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Abstract
The Heston model is a well-known two-dimensional financial model. Since the Heston
model contains implicit parameters that cannot be determined directly from real market
data, calibrating the parameters to real market data is challenging. Moreover, some
of the parameters within the model are nonlinear, which makes it difficult to find the
global minimum of the optimization problem. In our paper, we present a gradient descent
algorithm for parameter calibration of the Heston model. Numerical results show that our
calibration of the Heston partial differential equation (PDE) works well for the various
challenges in the calibration process. Since the model and algorithm are well known, this
work is formulated as a proof of concept. This proof of concept will be incorporated into
the space mapping approach in the future.

1 Introduction
In finance, calibrating the parameters of models to fit real market data is challenging
because most model parameters are implicit in real market data [9]. Therefore, improving
models by introducing additional processes increases the difficulty of the calibration
process. We consider the well-known two-dimensional Heston model, which contains
at least four parameters implicit in the market data. In contrast to recent research in
this area, we focus on optimizing the parameters within a PDE approach instead of a
stochastic differential equation (SDE) approach [7, 9]. The parameter calibration results
in a constrained optimization problem to minimize a cost functional. The cost functional
describes the difference between the reference data and the data obtained by numerically
solving our model. We solve the optimization problem using the gradient descent algorithm.
In addition to our financial model, the gradient descent algorithm requires the adjoints
of the model. Therefore, we first derive the adjoints of the Heston model formally and
construct the gradient using well-known techniques from PDE optimization [3, 10]. The
gradient descent algorithm has been previously applied to the Heston model using neural
networks, so it has not been explicitly computed [6]. In this work, we focus on the
optimization of the calibration rather than the numerical solution of the model, i.e., our
obtained results can be further improved by using more accurate numerical methods.
In Section 2, we introduce the Heston model and our approach to solving the resulting
log-transformed Heston PDE. We then focus on the parameter calibration. In Section 3,
we derive the adjoint of the log-transformed Heston model and the corresponding gradient.
With the help of the gradient we calibrate the parameters of the second dimension, which
are implicit in the real market data. In more detail, a gradient descent method is proposed
to compute the best-approximation of the parameters. Finally, in Section 4 we focus
on numerical results for the application of the gradient descent algorithm to the Heston
model. We analyze the behavior of the algorithm in various problems. The paper ends
with a conclusion and an outlook in Section 5.
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2 Financial modelling
A financial derivative is a contract between parties whose value at maturity T is determined
by the underlying assets at or before time T . Examples of financial derivatives are options.
An option is a contract that gives the holder the right (but not the obligation) to exercise
a specified transaction at or before time T at a specified price K (strike). A distinction is
made between call and put options. A call option holder has the right to buy from the
writer, and if he holds a put option, he has the right to sell it to the writer. The time of
exercise is determined by the type of option. The standard options are European options,
where the holder can exercise only at time T , and American options, where the holder can
exercise at any time before and after T . The simplest choice of option is the European
option Plain Vanilla, where Plain Vanilla means that the exercise time is limited to T .
The payoff function φ is given by

φ(S) =

max(S −K, 0) = (S −K)+, for S ≥ 0 (call),
max(K − S, 0) = (K − S)+, for S ≥ 0 (put),

(1)

where S is the price of the underlying and K ∈ R+. The dynamics of the price of the
underlying can be described via a SDE which corresponds to a PDE. In the following we
limit ourselves to Plain Vanilla European put options modelled with the Heston model.

2.1 The Heston model
The Heston model was developed by Heston in 1993 [2] and describes the dynamics of
the underlying asset through a two-dimensional SDE that includes a stochastic process
for the underlying asset S and one for the variance ν. This model is an extension of the
well-known Black-Scholes-Merton model, which considers only one stochastic process for
the asset

dSt = (r − q)St dt+ σSSt dW
S
t , S0 > 0, (2)

where r denotes the risk-free rate, q denotes the dividend rate, σS denotes volatility, and
dW S

t is a Brownian motion. By definition, the variance is the square of the volatility of
the asset, ν = σ2

S. Heston considered a Cox-Ingersoll process for modeling the variance
leading to the SDE system of Heston’s model under risk neutral measure given bydSt = (r − q)St dt+√νtSt dW S

t , S0 > 0,
dνt = κν(µν − νt) dt+ σν

√
νt dW

ν
t , ν0 > 0,

, (3)

where κν is the mean reversion rate, µν is the long-term mean, and σν is the volatility-of-
variance. The Brownian motions dW S

t and dW ν
t are correlated by ρ ∈ [−1, 1]. For the

variance process to be positive, the Feller condition 2κνµν ≥ σ2
ν must be satisfied. If the

condition is violated, problems arise in the calculation of the square root, because it is
complex.
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We apply the log-transformation x = log(S) to the pure Heston model (3) and obtain the
SDE system dxt = (r − q − 1

2νt) dt+√νt dW x
t , x0 = log(S0),

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0

. (4)

Before deriving the Heston PDE, we invert time by introducing τ = T − t and obtain an
initial condition from the payoff function. Using Kolmogorov’s backward equation, we
derive the log-transformed Heston PDE under risk-neutral measure

Vτ = ν

2Vxx + 1
2σ

2
ννVνν + (r − q − ν

2)Vx + κν(µν − ν)Vν + σννρVxν − rV, (5)

where V (x, ν, τ) denotes the fair price of the European Plain Vanilla Put option. The
initial condition is given by the log transformed payoff-function for put options

V (0, ν, x) = φ̃(x) = max(K − exp(x), 0). (6)

Further the following boundary conditions are considered

V (τ, ν,−∞) = K exp(−rτ),
V (τ, ν,∞) = 0,
rV (τ, 0, x) = −Vτ (τ, 0, x) + (r − q)Vx(τ, 0, x) + κνµνVν(τ, 0, x),

rV (τ,∞, x) = −Vτ (τ,∞, x) + ν

2Vxx(τ,∞, x) + (r − q − ν

2)Vx(τ,∞, x).

(7)

The boundary condition for ν = 0 is derived by substituting into the equation (5) and for
ν →∞ we assume that a steady state is reached, i.e. the change within the derivative to
ν is zero. Therefore, we obtain an asymptotic boundary condition for νmax instead of an
analytical one as in the other cases.

2.2 Discretization
Since this is a proof of concept, simple and well-known discretization methods are used
to present the approach. We consider uniform meshes in each direction and obtain for
the spatial directions xi = xmin + i∆x for i = 0, . . . , Nx with ∆x = (xmax − xmin)/Nx and
νj = j∆ν for j = 0, . . . , Nν with ∆ν = νmax

Nν
, as well as τk = k · ∆τ for k = 0, . . . , Nτ

with ∆τ = T
Nτ

for the temporal direction. Second order central difference stencils are
used for spatial discretization. Second-order forward or backward stencils are used on
the non-zero boundaries. An exception was made for the first derivative in ν, since the
prefactor κν(µν − ν) induces a sign change over the domain. We use an upwind method
to reduce the effect of the sign change in the drift term of the variance. In the context of
the upwind method, we use the following stencil

−1
2a(uj+1 − uj+1) + 1

2 |a|(uj+1 − 2uj + uj−1), (8)
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where a = κν(µν − ν) [5]. Let vki,j ≈ V (xi, νj, τk) and simplify vk ≈ V (x, ν, τk). For the
time discretization, we use the well-known alternating direction implicit (ADI) method,
the modified Craig-Sneyd scheme (mCS) [4]. In a first step, we split the operator of the
Heston PDE into three operators. The splitting of the operator of the Heston PDE is

F(τ) = F0(τ) + Fx(τ) + Fν(τ), (9)

where the mixed derivative is represented by F0 and Fx contains the derivatives in the
x-direction and Fν contains the derivatives in the ν-direction, respectively. In each time
step, we have to solve the following system of equations

Y0 = vk + ∆τF(τk, vk),
Yx = Y0 + θ∆τ

(
Fx(τk+1, Yx)−Fx(τk, vk)

)
,

Yν = Yx + θ∆τ
(
Fν(τk+1, Yν)−Fν(τk, vk)

)
,

Ŷ0 = Y0 + θ∆τ
(
F0(τk+1, Yν)−F0(τk, vk)

)
,

Ỹ0 = Ŷ0 + (1
2 − θ)∆τ

(
F(τk+1, Yν)−F(τk, vk)

)
,

Ỹx = Ỹ0 + θ∆τ
(
Fx(τk+1, Ỹx)−Fx(τ k, vk)

)
,

Ỹν = Ỹx + θ∆τ
(
Fν(τk+1, Ỹν)−Fν(τk, vk)

)
,

vk+1 = Ỹν .

(10)

We choose θ = 2/3 and improve the implementation as we use the approach in [8].

3 Parameter Calibration
Starting from some given data, we calibrate the parameters of the Heston model using a
constrained optimization problem. For a given data set Vdata and reference parameters
uref, we try to minimize the cost functional

J(V, u) = 1
2

∫ T

0
‖V − Vdata‖2dt+ λ

2‖u− uref‖2.

In the case where no reference parameters uref are available, we set λ = 0. In the
following, we derive a gradient-based algorithm that allows us to calibrate the parameters
numerically.

3.1 First-order optimality conditions for the Heston model
We formally compute the first-order optimality constraints using a Lagrangian approach.
We define the operator e, which serves as a constraint in the Lagrangian approach and
thus contains the Heston equation and the corresponding boundary conditions. In detail,
we denote the Lagrange multipliers by ψ = (ϕ, ϕa, ϕb, ϕc, ϕd), set Ω = (0,∞)× (−∞,∞)
and split the boundary ∂Ω into

Γa = ∂Ω ∩ {x = −∞}, Γb = ∂Ω ∩ {x =∞},
Γc = ∂Ω ∩ {ν = 0}, Γd = ∂Ω ∩ {ν =∞}.
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Moreover, we define

A = 1
2ν
(
σ2
ν σνρ

σνρ 1

)
, b =

(
κν(µν − ν)− 1

2σ
2
ν

r − q − ν
2 −

1
2σνρ

)
.

Then the log-transformed Heston equation can be written as

∂V

∂τ
−∇ · A∇V − b · ∇V + rV = 0.

Next, we define the operator e which will represent the constraint in the Lagrangian. It is
implicitly defined by

〈e(V, u), ψ〉 =
∫ T

0

∫
Ω

[
∂V

∂τ
−∇ · A∇V − b · ∇V + rV

]
ϕdzdτ

+
∫ T

0

∫
Γa

[
V −K exp(−rτ)

]
ϕa dsdτ

+
∫ T

0

∫
Γb
V ϕb dsdτ

+
∫ T

0

∫
Γc

[
rV + ∂V

∂τ
− (r − q)∂V

∂x
− κνµν

∂V

∂ν

]
ϕc dsdτ

+
∫ T

0

∫
Γd

[∂V
∂τ
− ν

2
∂2V

∂x2 − (r − q − ν

2)∂V
∂x

+ rV
]
ϕd dsdτ

=: T1 + T2 + T3 + T4 + T5.

The Lagrangian for the constrained parameter calibration problem is then given by

L(V, u, ψ) = J(V, u)− 〈e(V, u), ψ〉.

We formally compute the first-order optimality conditions by setting dL = 0, for details
on the method we refer to [3, 10]. Before computing the Gâteaux derivatives of L [3] in
arbitrary directions, we note that by Green’s first identity it holds∫

Ω
ϕ(b · ∇V ) dz =

∫
∂Ω

(b · ~n)V ϕds−
∫

Ω
V∇ · (bϕ) dz. (11)

Therefore, we can rewrite

T1 =
∫ T

0

∫
Ω
ϕ
∂V

∂τ
+ A∇V · ∇ϕ− 1

2b · ∇V ϕ+ 1
2V b · ∇ϕ+ (r + 1

2∇ · b)V ϕdz

−
∫
∂Ω

(A∇V ) · ~nϕ ds− 1
2

∫
∂Ω

(b · ~n)V ϕdsdτ

=
[∫

Ω
ϕV dz

]τ=T

τ=0
+
∫ T

0

∫
Ω
V
[
−∂ϕ
∂τ
−∇ · A>∇ϕ+ b · ∇ϕ+ (r +∇ · b)ϕ

]
dz

+
∫
∂Ω

[(A>∇ϕ) · ~n− (b · ~n)ϕ]V ds−
∫
∂Ω

(A∇V ) · ~nϕ dsdτ.
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As e is linear in V we obtain for some arbitrary direction h

dV 〈e(V, u), ψ〉[h] =
[∫

Ω
ϕh dz

]τ=T

τ=0
+
∫ T

0

∫
Ω
h

[
−∂ϕ
∂τ
−∇ · A>∇ϕ+ b · ∇ϕ+ (r +∇ · b)ϕ

]
dz

+
∫
∂Ω

[(A>∇ϕ) · ~n− (b · ~n)ϕ]h ds−
∫
∂Ω

(A∇h) · ~nϕ ds dτ

+
∫ T

0

∫
Γa
hϕa ds dτ +

∫ T

0

∫
Γb
hϕb ds dτ

+
∫ T

0

∫
Γc

[
rh+ ∂h

∂τ
− (r − q)∂h

∂x
− κνµν

∂h

∂ν

]
ϕc ds dτ

+
∫ T

0

∫
Γd

[
∂h

∂τ
− ν

2
∂2h

∂x2 − (r − q − ν

2)∂h
∂x

+ rh

]
ϕd ds dτ.

For the cost functional we have

dV J(V, u)[h] =
∫ T

0

∫
Ω
h(V − Vdata) dz dτ.

We identify the adjoint equation by choosing h appropriately. Note that we are not allowed
to vary V at V (0, ν, x) as the initial condition is fixed. Therefore h(0, ν, x) ≡ 0.
For h ≡ 0 on ∂Ω and h(T, ν, x) = 0, we find

0 = dVL(V, u, ψ)[h]

=
∫ T

0
h

[∫
Ω

(V − Vdata) + ∂ϕ

∂τ
+∇ · A>∇ϕ− b · ∇ϕ− (r +∇ · b)ϕ

]
dz dτ.

Hence the Variational Lemma allows us to conclude
∂ϕ

∂τ
+∇ · A>∇ϕ− b · ∇ϕ− (r +∇ · b)ϕ = −(V − Vdata) on Ω.

Now, choose h(T, ν, x) 6= 0 then we obtain the terminal condition ϕ(T, ν, x) = 0. We
consider the boundary conditions separately.
On ΓA we have

0 =
∫

Γa
[(A>∇ϕ) · ~n− (b · ~n)ϕ]h− (A∇h) · ~nϕ+ hϕa ds. (12)

Choosing h ≡ const 6= 0 yields

0 = h
∫

Γa
(A>∇ϕ) · ~n− (b · ~n)ϕ+ ϕa ds,

hence (A>∇ϕ) · ~n− (b · ~n)ϕ+ ϕa = 0. On the other hand, when choosing ∇h 6= 0, (12)
must still hold. This yields ϕ = 0 on Γa. Similarly, we find on Γb that

0 =
∫

Γb

[
(A>∇ϕ) · ~n− (b · ~n)ϕ

]
h− (A∇h) · ~nϕ+ hϕb ds. (13)
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With the same arguments, we obtain ϕ = 0 on Γb.
On Γc we find

0 =
∫ T

0

∫
Γc
−h(b · ~n)ϕ+

[
rh+ ∂h

∂τ
− (r − q)∂h

∂x
− κνµν

∂h

∂ν

]
ϕcdsdτ.

For h ≡ c 6= 0, we obtain -(b · ~n)ϕ = rϕc and for arbitrary h we use integration by parts
on Γc to obtain

0 =
∫ T

0

∫
Γc

[
−(b · ~n)ϕ+ rϕc + ∂ϕc

∂τ
− (r − q)∂ϕc

∂x
− κνµν

∂ϕc
∂ν

]
h dsdτ,

which leads us to
∂ϕ

∂τ
− (r − q)∂ϕ

∂x
− κνµν

∂ϕ

∂ν
= 0 on Γc.

On Γd we find

0 =
∫ T

0

∫
Γd

[(A>∇ϕ) · ~n− (b · ~n)ϕ]h+
[
rh+ ∂h

∂τ
− (r − q − ν

2)∂h
∂x
− ν

2
∂2h

∂x2

]
ϕddsdτ.

For h ≡ c 6= 0, we obtain (A>∇ϕ) · ~n− (b · ~n)ϕ = rϕd and we use integration by parts on
Γd for arbitrary h which leads us to

0 =
∫ T

0

∫
Γc

[
(A>∇ϕ) · ~n− (b · ~n)ϕ+ rϕd + ∂ϕd

∂τ
− (r − q − ν

2)∂ϕd
∂x
− ν

2
∂2ϕd
∂x2

]
h dsdτ,

and we obtain
∂ϕ

∂τ
− (r − q − ν

2)∂ϕ
∂x
− ν

2
∂2ϕ

∂x2 = 0 on Γd.

Altogether, the adjoint equation reads

∂ϕ

∂τ
+∇ · A>∇ϕ− b · ∇ϕ− (r +∇ · b)ϕ = −(V − Vdata) on Ω (14)

which is equivalent to

∂ϕ

∂τ
+ 1

2νσν
2∂

2ϕ

∂ν2 + νσνρ
∂2ϕ

∂x∂ν
+ 1

2ν
∂2ϕ

∂x2 + (σ2
ν − κν(µν − ν))∂ϕ

∂ν

+(q − r + ν

2 + σνρ)∂ϕ
∂x

+ (κν − r)ϕ = −(V − Vdata) on Ω
(15)

with terminal condition ϕ(T ) = 0 and boundary conditions ϕ = 0 on Γa and Γb and

∂ϕ

∂τ
− (r − q)∂ϕ

∂x
− κνµν

∂ϕ

∂ν
= 0 on Γc,

∂ϕ

∂τ
− (r − q − ν

2)∂ϕ
∂x
− ν

2
∂2ϕ

∂x2 = 0 on Γd.
(16)

The discretization of the adjoint is analogous to the discretization of the Heston PDE.
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3.2 Derivation of the gradient
Let u = (σν , ρ, κν , µν) be the parameters to be identified, as r and q are given by the data.
We compute the optimality condition by setting duL(V, u, ψ) = 0. In the following we
state the derivatives w.r.t. the different parameters separately. For σν we obtain

dσν 〈e(V, u), ψ〉[hσν ] =
∫ T

0

∫
Ω

1
2ν
(
σνhσν hσνρ
hσνρ 0

)
∇V · ∇ϕ

− 1
2

(
−1

2σνhσν
−1

2hσνρ

)
· ∇V ϕ+ 1

2V
(
−1

2σνhσν
−1

2hσνρ

)
· ∇ϕ

+ 1
2∇ ·

(
−1

2σνhσν
−1

2hσνρ

)
V ϕdz − 1

2

∫
∂Ω

(
(
−1

2σνhσν
−1

2hσνρ

)
· ~n)V ϕds

−
∫
∂Ω

1
2ν
(
σνhσν hσνρ
hσνρ 0

)
∇V ~nϕ dsdτ

= hσν

∫ T

0

∫
Ω

1
2ν
(
σν ρ
ρ 0

)
∇V · ∇ϕ+ 1

4

(
σν
ρ

)
· ∇V ϕ− 1

4V
(
σν
ρ

)
· ∇ϕ

− 1
4∇ ·

(
σν
ρ

)
V ϕdz +

∫
∂Ω

(
1
4

((
σν
ρ

)
· ~n
)
V ϕ− 1

2ν
(
σν ρ
ρ 0

)
∇V ~nϕ

)
dsdτ

= hσν

∫ T

0

∫
Ω

1
2ν
(
σ
∂V

∂ν

∂ϕ

∂ν
+ ρ

(
∂V

∂x

∂ϕ

∂ν
+ ∂V

∂ν

∂ϕ

∂x

))

+ 1
4

(
ρ

(
ϕ
∂V

∂x
− V ∂ϕ

∂x

)
+ σ

(
∂V

∂ν
ϕ− V ∂ϕ

∂ν

))
dz

+
∫
∂Ω

1
4 (σ + ρ)V ϕ− 1

2ν
(

(σ + ρ) ∂V
∂ν

+ ρ
∂V

∂x

)
ϕdsdτ

Similarly, we obtain for the other derivatives

dρ〈e(V, u), ψ〉[hρ] = hρ

∫ T

0

∫
Ω

1
2νσ

(
∂V

∂x

∂ϕ

∂ν
+ ∂V

∂ν

∂ϕ

∂x

)
+ 1

4σ
(
∂V

∂x
ϕ− V ∂ϕ

∂x

)
dz

+
∫
∂Ω

1
4σV ϕ−

1
2νσϕ

(
∂V

∂x
+ ∂V

∂ν

)
dsdτ

dκν 〈e(V, u), ψ〉[hκν ] = hκν

∫ T

0

∫
Ω

1
2 (µν − ν)

(
V
∂ϕ

∂ν
− ∂V

∂ν
ϕ

)
− 1

2V ϕdz

− 1
2

∫
∂Ω

(µν − ν)ϕV ds−
∫

Γc
µν
∂V

∂ν
ϕ dsdτ

dµν 〈e(V, u), ψ〉[hµν ] = hµν

∫ T

0

∫
Ω

1
2κ

(
V
∂ϕ

∂ν
− ∂V

∂ν
ϕ

)
dz

− 1
2

∫
∂Ω
κV ϕds−

∫
Γc
κν
∂V

∂ν
ϕ dsdτ

Note that duL(V, u, ψ)[hu] = 0 needs to hold for arbitrary directions hu. Therefore, we
can read off the gradient from the above expressions.
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3.3 Gradient descent algorithm for the parameter calibration
Solving the first-order optimality condition all at once will be difficult due to the forward-
backward structure. Therefore, we propose a gradient descent algorithm in the following.
For a given initial parameter set u0, we can solve the state equation. With the state
solution at hand, we can compute the adjoint equation backwards in time. Then we have
all the information available to compute the gradient and update the parameter set using
a gradient step.

Algorithm 1: Gradient descent method for Heston parameter calibration
Result: calibrated parameters for Heston model
initialize parameters u0;
while ‖gradient‖ > ε do

solve (5);
solve (14);
compute the gradient;
line search for step size;
update the parameter set;

end

For the line search we use the Armijo rule [10], which is described in the following. Given
a descent direction dk of f at uk, for example dk = −∇f(uk), choose the maximum
σk ∈ {1, 1/2, 1/4, . . .} for which

f(uk + σkdk)− f(uk) ≤ γσk〈f ′(uk), dk〉. (17)

Here γ ∈ (0, 1) is a numerical constant, which is problem dependent and typically chosen
as γ = 10−4, as we have. As we have restrictions for the parameter domain for κν , µν , σν
and ρ, as well as the condition that the Feller condition has to be fulfilled, we further use
the projected Armijo rule [10]. Choose the maximum σk ∈ {1, 1/2, 1/4, . . .} for which

f(P(uk − σk∇f(uk)))− f(uk) ≤ −
γ

σk
‖P(uk − σk∇f(uk))− uk‖2

W .

As before, γ ∈ (0, 1) is a numerical constant.

4 Numerical Results
In this section, we report the behavior of the gradient descent algorithm for the Heston
model, Algorithm 1. We focus on the behavior when using random initial values, short
and long run times, and different discretization meshes. For all test sets, we generate Vdata
using the following parameters for the Heston model

K = 10, r = 0.1, q = 0.05, κν = 5, µν = 0.16, σν = 0.9, ρ = 0.1. (18)
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If nothing else is set due to the test setting, the discretization mesh is Nx = Nν = 80, and
Nτ = 40. The same discretization is used for the test set and the reference set.
For the different test cases, the percentage improvement of the cost function given by

J(V, u0)− J(V, uopt)
J(V, u0) , (19)

the percentage change of the optimized parameter from the initial value, calculated
similarly to (19), and the number of iterations are reported. For the first two tests, we
choose κν = 5.2, µν = 0.18, σν = 0.92 and ρ = 0.05 as initial values. The first test focuses
on different discretization meshes, where we choose Nx = [80, 90, 100, 110, 120, 130, 140]
and Nν = Nx

2 and Nν = Nx. Therefore, we show only the Nν values in the plots, since
their range is unique. The results are shown in the Figures 1, 2, and 3.
In the second test, the behavior using different maturities is examined. The results are
shown in the Figures 4, 5 and 6.
In the last test, we set a maximum percentage deviation where the initial estimate for the
parameters is calculated randomly. For each maximum deviation, we compute 100 initial
values. The results can be found in the Figures 7, 8 and 9.
In comparison, we find that the iteration count is less than 10 iterations in most cases, as
Figures 3, 8 and 6 show. Furthermore, the iteration count increases with larger deviation
of the initial values from the global optimum, see Figure 8. Figures 3 and 4 show a
significant improvement of the cost functional independent of the maturity or the chosen
mesh size. The small effect of the maturity for the optimized parameters is shown in
Figure 2.
The importance of the initial parameter is shown in Figure 7, as we observe that the best
optimized cost functional deteriorates with larger deviations from the reference values, and
in Figure 9, where the optimal parameter deviates from the global optimum, indicating
that the optimal values are local minima. Finally, we conclude that the presented gradient
descent algorithm gives very good results in finding the nearest local minimum that
sufficiently improves the cost functional, as verified by Figures 7 and 9.

5 Conclusion and Outlook
The numerical results show that the application of the gradient descent algorithm is
feasible even if we only reach a local minimum. Since this work is a proof-of-concept, it is
a first step towards (real) data-based calibration of the model. Indeed, as future work we
plan to extend this method using the space-mapping approach [1]. This will allow us to
fit the parameters of the Heston model to real market data rather than to a constructed
example, using the SDE solver as the fine solver and the PDE approach as the coarse
solver.



Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t–

Pr
ep

rin
t

12

Figure 1

Figure 2: The percentage deviation of the initial guess to the optimized parameter for the
different mesh sizes.
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Figure 3: The number of iterations for the different mesh sizes.

Figure 4: The percentage optimization of the cost functional computed with 19.
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Figure 5: The percentage deviation of the initial guess to the optimized parameter for the
short and long time maturities.

Figure 6: The iteration count for the different maturities is shown.
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Figure 7: The first cost functional values are given in blue stars and the optimized cost
functional values are red crosses.

Figure 8: The number of iterations for the optimization of different initial values is presented.
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Figure 9: The optimized parameter for the random initial values.

References
[1] D. Echeverría, D. Lahaye, and P.W. Hemker. Space mapping and defect correction.

In Model Order Reduction: Theory, Research Aspects and Applications. Springer,
Berlin, Heidelberg, 2008.

[2] S.L. Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Rev. Fin. Stud., 6(2):327–343, 1993.

[3] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints.
Springer, 2009.

[4] K. J. in ’t Hout and S. Foulon. ADI finite difference schemes for option pricing in
the Heston model with correlation. Int. J. Numer. Anal. Mod., 7(2), 2010.

[5] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, Basel, 1992.

[6] S. Liu, C.W. Oosterlee, and S. M. Bohte. Pricing options and computing implied
volatilities using neural networks. Risks, 7(1):16, 2019.

[7] M. Mrázek and J. Pospíšil. Calibration and simulation of Heston model. Open
Mathematics, 15, 2017.

[8] L. Teng and A. Clevenhaus. Accelerated implementation of the ADI schemes for the
Heston model with stochastic correlation. J. Comput. Sci., 36:101022, 2019.

[9] L. Teng, M. Ehrhardt, and M. Günther. On the Heston model with stochastic
correlation. Int. J. Theor. Appl. Fin., 6, 2016.

[10] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen. Springer, 2009.


	Introduction
	Financial modelling
	The Heston model
	Discretization

	Parameter Calibration
	First-order optimality conditions for the Heston model
	Derivation of the gradient
	Gradient descent algorithm for the parameter calibration

	Numerical Results
	Conclusion and Outlook

