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Abstract

New results on the boundedness of Laplace–Carleson embeddings
on L∞ and Orlicz spaces are proved. These findings are crucial for char-
acterizing admissibility of control operators for linear diagonal semi-
group systems in a variety of contexts. A particular focus is laid on
essentially bounded inputs.
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1 Introduction

This article is centred around the boundedness of linear operators

Θ : Z(0, t0;U)→ X, t0 > 0.

of the following convolution type form

Θ(u) =

∫ t0

0
T (t0 − s)Bu(s)ds.
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Here (T (t))t≥0 is a C0-semigroup onX with infinitesimal generatorA andB :
U → D(A∗)′ is a bounded linear operator, where D(A∗)′ is the completion of
X with respect to the norm ‖x‖D(A∗)′ = ‖(β−A)−1x‖X for some β ∈ ρ(A).
Here, Z(0, t0;U) refers to a U -valued function Lebesgue or, more generally,
an Orlicz space on the interval (0, t0), and U , X are Banach spaces. The
case Z = Lp, and in particular the case p = 2, are commonly studied in
abstract systems theory within the context of admissible operators. As it
is well-known, the semigroup (T (t))t≥0 has a unique extension to X−1 :=
D(A∗)′, which we again denote by (T (t))t≥0. We recall that B is a Z-
admissible operator if Θ : Z(0, t0;U) → X−1 is well-defined and bounded
from Z(0, t0;U) to X. Note that Θ formally corresponds to the input-to-
state map u 7→ x(t0) of the system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, t ≥ 0. (1)

The purpose of this paper can be described as follows. First some new results
for general classes of semigroups are discussed. In particular, for left invert-
ible C0-semigroups on Hilbert spaces we show that L∞- and L2-admissibility
are equivalent notions. Our main objective is to establish Laplace–Carleson
embeddings from a class of function spaces Z to Lq(C+, µ). The bounded-
ness of these embeddings is naturally linked with admissibility for diagonal
semigroups. Again, we investigate L∞-admissibility and show that L∞-
admissibility even implies admissibility with respect to some Orlicz space.
Furthermore, we study when the bound of such operators Θ goes to 0 as
t0 → 0+, which is expressed by the notion of zero-class L∞-admissibility.
Unbounded admissible operators, that is, operators B not bounded as a
mapping from U to X, naturally appear in the study of boundary control
of evolution equations. The most commonly studied case in the literature
is Z = L2 and we refer to the survey [6] and the book [14] for the basic
background to admissibility in the context of well-posed and boundary con-
trol systems. The general case was already studied in the seminal works by
Weiss [15, 16], where the notion of “admissibility” was coined, although it
had appeared earlier, e.g. [13]. See also [3], where several results previously
known for p = 2 were generalized. Admissible operators with respect to
Orlicz spaces, Z = LΦ, were studied in [7] and we refer to that paper for
elementary facts of Z-admissible operators.
It is easy to see that the property of admissibility does not depend on the
choice of t0, which justifies the fact that we omit the reference to t0 in the
operator Θ. Let us fix the following notation for a semigroup generator A
on X:

BZ(A,U) = {B ∈ L(U,X−1) : B is an Z-admissible control operator for A}.

The inclusions

BL1(A,U) ⊆ BZ(A,U) ⊆ BL∞(A,U), p ∈ [1,∞], (2)
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are clear by the nesting properties of Orlicz spaces. A question in which
we are particularly interested in is when BLp(A,U) = BL∞(A,U) for some
p ∈ [1,∞). This is non-trivial as examples of semigroups are known for
which all inclusions in (2) are strict (for all p ∈ [1,∞)), see [7, Example
5.2] and [9]. One should note that these are examples on Hilbert spaces X,
whereas the following, simpler, example shows that the situation on Banach
spaces only becomes worse.

Example 1.1. Let p ∈ (1,∞) and let (Tp(t))t≥0 be the right-shift semigroup
with generator Ap on Lp(0,∞) defined by Tp(t)f(x) = f(t+ x) for t, x ≥ 0.
Define B through its dual B∗f = f(0) acting on D(Ap). It is easy to see
that B is Lp-admissible, but not Lq-admissible for any q < p. In particular,
this shows that BLq(A2,C) ( BL2(A2,C) for q < 2 = p.

We show that this example is sharp in the following sense. For any left-
invertible semigroup generator A and Hilbert spaces X,U , it holds that
BLq(A,U) = BL2(A,U) for all q ≥ 2, Theorem 2.2. The underlying reason
is a consequence of the Paley–Wiener theorem in the context of admissi-
ble operators [17]. This result can be seen as the point of departure for
the analysis of variants of this statement and our aim to characterise L∞-
admissibility for classes of semigroups relevant in applications. We invoke
more structure on the semigroup and on the input space, such as being diag-
onal and assuming U to be finite-dimensional, while weakening the condition
that X is a Hilbert space. The key tool for handling this combination is by
using the relation between admissibility and Laplace–Carleson embeddings,
which have already been used in prior works [8, 9]. Hence, in order to answer
the above mentioned questions, we prove new embedding theorems. Since
our focus is in particular on p =∞, this extends previously derived results,
where this case was not considered. The set-up of the paper is as follows: In
Section 2 we present several results formulated in the language of admissible
operators while Section 3 is devoted to Laplace–Carleson embeddings.
For the rest of the paper, A will always denote the generator of a C0-
semigroup (T (t))t≥0 and the space X−1 is defined as above. Further as-
sumptions on the semigroup may be imposed in the respective sections.
The spaces X and U will generally refer to general complex Banach spaces,
unless specified otherwise. The space of bounded linear operators from U to
X will be denoted by L(U,X). Let I be an interval and Φ : [0,∞)→ [0,∞)
be a Young function, that is, an increasing, continuous and convex function
such that limx→0

Φ(x)
x = limx→∞

x
Φ(x) = 0. By LΦ(I;U) we denote space

of U -valued measurable functions f : I → U such that Φ(k−1‖f(·)‖U ) is
integrable for some k > 0. This space is equipped with the norm

‖f‖LΦ = inf{k > 0:

∫
I

Φ(k−1‖f(s)‖U ) ds ≤ 1} (3)
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and called the Orlicz space corresponding to the Young function Φ. If U = C,
we may write LΦ(I).
With a slight abuse of notation, we will also regard L1(I;U) and L∞(I;U)
as “Orlicz spaces” with their natural norm. Therefore, if we say that “Z is
an Orlicz space”, we mean that either Z = L1, Z = L∞ or Z = LΦ for some
Young function Φ. Note that for the special case Φ(s) = sp, p ∈ (1,∞), LΦ

is isomorphic to Lp. In analogy to Hölder conjugates for Lp-spaces, given a
Young function Φ we can define the complementary Young function Φc by
Φc(s) = maxt≥0 (st− Φ(t)), which indeed defines a Young function and a
corresponding Orlicz space. For details on Orlicz spaces, we refer the reader
to textbooks such as [1, Chapter 4.8] or the appendix of [7], where they
appeared in the context of admissible operators for the first time.

2 Admissible operators

By a closed graph argument and the semigroup property, the notion of an
admissible operator B can be rephrased as follows.

Definition 2.1. Let Z be an Orlicz space. An operator B ∈ L(U,X−1)
is called Z-admissible (for (T (t))t≥0 or A), if for all t0 > 0 and all u ∈
Z(0, t0;U) it holds that

Θu = Θt0u =

∫ t0

0
T (t0 − s)Bu(s) ds ∈ X.

Furthermore, we define the following two refinements of admissibility. We
say that

• B is zero-class Z-admissible, if limt0→0+ ‖Θt0‖L(Z(0,t0;U),X) = 0, and

• B is infinite-time Z-admissible, if supt0>0 ‖Θt0‖L(Z(0,t0;U),X) <∞.

Note that B is infinite-time Z-admissible if and only if the operator

Z(0,∞;U)→ X,u 7→
∫ ∞

0
T (s)Bu(s)ds

is bounded. We further mention that admissibility may be studied for other
choices of function spaces Z, such as weighted Lp-spaces [4] and Sobolev
spaces [9]. The interest in Orlicz spaces arises in the connection of admissi-
bility to (integral) input-to-state stability for infinite-dimensional systems,
see [7].

2.1 Left-invertible semigroups on Hilbert spaces

In [16], it was (implicitly) shown that BL∞(A,C) = BL2(A,C) for A being
the periodic left-shift semigroup on L2(0, 2π), corresponding to the control of
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a one-dimensional wave equation. It turns out that this result holds true in
a much more general setting. This is a rather direct consequence of another
result by G. Weiss, which was derived in the context of what later became
known as the Weiss conjecture, [17].

Theorem 2.2. Let A generate a left-invertible semigroup on a Hilbert space
X. Then for any Hilbert space U it holds that

BL∞(A,U) = BL2(A,U).

Proof. This basically follows by [17, Theorem 4.1] which is a slight gen-
eralization of an older result by Hansen and Weiss [5]. In fact, let B ∈
BL∞(A,U). Then, it is follows by the definition of L∞-admissibility and
the Laplace transform that

sup
Reλ>α

‖(λ−A)−1B‖ <∞

for some α ∈ R. By (the dual version of) [17, Theorem 4.1], see also [18],
this implies that B is L2-admissible.

Example 1.1 shows that the assumption that X is a Hilbert space in The-
orem 2.2 cannot be dropped in general, even in the specific case of U = C.
However, for the specific case of Ar,per being the generator of the periodic
left-shift semigroup on Lr(0, 2π), characterizations of BLp(Ar,per,C) can be
derived from results on Fourier multipliers, [16, Proposition 5.2]; more pre-
cisely,

BLp(Ar,per,C)

= {b ∈ Sper[0, 2π] : f 7→
∑
k∈Z

b̂(k)f̂(k)eikt ∈ L(Lp(0, 2π),Lr(0, 2π))},

where ĥ(k) denotes the k-th Fourier coefficient and Sper[0, 2π] the periodic
distributions on [0, 2π]. By known facts on multipliers, this implies in par-
ticular that

BLp(Ar,per,C) = BL∞(Ar,per,C) for all p ≥ 2 and r ≤ 2,

which generalizes the assertion of Theorem 2.2 in the situation of this spe-
cial generator. This observation motivates studying the relation of the
sets BLp(A,C) for more general group generators of diagonal form. This
is treated in the next section. Also note that the facts on Fourier multipliers
used above give a glimpse on why the relation between the sets BLp(A,U)
for different p is non-trivial in general. We shall see a related result in
Theorem 2.4 below.
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2.2 Diagonal C0-semigroups

In this section we assume that the semigroup generator A is diagonal with
respect to a (Schauder) basis of X. More precisely, fix 1 ≤ q < ∞ and a
q-Riesz basis (φk)k∈Z of X, i.e., for some C1, C2 > 0 we have that for all
finite sequences (ak)k,

C1

∑
k

|ak|q ≤ ‖
∑
k

akφk‖q ≤ C2

∑
k

|ak|q.

Let A : D(A) ⊂ X → X be an operator such that φn ∈ D(A) for all n ∈ Z
and Aφn = λnφn for a complex sequence (λn)n in a left-half plane of C.
This implies that A generates a strongly continuous semigroup (T (t))t≥0

with T (t)φn = eλntφn for all n ∈ Z, t ≥ 0.
In the above situation we say that A generates a diagonal semigroup with
respect to the q-Riesz basis (φn)n. If the sequence (λn)n lies in a vertical
strip of the complex plane, we say that A generates a diagonal group with
respect to the q-Riesz basis.
Note that the eigenvalues (λn)n lie in the open left-half plane C− if and
only if (T (t))≥0 is strongly stable, i.e. limt→∞ ‖T (t)x‖ = 0 for all x ∈ X.
Without loss of generality we may set X = `q and choose φn to be the n-th
canonical basis vector of `q. Further, we assume U = C. It follows that
every operator B ∈ L(U,X−1) can be represented by a sequence (bn)n∈Z in

X−1
∼=
{
b ∈ CZ :

(
bn

λn − λ

)
n∈Z
∈ `q

}
for some λ in the resolvent set ρ(A) of A. We use the analogous notation if
the index set Z is replaced by N.
We can link admissibility with the boundedness of Laplace–Carleson embed-
dings: the following result was proved in [9] only for Z = Lp with 1 ≤ p <∞,
but the case p = ∞ and even Z = LΦ for some Young function Φ follows
analogously.

Proposition 2.3 (Theorem 2.1 in [9]). Let q ≥ 2 and let A : D(A) ⊂ X →
X generate a strongly stable diagonal semigroup (T (t))t≥0 with respect to a
q-Riesz basis of X. Let Z be an Orlicz space. The operator B ∈ L(U,X−1) is
infinite-time Z-admissible for (T (t))t≥0 if and only if the Laplace–Carleson
embedding

Lf(z) :=

∫ ∞
0

e−ztf(t)dt, z ∈ C+

induces a continuous mapping from Z(0,∞) into Lq(C+, dµ), where µ is the
measure

∑
|bk|qδ−λk .

Hence, in order to answer the above mentioned questions, we prove new em-
beddings theorem for the Laplace–Carleson embedding. These new Laplace–
Carleson embeddings are proved in the following section and of independent
interest, but already applied here to obtain new admissibility results.
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The main results of this section are the following.

Theorem 2.4. Let q ≥ 2. If A : D(A) ⊂ X → X generates a diagonal
group with respect to a q-Riesz basis on X, then

BL∞(A,Cn) = BLq/(q−1)(A,Cn).

Clearly the case p = 2 in Theorem 2.4 is already covered Theorem 2.2.

Proof. We first mention, that it suffices to prove the results for n = 1 (and
apply e.g. [10, Prop. 4] in the general). The statement then follows directly
from Proposition 2.3 and Theorem 3.9.

As explained in the introduction, we cannot expect that BL∞(A,Cn) equals
BLp(A,Cn) for some p < ∞ in general. The following result, however,
shows that for diagonal semigroup generators A, at least every element B
in BL∞(A,Cn) is contained in BLΦ(A,Cn) for some Young function Φ de-
pending on B.

Theorem 2.5. Let q ≥ 2 and A : D(A) ⊂ X → X be the generator of a
strongly stable diagonal semigroup (T (t))t≥0 with respect to a q-Riesz basis
and eigenvalues (λn)n∈Z. Then the operator B ∈ L(C, X−1) is infinite-time
L∞-admissible if and only if∑

n∈Z
sup
I⊂iR

I interval

µ(QI ∩ Sn)

|I|q
<∞, (4)

where µ =
∑
|bk|qδ−λk , QI := {z = x+ iy | iy ∈ I, 0 < x < |I|} and Sn :={

x+ iy | y ∈ R, 2n ≤ x < 2n+1
}

. In this case there exists a Young function
Φ such that B is infinite-time LΦ-admissible.
Moreover, B is zero-class L∞-admissible for (T (t))t≥0.

Proof. The statement about the equivalence follows from Proposition 2.3
and 3.3, whereas the existence of a suitable Young function is guaranteed by
Theorem 3.10. Finally the zero-class L∞-admissibility follows directly from
the LΦ-admissibility by Hölder’s inequality for Orlicz spaces.

Since (finite-time) admissibility remains invariant under for the shifted gen-
erator A− cI, c ∈ R, we obtain the following consequence.

Corollary 2.6. Let q ≥ 2 and A : D(A) ⊂ X → X be the generator
of a diagonal semigroup with respect to a q-Riesz basis. Then for every
B ∈ BL∞(A,Cn) there exists a Young function Φ such that B ∈ BLΦ(A,Cn).

Finally we can formulate a characterization for LΦ-admissible operators for
the specific Young function Φexp(t) = exp(t)− t− 1. This complements ex-
isting characterizations of Lp-admissible operators for diagonal semigroups,
[9].
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Theorem 2.7. Let q ≥ 2 and A : D(A) ⊂ X → X be the generator of a
strongly stable diagonal semigroup (T (t))t≥0 with respect to a 2-Riesz basis
and eigenvalues (λn)n∈Z. Then

BLΦexp (A,C)

= {(bk)k∈N ∈ L(C, X−1) |
∞∑
n=1

n2 sup
I⊂iR

I interval

µ(QI ∩ Sn)

|I|2
+ sup

I⊂iR
I interval
|I|=2

µ(QI) <∞},

where µ,QI , Sn are defined as in Theorem 2.5.

Proof. Since BLΦexp (A,C) = BLΦexp (A−cI,C) for any c ∈ R, we can assume
that A has only eigenvalues with real part less than −2. The result now
follows by Proposition 2.3 and Theorem 3.13, which is proved later.

Remark 2.8. 1. Theorems 2.5 and 2.7 can be used to formulate analo-
gous results for finite-dimensional input spaces, i.e. B ∈ L(Cn, X−1)
for n ∈ N, by considering every “component” of B separately, see also
[10, Prop. 4].

2. Theorem 2.5 generalizes [7, Thm. 4.1] where the case of analytic di-
agonal semigroups was considered and thus condition (4) is satisfied
for all B ∈ L(Cn, X−1). Also note that in those references, q may
more generally be chosen from [1,∞). On the other hand note that [7,
Thm. 4.1] was generalized to more general analytic semigroups which
are not necessarily diagonal in [10].

3. Corollary 2.6 also relates to the concept of input-to-state stability.
More precisely, following the results in [7], it shows that for linear
systems described by diagonal semigroups with respect to a q-Riesz ba-
sis, the notions of input-to-state stability and integral input-to-state
stability are equivalent.

3 Laplace–Carleson embeddings

Let µ be a positive regular Borel measure on the complex right half-plane
C+ = {z = x + iy | y ∈ R, x > 0}. In this section, we only consider scalar-
valued Orlicz spaces Z on the interval (0,∞), that is Z = Z(0,∞;C) in our
notation above. We will omit the reference to the interval here for the sake
of brevity. Formally, what we mean by a Laplace–Carleson embedding is a
map of the form L : Z → Lq(C+, dµ) given by

Lf(z) :=

∫ ∞
0

e−ztf(t)dt, z ∈ C+.
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Since convergence of a sequence in Z implies pointwise convergence of the
corresponding sequence of Laplace transforms, any set inclusion of the form
LZ ⊆ Lq(C+, dµ) is automatically continuous by the closed graph theorem.
We will require the notions of Hardy spaces and reproducing kernels:

Let F : C+ → C be analytic. We say that F belongs to the Hardy space
Hp(C+) whenever

‖F‖pHp(C+) := sup
ε>0

∫
y∈R
|F (ε+ iy)|p dy <∞.

For a shifted half-plane C+,α = {z ∈ C : Re z > α}, we have accordingly the
Hardy space Hp(C+,α) of all analytic functions on C+,α such that

‖F‖pHp(C+,α) = sup
ε>0

∫
y∈R
|F (ε+ α+ iy)|p dy <∞

For F ∈ Hp(C+) and Fε(iy) = F (ε + iy), the limit F (iy) = limε→0+ Fε(iy)
exists for Lebesgue a.e. y. Moreover, Fε → F in Lp(iR). This makes Hp(C+)
isometrically isomorphic to a closed subspace of Lp(iR). A good reference
on Hardy spaces is [2, Chapter II].
For λ ∈ C+ and t > 0, let kλ(t) = 1

2π exp(−λ̄t). Note that ‖kλ‖pLp =
1

p(2π)p Reλ . The so-called reproducing kernel is the analytic function

Kλ : z 7→ Lkλ(z) =
1

2π

1

z + λ̄
,

defined at least for Re z ≥ 0. If p <∞ and F ∈ Hp(C+), then

F (λ) =

∫
y∈R

F (iy)Kλ(iy) dy, (5)

which follows essentially from Cauchy’s theorem.

3.1 Laplace–Carleson embeddings and Carleson intensities

The Carleson square associated to an interval I ⊂ iR is the set

QI = {z = x+ iy ∈ C+ | iy ∈ I, 0 < x < |I|} .

These are related to reproducing kernels by the fact that if λ̄ is the centre
of QI , so that in particular Reλ = |I|/2, then

1√
10π|I|

≤ |Kλ(z)| ≤ 1

π|I|
for z ∈ QI .

With p′ denoting the Hölder conjugate of p ∈ [1,∞], the above inequalities
imply that if L : Lp → Lq(C+, dµ) is bounded, then

µ(QI) . |I|q/p
′

for all intervals I ⊂ iR, (6)
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Figure 1: Relation between condition (6) and the boundedness of L : Lp →
Lq(C+, dµ). If 1 ≤ p ≤ 2, p′ ≤ q < ∞ (region I), or 2 < p ≤ q < ∞ (region
II), then (6) is necessary and sufficient for the embedding to be bounded. If
2 ≤ q < p ≤ ∞ (region III), then (6) is necessary and sufficient under the
additional assumption that µ has support on a vertical strip. For general
measures, (6) is necessary but not sufficient. The bold edge to the left
corresponds to the hypothesis of Theorem 3.3.

see [8, Proposition 3.1]. It is a remarkable fact that in a variety of situations,
condition (6) is also sufficient for L : Lp → Lq(C+, dµ) to be bounded. For
1 ≤ p ≤ 2, and p′ ≤ q < ∞ (this corresponds to the region I in Figure
1), L : Lp → Lq(C+, dµ) if and only if (6) holds, see [8, Theorem 3.2]. In
[12, Theorem 1.1], this result was extended to 2 < p ≤ q < ∞ (region II in
Figure 1). For 2 ≤ q < p < ∞ (region III in Figure 1), (6) is sufficient if
µ has support on a vertical strip, but not if µ has support on a sector, see
[8, Theorem 3.6 and Theorem 3.5]. The thick line in Figure 1 corresponds
to the hypothesis of Theorem 3.3 below. This new result characterizes the
class of µ such that L : L∞ → Lq(C+, dµ) for q ≥ 2.
Motivated by the significance of (6), we state the concept α-Carleson inten-
sity.

Definition 3.1. Let µ be a positive regular Borel measure on C+ and α > 0.
Then the α-Carleson intensity Cα[µ] is given by

Cα[µ] = sup
I⊂iR

I interval

µ(QI)

|I|α
.

Obviously, (6) holds if and only if Cq/p′ [µ] <∞.
Measures supported on vertical strips will play an important role in the in-
vestigation below. The next definition is essentially a notational convention
that will be used henceforth.
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Definition 3.2. Let µ be a positive regular Borel measure on C+. For each
n ∈ Z, consider the dyadic strip

Sn :=
{
x+ iy | y ∈ R, 2n ≤ x < 2n+1

}
,

and define the measure µn on C+ by µn : E 7→ µ(E ∩ Sn).

If 2 ≤ q < p ≤ ∞, and µ is supported on a vertical strip, then L : Lp →
Lq(C+, dµ) if and only if (6) holds. For general µ, this fails. We partially
address this in the following result.

Theorem 3.3. Let µ be a positive regular Borel measure on C+, and 2 ≤
q <∞. Then L : L∞(0,∞)→ Lq(C+, dµ) is bounded if and only if∑

n∈Z
Cq[µn] <∞. (7)

Furthermore, the above sum is comparable to ‖L : L∞(0,∞)→ Lq(C+, dµ)‖q.

For the proof of Theorem 3.3 we need the following lemma and propositions.

Lemma 3.4. Let α ≥ 1.

(i) There exists an interval I ⊂ iR such that |I| = 2n+1 and

Cα[µn] ≤ 2α+1µn(QI)

|I|α
.

(ii) If β ≥ 1, then

Cα[µn] ≤ 2β+n(β−α)Cβ[µn] ≤ 2α+βCα[µn],

i.e. Cα[µn] ≈ 2n(β−α)Cβ[µn], where the constants of comparison depend
only on α and β.

(iii) If one defines the shifted measure µ̃n : E 7→ µn(E + 2n−1), then

Cα[µ̃n] ≤ 2αCα[µn].

Proof. To prove (i), introduce the auxiliary quantity

C̃α[µn] = sup
|I|=2n+1

µn(QI)

|I|α
.

If |I| ≥ 2n, then there exists a finite collection of intervals {Jk}Nk=1, where

N ≤ 2−n|I|, each |Jk| = 2n+1, and I ⊆
⋃N
k=1 Jk. Since also QI ∩ Sn ⊂⋃N

k=1QJk ,

µn(QI) ≤
N∑
k=1

µn(QJk) ≤
N∑
k=1

C̃α[µn]
(
2n+1

)α ≤ 2α
N∑
k=1

C̃α[µn]

(
|I|
N

)α
≤ 2α|I|αC̃α[µn].
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For smaller intervals, µn(QI) = 0. From this, Cα[µn] ≤ 2αC̃α[µn], and since

there clearly exists I with |I| = 2n+1 such that C̃α[µn] ≤ 2µ(QI)
|I|α , (i) follows.

For the proof of (ii), it is immediate from the definition that C̃α[µn] =

2(n+1)(β−α)C̃β[µn]. Since C̃β[µn] ≤ Cβ[µn], and we just proved that Cα[µn] ≤
2αC̃α[µn], this establishes the first inequality in (ii). The second inequality
follows by interchanging α and β.
To prove (iii), note that µn(QI + 2n−1) = 0 when |I| < 2n−1, whereas if
|I| ≥ 2n−1, then QI + 2n−1 ⊆ Q2I .

The necessity of (7) for the boundedness of the Laplace–Carleson embedding
even extends to the case 1 ≤ q <∞.

Theorem 3.5. If 1 ≤ q <∞, then∑
n∈Z
Cq[µn] . ‖L : L∞ → Lq(C+, dµ)‖q.

Proof. For n ∈ Z, chose In with |In| = 2n+1, and Cq[µn] ≤ 2q+1 µn(Tn)
|In|q , where

Tn denotes the right-hand half of the square QIn . With icn denoting the
mid-point of In, define fn(t) = χ(2−n−1,2−n](t)e

icnt, and Fn = Lfn. The
proof now proceeds through three different steps.

Step 1: We first show that there exists positive real constants c and C
such that:

(i) If n ∈ Z and z ∈ Tn, then |Fn(z)| ≥ c2−n.

(ii) If m,n ∈ Z and z ∈ Tn, then |Fm(z)| ≤ C2−n−|n−m|.

Proof. (i) If z = x + iy ∈ Tn and 2−n−1 ≤ t ≤ 2−n, then |t(y − cn)| ≤ 1.
Hence,

|Fn(z)| ≥ ReFn(z) =

∫ 2−n

t=2−n−1

e−tx cos (t (y − cn)) dt ≥ e−2 cos(1)2−n−1.

(ii) By the triangle inequality,

|Fm(z)| ≤
∫ 2−m

t=2−m−1

e−xt dt.

Since the above integral is less than 2−m = 2−n−(m−n), our inequality is
immediate for m ≥ n. For m < n, we use instead that

|Fm(z)| ≤
∫ ∞
t=2−m−1

e−xt dt

=
e−2−m−1x

x

≤ e−2n−m−1

2n
= 2−n2n−me−2n−m−1

2m−n.

12



Since 2ae−a is bounded for a ≥ 0, the conclusion follows.

Step 2: With c and C as in Step 1, chose an integer N such that C23−N ≤
c. For k ∈ {1, 2, . . . , N}, define gk =

∑
m∈Z fmN+k, and Gk = Lgk. We now

show that if n ∈ Z and z ∈ TnN+k, then |Gk(z)| ≥ 1
2 |FnN+k(z)|.

Proof. By the properties in Step 1,

|Gk(z)− FnN+k(z)| ≤
∑
m∈Z
m6=n

|FmN+k(z)| ≤ C2−nN−k
∑
m∈Z
m 6=n

2−N |n−m|

=
C2−nN−k+1−N

1− 2−N
≤ C2−nN−k+2−N ≤ c

2
2−nN−k ≤ 1

2
|FnN+k(z)|.

The result now follows from the reverse triangle inequality.

Step 3: We are now ready to complete the proof of Theorem 3.5. With
N as above,

∑
n∈Z
Cq[µn] ≤ 2q+1

∑
n∈Z

µn(Tn)

2(n+1)q
= 2q+1

N∑
k=1

∑
n∈Z

2−(nN+k+1)qµn(TnN+k).

According to the previous steps,

2−(nN+k+1)q . |FnN+k(z)|q . |Gk(z)|q,

whenever z ∈ TnN+k. Hence,

2−(nN+k+1)qµn(TnN+k) .
∫
TnN+k

|Gk|q dµ,

and ∑
n∈Z
Cq[µn] .

N∑
k=1

∑
n∈Z

∫
TnN+k

|Gk|q dµ ≤
N∑
k=1

∫
C+

|Gk|q dµ.

Since ‖gk‖L∞ = 1,
∑

n∈Z Cq[µn] . ‖L : L∞ → Lq(C+, dµ)‖q, with implied
constants only depending on q.

The sufficiency of (7) can be extended to the situation where Lp is replaced
by certain Orlicz spaces LΦ. For Orlicz spaces, we have the following variant
of sufficiency of (7), generalizing the sufficiency part of Theorem 3.3.

Theorem 3.6. Assume q ≥ 2. Let Φ be a Young function of the form
Φ(t) = Φ̃(tq

′
), where Φ̃ is another Young function. Then it holds that

‖L : LΦ(0,∞)→ Lq(C+, dµ)‖q .
∑
n

(
2n‖ exp−q

′2n−1 ‖
LΦ̃c

)q−1
Cq[µn]. (8)

The above inequality remains true for LΦ = L∞, in which case LΦ̃c = L1.
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Remark 3.7. It is clear that if Φ̃ is a Young function, then so is Φ: t 7→
Φ̃(tq

′
). The converse is not true. The present construction ensures that Φ

not too “small” relative to t 7→ tq
′
.

Proof. To prove (8), we need two main tools. The first is the classical
Hausdorff–Young theorem: Given 1 ≤ p ≤ 2, the Fourier transform is a
bounded map from Lp(R) to Lp

′
(R). This readily implies boundedness of

L : Lp(0,∞) → Hp′(C+). The second tool is the Carleson embedding theo-
rem, e.g. [2, Theorem II.3.9], which states that ‖Hq(C+) ↪→ Lq(C+, dµ)‖q is
comparable to C1[µ].
Let f : (0,∞) → C be such that F = Lf is well-defined as an analytic
function on C+. The following calculations will yield that this is always the
case when f ∈ LΦ.
It holds that ∫

C+

|F |q dµ =
∑
n∈Z

∫
C+

|F |q dµn

=
∑
n∈Z

∫
C+

|F (z + 2n−1)|q dµ̃n(z)

=
∑
n∈Z

∫
C+

|L(f exp−2n−1
)|q dµ̃n,

where µ̃n is the shifted measure E 7→ µn(E+2n−1) appearing in Lemma 3.4.
In combination with Carleson’s theorem and the Hausdorff–Young theorem,
we obtain∫

C+

|L(f exp−2n−1
)|q dµ̃n . C1[µ̃n]‖L(f exp−2n−1

)‖qHq

. C1[µ̃n] ‖f exp−2n−1 ‖q
Lq′

= C1[µ̃n] ‖|f |q′ exp−q
′2n−1 ‖q/q

′

L1

Appealing to Lemma 3.4, C1[µ̃n] . 2n(q−1)Cq[µn]. We now apply Hölder’s
inequality for Orlicz spaces to control∥∥∥|f |q′ exp−q

′2n−1
∥∥∥

L1

∥∥∥|f |q′∥∥∥
LΦ̃

∥∥∥exp−q
′2n−1

∥∥∥
LΦ̃c

.

By the dominated convergence theorem, ‖ exp−q
′2n−1 ‖

LΦ̃c < ∞ for any

Young function Φ̃c. This shows in particular that f exp−2n−1 ∈ Lq
′
, so

F (z) = Lf(z) is well-defined for Re z > 2n−1. As n is arbitrary, F : C+ → C
is well-defined and analytic. It also holds that ‖|f |q′‖1/q

′

LΦ̃
= ‖f‖LΦ . Piecing

all of this together, we obtain (8).

Proof of Theorem 3.3. By Theorem 3.5, L : L∞ → Lq(C+, dµ) implies (7).
To see that (7) is also sufficient, apply Theorem 3.6 to the case where LΦ =

L∞, in which LΦ̃c = L1.
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In general, applying Theorem 3.6 with Φ(t) = tp, and computing the norms
‖ exp−q

′2n−1 ‖
LΦ̃c = ‖ exp−q

′2n−1 ‖L(p/q′)′ , we obtain the following result, which
we state for the sake of being explicit.

Proposition 3.8. Let q ≥ 2 and p ≥ q′. With µn as in Theorem 3.3, it
then holds that

‖L : Lp(0,∞)→ Lq(C+, dµ)‖q .
∑
n

2nq/pCq[µn]. (9)

For p < ∞, condition (9) is not necessary for L : Lp(0,∞) → Lq(C+, dµ)
to be bounded, as can be seen from [8, Theorem 3.5]. Next we will show
that if µ has support on a vertical strip, then (9) reduces to (6). This is the
content of Theorem 3.9, which is basically a reformulation of [8, Thm. 3.6],
but allowing specifically for the case p =∞.

Theorem 3.9. Let µ be a positive regular Borel measure supported in a
strip Cα1,α2 = {z ∈ C : α1 ≤ Re z ≤ α2} for some α2 ≥ α1 > 0, and let
1 ≤ p′ ≤ q <∞ and q ≥ 2. Then the following assertions are equivalent:

(i) The embedding L : Lp(0,∞)→ Lq(C+, µ) is well-defined and bounded.

(ii) There exists a constant C > 0 such that

µ(QI) ≤ C|I|q/p
′

for all intervals I ⊂ iR. (10)

In this case, the bound in (i) depends only on C and α2/α1.

Proof. Condition (ii) is a reformulation of Cq/p′ [µ] < ∞. The implication
(i) =⇒ (ii) was proved already in relation to (6). To obtain the reverse
implication, assume instead that Cq/p′ [µ] < ∞. Since µ is supported on a

vertical strip, µ =
∑N

n=M µn for some integers M,N , with N − M only
depending on α2/α1. Hence,

∑
n

2nq/pCq[µn] =

N∑
n=M

2nq/pCq[µn].

By Lemma 3.4, 2nq/pCq[µn] ≈ Cq/p′ [µn]. Moreover, it’s clear that Cq/p′ [µn] ≤
Cq/p′ [µ]. Thus, the above sum is finite, and (i) follows from Proposition 3.8.

3.2 Laplace–Carleson embeddings on Orlicz spaces

In addition to Theorem 3.3, we derive the following consequence of Theo-
rem 3.5 and Theorem 3.6.
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Theorem 3.10. Assume that q ≥ 2, and that L : L∞(0,∞)→ Lq(C+, dµ) is
bounded. Then there exists a Young function Φ: [0,∞) → [0,∞) for which
L : LΦ(0,∞)→ Lq(C+, dµ) is bounded.

We need some further lemmata to prove this result.

Lemma 3.11. Let Φ: [0,∞) → [0,∞) be a Young function with left-conti-
nuous derivative φ. For α,C > 0 it then holds that∫ ∞

0
Φ

(
e−αt

C

)
dt =

1

αC

∫ 1

0
φ
( s
C

)
log

(
1

s

)
ds.

Proof. Changing the order of integration,∫ ∞
0

Φ

(
e−αt

C

)
dt =

∫ ∞
t=0

∫ e−αt
C

s=0
φ(s) dsdt

=

∫ 1/C

s=0
φ(s)

∫ 1
α

log( 1
Cs)

t=0
dtds

=
1

α

∫ 1/C

s=0
φ(s) log

(
1

Cs

)
ds.

All that remains is the change of variables Cs = s′.

Lemma 3.12. Let q′ ≥ 1 and (γn)n∈Z be a positive sequence such that
γn ≥ 1 for all n ∈ Z, and γn → ∞ as |n| → ∞. Then there exists a Young
function Φ̃c such that

2n‖ exp−q
′2n−1 ‖

LΦ̃c ≤ γn (n ∈ Z).

Proof. Let φc : [0,∞)→ [0,∞) be a strictly increasing function with φc(0) =
0 and

φc(2n) ≤ q′

2

γn∫ 1
0 log

(
1
s

)
ds

for all n. Such a function exists, since γn → ∞ as |n| → ∞. Define the
Young function Φ̃c : t 7→

∫ t
0 φ

c(s) ds. Using that each γn ≥ 1, together with
monotonicity,∫ 1

s=0
φc
(

2ns

γn

)
log

(
1

s

)
ds ≤ φc (2n)

∫ 1

s=0
log

(
1

s

)
ds ≤ q′

2
γn.

By Lemma 3.11, the above left-hand side is equal to

q′

2
γn

∫ ∞
0

Φ̃c

(
2ne−q

′2n−1t

γn

)
dt,

i.e. 2n‖ exp−q
′2n−1 ‖

LΦ̃c
≤ γn by the definition of the Orlicz norm.
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Proof of Theorem 3.10. Since L : L∞(0,∞) → Lq(C+, dµ) is bounded, it
holds that

∑
n Cq[µn] <∞ by Theorem 3.5. There exists a positive sequence

(γn)n such that γn →∞ sufficiently slowly as |n| → ∞, and
∑

n γ
q−1
n Cq[µn] <

∞. It’s no restriction to assume that γn ≥ 1 for every n. Let Φ̃c be as in
Lemma 3.12, i.e.

2n‖ exp−q
′2n−1 ‖

LΦ̃c ≤ γn.

If Φ(t) = Φ̃(tq
′
), then Theorem 3.6 implies that L : LΦ(0,∞)→ Lq(C+, dµ)

is bounded.

3.3 Laplace–Carleson embeddings from LΦ(0, τ0)

In this section we develop finite time analogues of the preceding results on
Laplace–Carleson embeddings. More precisely, we consider Laplace trans-
forms of functions supported on (0, τ0) for some τ0 > 0. We begin with the
case of L∞(0, τ0), and then progress to LΦ(0, τ0) for more general Young’s
functions Φ. We will find that the value of τ0 is immaterial.

Theorem 3.13. Let q ≥ 2, and µ be a positive regular Borel measure sup-
ported on C+. Suppose that τ0 ∈ [2M , 2M+1] for some integer M , and
let µM denote the restriction of µ to the strip {0 ≤ Re z ≤ 2−M}. Then
L : L∞(0, τ0)→ Lq(C+, µ) is bounded if and only if

∞∑
n=−M

Cq[µn] + Cq[µM ] <∞ (11)

with an associated equivalence of norms, where the equivalence constant de-
pends only on q. Moreover, if L : L∞(0, τ0) → Lq(C+, µ) is bounded, then
L : L∞(0, τ)→ Lq(C+, µ) is bounded whenever τ > 0.

Proof. We start by noting that it is sufficient to consider τ0 = 2M . Indeed,
if L : L∞(0, τ0)→ Lq(C+, µ) is bounded, then L : L∞(0, 2M )→ Lq(C+, µ) is
bounded. The core of the proof is to prove that this is equivalent to (11). It
is easy to see that if we replace M by M+1 in (11), then we obtain an equiv-
alent condition. This in turn implies boundedness of L : L∞(0, 2M+1) →
Lq(C+, µ), and hence of L : L∞(0, τ0) → Lq(C+, µ). This argument im-
mediately implies that boundedness of L : L∞(0, τ0) → Lq(C+, µ) yields
boundedness of L : L∞(0, τ)→ Lq(C+, µ) for all τ > 0.
The proof that (11) is necessary is largely analogous to the proof of Theo-
rem 3.5.
We fix M ∈ Z. For n ≥ −M , we define fn, Fn, N as in the proof of Theo-
rem 3.5. For k = 0, . . . , N − 1, define

gk =
∑

m∈Z,mN+k≥−M
fmN+k and Gk = Lgk.
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Note that gk ∈ L∞(0, 2M ) for k = 0, . . . , N − 1. As in the proof of Theo-
rem 3.5, we obtain:
If n ∈ Z, nN + k ≥ −M , and z ∈ TnN+k, then |Gk(z)| ≥ 1

2 |FnN+k(z)| ≥
c2−nN−k−1. This implies,

∑
n≥−M

Cq[µn] .
N∑
k=1

∑
n∈Z;

nN+k≥−M

∫
TnN+k

|Gk|q dµ ≤
N∑
k=1

∫
C+

|Gk|q dµ.

Assuming that L : L∞(0, 2M ) → Lq(C+, µ) is bounded, the above left-hand
side is finite.
We still have to check boundedness of the second term in Condition ( 11).
For any interval I with |I| = 2−M−1, let c be the center and define f =
χ[0,2M ](t)e

ict, F = Lf . Then

F (s) =

∫ 2M

0
e−(s−ic)tdt =

∫ 2M

0
e−(Re s)tei(c−Im s)tdt.

Note that tRe s ≤ 1
2 and |c− Im s|t ≤ 1

4 for t ∈ [0, 2M ], s ∈ QI , thus

|F (s)| & 2M+1 for s ∈ QI ,

and, using boundedness of L : L∞(0, 2M )→ Lq(C+, µ),

1 &
∫
C+

|F (z)|q dµ(z) ≥
∫
QI

|F (s)|q dµ(s) &
µ(QI)

|I|q
.

We now turn to sufficiency of (11). Boundedness of the embedding for the
measure

∑∞
n=−M µn follows directly from Theorem 3.3. To finish the proof,

it is sufficient to show that if µ is supported on [0, 2−M )×R and µ(QI) . |I|q
for all |I| = 2−M+1, then L : L∞(0, 2M )→ Lq(C+, µ) is bounded.
Note that L : L∞(0, 2M ) → H2(C−2−M ,+) is bounded with norm propor-

tional to 2M/2, since the function t 7→ e−tRe sf(t) lies in L2(0, 2M ) when
f ∈ L∞(0, 2M ), with the corresponding norm estimate. Here H2(C−2−M ,+)

is the Hardy space on the larger half-plane {s : Re s > −2−M}.
We observe that for the norm of the embedding E , we have

‖E‖H2(C−2−M,+
)→Lq(µ) = ‖E‖H2(C+)→Lq(µ̃

2−(M+1) ),

where
µ̃2−(M+1)(E) = µ(E − 2−(M+1)).

Now µ̃2−(M+1) is supported on the strip S−M−1, and we may directly apply
Theorem 3.9 in order to obtain that ‖E‖H2(C−2−M,+

)→Lq(µ) . 2−M/2. This

finishes the proof.
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Theorem 3.14. Assume q ≥ 2, τ0 > 0, and that L : L∞(0, τ0)→ Lq(C+, dµ)
is bounded. Then there exists a Young function Φ: [0,∞)→ [0,∞) for which
L : LΦ(0, τ0)→ Lq(C+, dµ) is bounded.

Proof. By Theorem 3.13, we may assume that τ0 = 2M for some integer
M . Let µ = µ′ + µM , where µ′ =

∑∞
n=−M µn. Assuming boundedness

of L : L∞(0, 2M ) → Lq(C+, dµ), condition (11) together with Theorem 3.3
implies boundedness of

L : L∞(0,∞)→ Lq(C+, dµ
′).

By Theorem 3.10, there exists a Young’s function Φ such that L : LΦ(0,∞)→
Lq(C+, µ

′), and since LΦ(0, 2M ) ↪→ LΦ(0,∞) isometrically, L : LΦ(0, 2M )→
Lq(C+, µ

′) is bounded.
The proof will be complete once we have established that L : LΦ(0, 2M ) →
Lq(C+, µ

M ) is bounded. Note that the Young’s function Φ obtained in
the proof of Theorem 3.10 is of the form Φ(t) = Φ̃(tq

′
) for some other

Young’s function Φ̃. By Hölder’s inequality for Orlicz spaces, it follows that
LΦ(0, 2M ) ↪→ Lq

′
(0, 2M ). Repeating an argument from the proof of The-

orem 3.13, L : LΦ(0, 2M ) → Hq(C−2−M ), and Hq(C−2−M ) ↪→ Lq(C+, dµ
M ),

again by condition (11).

Corollary 3.15. Let q ≥ 2, and µ be a positive regular Borel measure
supported on C+. Suppose that L : L∞(0, τ0) → Lq(C+, µ) is bounded for
some τ0 > 0. Then

lim
τ→0
‖L‖L∞(0,τ)→Lq(C+,µ) = 0.

In fact, with Φ as in Theorem 3.13, it holds that

‖L‖L∞(0,τ)→Lq(C+,µ) ≤ ‖L‖LΦ(0,τ0)→Lq(C+,µ)‖χ[0,τ ]‖LΦ(0,∞)

whenever τ ∈ (0, τ0].

Proof. Let f ∈ L∞(0,∞) have unit norm, and support on (0, τ). With Φ as
in Theorem 3.13,

‖Lf‖Lq(C+,µ) ≤ ‖L‖LΦ(0,τ0)→Lq(C+,µ)‖f‖LΦ(0,τ0).

The desired estimate now follows from ‖f‖LΦ(0,τ0) ≤ ‖χ[0,τ ]‖LΦ(0,∞).

3.4 A Laplace–Carleson embedding for a specific class of Or-
licz spaces

In this section, we want to present applications of the theory developed
above to some concrete Orlicz spaces.
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In the following let

Φexp(t) = exp t− t− 1 and Φ̃exp(t) = exp
√
t−
√
t− 1,

so that Φ(t) = Φ̃(t2). We will show that for this specific Young function the
boundedness of the Laplace–Carleson embedding from LΦ(0, 1) to L2(C+, µ)
can be characterized in terms of the capacity, in an analogous way as in
Theorem 3.3 for L∞.

Theorem 3.16. Let µ be a positive regular Borel measure on C+. Then
L : LΦ(0, 1)→ L2(C+, µ) is bounded, if and only if

∞∑
n=1

n2C2[µn] + sup
I interval, |I|=2

µ(QI) <∞ (12)

with an associated equivalence of norms.

Proof. To prove the necessity we will reuse some notation and quantities
from the proof of Theorem 3.5. In particular, for each integer n ≥ 2 we let
Tn denote the right half of a Carleson square QIn with side length 2n+1 and
C2[µn] ≤ 23−2nµn(Tn). Moreover, the functions fm = χ(2−m−1,2−m](t)e

icmt,
with icm being the midpoint of Im, are L∞-normalized functions with dis-
joint supports such that Fm = Lfm is essentially localized to Tm: There
exists c, C > 0 for which

z ∈ Tm =⇒ |Fm(z)| ≥ c2−m and |Fn(z)| ≤ C2−m−|m−n|. (13)

For a given ε > 0, we may choose N such that

n−1∑
m=1

m2mN ≤ εn2nN and
∞∑

m=n+1

m2−mN ≤ εn2−nN

uniformly in n. This can be seen by comparison with a Riemann integral.
For such an N and k ∈ {0, . . . , N − 1}, let

gk = (log 2)

∞∑
m=0

mfk+mN . (14)

and write Gk = Lgk. Note that∫ 1

0
Φ(|gk(t)|)dt ≤

∫ 1

0
e|gk(t)|dt =

∞∑
m=0

2−(k+mN+1)2m ≤ 1,
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whence ‖gk‖Φ ≤ 1. Moreover, for z ∈ Tk+nN∑
m∈Z,m≥0,n 6=m

m|Fk+mN (z)| ≤ C
∑

m∈Z,m≥0,n 6=m
m2−(k+nN+|m−n|N)

= C
n−1∑
m=0

m2−(k+2nN−mN)

+ C

∞∑
m=n+1

m2−(k+mN)

≤ Cεn21−k−nN

≤ 2Cεn

c
|Fk+nN (z)|,

and hence

|Gk(z)| ≥ (log 2)

n|Fk+nN (z)| −
∑

m∈Z,m≥0,n6=m
m|Fk+mN (z)|


& n|Fk+nN (z)| ≥ cn2−k−nN ,

provided that ε is sufficiently small. A possible choice is ε = 1
8
c
C , where c, C

are the constants from (13).
Hence for k ∈ {0, . . . , N − 1},

∞∑
n=1

n2C2[µk+nN ] .
∞∑
n=1

n22−2(k+nN)µ(TnN+k) .N

∫
C+

|Gk(z)|2dµ.

Adding over k = 0, . . . , N − 1, we obtain the required norm bound of the
first term in (12), with a constant only depending on N (therefore on ε,
and hence only on c, C). To control the second term in (12), just consider
f = eitcIχ(0,1), where cI is the midpoint of the interval I.

To prove the sufficiency of Condition (12), note first that boundedness of

L : LΦ(0, 1)→ L2(C+, µ
−1)

follows immediate from the continuous embedding LΦ(0, 1) ⊂ L2(0, 1), to-
gether with the Carleson Embedding Theorem for Paley-Wiener spaces, see
e.g. [11]. Here, as in the notation of Theorem 3.13, µ−1 denotes the restric-
tion of µ to the strip {z ∈ C : 0 ≤ Re z ≤ 2}.
For the remaining part of the measure µ, one may use a straightforward
adaptation of Theorem 3.6,

‖L : LΦ(0, 1)→ L2(C+, dµ)‖2 .
∑
n=1

2n‖ exp−2n ‖
LΦ̃c (0,1)

C2[µn].
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Thus, in order to conclude that
∑

n n
2C2[µn] < ∞, it suffices to establish

the estimate
2n‖ exp−2n ‖

LΦ̃c (0,1)
. n2 ∀n ∈ N.

We then need to show that for sufficiently large B, it holds that∫ 1

0
Φ̃c

(
2n exp(−2nt)

Bn2

)
dt ≤ 1.

This is indeed possible but requires a somewhat arduous explicit computa-
tion. It suffices to do this for large n, since the above integral is always finite
and converges to 0 as B →∞. It is straightforward to see that

φ̃(t) := Φ̃′(t) =
exp
√
t− 1

2
√
t

,

and by a comparison of power series,

exp
(√
t/2
)

2
≤ φ̃(t) ≤

exp
(√
t
)

2
.

It follows that φ̃c, the left-continuous inverse of φ̃, vanishes on [0, 1/2], and
satisfies

(log (2t))2 ≤ φ̃c(t) ≤ 4 (log (2t))2

for t > 1/2. If one defines

Ψ(t) =

{
0, t ∈ [0, 1/2],

4
∫ t

1/2 (log (2s))2 ds, t > 1/2,

then Φ̃c(t) ≤ Ψ(t). Assuming n is sufficiently large for 2n exp(−2n)/Bn2 <
1/2, we apply Fubini’s theorem to obtain∫ 1

0
Φ̃c

(
2n exp(−2nt)

Bn2

)
dt ≤

∫ 1
2n

log
(

2n+1

Bn2

)
0

Ψ

(
2n exp(−2nt)

Bn2

)
dt

= 4

∫ 1
2n

log
(

2n+1

Bn2

)
t=0

∫ 2n exp(−2nt)

Bn2

s=1/2
(log (2s))2 dsdt

= 4

∫ 2n/Bn2

s=1/2
(log (2s))2

∫ 1
2n

log
(

2n+1

Bn2s

)
t=0

dtds

= 4

∫ 2n/Bn2

s=1/2
(log (2s))2 1

2n
log

(
2n+1

Bn2s

)
ds.

Through a rather arduous calculation, one finds the limit of the above inte-
gral as n→∞ to be 4 (log 2)2 /B.
As an alternative to the concrete calculations in the proof above, we can
take a slightly different path and observe that
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Lemma 3.17. Let N ∈ Z, N ≥ 0. Then L : LΦ(0, 1) → H2(C+,2N ) is
bounded with norm

‖L‖LΦ(0,1) →H2(C
+,2N

) . N
1

2N/2
.

Proof. Let ‖f‖LΦ = 1. Note that by the Paley-Wiener Theorem, it is enough
to prove that

‖f exp−2N ‖2 . N
1

2N/2
. (15)

Let p, q > 2 with 1
p + 1

q = 1
2 . Then by Hölder’s inequality,

‖f exp−2N ‖2 . ‖f‖p‖ exp−2N ‖q . p
1

2N/q
,

with constants independent of p, N , where we use the weak exponential
integrability of f ,

|{t ∈ (0, 1) : |f(t)| > α}| . e−α,

and standard estimates of the Γ-function. Choosing p = N , we find in case
N ≥ 2

‖fe−2N t‖2 . N
1

2N/2
.

In case N = 0, 1, the estimate follows trivially from LΦ(0, 1) ⊂ L2(0, 1).

To finish the proof of Theorem 3.16, note that the embedding

H2
C+,2n

→ L2(µn+1)

has norm equivalent to (C2[µn+1])1/2 by the classical Carleson Embedding
Theorem, applied to the shifted half-plane C+,2n .
The remainder follows now from the decomposition of C+ into the strips Sn,
n ≥ 1, together with the strip {z ∈ C+ : 0 ≤ Re z ≤ 2}, and the inclusion
LΦ ⊂ L2(0, 1):

‖Lf‖2L2(C+,µ) ≤ ‖Lf‖2L2(S,µ) +
∑
N≥−1

‖Lf‖2L2(C+,µN+1)

. ‖f‖22 +
∑
N∈Z

2NC2[µN+1]‖Lf‖2H2
C

+,2N

.

1 +
∑
N≥0

N2C2[µN ]

 ‖f‖LΦ .

This proof extends without difficulty to the case of the Young function
Φα(t) = exp(tα)− tα − 1 on [0, 1], where α ≥ 1.
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Using analogous estimates and choosing p = Nα in the application of
Hölder’s inequality, we obtain the correct analogue of (15):

‖f exp−2N ‖2 . N1/α 1

2N/2
for ‖f‖LΦα ≤ 1. (16)

The rest of the sufficiency proof follows as above. The proof of necessity
again follows along the same lines, replacing the test function gk in (14) by

gk = (log 2)1/α
∞∑
m=0

m1/αfk+mN . (17)

Altogether, we obtain

Theorem 3.18. Let µ be a positive regular Borel measure supported on C+

and let α > 1. Then L : LΦα(0, 1)→ L2(C+, µ) is bounded, if and only if

∞∑
n=1

n2/αC2[µn] + sup
I interval, |I|=2

µ(QI), <∞ (18)

with an associated equivalence of norms.

Remark 3.19. An inspection of the proof above reveals that the implied
constants can be chosen independent of α. Hence Theorem 3.3 may (in case
q = 2) be obtained as a limiting case of Theorem 3.18, in the limit α→∞.
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