a function of the mean correlation (of each
network with each other network).

to 1 minus the average ensemble accuracy (which is 92.45%). In particular, the k-out-of-5 accuracies
of the ensemble for k = 1 and 2 are clearly below the theoretical ones.
We conclude that independence training may help slightly to improve the performance, however, the
benefit seems to be limited when all networks are trained with the same input. Besides these tests, we
considered an additional loss function that explicitly penalizes the correlation of the networks’ errors.
That approach, being actually more directed towards our goal, even achieved negative correlation
coefficients of the networks’ errors. It was also able to slightly improve the ensembles’ performance in
terms of k-out-of-n accuracy over the baseline, however, this improvement was even less pronounced
than that one reported in this section. Thus, we do not report those results here.

Training of independence for different input sensors: In order to conduct further experiments on
the scale of the EMNIST and CIFAR10 datasets, we consider the 3D-MNIST dataset that provides
synthesized 3D representations of handwritten digits. We apply rotations around the x-axis with cho-
sen angles. To this end, we create 5 rotated variants of the dataset with a randomly chosen but fixed
angles θ = aπ/9, a = 1, . . . , 9, see Figure 4 for an illustrative example. Each of our k = 1, . . . , 5

networks obtains one of the 5 rotated variants of the data with a given angle θk, and is then trained. For
the baseline, all networks are again trained independently. For independence training, all networks are
trained with common loss functions, as described previously, and the same handwritten digit, however,
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loss weight λ = 10−1. Right: loss weight λ = 102.
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Fig. 4. A 3D-MNIST example data point. Left: original input data. Center: input data rotated by π/3

along the x-axis. Right: 2D projection of the rotated data, which is obtained by summation
and normalization along the y-axis.

viewed from a different angle θk, is presented to the network k, k = 1, . . . , 5.
Figure 5 shows results of numerical experiments conducted analogously to those presented in Figure 2.
Comparing both figures with each other, we observe that the baseline k-out-of-5 accuracies are much
lower than when presenting identical images to the networks. Indeed, although MNIST classification
constitutes a much simpler task than classifying the letters from EMNIST, this 3D variant shows much
lower individual network performances, not only indicated by the left-hand panel of Figure 5, but also
by Table 6. On the other hand, the highest mean correlation (obtained for the loss weight λ = 0) for
3D-MNIST depicted by the right-hand panel of Figure 5 is below 0.3 and therefore much lower than
the one depicted by Figure 2.
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Table 6. Results for an ensemble of 5 networks trained on 3D-MNIST for independence and a baseline
ensemble where each network was trained individually. All results are averaged over 30 runs.

Loss weight λ 0 10−1 100 101 102 Baseline model Theoretical
Mean correlation 0.25 0.25 0.24 0.22 0.15 0.24 0.00

Single
network
accuracy

k = 1 0.70 0.70 0.70 0.66 0.38 0.70
k = 2 0.74 0.73 0.74 0.73 0.75 0.75
k = 3 0.73 0.72 0.72 0.67 0.25 0.74
k = 4 0.81 0.80 0.79 0.73 0.17 0.82
k = 5 0.72 0.73 0.71 0.64 0.20 0.74

Ensemble
accuracy /
mean
k-out-of-5
accuracy

k = 1 0.70 / 0.97 0.70 / 0.97 0.70 / 0.97 0.66 / 0.96 0.38 / 0.88 0.70 / 0.97 1.00
k = 2 0.82 / 0.91 0.82 / 0.91 0.82 / 0.91 0.81 / 0.89 0.77 / 0.52 0.82 / 0.92 0.98
k = 3 0.84 / 0.81 0.84 / 0.80 0.84 / 0.80 0.83 / 0.75 0.78 / 0.22 0.85 / 0.82 0.90
k = 4 0.87 / 0.63 0.86 / 0.63 0.86 / 0.62 0.85/ 0.55 0.79 / 0.10 0.87 / 0.65 0.63
k = 5 0.88 / 0.38 0.88 / 0.37 0.88 / 0.37 0.86 / 0.29 0.79 / 0.03 0.89 / 0.39 0.24
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Fig. 5. Experiments with the 3D-MNIST dataset. Left: mean k-out-of-5 accuracy (averaged over 30
repetitions) for an ensemble of five networks as a function of the loss weight λ. The solid lines
depict the accuracies of the ensembles trained for independence with loss weight λ, the dashed
lines depict baseline ensemble accuracies trained without incorporating the loss from (13).
Right: k-out-of-5 accuracy for a single run as a function of the mean correlation (of each
network with each other network).

Neglecting the reduced performance on 3D-MNIST, these results show that an ensemble, wherein
each network obtains a different input, can be clearly improved by increasing the number of ensemble
members. The networks only exhibit small correlations among each other. However, it seems that
independence training cannot contribute to the performance of the ensemble anymore in the given
setup. It remains open, whether independence training may help in a realistic setting with different
sensors for perception in automated driving and networks conducting way more difficult tasks such as
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object detection, instance segmentation, semantic segmentation, or panoptic segmentation. Note that
the correlation strengths reported in our experiments in accordance to Section 3 do not suffice to sub-
stantially reduce the data requirements into a feasible regime. Recalling the discussion in Section 3.2,
even if the subsystem performance remained unaffected by independence training, based on the low-
est correlation observed in our experiments, we could at most expect a reduction of the required data
amount by one order of magnitude.

5 Conclusion and Outlook
Summary and main take-away messages: In this work, we argued that obtaining statistical evi-
dence from brute-force testing leads to the requirement on infeasible amounts of data. In Sections 2
and 3 we estimated upper and lower bounds on the amount of data required to test a given percep-
tion system with statistical validity for being significantly safer than a human driver. We restricted
our considerations to fatalities and arrived at data amounts that are infeasible from both storage and
labeling cost perspective, as already found in [KP16]. In Section 3.1 we showed that perfectly uncor-
related redundant AI perception systems could be used to resolve the problem. However, as we have
seen in Section 3.2, redundant subsystems that are not perfectly uncorrelated require extremely low
correlation coefficients between error events produced by neural networks to yield substantial reduc-
tions in data requirement. In Section 3.3 we furthermore found the amount of data needed to prove a
sufficiently low correlation as large as the amount of data needed for the original test.
In Section 4 we present numerical results on the correlation of redundant subsystems. We studied
correlation coefficients between error events of redundant neural networks dependent on network ar-
chitecture, training data and weight initializers. Furthermore, we trained ensembles of neural networks
to become decorrelated. Besides studying correlation coefficients, we considered the system’s perfor-
mance in terms of 1-out-of-n as well as k-out-of-n performance. In the numerical experiments we
obtained correlation coefficients that would allow for a reduction in the amount of data required by
at most one order of magnitude. For the testing problem, this would still represent an infeasible data
requirement. However, redundancy could contribute to a moderate reduction of the amount of data
required for testing and potentially be combined with other approaches.
There are alternative approaches to test the safety of perception systems other than brute-force test-
ing. Here, we give a short outlook on two of them that are very actively developed in the research
community.

Outlook on testing with synthetic data: One possibility to obtain vast amounts of data for testing is
to consider synthetic sources of data. The question, whether synthetic data can be used for testing has
already been addressed, e.g., in [RBK+21]. In principle, arbitrary amounts of test data can be created
from a driving simulation such as CARLA [DRC+17]. The domain shift between synthetic and real
data can be bridged with generative adversarial networks (GANs). The latter have been proven to be
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learnable in the large sample limit [BCST20, AGLR21], meaning that for increasing amounts of data
and capacity of the generator and discriminator, the learned map from synthetic to real data is supposed
to converge to the true one. Combining synthetic data and adversarial learning is therefore a promising
candidate for testing DNNs. However, in this setup there remain other gaps to be bridged (number of
assets, environmental variability, and infeasibility of the empirically risk minimizing generator).

Outlook on testing with real data: There exists a number of helpful approaches to estimate the
performance on unlabeled data. A DNN of strong performance (or ensembles of those) can be uti-
lized to compute pseudo ground truth. The model to be equipped in an AI perception system can
be learned in a teacher-student fashion [AHKS19, BHSFs19], and the discrepancies between the stu-
dent model and the teachers can be compared with errors on a moderate subset with ground truth,
for instance in terms of correlations of errors and discrepancies. Furthermore, in order to process the
vast amounts of recorded data and perform testing more efficiently, well performing uncertainty quan-
tification methods [KG17, KRPM+18, RCH+20] in combination with corner case detection methods
[BBLFs19, HBR+21] can help to pre-select data for testing. Besides that, many additional approaches
towards improving the reliability of DNN exist. However, while a big number of tools already exist,
their proper application to DNN testing and inference of statistically relevant statements on the sys-
tem’s safety still requires thorough research.
These approaches and other upcoming research might be part of the solution of the testing problem in
future.
Concluding remark: As a concluding remark, this article does not intend to discourage safety ar-
guments, as also conceptualized in this volume. We do not deny the value of empirical evidence in
order to, e.g., prove the relative superiority of one AI system over another with regards to safety. The
inherent difficulty to provide direct evidence for the better-than-human safety of automated driving
as required by the ethics committee of the German Ministry of Transportation and Digital Infrastruc-
ture [FBB+17] should not be mistaken as an excuse for a purely experimental approach. Bringing
automated vehicles to the street without prior risk assessment implies that risks would be judged a
posteriori based on the experience with a large fleet of automated vehicles.
Such matters attain urgency in the light of recent German legislation on the experimental usage of auto-
mated driving under human supervision7 which only refers to the technical equipment for the sensing
of automated vehicles, but does not specify the minimal performance for the AI-based perception
based on the sensor information. Related regulations in other countries face similar problems8.
The debate, how to ensure a safe transition to automated driving that complies with high ethical stan-
dards, therefore remains of imminent scientific and public interest.

7https://dserver.bundestag.de/btd/19/274/1927439.pdf
8Framework for Automated Driving System Safety, No. NHTSA-2020-0106, 49 CFR Part 571 (Nov. 19, 2020).
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