
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 21/34

Claudia Drygala, Benjamin Winhart, Francesca di Mare, Hanno
Gottschalk

Generative Modeling of Turbulence

December 6, 2021

http://www.imacm.uni-wuppertal.de



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Generative Modeling of Turbulence

Claudia Drygala, Hanno Gottschalk
University of Wuppertal, School of Mathematics and Natural Sciences, IMACM & IZMD

{drygala,hanno.gottschalk}@uni-wuppertal.de

Benjamin Winhart, Francesca di Mare
Ruhr University Bochum, Department of Mechanical Engineering, Chair of Thermal

Turbomachines and Aero Engines
{benjamin.winhart,francesca.dimare}@ruhr-uni-bochum.de

Abstract

We present a mathematically well founded approach for the synthetic modeling
of turbulent flows using generative adversarial networks (GAN). Based on the
analysis of chaotic, deterministic systems in terms of ergodicity, we outline a
mathematical proof that GAN can actually learn to sample state snapshots form
the invariant measure of the chaotic system. Based on this analysis, we study a
hierarchy of chaotic systems starting with the Lorenz attractor and then carry
on to the modeling of turbulent flows with GAN. As training data, we use fields
of velocity fluctuations obtained from large eddy simulations (LES). Two archi-
tectures are investigated in detail: we use a deep, convolutional GAN (DCGAN)
to synthesise the turbulent flow around a cylinder. We furthermore simulate the
flow around a low pressure turbine stator using the pix2pixHD architecture for
a conditional DCGAN being conditioned on the position of a rotating wake in
front of the stator. The settings of adversarial training and the effects of us-
ing specific GAN architectures are explained. We thereby show that GAN are
efficient in simulating turbulence in technically challenging flow problems on
the basis of a moderate amount of training date. GAN training and inference
times significantly fall short when compared with classical numerical methods,
in particular LES, while still providing turbulent flows in high resolution.

Keywords: Generative adversarial networks, Turbulence modeling, Ergodicity,
Karman vortex street, LPT stator

1. Introduction

Turbulent flows are characterized by unsteadiness, chaotic-like flow states
and high degree of non-linearity. The structures involved exhibit a wide range
of spatial and temporal scales, with the ratio of largest to smallest structures
scaling with the Reynolds number[19]. In order to capture all scales of fluid
motion directly, very fine computational meshes and time steps are required,

1



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

which makes the computational effort in the case of engineering-relevant (high
Reynolds numbers) problems impossible to accomplish in reasonable time de-
spite the rapidly increasing computer performance. To circumvent this problem,
closures are used, which allow to model the structures that cannot be captured
by the coarser numerical meshes. However, this advantage in computation time
is paid for with a modeling error, which can be considerable depending on the
chosen approach and the underlying flow case.

Recent developments in the field of machine learning (ML), which are largely
driven by increased computational power as well as the availability of excep-
tionally large data sets, make it possible to address this issue, whereby different
approaches can be taken. One obvious approach is ML-based improvement of
the prediction quality of existing models, also known as ML augmented turbu-
lence modeling. Here, one possibility is to calibrate the empirically determined
constants of the respective models for the underlying use case by means of data-
driven ML augmentation [9, 14, 15, 73, 67, 66, 75, 74]. Pioneering publications
in this area are the works of Ling et al. [42] and Jiang et al. [31] who used
deep neural networks (DNNs) to determine the model constants of nonlinear
algebraic eddy viscosity models and were thus able to significantly improve the
prediction of anisotropic turbulence effects. Another way is the correction of
existing models with the help of additional source terms, which were success-
fully used in [52, 60, 61, 26] for the augmentation of turbulence models and in
[71] for the augmentation of transition models.

A completely different approach has been pursued recently, based on the
generative adversarial networks (GAN) as introduced by Goodfellow [24], which
allow a hierarchical identification and abstraction of features in images by means
of deep neural networks (DNN). By the fact that also in the case of turbulent
flows there is a complex superposition of different structures and scales suggests
that these methods are well suited for learning the physical relationships in such
flows. In [35, 36] it was shown that GAN are able to generate synthesizations
of 2D flow fields after they have been previously trained based on DNS data.
The reproductions even fulfilled some statistical constraints of turbulent flows
such as Kolmogorov’s − 5/3 law and the small scale intermittency of turbulence.
Using a deep unsupervised learning approach and a combination of a GAN and
a recurrent neural network (RNN), Kim & Lee [33] were able to generate high-
resolution turbulent inlet boundary conditions at different Reynolds numbers,
which show a statistical similarity to real flow fields.

Another application of GAN is the field of super-resolution reconstruction of
turbulent flows. With these methods it is possible to synthetically scale up flow
fields which are low-resolution or noisy due to the measurement technique used
or, in the case of numerical data, due to limited data storage capacity. [20, 21,
43, 11, 70, 68, 62]. These works assume a supervised learning approach, which
means that labeled paired datasets of low-resolution and high-resolution images
must be available. Here, the low-resolution data sets are usually generated
by filtering the high-resolution data sets obtained, for example, from direct
numerical simulations (DNS). In many practical situations, however, such high-
resolution data sets are usually not available, which to a certain extent limits the

2



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

range of applicability. A more general and therefore more practical approach is
the unsupervised super-resolution reconstruction method. Here, pairwise data
sets are no longer necessary, as Kim & Lee could show by successfully using an
unsupervised GAN for the generation of boundary conditions for turbulent flow
[33]. Applications of such methods would be e.g. the augmentation or denoising
of experimental data sets (PIV) or the derivation of subgrid-scale models for the
application in the field of large-eddy simulation (LES).

In our work, we show the possibilty of synthesizing turbulence structures of
a similar quality as predicted by of LES with GAN trained from scratch and
completely unsupervised. Thus, we are able to produce data with help of the
trained generator by only having a noise vector as input. Moreover, we show by
investigation of conditional GAN that generators of synthetic turbulent flows
can learn to cope with changes of the geometry of the flowpath, e.g. caused by
a rotation wake. We also show that introducing generative learning to model
turbulences finds its justification in the enormous reduction of computational
time compared to LES, while maintaining the resolution. Lastly, besides the
practical aspects, we prove, using the mathematical concept of ergodicity, that
learning to generate states of chaotic systems using GAN is possible.

Outline. The paper is organised as follows. In section 2 we briefly summarize
the concept of ergodicity, discuss the mathematical foundations behind GAN
along with the learning theory for deterministic ergodic systems. Also, a survey
of modern GAN architectures is given. The hierarchy of datasets used for our
experiments, ranging from the Lorenz attractor and the flow around a cylinder
to a perioic wake impinging on a low-pressure turbine stator blade, are described
in section 3. This is followed by section 4, where we give details on the training
of our various GAN models. In section 5 we discuss the results of our numer-
ical experiments. Finally, in section 6 we present the conclusion and an short
outlook.

2. Methodology

In this work we apply generative adversarial networks (GAN) to generate
typical states of a deterministic chaotic dynamic system. This is made mathe-
matically precise via the notion of ergodicity [55].

2.1. Ergodicity
Let be (Ω,A, µ) a probability space, consisting of a state space Ω, a col-

lection A of events/subsets of the state space A ⊆ Ω known as σ-algebra and
a probability measure on A that attributes the probability µ(A) to the events
A ∈ A. In our context, the state Ω is chosen as the phase space of a dynamic
system ϕt : Ω→ Ω, t ∈ R, that fulfills ϕt ◦ ϕs = ϕs+t and ϕ0(x0) = x.

Frequently in this work, we need the concept of an image measure, i.e. the
transformation of a measure by a mapping. To this purpose, let ϕ : Ω→ Ω′ be
a mesurable mapping with respect to the σ-algebra A on Ω and a second sigma

3



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

algebra A′ on Ω′, i.e. for all A′ ∈ A′ we have ϕ−1(A′) = {x ∈ ω|ϕ(x) ∈ A′} ∈ A.
The image probability measure of µ under ϕ, denoted by ϕ∗µ, is then defined
by

ϕ∗µ(A′) = µ(ϕ−1(A′)) ∀A′ ∈ A′. (1)

In the following, without further mention, we assume all mappings to be mea-
surable with respect to suitable σ-algebras.

In the case considered here, Ω is a state space of a dynamic system. A
dynamic system with the given state space consists of a collection of mappings
ϕt : Ω → Ω that fulfill ϕ0 = idΩ and ϕt ◦ ϕs = ϕs+t, where ϕt ◦ ϕs(x) =
ϕt(ϕs(x)). In many cases, like ours, the state of the dynamic system ϕt(x) at
time t ∈ R is obtained as a solution mapping ϕt : Ω → Ω associated with a
(discretized) ordinary or partial differential equation starting in the initial state
x ∈ Ω. E.g., Ω = R3 for the case of the Lorenz attractor or Ω = Rd with d a
large number of dimensions of the disrcetized state space of the fluid field in the
case of the numerical simulation of turbulent fluids.

The probability measure µ is an invariant measure for the dynamic system
defined by ϕt, if all solution mappings ϕt are measure preserving with respect
to µ, i.e. ϕt∗µ = µ for all t ∈ R.

We next turn to the space of physical observables on Ω and define it as space
H of all square-integrable functions f : Ω→ R, i.e.

H := L2(Ω,A, µ) =

{
f : Ω→ R : f measurable,

∫

Ω

|f |2 dµ <∞
}
, (2)

We next turn to to the notion of ergodicity, which equates the time average
of a dynamic system with the ensemble average of its invariant measure. In
mathematical notation, ergodicity of the dynamic system ϕt with respect to the
invariant measure µ is defined as

lim
T→∞

1

T

∫ T

0

f ◦ ϕt(x0) dt =

∫

Ω

f(x) dµ(x) = Ex∼µ[f(x)] ∀x0 ∈ Ω. (3)

Neumann [47] and Birkhoff [7] established quite general conditions, under which
ergodicity holds. See also [16, 3] for extensive treatments of discrete and time
continuous ergodic systems.

In some of our numerical experiments, we do not consider the entire state-
space Ω, but reduce the degrees of freedom using a mapping π : Ω → Ω′ with
Ω′ the reduced state space. Let π∗µ be the projected measure. Assuming the
ergodictity of the original dynamics ϕt with respect to µ, we see that

lim
T→∞

1

T

∫ T

0

f ◦ π ◦ ϕt(x0) dt =

∫

Ω′
f(x′) dπ∗µ(x′) ∀x0 ∈ Ω, (4)

whenever f ◦ π is square integrable with respect to µ. This easily follows from
the general transformation formula

∫
Ω′ f(x′) dπ∗µ(x′) =

∫
Ω′ f ◦ π(x) dµ(x) and

(3). Hence, ergodicity remains meaningful on the reduced state space Ω′, even
if the dynamics ϕt can not be consistently formulated on Ω′.

4



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

2.2. Mathematical foundations of generative learning for ergodic systems
Generative Adversarial Networks (GAN) consist of two mappings - a gener-

ator φ : Λ → Ω and a discriminator D : Ω → [0, 1]. Here Λ is a space of latent
variables endowed with a probability measure λ that is easy to simulate, e.g.
experiments uniform or Gaussian noise. The generator φ transforms the noise
measure λ to the image measure φ∗λ. The goal of adversarial learning is, to
learn a mapping φ from the feedback of the discriminator D, such that D is
not able to distinguish synthetic samples from φ∗λ from real samples from the
target measure µ. However, the discriminator D is a classifier that trained to
assign real data a high probability of being real and synthetic data a low proba-
bility. If φ has been so well trained, that even the best discriminator D can not
distinguish between samples from µ and φ∗λ, generative learning is successful,
see also Fig. 1.

In practice, both the generator ϕ and the discriminator D are realized by
neural networks. The feedback of D to φ is transported backwards by back-
propagation [58] through the concatenated mapping D ◦ φ in order to train the
weights of the neural network φ. At the same time, the universal approximation
property of (deep) neural networks guarantees that any mappings φ and D can
be represented with a given precision, provided the architecture of the networks
is sufficiently wide and deep, see [23, 5, 56, 64, 30, 76, 65, 32] for qualitative and
quantitative results.

The training of GAN is organized as a two-player minimax game between D
and φ. Mathematically, it is described by the min-max optimization problem

min
φ

max
D
L(D,φ) (5)

with the loss function, also known as binary cross-entropy [28]

L(D,φ) = Ex∼µ[log(D(x))] + Ez∼λ[log(1−D(φ(z)))] . (6)

Here, the expected value is denoted by E, the random variable x with values
in Ω follows the distribution µ of the real world data and the latent random
variable z with values in Λ follows the distribution of the noise measure λ. As
has been observed in [23],

max
D∈HD

L(D,φ) = dJS(µ‖φ∗λ) + log(4) (7)

if the maximum is taken over a sufficiently large hypothesis spaceHD of discrim-
inators. Here, dJS(µ‖φ∗λ) stands for an information theoretic pseudo distance
between the invariant measure µ and the generated measure φ∗λ known as the
Jensen-Shannon divergence

dJS(µ‖φ∗λ) = dKL

(
µ

∥∥∥∥
φ∗λ+ µ

2

)
+ dKL

(
φ∗λ

∥∥∥∥
φ∗λ+ µ

2

)
, (8)

with dKL(µ‖ν) = −Ex∼µ
[
log
(
fν
fµ

(x)
)]

the Kulback-Leibler pseudo distance
between the measures ν and µ with continuous probability densities fµ and

5



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

fν , respectively. Note that dKL(µ‖ν) = 0 holds if and only if fµ(x) = fν(x)
holds with µ-probability one and hence µ = ν. Consequently, also dJS(µ‖φ∗λ)
measures the distance between µ and φ∗λ.

Random

vector z

Generator φ

(NN)

Fake

sample

φ(z)

Real-world

images X

Real

sample

x ∈ X

Discriminator D

(NN)

Real

Fake

Loss

Figure 1: Architecture of the original GAN. According to: [23]. The generator produces fake
samples φ(z) ∼ φ∗λ by the random vector z as its input. On the other hand the real-world
data X representing the training data is given. The discriminator gets as input fake as well
as real samples and estimates the probability that the given input sample comes from X than
generated by φ. Thus, the output of D is a single scalar value per sample in the range of
[0, 1]. The feedback of the discriminator reaches the generator when the weights of the GAN
framework are updated by backpropagation [58] during the training. Since both networks are
fully differentiable and trained end-to-end the whole GAN framework can be backpropagated
in one go using the same loss function for φ and D. The optimum of the problem (5) is reached
if the distribution of the real-world data is captured by the generator and the discriminator
is not able to distinguish real from fake samples, so φ∗λ = µ and D(·) = 1/2.

2.3. Learning theory for deterministic ergodic systems
In this work, we show that it is possible to model turbulent flows with

GAN in practice. In this section we outline a proof that generative learning for
deterministic ergodic systems converges in the limit of large observation time
T .

As described in section 2.2 µ is the unknown invariant measure encoding
the statistical properties of the dynamic system ϕt(x0) with x0 the initial state.
Our goal is to sample from µ but since it is unknown, we want to learn it from
the data given by the observed trajectory ϕt(x0). Thus, in context of generative
learning a generator φ̃ is searched for which holds φ̃∗λ = µ, where λ is, e.g., the
Lebesgue measure than corresponds to d-dimensional uniform noise.

Let µ be the invariant measure of the dynamic system {ϕt}t∈R acting on
the measurable space ([0, 1]d,B([0, 1]d)) with B([0, 1]d) the Borel-σ-algebra and
[0, 1]d the sample space of state configurations with normalized state components
in [0, 1]. It is assumed that dµ(x) = f(x)dλ(x) with the continuous probabil-
ity density f(x) > 0 in the space of k-times differentiable α-Hölder functions
Ck,α([0, 1]d,R) [1]. If this is not the case, one can easily regularize µ to achieve
this. Moreover, we assume φ : [0, 1]d → [0, 1]d also lies in the space of k-α-
Hölder functions Ck,α([0, 1]d,Rd), k ≥ 1. By the realizability theorem of [5] it
follows that ∃ φ0 ∈ Ck,α([0, 1]d,Rd), such that

φ0∗λ = µ. (9)

6



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

By knowing that φ0∗λ
(d) is realizable in the hypotheses space

H = {φ ∈ Ck,α([0, 1]d,Rd)|‖φ‖Ck,α ≤ K, ‖φ−1‖Ck,α} (10)

for K > 0 sufficiently large, our goal is to estimate φ0 by φ̂T ∈ H based on the
data given by the ergodic flow ϕT = {ϕt(x0)}T≥t≥0.

The estimation of φ0 is performed using an empirical loss function L̂(φ,D,ϕT )
that is designed to approximate the theoretical loss function (6) and hence min-
imizing the difference between the measure µ of the ergodic system and the
image measure φ∗λ of the synthesized images. Mathematically, we search the
generator

φ̂T ∈ arg min
φ∈H

sup
D∈HD

L̂(φ,D,ϕT ) (11)

with the discriminator hypotheses space HD such that an optimal choice of D
is feasible:

HD =
{
Dφ,φ′ =

fφ
fφ + fφ′

∣∣∣φ, φ′ ∈ H
}
. (12)

Here, fφ(x) = |det(Dφ−1)(x)| stands for the continuous probability density
associated with the probability measure φ∗λ. We propose

L̂(φ,D,ϕT ) =
1

T

∫ T

0

log(D(ϕt(x0))) dt+
1

[T ]

[T ]∑

j=1

log(1−D(φ(zj))) (13)

as empirical loss function for the ergodic system where [−] : R→ Z denotes the
rounding function.

Apparently, in the limit T → ∞ by ergodicity (3), the first term converges
to the first term in (6) whereas the second term converges almost surely by
the law of large numbers. Therefore, the generator φ̂ that is learned from the
empirical loss function (13) for large T will approximately solve the minimax
problem (5), which by (7) relates to the Jensen-Shannon distance between the
estimated measure φ̂T∗λ and the invariant measure µ of the ergodic system. In
particular, we obtain the following:

Theorem 1. Under the assumptions above it holds almost surely1 that

lim
T→∞

dJS(µ‖φ̂T∗λ) = 0. (14)

Proof. Here we give a sketch of the proof. For a detailed argument in a related
situation, see [5]. We introduce the following notation: Dφ is the discriminator
solving Dφ ∈ arg maxL(φ,D,ϕT ) and, likewise, D̂φ ∈ arg max L̂(φ,D,ϕT ),

1w.r.t. the probability measure used for the sampling of the latent noise variables zj .

7



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

where we suppressed the suppressed the T dependence of D and D̂ to ease the
notation. We obtain the estimate

dJS(µ||φ∗λ) = L(φ̂T , Dφ̂T
)− log(4)

≤ L̂(φ̂T , Dφ̂T
,ϕT ) + sup

φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣− log(4)

≤ L̂(φ̂T , D̂φ̂T
,ϕT ) + sup

φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣− log(4)

≤ L̂(φ0, D̂φ̂T
,ϕT ) + sup

φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣− log(4)

≤ L(φ0, D̂φ̂T
) + 2 sup

φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣− log(4)

≤ L(φ0, Dφ0
) + 2 sup

φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣− log(4)

= dJS(µ‖φ0∗λ) + 2 sup
φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣

= 2 sup
φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣

(15)

In the first equality we used (7). In the third line, the definition of D̂φ̂T
was used

and in the fourth line we applied (11). In the sixth line, we used the definition
of Dφ0 . In the seventh line, we again used (7) and in the final line we applied
(9), which is possible under the given assumptions as proven in [5].

It remains for us to show that the sampling error on the right hand side of
(15) vanishes as T →∞. Note that we can decompose

sup
φ,D

∣∣∣L(φ,D)− L̂(φ,D,ϕT )
∣∣∣

≤ sup
φ,D

∣∣∣∣∣Ex∼µ[log(D(x))]− 1

T

∫ T

0

log(D(ϕt(x0))) dt

∣∣∣∣∣

+ sup
φ,D

∣∣∣∣∣∣
Ez∼λ[log(1−D(φ(z)))]− 1

[T ]

[T ]∑

j=1

log(1−D(φ(zj)))

∣∣∣∣∣∣

(16)

The second term on the right hand side vanishes by the uniform law of large num-
bers, as the hypothesis spaces H and HD can be endowed with Ck,α

′
topologies

that are, for α′ < α, slightly little weaker than the Ck,α-topology. Nevertheless,
the hypothesis spaces under these topologies are compact, see [5] for the details.
Consequently, the expression in the first term vanishes by the standard uniform
law of large numbers, see e.g. [17].

For the first term, we have already seen that ergodicity implies that the
expressions in the absolute value by ergodicity vanish in the limit T →∞. Also,
with respect to the aforementioned Ck,α

′
-topologies the hypothesis spaces are

compact. Last, it is easy to see that
1

T

∫ T
0

log(D(ϕt(x0))) dt is equicontinuous

8



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

in D wrt. this topology (as D(x) is uniformly lower bounded away from zero in
HD). As for equicontinuous functions, pointwise convergence implies uniform
convergence, the first term on the right hand side vanishes as well in the limit
T →∞.

We note that in practice, the Hölder generators φ and discriminators D are
replaced by deep neural networks. As such networks possess the universal ap-
proximation property, see e.g. [72], one can approximate the Hölder functions to
arbitrary precision. Secondly, instead of solving the integral in (13) to compute
the loss function, one uses a monte carlo approximation by sampling from the
trajectory ϕT . Theorem 1 remains valid under this replacement, as one can see
from one further application of the uniform law of large numbers.

Note however that these theoretical results do not guarantee the success of
the numerical experiments. This is mostly due to the fact that the optimization
problem (11) is highly non-convex and can not be solved exactly, as e.g. for
neural nets this problem is NP-hard [59]. In practice, one rather finds sufficiently
good local minima instead of a global optimum. Also, practical issues occur
with the choice of the capacity and other elements of architecture of the neural
networks.

2.4. Advanced GAN frameworks
After the introduction of the original GAN framework by Goodfellow fig-

ure 1, it became apparent that GAN are powerful models which can be applied
to a wide variety of tasks by modifying or extending the architecture [51]. In
this work three of these modified frameworks are investigated.

Wasserstein GAN (WGAN). The Wasserstein GAN differs from the original
GAN mainly in the change of the loss function and thus also in the change
of the optimization problem [4]. For the WGAN framework the goal is not to
minimize the Jensen Shannon divergence but the Wasserstein distance expressed
by the Kantorovich-Rubinstein duality

W(µ, φ∗λ) =
1

K
sup

‖ψ‖L≤K

(
Ex∼µ[ψ(x)]− Ez∼λ[ψ(φ(z))]

)
(17)

with the supremum over all K-Lipschitz functions ψ : C → R and C a compact
metric set. Under the satisfaction of certain conditions the authors of [4] showed
that the optimization problem

max
‖ψ‖≤1

(
Ex∼µ[ψ(x)]− Ez∼λ[ψ(φ(z))]

)
(18)

has a solution for K = 1 and that the gradient of (17) exists.
In practice, the solution of (18) can be approximated by training a neural

network ψ = ψw parameterized by the weights w ∈ W withW a compact space.
This assumption implies that all parameterized functions ψw are K-Lipschitz
for some K ≥ 1. To ensure that all weights lie in a compact space and thus the
Lipschitz constraint is preserved, the weights are clipped [8] to a certain range
after each gradient update in the implementation.

9



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Deep Convolutional GAN (DCGAN). The deep convolutional GAN has the
same base architecture as shown in figure 1, but the generator φ and the dis-
criminator D are convolutional neural networks (CNNs) [56]. These kind of
neural networks are especially in the field of image processing successfully ap-
plicable [2, 34]. In order to be able to integrate CNNs into GAN the authors
of [56] pointed out which guidelines are to follow to enable a stable training at
higher resolution and with deeper architectures.

The stability of the training is ensured by applying batch normalization [29]
on the output layer of φ and the input layer of D. To work with deeper archi-
tectures fully-connected layers [45] should be avoided on top of convolutional
features. Finally, the choice of the leaky rectified linear unit (LReLu) activation
function [49] for D allows higher resolution modeling. Moreover, the generator
captures faster the color space of the distribution µ by applying bounded acti-
vation functions in the last layer as the LReLu [49]. Finally, mentionable is that
φ and D are able to learn their own spatial up- or downsampling by replacing
deterministic spatial pooling layers [13] with (fractional-) strided convolutions.

Conditional GAN (cGAN). By conditioning a GAN framework with additional
information it is possible to take the control over the data production process
performed by the generator φ [46]. Thereby, additional information can be
represented for example by class labels or semantic segmentation masks [22]. As
shown in figure 2 the conditioning can be realized by feeding the supplementary
information η to the discriminator D and the generator φ as an extra input
channel. During training, η is sampled from a data model η ∼ ν, where ν
gives the distribution of η in the data generation process. This extension of the
architecture leads to the modified loss function

Lcond.(D,φ) = Ex∼µ
η∼ν

[log(D(x|η))] + E z∼λ
η∼ν

[log(1−D(φ(z|η)))] . (19)

Random

vector z

Generator φ

(NN)

Fake

sample

φ(z|η)

Real-world

images X

Real

sample

x ∈ X ,
x|η

Discriminator D

(NN)

Real

Fake

LossAdditional information η

Figure 2: Architecture of a conditional GAN. According to: [46].

10



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

A special form of the cGAN investigated in this work is the so called pix2pixHD
introduced by [64]. This conditional adversarial framework allows to generate
high-resolution photo-realistic images from semantic segmentation masks. The
pix2pixHD framework is based on its former version pix2pix [30] whose opti-
mization problem is given as

min
φ

max
D
Lcond.(D,φ,x) (20)

with Lcond. defined as in (19). To improve the photorealism and the resolu-
tion of the generated images the architecture was changed by introducing three
innovations.

First, a coarse-to-fine generator was implemented. For this, the generator
was decomposed into the two sub-networks φ1 having the role of a global gener-
ator and φ2 as a local enhancer. By this the global and local information can be
aggregated effectively within the generator φ = {φ1, φ2} for the image synthesis
task.

In order for the discriminator to distinguish between generated and real
high-resolution images it needs a large receptive field. Therefore, the common
discriminator D was replaced by three multi-scale discriminators D1, D2 and
D3 which have an identical network architecture, but operate at three different
image scales. Hence, the optimization problem (20) extended to

min
φ

max
D1,D2,D3

3∑

i=1

Lcond.(φ,Di) . (21)

In particular, a pyramid of images is created during the training by downsam-
pling the input image by factor two and four. Since the discriminator operating
on the coarsest scale has the largest receptive field and hence a more global
view it is possible to guide the generator producing globally consistent images.
Whereas, the discriminator performing on the finest scale is able to make the
generator φ pay attention to finer details during the data production.

Lastly, a feature matching loss LFM [64] was added to (21) in order to
stabilize the training of the pix2pixHD framework. By this, the complete opti-
mization problem is defined as

min
φ

[(
max

D1,D2,D3

3∑

i=1

Lcond.(φ,Di)

)
+ γ

3∑

i=1

LFM (φ,Di)

]
(22)

with γ the weighting parameter for both terms.

3. Preparation of datasets

The datasets used for generative learning are described below. We proceed
from the Lorentz attactor as a simple chaotic system to LES simulations of
simple and complex turbulent flows.

11



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

3.1. Lorenz attractor
The Lorenz attractor is a non-periodic, non-linear and deterministic ergodic

system which is given by the system of ordinary differential equations [44] :

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y (23)

dz

dt
= xy − βz

By [63] it has been proven that this dynamic system is representing a strange
attractor. Within this hydrodynamic system x describes the rate of convection,
y is proportional to the temperature variation between ascending and decreasing
flow and z represents the distortion rate of the vertical temperature profile from
linearity [44].

The physical parameters are given by σ as the Prandtl number, ρ as the
relative Rayleigh number and β representing the measure for the cell geometry.
In this work we use the classic parameter values σ = 10, ρ = 28 and β = 8

3 [40].
The training data for the generative learning is given by the points of the

attractor’s trajectory within the three dimensional space computing the system
(23) applying the odeint routine of the python package scipy.integrate which
uses the lsoda algorithm [10]. In total 20, 000 data points of 200, 000 trajectories
started from different initial points (x0, y0, z0) randomly sampled within the
ranges x0 ∈ [−40, 40], y0 ∈ [−30, 40] and z0 ∈ [0, 50].

3.2. LES
The computational fluid dynamics (CFD) results presented in this paper

form the basis for GAN training. They were generated using large-eddy simula-
tions (LES). In this approach, the spatially filtered variant of the Navier-Stokes
equations is solved, with the computational grid designed to provide a resolu-
tion of at least 80% of the turbulent kinetic energy (TKE) of the flow. The
effect of smaller turbulent structures, which are not captured by the grid, are
represented using semiempirical models, the so-called subgrid scale models [27].
The spatial filter is thus implicitly given by the computational grid. The LES
approach is reasonable, because it is the large vortex structures that transport
the bulk of the energy [18] while the smaller structures can be considered to be
mainly isotropic and homogeneous (not in the close vicinity of solid walls) by
the assumption of local isotropy according to Kolmogorov [38], which simplifies
their modeling considerably.

3.3. Test-cases & numerical setup
Two different test cases were chosen for training of GAN, which differ in the

complexity of the resulting flow field. Both simulations were performed with
the commercial flow solver ANSYS Fluent which was set up to solve the in-
compressible variant of the spatially filtered Navier-Stokes equations. For time

12



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

integration, a non-iterative time advancement scheme is used in combination
with a fractional step method for pressure-velocity coupling. The advective
fluxes are treated by a bounded central scheme in order to introduce as low nu-
merical dissipation as possible to avoid unphysical dampening of small turbulent
structures [69].

(a) Flow around a cylinder (b) T106 turbine stator

Figure 3: Numerical domains for both investigated test cases

3.3.1. Flow around a cylinder
The first test case is the flow around a cylinder at Reynolds number 3900.

This is a widely used test case, which has been studied in great detail in the
literature both experimentally [53, 48, 50] and numerically [53, 6, 39]. The flow
field in this case is characterized by a Kármán vortex street, that forms in the
wake region of the cylinder and consists of the typical coherent vortex system,
where the axis of rotation of the individual vortices is parallel to the axis of
the cylinder. A schematic representation of the numerical domain is shown in
Fig. 3a. The computational grid consists of a total of 15 million cells. The
time step was chosen so that the CFL number was on the order of unity, and
the simulation was run for a total of 25, 000 time steps after initial transient
effects had disappeared, which corresponds to a total physical time period of
approximately 1.45 seconds.

3.3.2. T106 turbine stator under periodic wake impact
The second test case is an academic low-pressure turbine (LPT) stator under

periodic wake impact. In this configuration, the wakes, which are comparable
to those of the cylinder test case described above, are artificially generated by
means of an upstream mounted rotating bar grid. The wakes are convected
into the stator passages where deformation occurs as a consequence of the flow
turning within the passage. Furthermore, a complex interaction between the
wakes and the periodically detaching boundary layer takes place in the rear
region of the suction side of the LPT stator, which in total makes this test case
an interesting demonstrator for complex turbulent interaction phenomena. A

13



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

schematic representation of the numerical domain is shown in Fig. 3b. The
computational grid consists of a total of approx. 72 million elements. The
time step was chosen so that the CFL number was on the order of unity, and
the simulation was run for a total of 22, 500 time steps after initial transient
effects had disappeared, which corresponds to 10 bar passing periods or approx.
1.43× 10−3 s.

3.4. Data sets and data production
The data sets used for training the GAN were generated by post-processing

the transient LES velocity field data. In this process, grayscale images are
generated via a projection mapping in the sense of (4). In the case of the
flow around a cylinder experiment, the gray scale is showing the distribution
of the absolute deviation of the local fluctuating velocity magnitude c(ξ, t) =√
u(ξ, t)2 + v(ξ, t)2 + w(ξ, t)2 at the location ξ from its time average

c′(ξ, t) = |c(ξ, t)− c(ξ)|, c(ξ) =
1

T

∫ T

0

c(ξ, t) dt. (24)

As the moving wake determines the turbulent flow field in the case of the LPT
turbine, time averaging at a fixed point in this case does not make much sense.
Therefore, a different representation of the turbulence (or projection mapping)
is chosen, which simply depicts the velocity component perpendicular to the
image, w(ξ, t). Figure 4 shows an example image for each of the two test cases
examined. The gray scale for w(ξ, t) ≈ 0 is found in the upper left corner of the
right panel. Negative values for w(ξ, t) are shown in lighter and positive values
in darker grey.

Basic parameters of the generated data sets are summarized in table 1. The
time step interval between two successive frames is chosen so that the respective
snapshots are sufficiently far apart in time to minimize the correlation between
the individual frames.

(a) Flow around a cylinder (b) T106 turbine stator

Figure 4: Example snapshots for both investigated test cases extracted from the LES.

14



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Table 1: Summary of the main data set parameters.

Sampling
frequency

Image
resolution

Number
of files Total size

Cylinder 68.9 kHz 1000 x 600 px 5, 000 527MB
Turbine 40.5 kHz 1000 x 625 px 2, 250 700MB

3.5. Computational cost
At this point, the computational effort of the simulations presented in this

paper should be briefly discussed, as this is the main criterion for the applica-
bility of such scale-resolving simulations.

All simulations presented were performed on the in-house High-Performance
Computing (HPC) cluster of the Chair of Thermal Turbomachines and Aero
Engines, whose main specifications are summarized in table 2.

Table 2: Summary of the main specifications of the HPC cluster.

Partition Number
of nodes

Cores
per node CPU type RAM Interconnect

#1 28 28 Intel Xeon "Skylake"
Gold 6132 @2.6GHz 96GB Intel

Omni-path

#2 8 40 Intel Xeon Scalable
Gold 6248 @2.5GHz 96GB Intel

Omni-path

TOTAL 36 1104 3.4TB

In total 20 computational nodes of the #1 partition of the HPC cluster were
allocated in both runs, resulting in a total number of 560 CPU cores. In the
case of of the flow around a cylinder, this resulted in a total computation time
of about one day for the output run consisting of 25, 000 iterations, which corre-
sponds to about 72 core weeks. In the case of T106 LPT stator, the calculation
time was approx. 8 days for the output run consisting of 2, 250 time steps, which
corresponds to 10 bar passings, i.e. approx. 640 core weeks.

4. Setup and configuration of GAN training

The implementations details of the training with the GAN frameworks intro-
duced in section 2.4 are summarized for the different datasets in the following.
All GAN were set up and trained using the PyTorch [54].

4.1. Lorenz attractor
The Lorenz attractor was trained by a original GAN with a discriminator

consisting of four fully connected hidden layers [25] with 1024, 512, 256 and 64
neurons. Since the attractor is a deterministic ergodic system [44] Gaussian
noise was added to the network of the discriminator as well as to the real input
data to regularize the training and hence reduce overfitting [5, 12]. The real data

15



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

representing the training data is given by the points of the attractor’s trajectory
within the three dimensional space as described in section 3.1.

The generator is also given by a fully connected neural network composed
of three hidden layers with 256, 512 and 1024 neurons. Its input is given by a
random vector of dimension 100 × 1 whose elements come from the standard
normal Gaussian distribution.

Both neural networks φ and D apply the ReLu activation function for the
input and hidden layers. The activation of the output layer of the discriminator
is given by a sigmoid function and for the generator by a linear function.

The GAN framework was trained for 200, 000 epochs with a batch size of
20, 000. Hence, the trajectory consisting of 20, 000 data points was regarded
during one epoch whereby the trajectory started from different randomly sam-
pled initial points (x0, y0, z0) lying in the ranges x0 ∈ [−40, 40], y0 ∈ [−30, 40]
and z0 ∈ [0, 50].

The optimization problem was given as in (5). To update the weights of
the neural networks φ and D the Adam optimizer [37] was applied with the
parameter β1 = 0.9, β2 = 0.999 and a learning rate of 2× 10−4. Here, only half
of the batch size was used to update the weights of the discriminator.

4.2. Flow around a cylinder
Experiments have been performed on this dataset using the original GAN,

WGAN and DCGAN framework. For the original GAN and WGAN the dis-
criminator is given by a fully connected neural network with five layers in total
whereby the hidden layers consist of 1024, 512 and 256 neurons. The generator
of both GAN frameworks also consists of five fully connected layers in total with
the number of 256, 512 and 1024 neurons for the hidden layers. In exception
of the output layer the Leaky ReLu is applied as activation function. The last
layer of the generator is activated by the hyperbolic tangent function. For the
original GAN the discriminators last layer is activated by the sigmoid function
and the linear activation function is used in case of the WGAN. For the training
of the DCGAN the architecture suggested by [41] was adopted.

The three investigated GAN frameworks take images of size k × k as input.
In our experiments we investigated the training with k ∈ {64, 128, 256, 512}.
We trained all GAN for 200 epochs with a batch size of 20 using 5, 000 images
of the dataset. For further investigations the DCGAN training was continued
up to epoch 2, 000. The input vector of the generator consists of 100 elements
randomly sampled of the standard Gaussian distribution.

For the update of the weights, the Adam optimizer is applied in case of the
original GAN and DCGAN with the parameter settings β2 = 0.5 and β2 = 0.999
and a learning rate of 2 × 10−4 is used. For the WGAN the weight update is
realized by the optimizer RMSProp [57] with a learning rate of 5×10−5 whereby
the weights are clipped to the range [−0, 01, 0.01].

4.3. T106 turbine stator under periodic wake impact
The DCGAN has been also trained for 2000 epochs and k = 512 on the whole

dataset of the wake disturbed turbine stator-row with the parameter settings

16



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 5: An image of the training set (left) and its corresponding binary segmentation mask
(right).

described as in section 4.2.
Moreover, the pix2pixHD has been trained as second GAN framework with

this dataset. As described in section 2.4 the pix2pixHD is a conditional GAN
and hence incorporates additional information to the training. Here, this sup-
plementary information η is given by the binary segmentation masks shown
in figure 5. In terms of conditional GAN-learning (19), this corresponds to a
uniform distribution η ∼ νunif. over the y coordinate of the wake. For the ex-
periments with the pix2pixHD the implementation of [64] has been used with
small changes. To avoid the appearance of artifacts in the data synthesized
by φ we replaced the reflection padding with a replication padding and add a
replication padding to the global generator before the convolution during the
downsampling procedure.

Contrary to the DCGAN framework it is possible to train the pix2pixHD
on images of size k × k′, k 6= k′. The only important thing to take care of is
that k and k′ are divisible by 32. For this reason, the images were resized for
the training to size k × k′ = 992 × 624, such that the aspect ratio has been
preserved.

Since the GAN is trained in a conditioned fashion the binary masks are
also needed during the inference. For this reason, the dataset was split into a
training- and test set. The training set contains the first 2000 images of the
whole dataset and the test set consists of the remaining 250 images.

The pix2pixHD has been trained for 200 epochs with a batch size of 10.
Analogous to the DCGAN the weights were updated by the Adam optimizer
with the parameter β1 = 0.9, β2 = 0.999 and a learning rate of 2× 10−4.

5. Results of experiments

The results of the numerical experiments are presented and discussed in this
section. In the following, we refer to the process of applying a trained generator
to the latent random vector z as inference. At inference time, the latent vector
also consists of 100 elements sampled from the standard normal distribution.

17



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

5.1. Lorenz attractor
As described in section 4.1 we trained a original GAN for 200, 000 epochs in

order to synthesize three dimensional data points which come from a trajectory
of the Lorenz attractor that has converged towards the strange attractor. For
consistency, a trajectory of 20, 000 real data points is considered at inference
time as in the training. To get a better overview of the results, 500 data points
produced by the trained generator φ are shown in figure 6. It can be observed
that the generated data points are on or close to the true trajectory of the Lorenz
attractor. For the points that do not seem to lie directly on the trajectory, it has
to be taken into account that the trajectory shown here is also not very dense
due to the small number of data points. Considering randomly sampled real
data points of a trajectory consisting of one million data points as it must be
noted that the distribution is similar to the one of the synthesized data points.
Moreover, it can be seen from the rotated figure 7 that, apart from a few outliers,
the generated data points are all located in the area of the trajectory in three-
dimensional space.

Figure 6: The y-z plane perspective of a trajectory from the Lorenz attractor consisting of
20, 000 data points starting from the initial point (x, y, z) = (0.1, 0, 0) (grey), 500 synthesized
data points (blue) and 500 real data points randomly sampled from a trajectory consisting of
one million data points (red).

5.2. Flow araound a cylinder
In order to generate the Kármáan vortex street, GAN frameworks with a

simpler architecture have been considered first, namely the original GAN and
the WGAN. As to observe in figure 8 the trained generators of both GAN are

18



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 7: Rotated perspective from the trajectory of real data points (grey), synthesized data
points (blue) and randomly sampled real data points (red) given in figure 6.

able to position the cylinder in the right place after 200 epochs and that they
try to synthesize the wake vortex. However, neither the original GAN nor the
WGAN can capture the concrete structure of the vortex street. In addition, it is
to observe that the color space has not been learned appropriate by the original
GAN such that the generated images are significantly darker than the original
images from the LES (see figure 4a). To address these issues, another GAN
framework has been considered whose generator and discriminator are repre-
sented by convolutional neural networks. As already described in section 2.4,
CNNs can be used particularly successfully in image processing. In our experi-
ments, we also found that the DCGAN was able to capture the flow structures
after 200 epochs in contrast to the original GAN and the WGAN (see figure 8).
To increase the quality of the synthesized images the DCGAN has been further
trained out to epoch 2, 000 (see Appendix A for the training progress). Based
on figure 9, it can be seen that the images produced by the generator of the
DCGAN hardly differ from the real images from the LES after 2, 000 epochs of
training.

Finally, it should be mentioned that the networks have been trained on
images of size k × k. It has been observed in our experiments that the quality
of the generated images have been significantly better with increasing image
resolution at inference time. Therefore, we present here the results for the
training with images of size 512× 512.

5.3. T106 turbine stator under periodic wake impact
Since we got impressive results from the DCGAN for the flow around a cylin-

der, we trained this GAN framework under the same parameter settings for the
second test case. As we observe in figure 10, the LPT stator has been correctly

19



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 8: Comparison of images synthesized by the generator of a original GAN (left), WGAN
(middle) and DCGAN (right) after 200 epochs trained on 5, 000 images of size k×k, k = 512.

Figure 9: Comparison of images from the LES (top) and synthesized Karman vortex streets
produced by the generator φ of the DCGAN trained over 2, 000 epochs (bottom).

positioned and the structure of the vortex flows has been also reasonably cap-
tured. However, at inference time, the generator has massive problems correctly
capturing the position of the cylinder as it periodically slides from bottom to
top over time. Especially by direct comparison in figure 11 we can observe, that
the structures in the background are not properly captured and the synthesized
images are significantly darker than the real images of the LES. To address these
problems of the DCGAN we considered the pix2pixHD as another GAN frame-
work. In order to have control over the position of the cylinder at inference, we
feed binary segmentation masks shown in figure 5 as additional information η
to the GAN framework during training and at inference time (see section 2.4).
These masks have the information about the position of the cylinder and the
LPT stator. Moreover, we are allowed to generate high resolution images by the
pix2pixHD framework such that the structure in the background of the images
should also be preserved.

As shown in figure 12, using the generator from pix2pixHD we were able to
generate images which again can be hardly qualitatively distinguished from the
real image from the LES on a visual level after only 200 epochs (see Appendix
A for the training progress). It is also noticeable that the wake vortices do not
look identical. Hence, the generator did not simply memorize the structure of
the wake vortices at the respective positions and thus variation is given in the
synthesized data.

20



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 10: Examples of images synthesized by φ of the DCGAN trained on 2, 250 images for
2, 000 epochs.

Figure 11: Comparison of a real images from the LES (left) and an images synthesized by φ
of the DCGAN trained on 2, 250 images for 2, 000 epochs (right).

5.4. Comparison of Computational Costs
Finally, the computational costs of the training and inference performed on a

GPU of type Quadro RTX 8000 with 48 GB of the successful GAN frameworks
are reported in this section.

The training of the DCGAN with 5, 000 images of the dataset showing the
flow around a cylinder has taken 1.5 minutes per epoch. The computational
time of pure inference is given by 0.001 seconds per image. Thus, the production
of a dataset containing 5, 000 images would take with the beforehand trained
generator about 1.67 minutes. This leads to a tremendous amount of time saved
compared to one day needed for the generation of the images by the LES.

Since the pix2pixHD has a much more complex architecture than the DC-
GAN the training of one epoch with 2, 000 images has taken 17 minutes. How-
ever, the computational time of pure inference is also given by only 0.01 seconds
per image. Hence, the production of 2, 250 images of the LPT stator under
periodic wake impact would take about 22.5 s at inference. Thus, the saved
computational time for the data production is very significant in comparison to
8 days for the LES.

21



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure 12: Comparison of images from the LES (left) and synthesized turbulences under
periodic wake impact produced by the generator φ of the pix2pixHD trained over 200 epochs
(right).

6. Conclusion and Outlook

We introduced generative adversarial networks as another way to model
turbulence. In doing so, we showed that through generative learning it is possible
to synthesize turbulence that matches the quality of LES images on a visual

22



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

level while dramatically reducing computational time. Unlike previous work, we
trained the GAN from scratch and only require a randomly samples noise vector
for the data production in the unconditional case. For training and inference
of conditional GAN, we also need binary segmentation masks which can be
created manually and do not necessarily need to be obtained by simulations.
Using conditional GAN, we have found a solution for generating visually high-
quality turbulence when solid objects as the rotation wake change position in
space. Thus, we have provided a first approach to generalization with respect
to spatial changes. Finally, we have also demonstrated that generative learning
of ergodic systems also works at the theoretical level.

So far, we have evaluated our experiments at the visual level. In our future
research, numerical experiments are of interest to measure also quantitatively
the similarity between the LES images and the images generated by the GAN.
Attention will also be given to exploring appropriate methods for making these
comparisons. In addition, we have so far ignored the physics involved. There-
fore, the next step is to feed the GAN with physical parameters so that turbulent
flows can also be captured by the GAN in a physically correct manner. Having
provided a first approach to generalization in terms of changes in turbulence
space, in future work we will also consider how generalization can be realized in
terms of geometries and further boundary conditions.

Acknowledgments

C.D. and H.G. thank Matthias Rottmann and Hayk Asatryan for discussion
and useful advice. The authors also thank Pascal Post for valuable hints for the
literature research.

Appendix A. Training history of the GAN frameworks

The training progress of the experiments with the DCGAN discussed in sec-
tion 5.2 is described in figure A.13. Since we trained the GAN framework on
images of size 512 × 512 we also got images of this size as output during the
training. It can be observed that the synthesized images already show a quite
good quality after 500 epochs. However, on closer inspection, it is noticeable
that the structures of the vortex street become finer with an increasing num-
ber of training epochs and that the color space is also captured much better
after 2, 000. In figure A.14 the development of the synthesized images dur-
ing the training is illustrated for the pix2pixHD whose results are discussed in
section 5.3. Similar to the DCGAN we can observe that the results improve
significantly with increasing number of training epochs.

23



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

Figure A.13: Development of training results after 1, 500, 1, 500 and 2, 000 epochs for the
DCGAN.

Figure A.14: Development of training results after 1, 50, 150 and 200 epochs for the pix2pixHD
framework.

References

[1] Robert A Adams and John JF Fournier. Sobolev spaces. Elsevier, 2003.

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding
of a convolutional neural network. In 2017 International Conference on
Engineering and Technology (ICET), pages 1–6, 2017.

[3] Hassan Arbabi and Igor Mezić. Ergodic theory, dynamic mode decompo-
sition, and computation of spectral properties of the koopman operator.
SIAM J. Appl. Dyn. Syst., 16:2096–2126, 2017.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gener-
ative adversarial networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 214–223.
PMLR, 06–11 Aug 2017.

[5] Hayk Asatryan, Hanno Gottschalk, Marieke Lippert, and Matthias
Rottmann. A convenient infinite dimensional framework for generative
adversarial learning. arXiv preprint arXiv:2011.12087, 2020.

[6] Patrick Bruno Beaudan. Numerical experiments on the flow past a circular
cylinder at sub-critical Reynolds number. PhD thesis, Stanford University,
1995.

[7] George D. Birkhoff. Proof of the ergodic theorem. Proceedings of the
National Academy of Sciences, 17(12):656–660, 1931.

24



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[8] Xiangyi Chen, Steven Z. Wu, and Mingyi Hong. Understanding gradient
clipping in private sgd: A geometric perspective. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 13773–13782. Curran
Associates, Inc., 2020.

[9] Sai Hung Cheung, Todd A. Oliver, Ernesto E. Prudencio, Serge Prud-
homme, and Robert D. Moser. Bayesian uncertainty analysis with appli-
cations to turbulence modeling. Reliability Engineering & System Safety,
96(9):1137–1149, 2011. Quantification of Margins and Uncertainties.

[10] The SciPy community. Scipy documentation, 2008-2021. Accessed:
04.12.2021.

[11] Zhiwen Deng, Chuangxin He, Yingzheng Liu, and Kyung Chun Kim. Super-
resolution reconstruction of turbulent velocity fields using a generative ad-
versarial network-based artificial intelligence framework. Physics of Fluids,
31(12):125111, 2019.

[12] Tom Dietterich. Overfitting and undercomputing in machine learning.
ACM computing surveys (CSUR), 27(3):326–327, 1995.

[13] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning, 2018.

[14] W.N. Edeling, P. Cinnella, and R.P. Dwight. Predictive rans simulations
via bayesian model-scenario averaging. Journal of Computational Physics,
275:65–91, 2014.

[15] Wouter Edeling, Paola Cinnella, Richard Dwight, and Hester Bijl. Bayesian
estimates of parameter variability in the k − ε turbulence model. Journal
of Computational Physics, 258:73–94, 02 2014.

[16] Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel. Operator
Theoretic Aspects of Ergodic Theory. Springer International Publishing,
Cham, 2015.

[17] Thomas S Ferguson. A course in large sample theory. Routledge, 2017.

[18] J.H. Ferziger and M. Perić. "Computational Methods for Fluid Dynamics".
Springer, Berlin, 2008.

[19] Uriel Frisch and Andrĕı Nikolaevich Kolmogorov. Turbulence: the legacy
of AN Kolmogorov. Cambridge university press, 1995.

[20] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution recon-
struction of turbulent flows with machine learning. Journal of Fluid Me-
chanics, 870:106–120, May 2019.

[21] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Machine learning based
spatio-temporal super resolution reconstruction of turbulent flows, 2020.

25



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[22] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-
Martinez, and Jose Garcia-Rodriguez. A review on deep learning techniques
applied to semantic segmentation, 2017.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Y. Bengio. Generative adver-
sarial networks. Advances in Neural Information Processing Systems, 3, 06
2014.

[24] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-
ative adversarial networks, 2014.

[25] Martin T Hagan, Howard B Demuth, and Mark Beale. Neural network
design. PWS Publishing Co., 1997.

[26] Chuangxin He, Yingzheng Liu, and Lian Gan. A data assimilation model
for turbulent flows using continuous adjoint formulation. Physics of Fluids,
30:105108, 10 2018.

[27] Charles Hirsch. "Numerical Computation of Internal and External Flows:
The Fundamentals of Computational Fluid Dynamics". Butterworth-
Heinemann , 01 2007.

[28] Yaoshiang Ho and Samuel Wookey. The real-world-weight cross-entropy
loss function: Modeling the costs of mislabeling. IEEE Access, 8:4806–
4813, 2020.

[29] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[30] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei Efros. Image-to-
image translation with conditional adversarial networks. pages 5967–5976,
07 2017.

[31] Chao Jiang, Junyi Mi, Shujin Laima, and Hui Li. A novel algebraic stress
model with machine-learning-assisted parameterization. Energies, 13:258,
01 2020.

[32] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator
architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4401–4410, 2019.

[33] Junhyuk Kim and Changhoon Lee. Deep unsupervised learning of turbu-
lence for inflow generation at various reynolds numbers. Journal of Com-
putational Physics, 406:109216, 2020.

26



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[34] Phil Kim. Convolutional Neural Network, pages 121–147. Apress, Berkeley,
CA, 2017.

[35] Ryan King, Peter Graf, and Michael Chertkov. Creating Turbulent Flow
Realizations with Generative Adversarial Networks. In APS Division of
Fluid Dynamics Meeting Abstracts, APS Meeting Abstracts, page A31.008,
November 2017.

[36] Ryan King, Oliver Hennigh, Arvind Mohan, and Michael Chertkov. From
deep to physics-informed learning of turbulence: Diagnostics, 2018.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[38] A. N. Kolmogorov. "The Local Structure of Turbulence in Incompressible
Viscous Fluid for Very Large Reynolds Numbers". Proceedings: Mathemat-
ical and Physical Sciences, 434(1890):9–13, 1991.

[39] Arthur G. Kravchenko and Parviz Moin. Numerical studies of flow over a
circular cylinder at red=3900. Physics of Fluids, 12(2):403–417, 2000.

[40] Nikolay V. Kuznetsov, Timur N. Mokaev, Olga A. Kuznetsova, and
Elena V. Kudryashova. The lorenz system: hidden boundary of practical
stability and the lyapunov dimension. Nonlinear Dynamics, 102:713–732,
2020.

[41] Erik Linder-Norén. Pytorch-gan. https://github.com/eriklindernoren/PyTorch-
GAN. Accessed: 12.11.2021.

[42] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged
turbulence modelling using deep neural networks with embedded invari-
ance. Journal of Fluid Mechanics, 807:155–166, 2016.

[43] Bo Liu, Jiupeng Tang, Haibo Huang, and Xi-Yun Lu. Deep learning meth-
ods for super-resolution reconstruction of turbulent flows. Physics of Fluids,
32(2):025105, 2020.

[44] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric
sciences, 20(2):130–141, 1963.

[45] Wei Ma and Jun Lu. An equivalence of fully connected layer and convolu-
tional layer, 2017.

[46] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets,
2014.

[47] J. v. Neumann. Proof of the quasi-ergodic hypothesis. Proceedings of the
National Academy of Sciences, 18(1):70–82, 1932.

27



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[48] C. Norberg. An experimental investigation of the flow around a cir-
cular cylinder: influence of aspect ratio. Journal of Fluid Mechanics,
258:287–316, 1994.

[49] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and re-
search for deep learning, 2018.

[50] Lawrence Ong and James M. Wallace. The velocity field of the turbulent
very near wake of a circular cylinder. Experiments in Fluids, 20:441–453,
1996.

[51] Zhaoqing Pan, Weijie Yu, Xiaokai Yi, Asifullah Khan, Feng Yuan, and
Yuhui Zheng. Recent progress on generative adversarial networks (gans):
A survey. IEEE Access, 7:36322–36333, 2019.

[52] Eric J. Parish and Karthik Duraisamy. A paradigm for data-driven pre-
dictive modeling using field inversion and machine learning. Journal of
Computational Physics, 305:758–774, 2016.

[53] Philippe Parnaudeau, Johan Carlier, Dominique Heitz, and Eric Lambal-
lais. Experimental and numerical studies of the flow over a circular cylinder
at reynolds number 3900. Physics of Fluids, 20(8):085101, 2008.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[55] Ole Peters. The ergodicity problem in economics. Nature Physics, 15:1216–
1221, 12 2019.

[56] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks. In
Yoshua Bengio and Yann LeCun, editors, 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

[57] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[58] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986.

[59] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

28



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[60] Anand Singh and Karthik Duraisamy. Using field inversion to quantify
functional errors in turbulence closures. Physics of Fluids, 28:045110, 04
2016.

[61] Anand Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-
augmented predictive modeling of turbulent separated flows over airfoils.
AIAA Journal, 55, 08 2016.

[62] Akshay Subramaniam, Man LongWong, Raunak D Borker, Sravya Nimma-
gadda, and Sanjiva K Lele. Turbulence enrichment using physics-informed
generative adversarial networks, 2020.

[63] Warwick Tucker. The lorenz attractor exists. Comptes Rendus de
l’Académie des Sciences - Series I - Mathematics, 328(12):1197–1202, 1999.

[64] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. High-resolution image synthesis and semantic ma-
nipulation with conditional gans. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 8798–8807, 2018.

[65] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,
Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution gen-
erative adversarial networks. In Proceedings of the European conference on
computer vision (ECCV) workshops, 2018.

[66] J. Weatheritt and R.D. Sandberg. The development of algebraic stress
models using a novel evolutionary algorithm. International Journal of Heat
and Fluid Flow, 68:298–318, 2017.

[67] Jack Weatheritt and Richard Sandberg. A novel evolutionary algorithm
applied to algebraic modifications of the rans stress–strain relationship.
Journal of Computational Physics, 325:22–37, 2016.

[68] Maximilian Werhahn, You Xie, Mengyu Chu, and Nils Thuerey. A multi-
pass gan for fluid flow super-resolution. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques, 2(2):1–21, Jul 2019.

[69] Benjamin Winhart, Martin Sinkwitz, Andreas Schramm, Pascal Post, and
Francesca di Mare. Large eddy simulation of periodic wake impact on
boundary layer transition mechanisms on a highly loaded low-pressure tur-
bine blade. In Turbo Expo: Power for Land, Sea, and Air, volume 84102,
page V02ET41A013. American Society of Mechanical Engineers, 2020.

[70] You Xie, Eric Franz, Mengyu Chu, and Nils Thuerey. Data-driven synthesis
of smoke flows with cnn-based feature descriptors. ACM Transactions on
Graphics, 36(4):1–14, Jul 2017.

[71] Muchen Yang and Zhixiang Xiao. Improving the k− ω− γ − ar transition
model by the field inversion and machine learning framework. Physics of
Fluids, 32, 06 2020.

29



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

[72] Dmitry Yarotsky. Error bounds for approximations with deep relu net-
works. Neural Networks, 94:103–114, 2017.

[73] Jincheng Zhang and Song Fu. An efficient bayesian uncertainty quantifica-
tion approach with application to k−ω−γ transition modeling. Computers
& Fluids, 161:211–224, 2018.

[74] Weiwei Zhang, Linyang Zhu, Jiaqing Kou, and Yilang Liu. Machine learn-
ing methods for turbulence modeling in subsonic flows over airfoils, 06 2018.

[75] Yaomin Zhao, Harshal D. Akolekar, Jack Weatheritt, Vittorio Michelassi,
and Richard D. Sandberg. Rans turbulence model development using cfd-
driven machine learning. Journal of Computational Physics, 411:109413,
2020.

[76] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In
Computer Vision (ICCV), 2017 IEEE International Conference on, 2017.

30


