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Abstract In this paper we replace the standard numerical approach of es-
timating parameters in a mathematical model using numerical solvers for
differential equations with an unsupervised physics-informed neural network
(PINN). This neural network requires only an undetermined vector of time
instances as input to learn the underlying parameters of the model, which are
used for the loss calculations.

The underlying model is an extended susceptible-infected-recovered (SIR)
model in which the transitions between disease-related population groups,
called compartments, and the physical laws of epidemic transmission dynamics
are expressed by a system of ordinary differential equations (ODEs). The sys-
tem of ODEs and its time derivative are included in the residual loss function
of the PINN, additional to the data error between the current network output
and the time series data of the compartment sizes. Further, we illustrate how
this PINN approach can also be used for differential equation-based models
such as the proposed extended SIR model, called SVIHDR model.

In a validation process, we investigate the performances of the numerical
technique of non-standard finite differences (NSFD) as well as the exclusively
data-driven recurrent neural network method, more specifically the long short
term memory (LSTM), in generating future COVID-19 scenarios based on the
parameters identified by the PINN.

Most importantly, we obtain a two-step or hybrid approach, as the PINN is
then used to generate future COVID-19 outbreak scenarios. The week in which
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the predictions begin is chosen in this work as the second week of November
2021. In addition, the predictions of infection and hospitalization rates ob-
tained from the NSFD and LSTM are compared to the PINN predictions.

Keywords physics-informed neural networks · compartment models ·
COVID-19 · SARS-CoV-2 · epidemiology · Long-Short-Term-Memory

1 Introduction

To pursue the goal of developing a hybrid method for predicting future epi-
demiological trends, different mathematical and data-driven approaches are
combined or compared here in order to generate COVID-19 scenarios. All
methods are applied in this work to data on COVID-19-related population
group sizes in Germany, but are also applicable to other countries for which
data are available.

The COVID-19 pandemic is currently one of the most discussed topics
around the world. The first cases of severe acute respiratory syndrome coro-
navirus type 2 (SARS-CoV-2) occurred in Asia in December 2019, but were
not reliably identifiable at that time. The People’s Republic of China experi-
enced a peak of about 4,600 cases per day in mid-February 2020, but by March
2020, the epidemic was largely contained in China and other Asian parts of
the world. Europe experienced the first wave of the pandemic in March and
April 2020, with, for example, about 5,840 new daily infections in Germany in
late March and 13,260 new daily infections in France in mid-April 2020.

While infection numbers in Europe were generally low in summer 2020,
peaks were observed in the United States (∼ 67,000 infections/day), Brazil (∼
46,000 infections/day), and India (∼ 93,000 infections/day) at certain times
between July and September 2020. The third wave was characterized by ap-
proximately 35,000 new daily infections in Italy in mid-November 2020, 25,000
new daily infections in Germany around Christmas, 60,000 new daily infec-
tions in the United Kingdom in early January 2021, and severe lockdowns
within Europe in fall 2020 and winter 2020/2021. The summer of 2021 was
characterized by a relaxation of intervention measures in Europe. However,
some countries experienced catastrophic COVID-19 events, such as India with
approximately 390,000 new daily infections in early May 2021 [18].

In November 2021, the fourth wave of the pandemic reached Europe de-
spite a fully vaccinated proportion of 67.6 % in Germany, 68.9 % in the United
Kingdom, 74.8 % in Italy, 77.7 % in France, and 80.6 % in Portugal [26]. Nearly
40,000 new daily infections were observed in Germany on November 14th 2021,
as well as in the United Kingdom. Achieving even higher vaccination rates and
providing booster vaccinations for all to maintain a high level of infection pro-
tection are policy issues of concern to all countries. The dangers posed by
mutant virus variants such as the delta variant (B.1.617.2), which was first
discovered in India in October 2020 and is now the dominant variant infecting
people in several countries such as Germany, or the omicron variant (B.1.1.529)
discovered in the autumn of 2021, are also being discussed in medicine and
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the literature. According to the Robert Koch-Institute (RKI), the mRNA vac-
cines from BioNTech/Pfizer, Moderna, and AstraZeneca are expected to have
a protective effect of approximately 90 % against severe infection with the
alpha (B.1.1.7) variant and 75 % against symptomatic infection with the delta
(B.1.617.2) variant [22].

The mathematical model used in this work to describe the population
dynamics of COVID-19 is a SVIHDR model. It is based on a system of ordi-
nary differential equations (ODEs). Most mathematical models describing the
spread of the disease employ classical compartments, which the Susceptible-
Infected-Recovered (SIR) structure is the most basic form of [1]. Over the past
almost two years, a variety of compartmental models have been introduced as
enhanced SIR models to study various aspects of the COVID-19 pandemic.

Here, we do not establish the simplest version of compartment model. In-
stead, we develop some kind of extended model, which complements the basic
SIR model by a vaccinated, a hospitalized and a deceased class. The hospi-
talized compartment is added due to the high significance of hospitalization
number predictions for hospital capacity planning and the assessment of the
number of severely diseased individuals at pandemic times. We do not in-
clude an exposed compartment, that usually is the first enhancement to the
SIR model and incorporates infected people who are not (yet) infectious, so
pre-symptomatic and potentially asymptomatic individuals.

In our model, pre-symptomatic individuals are condensed with symptomatic
people in the infected compartment, so that we have a single infected compart-
ment of people not hospitalized. Since determining the proportion of asymp-
tomatic individuals in the total infected population is not our goal at this
point, we do not include a class of infected individuals who are asymptomatic,
but assume at least very mild symptoms in infected individuals. The degree
of infectivity of infected individuals can be controlled by adjusting the trans-
mission rate in the model.

Thus, our model includes a vaccination rate and the proportion of the
population vaccinated each week. Therefore, the model is adaptable to different
vaccination scenarios. In addition, the general transmissibilities of SARS-CoV-
2 and its variants, which are constantly changing, lead to altered protective
effects of available vaccines. The established model includes a transmission
rate explained in section 2.

The first mathematical method used in this work, called Physics-Informed
Neural Network (PINN), explained in the subsection 3.1, is used to estimate
the transmission rate based on the data available in Germany. The PINN itself
combines a data-driven method (here based on compartment size data, e.g.,
number of infections) with the developed ODE system so that it incorporates
physical laws. In other words, this approach trades off between the data-based
and physical loss functions in the training process. This reduces the space of
feasible solutions to those that satisfy a ’physical law’ to some degree, i.e., an
SVIHDR compartmental model in this case. The ODE system corresponding
to the model serves as an additional constraint in the training phase, which is
encoded by an appropriate additional residual loss term. More specifically, the
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PINN loss function consists of the two weighted terms data loss and residual
loss. The data loss is calculated as the difference between the current network
output in terms of infection or hospitalization numbers and the reported 2019
coronavirus pandemic (COVID-19) data covering weeks between March 2020
and November 2021. The residual loss is based on a mathematical model with
a system of ordinary differential equations that describes the main population
dynamics observed during the COVID-19 pandemic. A PINN approach for the
simple SIRD model was proposed by Malinzi et al. [14] and a PINN approach
for a SIR based vaccination model was described by Torku et al. [28]. In con-
trast to this, Zeroual et al. [30] compared different pure deep learning models
for forecasting COVID-19 cases and found the Variational AutoEncoder (VAE)
algorithm to be superior.

Raissi et al. [19] explain that PINNs are neural networks that embed
physics as a regularization term in the loss function. They say that given
a sufficient number of data points and an expressive neural network architec-
ture, they can achieve good approximation accuracy if the given differential
equation is well-posed and has a unique solution. PINNs can also be viewed
as a surrogate model for solving differential equations by incorporating addi-
tional data or as a data-driven correction (or even discovery) of the underlying
physical system. One motivation for this hybrid approach can be seen in the
observed non-compliance of some of the individuals with social distancing (or
physical distancing) and hygiene rules. This type of behavior is difficult to
formulate in ODEs, but is included in the neural network training data.

Olumoyin et al. [17] use the term Epidemiology-Informed Neural Network
(EINN), which describes a type of feedforward neural network that incorpo-
rates epidemiological dynamics such as lockdown into its loss function. Their
EINN learns solutions for the so-called asymptomatic SIR model, i.e., the pro-
portion of asymptomatic infected individuals to of the total number of infected
individuals.

Shaier et al. [25] use the term Disease-Informed Neural Networks (DINN)
to refer to a type of PINN-based neural network that can be applied to in-
creasingly complex systems of differential equations describing various known
infectious diseases. The DINN formulation does not require a training, valida-
tion, or testing data set, as is the case with most neural networks; instead, the
model learns the infectious disease models and predicts the parameters that
generated them.

Because our PINN operates based on transmission and transition dynamics
in a population affected by COVID-19, estimates transmission rate parameters,
and incorporates a transmission rate that can incorporate remedial measures
such as quarantine and contact restrictions, our PINN can be described as a
special type of EINN designed to predict COVID-19 incidence. Because our
PINN uses a system of differential equations to learn the parameters that gen-
erate it, this PINN can also be considered a DINN. Our approach of using
PINN-identified parameters of an ODE system to predict infection and hospi-
talization rates by using the PINN itself in a slightly modified form, an LSTM
method, and a numerical method of NSFD is innovative. The uniqueness of
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our approach lies in the fact that we use our PINN for parameter identification
and give it a second input of initial compartment size data to generate accu-
rate future compartment size scenarios, and then apply a purely data-driven
method and a purely numerical method, both of which are well suited for epi-
demic predictions and validated by us, so that we can compare the predictions
of the data- and ODE-based PINN with their predictions.

Long et al. [12] use a PINN to identify weekly and daily time-varying
parameters in a system of ODEs, and then use the LSTM method to make
future predictions for parameter values over the next four weeks. In contrast,
we use PINN-identified parameters to generate future scenarios of infection
and hospitalization rates using PINN, LSTM method, and numerical NSFD
scheme.

The data used consist of infection and hospitalization rates as well as vacci-
nation, death, and cure rates for Germany obtained from the RKI [20,21]. The
PINN also works on the basis of the established dynamic ODE system, which
forms the core of the model and is developed in section 2. The transmission rate
is one of the most important parameters affecting the occurrence of infections
and thus the established ODE system. Therefore, changes in transmissibility
due to mutations or altered susceptibility of the underlying population are
part of the model-based predictions.

The exact procedures used in this work are described in subsection 3.2 in
section 3. In this work, the estimation of certain model-specific parameters is
performed by the PINN mentioned above. A standard solver for ODEs (explicit
embedded Runge-Kutta (4,5) scheme [5]) and a model-specific non-standard
finite difference scheme (NSFD) serve as numerical integration methods, and
a long-term memory (LSTM)-based neural network serves as a non-numerical
approach, both of which are used for comparison and validation. Here, these
three methods were applied to data from calendar weeks 10 in 2020 to 28 in
2021 to make predictions so that differences from the actual available data from
calendar weeks 29 to 45 in 2021 became apparent. Predictions of infection and
hospitalization rates were then made using all approaches as well as PINN.
Different weights for the loss terms are used as examples in the prediction
section to analyze the impact of weight modification.

2 Model Structure

In this work, a SVIHDR compartmental model was developed based on the
basic SIR model introduced by Kermack and McKendrick in 1927. The SIR
model consists of three compartments of susceptible (S), infected (I), and re-
covered (R) individuals. Susceptible individuals have not yet become infected
but may become ill. Infected individuals have already become infected. In the
basic SIR model, they are also capable of infecting susceptible persons. There-
fore, they are assumed to be infectious and may or may not have symptoms.
Recovered individuals have overcome the disease and are no longer ill.
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2.1 The SIR Model in Epidemiology

The basic SIR model assumes that no births or deaths enter the system, that
the population is closed so that no one enters or leaves a compartment from
the outside, and that recovered individuals are completely immune so that
they can never be reinfected. The total size of the population at a time t is
denoted by N(t). The satisfaction of the equation

N(t) = S(t) + I(t) +R(t) with N : [0, T ]→ N,

means that the number of individuals in the system is the sum of the com-
partment sizes at each time point considered t ∈ [0, T ]. The system must have
initial conditions S(0), I(0), R(0) to be well-defined [15, p. 11]. The population
size N(t) is constant if the derivative of N(t) is zero. If there is no natural
death rate and no recruitment or birth rate in the system, this constancy
is given. The individuals in the system are infected, i.e., they migrate from
compartment S to I at a rate θ(t), which is defined as

θ(t) := β · γ(t) ·
(
1− q

)
· I(t) , (1)

where β is the transmission risk and γ(t) is a time-dependent contact rate.
The parameter q symbolizes the degree of strength of intervention, quaran-
tine, and isolation measures implemented. For example, when more infectious
individuals are isolated, fewer further infections occur. The rate

Θ(t) := θ(t) · S(t)

N(t)
(2)

is called a standard incidence rate, and β · γ(t) · I(t) is the force of infection.

2.2 The SVIHDR Model

The basic model is extended in this work to include a vaccinated compartment,
a hospitalized compartment, and a deceased compartment. Infected individuals
remain infected for TI days until they recover, when a proportion ξ of all
transiting individuals are hospitalized. Thus, the rate ω1 at which persons per
unit time (week) pass from compartment I to R is given by

ω1 =
1− ξ
TI

, (3)

and the rate η at which individuals are reach the compartment H per unit of
time is defined as

η =
ξ

TI
. (4)

It is assumed that hospitalized individuals cannot infect susceptible individuals
because of their isolated state. They remain infected TH days from the time
of their hospitalization. A proportion M of all transiting persons die from
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disease-related causes rather than recover. Consequently, the rate ω2 at which
persons per unit time pass from compartment H to R is given by

ω2 =
1−M
TH

, (5)

and the rate λ at which individuals reach the deceased compartment D per
unit of time is

λ =
M
TH

. (6)

The vaccinated compartment V contains all susceptible individuals who
have received a COVID-19 vaccination. It is reached from compartment S at
a rate V. Since vaccination does not guarantee complete immunity to infection,
i.e., we speak of a leaky vaccination, it is assumed that vaccinated individuals in
the system may contract the infection with a small probability. The respective
rate at which vaccinated individuals pass into the infected compartment I is
κ · θ(t), where κ denotes the residual probability of infection after vaccination.

BioNTech/Pfizer’s Comirnaty and Moderna’s Spikevax vaccines are about
95 % effective, AstraZeneca’s Vaxzevria vaccine is about 80 % effective, and
Johnson & Johnson’s Janssen vaccine is about 65 % effective. Thus, a leaky-
vaccinated compartment is assumed, rather than an all-or-nothing vaccinated
compartment. Because leakiness was assumed, all vaccinated individuals have
a lower probability of contracting the infection than susceptible individuals
in compartment S. When an all-or-nothing vaccine was assumed, vaccination
provided complete protection from infection to a portion V of the susceptible
class per unit time t, whereas the 1− V portion received no protection.

The corresponding system of ordinary differential equations (ODEs) has
the following form:

dS(t)

dt
= −θ(t) S(t)

N(t)
− V S(t),

dV (t)

dt
= V S(t)− θ(t)κ S(t)

N(t)
,

dI(t)

dt
= θI(t)

(
1 + κ

) S(t)

N(t)
−
(
η + ω1

)
I(t),

dH(t)

dt
= η I(t)−

(
ω2 + λ

)
H(t),

dD(t)

dt
= λH(t),

dR(t)

dt
= ω1 I(t) + ω2H(t)

(7)

The dynamical system described by equation (7) is depicted in Figure 1.
Blue arrows from one compartment to another indicate a transition, where the
compartment from which a red dashed arrow emanates can infect susceptibles.
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Fig. 1 Compartment model for the SVIHDR model

3 Methods

Data were obtained from the Robert Koch-Institute (RKI) [20, 21] and the
German COVID-19 vaccination dashboard [4]. They refer to the calendar week
10 in 2020 to 45 in 2021. Weekly case-hospitalization, case-fatality and vac-
cination rates were computed on the basis of the given data sets. The RKI
registers deceased individuals, in whom the SARS-CoV-2 pathogen was de-
tected, as people who died from COVID-19. In Subsec. 3.1, the approach of
PINN is explained. Subsec. 3.2 explains the technical procedure of building the
PINN. In Subsec. 3.3 the technique of Nonstandard Finite Difference Schemes
(NSFD) is explained and Subsec. 3.4 gives a short explanation of implementa-
tion of the Long-Short-Term-Memory (LSTM) method, which are used in the
validation and prediction part.

3.1 Physics-informed Neural Networks for Compartment Models

The basic concept of physics-informed neural networks (PINN) is to incorpo-
rate the laws of dynamical systems modeled by ordinary or partial differential
equations into a deep learning framework. The loss function of the correspond-
ing neural network includes not solely the so-called loss error related to the
difference between the output of the network and the reported data used,
but also the so-called residual error related to the ODEs or PDEs. The sum
of these two errors is then minimized in the least squares sense. The PINN
does not require any data on the predicted parameters so that it belongs to
unsupervised learning methods.

The vector ϑ of all parameters included in (7) is given by

ϑ(t) = [β, γ, q,V, κ, ξ, TI , TH ,M, TH ]> . (8)

The parameters in ϑ can be partitioned into fixed parameters pf and trainable
parameters pt, that we select as follows:

pf := [γ, q,V, ξ, TI , TH ,M, TH ]>,

pt(t) := [β, κ]> .
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A neural network
PINNW

p : R→ R6

has to be defined in order to be able to discretize the system of ODEs (7). The
superscript W stands for the weights used during the forward and backward
propagation in the neural network. We are initially given l points in time
T = [t1, . . . , tl]

>, that are the obligatory input to the neural network. A first
version of the PINN with exclusively T as the input vector was implemented.
The vector of all n = 6 compartment sizes is given by

Kp(t) = [K1
p(t), . . . ,Knp (t)]> .

We are given reported compartment size data

K̂p(t) = [K̂1
p(t), . . . , K̂np (t)]> .

As the ODEs in the system (7) can be described by dK(t)
dt = −Fp(K) for

t ∈ [t1, tl] it can be defined that

Fp(K) = [F 1
p (K), . . . , Fnp (K)]> ,

where Kjp(t) ∈ C1(R) and F jp ∈ C(R) ∀j ∈ {1, . . . , n}. We want to approximate

the solution Kp = [S, V, I,H,D,R]> : R → R6 using the PINN performing
error minimization [7].

The parameters W and pt(t) are optimized during the backpropagation
process of the neural network such that PINNW

p fits the reported data K̂ in
a least-squares sense [7]. Doing so, we obtain the loss error defined by

MSEU :=
1

l

∑l

j=1
||PINNW

p (tj)− K̂j ||2 . (9)

Moreover, the residual error

MSEF :=
1

l

∑l

j=1
||Fp(PINNW

p , tj)||2 (10)

is added to the loss error in the training loop of the PINN, in which the weights
and trainable parameters are updated per step. It holds that

Fp(NNW,b
p , tj) :=

dPINNW
p (t)

dt
− Fp

(
PINNW

p (t)
)
. (11)

The residual error symbolizes the physics-informed part of the loss function Lα
since it incorporates the system of ODEs. Let α ∈ [0, 1] be a weighting factor
that can be applied to the residual error in the following backward propagation
with loss optimization performed during training. We define that

Lα := αMSEU + (1− α)MSEF (12)

such that the final minimization problem of the neural network becomes

argmin
W,pt

(
Lα
)
.
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The code was enhanced by the option of having the initial sizes of the
six compartments corresponding to a specific selected point in time as an
additional input to the PINN. The aim of this was the more precise generation
of infection scenarios that stronger depend on the used starting point in time.
This enhanced PINN was later used for predictions.

3.2 Procedures of Building the PINNs

A single feed-forward PINN was used for each of the compartments I and H,
which are those compartments appearing in equations (7) apart from S. This
was done in order that separate parameter vectors pt(t) := [β, κ]> were esti-
mated per run of the neural network for I and H. Among all model parameters,
it is most difficult to assign realistic values to β and κ from raw data. Val-
ues for the case-fatality, the case-hospitalization and the vaccination rate were
computed from the available RKI data [20, 21]. The fixed model parameters
were computed as V = 0.013517486, ξ = 0.079718848 and M = 0.026720524
from the given data sets [20, 21]. According to the RKI, contagiosity strongly
recedes after a mean of 10 days of infectedness [23]. In a paper concerning the
hospitalization of COVID-19 cases compared to flu epidemics, the mean dura-
tion of COVID-19-induced hospitalization in Germany was 10 days, whereby
the length of hospital stay of people transferred to an intensive care unit was
16 days and the hospital sojourn time for ventilated individuals was 18 days on
average [27]. We set the parameter concerning the length of stay in the infected
state to TI = 1.42 weeks, and used a slightly higher value of TH = 1.5 weeks
for the hospital sojourn time in our implementations. We selected the trans-
mission rate β and the transmission variation coefficient for the vaccinated κ
as trainable parameters. In further implementations or using a different model,
other or more model parameters could be selected as trainable.

We used three hidden linear layers for the PINN. Moreover, a linear output
layer was applied to obtain a compartment size output, and a ReLU output
layer was used for the trained parameter vector. 87 points in time (weeks) were
the obligatory input and the initial sizes of the 6 compartments were a second
optional input for more exact infection and hospitalization number forecasts.
The output size is 87 for each compartment size as compartment sizes for the
87 points in time were wanted. The output size was 5 for the parameter vector
because the vector contains 5 parameters that were to be predicted. The ReLu
function was used as activation functions per layer. The Adam algorithm was
selected as optimizer. Different layers and activation function were tested and
compared with respect to output compartment size curves. The selected ones
yielded the most reasonable size ranges. The ReLU output layer was used for
the parameter vector prediction particularly because non-negative values were
wanted. The number of conducted steps per training session was 20,000.

The PINN for later compartment size scenario generation received the addi-
tional input K0 := [S0, V 0, I0, H0, D0, R0]>. Here, the activation function used
for the second layer of the infection or hospitalization number part was changed
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into the tanh-function. In order to compute the derivative dPINNW
p (t)/dt the

PyTorch automatic differentiation package torch.autograd.grad was used.
It computes and returns the sum of gradients of the respective compartment
size tensor PINNW

p (t) with respect to the input time tensor t. Results of the
compartment size and trainable parameter vector predictions of the PINN are
described in Subsection 4.1.

Subsequently, the prognosticated parameters β and κ were used as the in-
puts to an ODE integrator and additionally a nonstandard finite difference
(NSFD) scheme in a validation process. NSFD schemes are explained in Sub-
sec. 3.3. They preserve certain properties like the positivity or the asymptotic
behaviour of the analytic solution of differential equations on the discrete level.
Their most important characteristic is, in many cases, the complete absence of
the elementary numerical instabilities which plague common finite difference
schemes [16].

The long-short-term memory (LSTM) technique was used as another method
of forecast. It is explained in Subsection 3.4. In the whole validation proce-
dure, the errors between the predictions obtained through these two methods
and the actual available data were analyzed and compared. The corresponding
results can be found in Subsection 4.2. Future scenarios drawn with the aid
of the two numerical methods of standard ODE integration, NSFD scheme
and PINN are given in Subsection 4.3 For both the PINN and the LSTM
implementations the PyTorch Library was used.

3.3 Nonstandard Finite Difference Schemes

NSFD methods for the numerical integration of differential equations had their
origin in a paper by Mickens published in 1989 [16]. In [29], we established an
NSFD scheme for a similar compartment model as here. We implemented a
simultaneous parameter estimation using a nonlinear least squares minimiza-
tion of the error between time series compartment size data and the result of
the NSFD-based integration of the respective system of ODEs. This does not
equal the data or residual loss of our PINN approach that we use in this paper.
With the optimized parameters and the NSFD scheme, we generated future
COVID-19 scenarios. Here, we are now able to compare NSFD results to the
results obtained using neural networks. A numerical scheme for a system of
first-order differential equations is called NSFD scheme if at least one of the
following conditions described in [16] is satisfied:

– The first-order derivatives in the system are approximated by the gener-
alized forward difference method (forward Euler method) dun

dt ≈
un+1−un

φ(h) ,

where un = u(tn) and φ ≡ φ(h) is the so-called denominator function such
that φ(h) = h+O(h2).

– The nonlinear terms are approximated in a non-local way, for instance by
a suitable function of several points of a mesh, like u2(tn) ≈ unun+1 or
u3(tn) ≈ u2nu2n+1.
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If we define Ñ = N − D = S + V + I + H + R and additionally add
the recruitment or system-inflow rate ψ equalling the mortality rate µ, i.e.
ψ = µ, and describing the recruitment e.g. birth of new individuals that can
get infected, we obtain the differential equation

dÑ(t)

dt
= µ ·

(
1− Ñ(t)

)
. (13)

It is solved by

Ñ(t) = 1 +
(
Ñ0 − 1

)
· e−µ·t = Ñ0 + (N0 − 1) · (e−µ·t − 1). (14)

with Ñ0 = S(0)+V (0)+I(0)+H(0)+R(0). Adding the equations in Eq. (19)
yields

Ñn+1 − Ñn

φ(h)
= µ ·

(
1− Ñn+1

)
. (15)

The denominator function can be derived by comparing Equation (15) with
the discrete version of Equation (14), that is

Ñn+1 = Ñn + (Ñn − 1) · (e−µ·t − 1), h = ∆t, (16)

such that the (positive) denominator function is defined by

φ(h) =
e−µ·h − 1

−µ
=

1− µ · h+ 1
2 · µ

2 · h2 + . . .− 1

−µ
= h−µ · h

2

2
= h+O(h2) .

(17)

An even more accurate way to compute the denominator function would
take into account the transition rate Υi at which the ith compartment is entered
by individuals for all model compartments Ki, i = 1, 2, . . . [6]. In this case the
parameter µ occurring in the denominator function in Equation (17) would be
replaced by a parameter T ∗. T ∗ could be determined as the minimum of the
inverse transition parameters:

T ∗ = min
i=1,2,...

{ 1

Υi

}
.
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With the aid of this and the denominator function, the NSFD discretization
can be established, which is provided in Eq. (18).

Sn+1 − Sn

φ(h)
= −β · In · Sn+1 − µ · Sn+1,

V n+1 − V n

φ(h)
= V · Sn+1 − β · κ · In · Sn+1 − µ · V n+1,

In+1 − In

φ(h)
= β · (1 + κ) · In+1 · Sn+1 − (η + ω1 + µ) · In+1,

Hn+1 −Hn

φ(h)
= η · In+1 − (ω2 + λ1 + µ) ·Hn+1,

Dn+1 −Dn

φ(h)
= λ1 ·Hn+1,

Rn+1 −Rn

φ(h)
= ω1 · In+ 1 + ω2 ·Hn+1 − µ ·Rn+1.

(18)

The explicit form of the NSFD scheme corresponding to Eq. (18) with an
added natural mortality rate µ is given by

Sn+1 =
Sn

1 + φ(h) · (β · In + µ)
,

V n+1 =
V n + φ(h) · Sn+1 · (V − β · κ · In)

1 + φ(h) · µ
,

In+1 =
In

1 + φ · (η + ω1 + µ− β · (1 + κ) · Sn+1)
,

Hn+1 =
φ(h) · η · In+1 +Hn

1 + φ · (ω2 + λ1 + µ)
,

Dn+1 = λ1 ·Hn+1 · φ(h) +Dn,

Rn+1 =
Rn + φ(h) · (ω1 · In+1 + ω2 ·Hn+1)

1 + φ(h) · µ
.

(19)

3.4 Long-Short-Term Memory for Time Series Data

The LSTM is a special type of a recurrent artificial neural network (RNN) that
is capable of learning long-term dependencies. The main problem of conven-
tional RNN is the difficulty of learning to preserve information over multiple
time steps, which is due to the vanishing gradient problem. In ordinary RNN,
the gradients are computed using the backpropagation algorithm. The weights
are updated proportionally to the partial derivative of the loss function with
respect to the current weight per training iteration. The derivatives of the
network are computed by successive shifting layer by layer so that they are
multiplied from the final to the starting layer. The respective gradient can thus
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become very small, preventing effective updates. For example, when using sig-
moid activation functions, m derivatives of m hidden states are multiplied
successively, such that the gradient decreases exponentially.

The results of several implemented deep learning COVID-19 predictions
show that the LSTM method is well-suited for COVID-19 epidemic forecasts
owing to its aforesaid long-term learning capacity [2, 3, 11, 13]. It is suggested
that the prediction accuracy of LSTM models increases with the increase of
training data, so that they can overcome the problems of the vanishing gradient
and gradient explosion problems and have a good memory [13].

This particular type of RNN was implemented here to obtain purely data-
driven validations and predictions of infection and hospitalization rates. It does
not operate on the basis of model parameters ϑ, but solely on a given com-
partment size dataset. It learns long-term dependencies between a sequence of
time series data to predict the value for the next time step. LSTMs use mem-
ory cells to store values of previous data. So-called gates are used to learn the
significance of certain inputs and decide on updates and data rejection.

In the training step, an input sequence passes through an LSTM layer
whose output consists of the so-called hidden and cell state and is passed to
a linear layer. The predicted number of infected or hospitalized individuals is
stored in the last element of a prediction list that is returned to the function.
For the hidden layer, 100 neurons were selected. An output has size 1, since
it represents the number of infected or hospitalized persons per week. We
denote by n and d the number of input features and entries of the hidden
unit, respectively. Let xt ∈ Rn be an input feature at time t, Wk ∈ Rd×n,
k ∈ {i, f, o, c} be a weight, and bk ∈ Rd, k ∈ {i, f, o, c} be a bias. An LSTM
layer contains a memory cell with, first, an input gate

it = σ
(
Wi[ht−1, xt] + bi]

)
∈ (0, 1)d, (20)

that decides which data is updated, secondly a forget gate

ft = σ
(
Wf [ht−1, xt] + bf ]

)
∈ (0, 1)d, (21)

which determines which previous layer is discarded and which remains in the
current state, and thirdly, an output gate

ot = σ
(
Wo[ht−1, xt] + bo]

)
∈ (0, 1)d, (22)

that decides which parts of the cell state are updated. The current cell memory
Ct with d cell units is computed as

Ct = ft · Ct−1 + it · C̃t ∈ Rd, C0 = 0, (23)

where
C̃t = tanh

(
Wc[ht−1, xt] + bc

)
. (24)

The cell state Ct can be regarded as the global memory over all time steps or
long-term memory capability of the network. Finally, the output of the LSTM
cell is given by

ht = ot · tanh(Ct) ∈ (0, 1)d, h0 = 0. (25)
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It is the so-called hidden state, which encodes the most recent time-step.
Technically, the number of people infected or hospitalized in the following

18 weeks was predicted based on the numbers of the first 69 known weeks
in the validation section. Thus, the data from the first 69 weeks were used to
train the LSTM model. The performance of the model was evaluated using the
values from the last 18 weeks. Therefore, the size of the test window was set
to 18 [weeks]. In the prediction part, the incidence in the following 18 weeks
was predicted.

In a for-loop when applying the trained network in the code, the first 18
elements of the test data set are used to obtain the first element of the predicted
set. These are the last 18 elements of the entire data set, which contains a total
of 87 elements. The loop is run 18 times, which is also the number of weeks
for which predictions are sought. Then, the respective predicted element is
appended to the test data set each time.

4 Results

The results are separated into the parameter estimation with the PINN, the
validation process using the LSTM approach and the numerical methods of
standard ODE integration and NSFD, as well as the part of scenario prognos-
tication using all four presented methods.

4.1 Parameter Estimation with the Physics-informed Neural Network

The trained unsupervised PINN outputted the parameters β and κ by exclu-
sively taking a vector of time instances as input. The data set K̂ = [Ŝ, V̂ , Î, Ĥ, D̂, R̂]>

was used in the loss computation but not as a network input. The wanted vec-
tor of trainable parameters obtained from the trained neural network slightly
varied between different test runs. The size of the respective compartment
I or H, the course of which was obtained as a second output of the PINN,
depended on the layer architecture. The average values of parameter vectors
obtained from two PINN, which were the ones predicting the sizes of I and
H, were used as the inputs to further Python codes used for validation and
formation of future SARS-CoV-2 scenarios. They are explained in Subsec. 4.2
and Subsec. 4.3.

Figure 2 shows the loss obtained in a run of the PINN for the estimation
of the trainable parameters and the size of the compartment I. It can be seen
that the data loss MSEU , computed as the mean squared error between re-
ported and network-generated compartment size data using the Python func-
tion MSELoss, decreases by more than 90 % between the first and the 640th

training iteration. This means that the updated sizes of the compartment I
approaches the reported infection numbers by weight updates of the neural
network during training in these iterations. Then it remains on a level of ap-
proximately 0.17 · 109. The residual loss MSEF increases from 1.079 to a
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Fig. 2 Trends of the errors MSEU , MSEF and the loss L0.5 = 1
2
MSEU + 1

2
MSEF in

1,000 observed training iterations of the PINN for the estimation of β and κ.

maximal value of 2.838 · 109 during the same number of iterations, is then
very marginally reduced to around 2.710 · 109 and remains on this level. As a
consequence of this, the training loss decreases from 5.8 · 109 in the beginning
to 2.2 · 109 in the 640th training pass, remaining on this level, and was thus
reduced by 62 %.

We computed the average of all values of β and κ output by the PINN for
the prediction of the size of the hospitalized compartment and the PINN for
the prediction of the size of the infected compartment. Resulting values for the
parameters β and κ obtained in 100 program runs were lying in the interval
[0, 1]. Thus, we found that κ ∈ [0.005, 0.0015] and β ∈ [0.1 · 10−9, 0.1 · 10−7]
were the final parameter intervals to be used in the validation and prediction
step.

4.2 Validation: Specificity Analysis

First, an LSTM was used to plot scenarios for calendar weeks 29 through
45 in 2021. Therefore, the forecast basis was the compartment size data for
calendar weeks 10 in 2020 to 28 in 2021 (beginning of March 2020 to mid-July
2021). On the other hand, we applied the numerical integration technique to
the ODE system in Eq. (7) with PINN-trained parameters β and κ to generate
scenarios for calendar weeks 29 to 45 in 2021 based on compartment size data
from calendar weeks 10 in 2020 to 28 in 2021. As a third prediction approach,
we used the NSFD scheme to create similar scenarios.

The specificity analysis consisted in calculating the difference between the
reported data and the method-dependent predictions of infection or hospital-
ization rates for calendar weeks 29 to 45 in 2021 and observing the trends of
the resulting curves. Running the respective code 100 times, we validated the
performance of the LSTM method by adapting the structure of the hidden
and LSTM layer by trial, e.g. the number of neurons, as well as the number
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of predicted time steps in the way that we finally obtained sensible results.
This firstly means that the outputs of the LSTM method were reasonable
and showed similar trends as the true reported data in multiple further pro-
gram runs, and secondly the Euclidean distance regarding all time steps in the
predicted calendar weeks was decreased.

For the implementation of the NSFD, we used values for β and κ lying
in the ranges identified by the PINN (c.f. 4.1). In order to generate Figs. 3
to 7, we set β = 0.000000018 and κ = 0.001 for the ODE solver and NSFD
scheme, respectively, based on the results in Subsec. 4.1. In the validation
process, we adapted these two parameters only very slightly to obtain the
most realistic predictions. These values lead to reasonable incidence curves,
which can be seen below. Fig. 3 shows an example output of the infection
number prediction of the LSTM method in the validation step. It was created
after the most significant modifications.

Fig. 3 The infection numbers in Germany reported to the RKI [20,21] between the calendar
weeks 10 in 2020 and 45 in 2021 (blue) and the LSTM prediction made for the calendar
weeks 29 to 45 in 2021 (orange) based on the data of the calendar weeks 10 in 2020 to 28
in 2021.

In Fig. 3, it can be seen that the selected LSTM prediction approaches
200,000 infected in the 87th week and thus the reported data. The prediction
starts in the 69th week for which data were available. We see that the predicted
curve begins to rise in the 75th week, which is 1-2 weeks later than the curve
in the reported data. The slope of the incidence curve is slightly lower than
that of the real data. In addition, the LSTM predicts an increase beginning in
the 78th week considered, when the real data show a decrease of about 30,000
infections. In the 83rd week, the LSTM curve shows a smaller and later decline
than was observed in reality. Aside from that, we can see the predictions for
calendar weeks 29 to 45 using data from the previous 69 weeks in the case of



18 Sarah Treibert, Matthias Ehrhardt

LSTM or compartment size data from calendar week 29 and PINN-estimated
parameters β and κ in the case of the ODE integrator and NSFD in Fig. 4.

Fig. 4 The prediction of infection numbers in Germany for the calendar weeks 29 to 45
in 2021 using three different methods (solver for ordinary differential equations, numerical
Nonstandard Finite Difference Scheme, data-driven Long-Short-Term-Memory) based on
reported data of the calendar weeks 10 in 2021 to 28 in 2021.

In terms of specificity of the methods, Fig. 5 shows the errors i.e. differ-
ences between the reported data and the outputs of the three methods for
the 18 weeks. While the LSTM starts its prediction at 7,000 infections, the

Fig. 5 The errors between the reported and predicted data in the calendar weeks 29 to 45
in 2021 using the three methods, corresponding to the predictions of Fig. 4

.
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two numerical methods and the reported data start at less than 2,000 infected
individuals. Consequently, the error between the prediction and the real data
is 6,000 infected individuals at the beginning in Fig. 5. This deviation of the
LSTM from the actual starting data is justified by its purely data-driven na-
ture. The scenarios obtained by the ODE solver and NSFD in Fig. 4 are
monotonically decreasing functions and do not exhibit oscillations or local ex-
trema. They do not diverge noticeably at the beginning, diverge slowly from
then on, and differ by 10,000-15,000 infections in the 87th week considered.
This pattern of divergence among them is also reflected in the errors to the
reported data in Fig. 5.

The LSTM intersects the other three curves at the 73rd week in Fig. 4,
shows the smallest numbers at the 74th week, and increases more sharply
from then on than the curves predicted by the two numerical methods. The
local maximum in the reported data at the 78th week is not captured by the
numerical methods. The LSTM prediction approaches the slope of the reported
curve, although it has lower infection numbers until the 79th observed week
when it passes the reported curve at 110,000 infections. When the real data
curve drops back to the level of the numerically generated curves (85,000
infections at week 83), the LSTM prediction shows 135,000 infections. The
large increase in reported infection numbers between weeks 84 and 87 (100,000
infections) is not captured as strongly by all three methods. However, because
of its higher level beforehand, the LSTM best approximates the number of
infections in the 87th week under consideration. This whole scenario confirms
that the LSTM, as a deep-learning method, is able to learn the long-term
behavior of the given time series dataset and simulate outliers that also occur
in the underlying dataset. Nevertheless, the LSTM prediction is not always
closest to the trend of the reported data (as here between weeks 69-72, 81-84)
and the NSFD with optimized trainable parameters proves to be well suited
for predicting epidemiological trends. The error between the NSFD and the
reported data is smaller than the error between the LSTM and the reported
data in all weeks considered, except in weeks 75-80 and in the last week, as
shown in Fig. 5.

With respect to the 100 test runs we performed, meaning 100 complete
training iterations with outputted curves generated via the LSTM, NSFD
and ODE solver, the Euclidean distance between the ODE solver prediction
and reported data was 56, 185 if the assignments β = 0.000000018 and κ =
0.001 were used. It was 74, 744 for the NSFD. We could certainly reduce the
error between the NSFD prediction and the real data by further parameter
modifications. However, we maintained the same parameters for the NSFD
scheme as we used for the standard ODE solver in order to keep comparability.
The Euclidean distance between the LSTM prediction and the reported data
fluctuated between 40,000 and 100,000 between the individual programs. In
many cases, it was between 60,000 and 70,000 i.e. the performance of all three
methods was comparable. Depending on the progress of the validation process,
we later obtained smaller distances of 40,000-60,000.
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Fig. 6 The real curve of hospitalization numbers in Germany between the calendar weeks
10 in 2020 and 45 in 2021 (blue) and the corresponding LSTM prediction made for the
calendar weeks 29 to 45 in 2021 (orange) based on the data of the calendar weeks 10 in 2020
to 28 in 2021.

As we can see in Fig. 6, the courses of the curves predicted by the two
numerical methods are similar to the courses in Fig. 4. All three methods meet
the increasing trend of the reported data, although the LSTM reflects the real
slope between the 82nd and 87th week best, whereas the two numerical methods
show a much stronger increase such that 7,500 or 8,000 hospitalizations are
obtained in the 87th week by using them.

Until the 82nd week observed, where the NSFD and ODE integrator cut off
the curve of real data, these two numerical methods make good approximations
of the general real slope. Nonetheless, they do not show a peak, as is observable
in the reported data between the 77th and 79th week concerned. A difference
of almost 3,000 hospitalizations is observable between the two numerically
generated curves and the reported data in the 77th and 78th week. This also the
biggest error to be noted in this example, regarding the numerical approaches.

The LSTM shows a large deviation from the reported data in the beginning
as in Fig. 4 (3,000 hospitalizations), but then approximated the real data.
In the 77th and 79th week, only a difference of around 100 hospitalizations
can be observed. The difference between the LSTM and reported data curves
becomes larger again, since the LSTM curve slightly increases and the real
data curve declines. As the reported data re-start increasing in the 83rd week,
the difference becomes smaller again and is 900 in the 87th week.

We can analyze that the LSTM method is able to predict the increases or
outliers of the reported data well and learns them from long-term data, but
it tends to precede them and thus exhibits larger errors than the numerical
methods at pre-peak times. In contrast to that, the NSFD scheme is a good
choice if we are interested in the intermediate-term behaviour of the curve,
and less in oscillations or outliers.
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4.3 Infection and Hospitalization Number Scenarios

Finally, future scenarios were predicted by applying the NSFD method and
the standard Python ODE solver to initial reported data

K0 = [22, 570, 182; 55, 858, 178; 197, 090; 5, 000; 95, 729; 4, 373, 822]>

which corresponds to calendar week 45 in 2021. It should be noted that ap-
proximately two-thirds of the German population of 83.1 million had was vac-
cinated by this time. In addition, the LSTM method was used for predictions
based on the entire 87-week data set, starting with calendar week 10 in 2020.

The PINN previously used for parameter estimation was also used to pre-
dict infection and hospitalization rates. This time, the vector K0 was used
as a second input to the PINN to obtain more accurate output curves. Its
implementation was based on the same calendar weeks as the LSTM method.

Fig. 7 shows the loss and its parts MSEU and MSEF of the modified PINN
for predicting the infection number in 2, 500 training steps using α = 0.5, while
Fig. 8 shows the same for α ∈ {0.7, 0.3, 0.9, 0.1}.

Fig. 7 Trends of the errors MSEU , MSEF and the loss L0.5 = 1
2
MSEU + 1

2
MSEF in

2,500 observed training iterations of the PINN for the prediction of infection numbers.

Similarly to Fig. 2 can be observed that the function of the mean squared
error MSEU is monotonically decreasing, whereas the function of the mean
squared error MSEF is monotonically increasing in Fig. 7 and the four loss
scenarios in Fig. 8. Except for the case α = 0.1 in Fig. 8, where MSEU
reaches a value of 0.8 · 1010 and then only declines insignificantly, the data
loss still decreases after the 1700th training step with α ∈ {0.3, 0.5, 0.7, 0.9}.
The loss part MSEF approaches a value of 0.2 · 1010 after 2,500 iterations for
α ∈ {0, 3, 0.5, 0.7}. With α = 0.9 or α = 0.1 however, we obtain the much
smaller final values of MSEF of 0.2 · 1010 or 0.01 · 1010, respectively.
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Fig. 8 Trends of the errors MSEU , MSEF and the loss Lα = αMSEU + (1− α)MSEF
in 2,500 observed training iterations of the PINN for the prediction of infection numbers,
for α = 0.7, 0.3, 0.9, 0.1.

Moreover, the composition of the loss curve changes as α is modified. We
note that the trajectories of the two mean square errors also change during the
training process when α is modified. The loss curve is monotonically decreasing
in all five cases (cf. Figures 7 and 8). It exhibits a value of 0.22 · 1010 for
α ∈ {0.5, 0.7}, of 0.23 · 1010 for α = 0.9, of 0.2 · 1010 for α = 0.3, and of
0.1 · 1010 for α = 0.1 after 2,500 iterations. This implies that α < 0.5 yields
loss curves at smaller levels, but the data loss decreases less sharply with
smaller α.

In the following, examples of predicted infection scenarios are shown. The
scenarios predicted by the LSTM differ slightly, of course, because the neural
network is exclusively data-driven. The predictions made with the NSFD or
ODE solver give the same curve in all diagrams, since the same parameters
were used in the corresponding program runs. Fig. 9 conveys incidence sce-
narios created by applying PINN, LSTM, NSFD, and standard ODE solvers
using different values for α in PINN. Thus, the sensitivity of PINN predictions
with respect to the α parameter can be investigated. In the prediction part,
different assignments of the α parameter produce different PINN prediction
scenarios. In Figs. 7 and 8 in the validation part, we noticed that the loss curve
became lower and flatter the smaller we choose α, although the mean square
error MSEU remained at a higher level.
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Fig. 9 The prediction of infection numbers over 18 weeks starting in calendar week 46
in 2021 on the basis of data covering the calendar weeks 10 in 2020 to 45 in 2021 using
four different approaches (solver for ordinary differential equations, Nonstandard Finite
Difference Scheme, Physics-informed Neural Network, Long-Short-Term-Memory) and with
α ∈ {0.5, 0.25, 0.1}.

In Fig. 9 we notice that smaller α lead to curves with sharper local extrema
in the incidence prediction. The local maxima in the 52nd calendar week of 2020
and the 3rd calendar week of 2022 are 370,000 and 275,000 weekly infections,
respectively, at α = 0.1. The incidence level at α = 0.1 in calendar weeks 46
in 2021 through 4 in 2022 is generally much higher than in the α = 0.25 and
α = 0.5 cases. In the graph generated with α = 0.5, local maxima are barely
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discernible and the curve remains at about 200,000 infections until calendar
week 4. In the graph generated with α = 0.25, the peaks are somewhat more
evident, but the incidence level here hovers around 175,000 infections.

For all three assignments of the α parameter, the predicted infection count
curve declines starting at calendar week 4 in 2022. In the α = 0.5 case, a
value of 150,000 infections is reached at calendar week 11 in 2022. In the cases
α = 0.25 or α = 0.1, there are 80,000 and 110,000, respectively.

Both the NSFD and ODE solver forecast functions increase monotonically
from 200,000 to 245,000 infections between calendar week 46 in 2021 and
calendar week 2 in 2022, with a much weaker increase in the NSFD curve.
From calendar week 2, the curve predicted by the ODE solver drops to less
than 190,000 infections in calendar week 12, while the curve generated by the
NSFD scheme still rises slightly until calendar week 6 and then remains at
about 235,000 infections until calendar week 12. The NSFD and ODE solver
predictions also cut off at 235,000 infections in calendar week 6 in 2022.

With the parameters β = 0.000000035 and κ = 0.001 used in the two nu-
merical methods, we obtain higher incidence levels in the following 18 calendar
weeks when we choose α = 0.5 or α = 0.25 in the PINN approach. We also
obtain lower levels between calendar week 46 in 2021 and 4 in 2022, but higher
levels in calendar weeks 5 to 12 in 2022 if we choose α = 0.1.

Various of our LSTM-based predictions showed local maxima ranging from
180,000 infections in calendar week 1 to 225,000 infections in calendar week 50
to 235,000 infections in calendar week 52. The LSTM-predicted curve reached
a minimum of less than 7,500 infections between calendar weeks 6 and 8 in
our program runs.

The trends of the LSTM and PINN curves in Fig. 9 are increasing and not
relevantly decreasing, respectively, in calendar weeks 46 through 52. There-
after, both drop significantly, illustrating their similar behavior despite differ-
ent predicted infection numbers or curve heights, which also depend on model
parameters. The trend of the LSTM and PINN curves in calendar weeks 9 to
12 is upward. The trend of the NSFD prediction is then almost constant, while
the curve generated by the standard ODE solver decreases significantly. The
similarity between all four approaches is that there is a peak around the turn
of the year and a significant decline thereafter.

Fig. 10 illustrates three hospitalization scenarios created by using the same
LSTM, NSFD and standard ODE solver outputs, but different values for α in
the PINN approach.

Instead of the results of different LSTM method program runs as for Fig. 9,
the same LSTM output was used to create Fig. 10. Here, we can observe that
the modification of the weight parameter α influences the scenario drawn by
the PINN. The smallest assignment α = 0.1 leads to the smallest amount of
data loss in the loss function among the three compared scenarios. It yields
the highest number of hospitalizations among the three, while the course of
the three curves is similar with peaks at the same times (calendar weeks 5 and
8 in 2022). Whereas α = 0.1 yields 30,000 hospitalizations in calendar week
5 and 26,500 in calendar week 12, the assignment α = 0.5 results in 28,000
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Fig. 10 The prediction of hospitalization numbers over 18 weeks starting in calendar week
46 in 2021 on the basis of data covering the calendar weeks 10 in 2020 to 45 in 2021 using
four different approaches (solver for ordinary differential equations, Nonstandard Finite
Difference Scheme, Physics-informed Neural Network, Long-Short-Term-Memory) and with
α ∈ {0.5, 0.9, 0.1}.

hospitalizations in calendar week 5 and 24,500 in calendar week 5. Moreover,
setting α = 0.9, i.e. increasing the amount of data loss but decreasing the
amount of residual error in the loss function, yields 25,500 hospitalizations in
calendar week 5 and 22,500 in calendar week 12.
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5 Conclusion and Outlook

We have presented a data- and physics-driven deep learning algorithm that
identifies the transmission parameter β and the parameter κ, representing the
proportion of transmissibility in the vaccinated population, in a system of ordi-
nary differential equations of a compartment model describing population dy-
namics at pandemic times. For this purpose, we made use of a physics-informed
neural network (PINN), the loss function of which combines a weighted data
loss with a weighted residual loss, which again is based on the compartment
model applied to the respective current network output.

Using COVID-19 infection, hospitalization, vaccination and mortality data
from Germany, we calculated the prediction error of an exclusively data-driven
Long-Short-Term-Memory (LSTM), i.e., a special type of recurrent neural net-
work that learns the behaviour of time series data, and the two numerical
methods of a standard solver for ordinary differential equations [5] and a non-
standard finite difference (NSFD) scheme [16]. During a validation process, we
slightly adjusted parameters in the NSFD scheme and the network architec-
ture of the LSTM in order that we obtained resulting plots approximating the
trend of the real course of infection numbers in the calendar weeks 29 to 45 in
2021.

The fact that we were able to improve the LSTM scheme in the way that
the Euclidean distance between the LSTM predictions and the reported data
became smaller when observing various test runs, implies the flexibility of the
LSTM approach. We note that the LSTM method is well able to learn long-
term dependencies and account for outliers. Also, we found that the prognoses
made by the numerical approaches were smooth curves, conveyed correct ten-
dencies and strongly depended on the underlying parameters as substantially
the parameters influencing transmission in the regarded system. With all three
methods, we were finally able to achieve curves the trends and slopes of which
came close to the ones of the real data curves.

Applying the improved versions of the three methods, we were able to
compare the predictions concerning the course of the fourth wave with the
forecasts of a modified PINN. This PINN had the same structure as the PINN
we used for parameter identification, but yielded more precise incidence prog-
noses as we gave initial compartment size data as additional inputs. Generally,
we obtained a clearly decreasing data loss, proving that the PINN approach
correctly approximated the reported data, and a slighter increasing residual
error, such that we overall obtained a decreasing loss curve of the PINN. Our
results imply that the strength of the decline of the loss curve depends on the
choice of the weighting parameter of the loss function.

Apart from parameter choices, the predictions made by the PINN depended
on the composition of the loss function used in both infection and hospital-
ization number forecasts. The PINN forecasts exhibited the same trend (up-
wards or downwards) as the LSTM prediction in all regarded program runs.
The trend of the NSFD prognosis was closer to the one of the two data-driven
approaches than the trend of the ODE solver forecast in all cases. Both numer-
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ical methods exhibited weaker rising or falling curve segments than the neural
network approaches. We found strong decreases in infection numbers during
the fourth wave after 6-10 weeks from prediction start when using the two
data-driven methods. In contrast to that, the curve predicted by the NSFD
declined in a more marginal way and the curve predicted using the ODE solver
was on an almost constant level after 14 weeks. The prognoses of data-driven
and numerical methods deviate since their fundamental frameworks differ.
However, we can observe similarities as the approximate point in time when
the global maximum of the wave is achieved, or the approximate peak height
if parameters are selected deliberately. The NSFD approach is well-suited if
we are interested in incidence trends in the medium term, since the predicted
curves rise or fall consistently.

The next step will be to apply the validation and prediction procedure
of our PINN approach to data from different countries, in particular to esti-
mate the influence of the level of vigilance and intervention and vaccination
programs that differ between countries. There is also large interest in model
scenarios with differently transmissible variants of the novel coronavirus with
our approaches.

Our next PINN implementations will include and identify transmission
rates consisting of a time-dependent transmission coefficient β(t), a time-
dependent contact rate γ(t), and a time-dependent mitigation or quarantine
rate q(t). We will use these rates to analyze the effects of different lockdown
scenarios and contact restrictions.
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