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Abstract—To ensure safety in automated driving, the correct
perception of the situation inside the car is as important as its
environment. Thus, seat occupancy detection and classification
of detected instances play an important role in interior sensing.
By the knowledge of the seat occupancy status, it is possible to,
e.g., automate the airbag deployment control. Furthermore, the
presence of a driver, which is necessary for partially automated
driving cars at the automation levels two to four can be verified.
In this work, we compare different statistical methods from
the field of image segmentation to approach the problem of
background-foreground segmentation in camera based interior
sensing. In the recent years, several methods based on different
techniques have been developed and applied to images or
videos from different applications. The peculiarity of the given
scenarios of interior sensing is, that the foreground instances
and the background both contain static as well as dynamic
elements. In data considered in this work, even the camera
position is not completely fixed. We review and benchmark
three different methods ranging, i.e., Gaussian Mixture Models
(GMM), Morphological Snakes and a deep neural network,
namely a Mask R-CNN. In particular, the limitations of
the classical methods, GMM and Morphological Snakes, for
interior sensing are shown. Furthermore, it turns, that it is
possible to overcome these limitations by deep learning, e.g.
using a Mask R-CNN. Although only a small amount of ground
truth data was available for training, we enabled the Mask R-
CNN to produce high quality background-foreground masks
via transfer learning. Moreover, we demonstrate that certain
augmentation as well as pre- and post-processing methods
further enhance the performance of the investigated methods.

1. Introduction

Interior Sensing is of high importance for automated
driving. For instance, interior sensing aims at seat occupancy
detection and classification [1, 2]. The classes may range

Figure 1. Left: An RGB image of the test set. Right: The corresponding
binary segmentation mask by which the foreground instances are separated
of the background.

from “Person”, “Child seat” and “Animal” to “Everyday
object”. This knowledge about the seat occupancy can be
used e.g. for smart airbag deployment control systems [3].
While the activation of the airbag could save a person’s life
in case of an accident, it could lead to serious injuries [4,
5] or even to death [6–8] for a child, which is sitting in
a rear-facing child seat on the passenger seat. In the case
of partially autonomous vehicles at the levels two to four
(defined by [9]), a driver has to be present in the car. Thus
it is necessary to verify, if a person is present on the driver
seat [2]. Lastly, also the back seats of the car are of interest
just as the front seats. Thinking of the so called “Forgotten
Baby Syndrome” [7, 10] the system could give an alarm, if
a forgotten child would be detected on a back seat.

In this work, we suggest seat occupancy detection by
background-foreground segmentation methods. Only the
extracted foreground instances, belonging to the classes
“Person”, “Child Seat” or “Object”, should be considered
for the classification. The motivation behind this approach
is to realize the classification task independently of the car’s
interior features and thus achieve better generalization.
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Background-foreground segmentation [11–13], also
known as background-foreground detection [14–16] or
background subtraction [16–20], is an intensively studied
field in computer vision. In recent years, several methods
have been developed addressing various scenarios. These
methods are based on completely different techniques. As it
is described extensively in the survey [16], the approaches
range from classical statistics based to modern methods,
which incorporate deep convolutional neural networks [21].

The goal of this work is to introduce a dataset for the
training of the background-foreground segmentation task
and benchmark three methods in the given setting. The
benchmark is performed on the quality of the generated
background-foreground masks (see figure 1). Note that the
minimization of the computational costs is not of interest
for this work. The three methods we selected are based on
different techniques:

1) Gaussian Mixture Model: A classical statistical method
for background subtraction.

2) Morphological Snakes: A classical approach to object
detection bases on active contours.

3) Mask R-CNN: A modern method solving the instance
segmentation task by using deep neural networks.

In this work, we investigate the limitations of each approach.
To ensure the comparability of the methods, all of them
have been tested on a challenging test set of 100 real-
world images. The test set is part of the dataset which is
introduced by this work, named the ISSO dataset (Interior
Sensing and Seat Occupany). The dataset consists of 1300
annotated real-world images extracted of videos recorded by
employees of the company APTIV in Wuppertal, Germany
which are splitted into a training set of 1100 images, a
validation and a test set of 100 images each. The images
of the ISSO dataset describe scenarios of the interior of 13
different cars, as shown in figure 1. Scenarios of interior
sensing are highly complex, since the foreground instances
and the background can be both, dynamic and static. In this
work, even the camera position varies slightly from car to
car. Additionally, the impact of environmental effects has
to be taken into account, like different weather conditions,
shadows, traffic lights and vibrations.

Although only a rather small amount of 1100 real-
world annotated images for the training is available, we
demonstrate with the help transfer learning that it is possible
to generate background-foreground masks of high quality
with a Mask R-CNN. Furthermore, we investigate to what
extent the performance of the methods can be leveraged
by certain pre- and post-processing methods for the data as
well as by applying data augmentation techniques during
the training of the neural network. In particular we study
the effect of

· the conversion to different color spaces (RGB, HSV,
CIEL∗a∗b∗),

· contrast enhancement methods (Histogram
Equalization, CLAHE),

· morphological operators (Closing, Opening) and

· data augmentation before and during the training of
neural networks.

The paper is organized as follows: The theoretical
background to the methods considered is briefly explained
in section 2. This is followed by section 3, where the
description of the data set designed, registered and annotated
for this work is given. In section 4 the metrics by which
the methods are evaluated are introduced. The results to
the experiments are presented and discussed in section 5.
In particular, the three methods are compared and the
limitations of each method is discussed. Finally, we provide
our conclusion and an outlook in section 6.

2. A Choice of Methods for Background-
Foreground Segmentation

2.1. Gaussian Mixture Model (GMM)

The GMM, introduced for foreground-background
segmentation in [22], is based on the principle of
background subtraction. As described in the appendix A,
the values of a pixel are defined by a certain color space.
For example, the pixel values of a gray scale image are
given by single scalars, whereas the pixel values of a color
image are given by a vector with the number of channels
as dimension. In the GMM framework, these values of
each pixel are modeled by a mixture of adaptive Gaussian
distributions. The underlying data for the computation of
those mixture models is given by a so called pixel process
{X1, . . . , Xt} which is a time series of pixel values. Thus,
at any time t, the history for each pixel at position (w0, h0)
is known:

{X1, . . . , Xt} = {I((w0, h0), i)|1 ≤ i ≤ t} (1)

with I being the image sequence. Now, the probability of
observing a certain pixel value at time t is defined as

p(Xt) =

K∑

m=1

ŵm,tN (Xt; µ̂m,t, Σ̂m,t) (2)

with

· N : The multivariate Gaussian distribution.
· K: Number of Gaussian distributions in a mixture.
· µ̂m,t: The estimate of the mean value of the m-th

Gaussian at time t.
· Σ̂m,t: The estimate of the covariance matrix of the
m-th Gaussian at time t defined as

Σ̂m,t = σ̂2
m,tI

with σ̂2
m,t the estimate of the variance of the m-

th Gaussian at time t and I the identity matrix of
appropriate dimension.

· ŵm,t: The estimated weight of the m-th Gaussian at
time t. Moreover, the weights fulfill the properties of
non-negativity and normalization, i.e., ŵm,t ≥ 0 and∑M

m=1 ŵm,t = 1.
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If a new frame of the image sequence is considered at
current time t, a new pixel value enters the pixel process. By
the update of the pixel process, the estimates of the Gaussian
distributions also have to be updated. For the estimation
of the parameters, the Maximum Likelihood estimator
for the currently observed data is computed. A well-
known approach for this computation is the Expectation
Maximization (EM) [23]. However, here the application of
the exact EM algorithm would be costly, since the values of
each pixel are modeled by a mixture of Gaussians and thus,
the parameters are updated pixel-wise. Hence, the parameter
update is realized by the implementation of an online K-
means approximation [22]. For each new pixel value it is
checked whether the pixel is represented by one of the
already existing K Gaussians. This check is performed until
a match is found. For example, a match is given if the new
pixel value is within 2.5 standard deviations of a distribution.

Estimation of the model parameters. Whether there is
a match or not, the weight parameters are iteratively updated
via

ŵm,t = (1− α)ŵm,t−1 + αMm,t . (3)

Here, α ∈ [0, 1] is the learning rate which determines the
influence of data from past points in time and the speed at
which the model parameters are updated and

Mm,t =

{
1, in case of a match

0, else.
(4)

The distribution parameters µ̂ and σ̂2 are only updated
for the distribution that matches the new pixel value Xt,
otherwise no update is performed:

µ̂m,t =

{
(1− ρ)µ̂m,t−1 + ρXt, Mm,t = 1

µ̂m,t−1, else
(5)

σ̂2
m,t =

{
(1− ρ)σ̂2

m,t−1 + ρδ̂Tm,tδ̂m,t, Mm,t = 1

σ̂2
m,t−1, else

(6)

with ρ = αN (Xt|µ̂m,t, σ̂2
m,t) and δ̂m,t = Xt − µ̂m,t. If no

match is given at all, the distribution that assigns the lowest
probability to the data is replaced by a new distribution with
the initial parameters ŵnew = α, µ̂new = Xt, σ̂new = σ0
and σ0 an appropriate initial variance [20, 22].

Estimation of the background model. Now, it
should be determined by which of the computed Gaussian
distributions, the background can be modeled. In particular,
the Gaussians with the highest weights and the lowest
variances are of interest. Generally, it can be assumed that
pixel values describing the background of a scenario are
repeated and thus, also their distributions. Hence, if a new
pixel value enters to a pixel process which describes the
background, a high probability for a match is given. By
the update rule (3), it can be observed that the weights are
increasing in the case of a match. Moreover, the background
consists mostly of static elements that produce less variance

than dynamic ones. Therefore, to determine the distributions
of the mixture model that describe the background the best,
the Gaussians are sorted firstly in descending order by the
value ŵ/σ̂. Hence, the distributions which are most likely
representing the background are at the top of the list. Then,
the first B distributions are chosen to model the background

B = argmin
b

(
b∑

m=1

ŵm > τ

)
(7)

with τ the percentage of the pixel process that should affect
the background model. The pixel values that cannot be
assigned to a distribution which belongs to the background
model are grouped by a two-pass connected components
algorithm [24].

Number of mixtures. In the introduced GMM
framework of above, the number of Gaussian distributions
in a mixture is given by a constant value that is determined
by the available memory and computational power. In this
work, a modified version of the original GMM framework
is used, where the number of Gaussians is also adaptive.
In [20] the update rule of ŵ is reformulated such that
the weights may take negative values. This aims omitting
weights for Gaussians which are not relevant for the
background estimation. Hence, the distributions that do not
describe the background with high certainty are directly
excluded. We refer to [20] for a detailed derivation of the
modified update rule.

2.2. Morphological Snakes

Originally, the object detection method based on active
contours (also called “snakes”) was presented in [25]. The
idea behind this approach is to detect foreground instances
of an image I by evolving an initial curve C0 towards
the instances boundaries. In particular, the evolution of this
curve is achieved by minimizing the energy functional

E(C) = α

∫ 1

0

‖C ′(q)‖22dq + β

∫ 1

0

‖C ′′(q)‖22dq

− λ
∫ 1

0

‖∇I(C(q))‖2dq
(8)

with C(q) : [0, 1] → R2 a parameterized planar curve,
which represents the contour, I : [0, a] × [0, b] → R+ the
considered image, a, b ∈ R+ and α, β, λ ∈ R+ constant
parameters. By the design of the functional, the smoothness
of the curve is controlled by the first two terms, while the
third term attracts the curve towards the boundary of the
object. Therein, the gradient of the image∇I acts as an edge
detector. Hence, the (local) minimum should be obtained at
the objects boundary.

To handle topological changes, such as splitting and
merging, automatically, the original energy functional is
modified in different ways. The “Geodesic Active Contours”
(GAC) [26] and the “Active Contours Without Edges”
(ACWE) [27] are based on the level-set-method [28] which
are successfully applied to conduct curve evolution [26].
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By this, the curve C : [0, 1] × R+ → R2, (q, t) 7→ C(q, t)
parameterized over time t ∈ R+ is included into a level-set
of an arbitrary smooth embedding function u : R2 ×R+ →
R, such that it holds C(q, t) = {(x, y)|u((x, y); t) = 0}.
Hence, the curve C is represented implicitly by u [29].

To receive the level-set formulation, the evolution of C is
defined by a partial differential equation (PDE) Ct obtained
by minimizing the respective energy functional E(C) with
the steepest descent method. Then, this curve evolution Ct
can be reformulated into the level-set equation ut = ∂u

∂t for
t > 0 with the initial value u0 = u((x, y); 0), as shown in
[26, 30]. For the GAC- and ACWE method, this approach
results in the following level-set equations for t > 0.

Geodesic Active Contours (GAC). For this approach,
the level-set equation is given by

ut = g(I)κ̃‖∇u‖2 + g(I)v‖∇u‖2 +∇g(I)∇u (9)

with

· I : [0, a]× [0, b]→ R+, a, b ∈ R+ an image.
· g(I) : [0,∞) → R+ a strictly decreasing function.

By the values of g, the image regions of interest can
be selected, e.g. the object boundaries in the case of
image segmentation. In this work, g is defined as

g(I) =
1√

1 + α‖Gσ ∗ I‖
(10)

with Gσ ∗ I a Gaussian filter (∗ being the convolution
operator), σ the standard deviation and α > 0 a
non-linear scaling parameter. On object boundaries,
g(I) takes smaller values than on homogeneous image
areas.

· κ̃ := div
(
∇u
‖∇u‖

)
the euclidean curvature of the

embedding function u, proven in [30].
· v ∈ R the balloon force parameter.

Active Contours Without Edges (ACWE). Herein,
the level-set equation is given by

ut = ‖∇u‖2
(
µκ̃− v − λ1(I − c1)2 + λ2(I − c2)2

)
(11)

with

· I , κ̃ and v analogous to above.
· c1, c2 constants that depend on the curve C : [0, 1]→
R2. In particular, c1 represents the average of the pixel
values of I inside C and c2 the average of I(x, y)
outside C.

· λ1, λ2 > 0 and µ ≥ 0 fixed weight parameters.

Both level-set equations are composed of a smoothing term,
a balloon force term and an attraction force or image
attachement term. In particular, the parts of the curve with
a high curvature will be smoothed by the smoothing term.
The balloon force term should help to accelerate the curve
evolution especially in areas, where the attraction force
is too weak due to small values of the gradients in less
informative areas. So, the evolution of C is inflated (v > 0)

or deflated (v < 0) by determining the velocity v ∈ R. If
v = 0, the balloon force is switched off.

Now, the solutions of the level-set equations (9) and (11)
are obtained by solving the time-dependent PDEs iteratively.
However, the numerical methods for the computation of
PDEs are costly, challenging in the implementation and
suffer from stability constraints. In [29] it is shown, that it
is possible to overcome these difficulties by approximating
the PDEs of which (9) and (11) are composed of, by binary
morphological operators. These operators are formulated as
sup-inf operators as given in (18). The implementation of
such a sup-inf operator is much easier and the computation
is more stable and faster compared to the one of PDEs.
Hence, the PDEs (9) and (11) are approximated by
the composition of mathematical morphological operators,
whereby the implicit representation of C is maintained.

Generally, a morphological operator T satisfies the
properties of standard monotony, translation- and contrast
invariance [31]. Furthermore, T is defined uniquely by
a structuring element B, which is a set of arbitrary but
small size and shape with a predefined origin as described
in figure 2. Usually, B is significantly smaller than the
considered image I . Mathematically, B is a matrix of
dimension c× d, c, d ≥ 1 consisting of zeros and ones. The
role of B is to probe a given image pixel-wise whereby the
positioning of B at a pixel is given by its defined origin.
According to the rule which is specified by a morphological
operator, every pixel is evaluated by the comparison with
the origin of B and its corresponding neighborhood which
is represented by the values equal to one in the matrix [32].
Hence, the structuring element can be interpreted as a kernel
in context of machine learning [31].

(a) (b) (c) (d)

Figure 2. Examples for the shape of a structuring element B: (a) Square,
(b) diamond, (c) line segment and (d) ball. By the darker shaded areas, the
origin of B is described. According to [32].

Morphological operators of interest for this work are
the dilation, the erosion and the curvature morphological
operators, due to their properties regarding the infinitesimal
behaviour.

Remark 2.1. (Notation)
Let F ⊆ Ckb (Rn) be a set of bounded continuous
differentiable functions up to order k over Rn. The function
operator is denoted by T : F → F which is assumed to be
well-defined on Ckb (Rn) [33].

Definition 2.2. (Dilation and Erosion [34])
Let u ∈ F , B the structuring element and h ≥ 1, h ∈ R
a scaling parameter. The Dilation of u by hB, written as
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Dh = DhB , is defined by

Dhu(x) = sup
y∈hB

u(x− y). (12)

Whereas, the Erosion of u by hB, written as Eh = EhB , is
given by

Ehu(x) = inf
y∈−hB

u(x− y). (13)

(a) (b) (c)

Figure 3. The effect of Erosion (b) and Dilation (c) applied on an object
(a) with a ball as structuring element B. According to [31, 32].

Infinitesimal behaviour of Dilation and Erosion. Let
be B convex bounded and the B-norm on Rn is defined by
‖x‖B = supy∈B(x ·y) with · the Euclidean scalar product.
Furthermore, the initial value of u at time t = 0 is given by
u0(x) = u(x; 0) with x ∈ Rn. By defining u : Rn ×R+ →
R as the dilation of the initial value u0 by tB, such that
u(x; t) = Dtu0(x), it holds (see [33, 34]):

∂u

∂t
= ‖∇u‖B . (14)

Analogously it holds for u(x; t) = Etu0(x) (see [33, 34]):

∂u

∂t
= −‖∇u‖B . (15)

Here, it holds in particular that

‖∇u‖B = ‖∇u‖2 (16)

if the structuring element is defined as the unit ball

B1(0) = {x ∈ Rn : ‖x‖2 < 1} (17)

on Rn [34, 35]. Hence, under certain conditions, the
infinitesimal behaviour of the Dilation and the Erosion is
equivalent to the PDE ∂u

∂t = ±‖∇u‖2, which is a component
of the level-set equations (9) and (11).

The Sup-Inf Representation of Morphological
Operators. The authors of [34] show that every
morphological operator has a sup-inf representation and that
also the dual inf-sup form exists.

Let B be a set of structuring elements and T : F → F an
arbitrary morphological operator. Then T can be represented
by the sup-inf operator

SIh := Thu(x) = sup
B∈B

inf
y∈x+hB

u(y). (18)

The dual operator of T is defined as T̃ (u) = −T (−u),
which is also a morphological operator. Thus, the inf-sup

representation of T is given by

ISh := Thu(x) = inf
B∈B̃

sup
y∈x+hB

u(y) (19)

with B̃ the set of structuring elements of T̃ .

Definition 2.3. (Curvature morphological operator [29])
Given the morphological operators SIh and ISh with the

set of structuring elements B = {[−1, 1]θ ⊂ R2; θ ∈ [0, π)}
and h sufficiently small. Then the composition

SI√h ◦ IS√h (20)

is defined as the curvature morphological operator.

Infinitesimal behaviour of SI√h ◦ IS√h. It is shown
in [34], that the mean operator

Fhu(x) =
SI2h(x) + IS2hu(x)

2
(21)

has an infinitesimal behaviour, which is equivalent to the
mean curvature motion κ̃‖∇u‖2. However, the problem
about Fh or rather F√h is, that it is not a morphological
operator since the property of contrast invariance is
not satisfied [36]. Due to this reason, the curvature
morphological operator is introduced by [29], which
approximates the mean operator. Thus, (20) has the same
infinitesimal behaviour as (21), namely κ̃‖∇u‖2, which is
also a component of the level-set equations (9) and (11).

Morphological GAC (MGAC) and ACWE
(MACWE). Summarizingly, the introduced morphological
operators approximate PDEs, which are defined by the
level-set equations ut of the GAC and ACWE method. By
this knowledge, it is possible to derive the morphological
versions of the both methods [29].

To this end, the embedding function u needs to be
redefined. Firstly, u should be discrete in practice and
secondly, u has to be binary, since the morphological
operators are also binary. Hence, u : Z2 → {0, 1} is defined
as a binary piece-wise constant function with

u(x) =

{
1, if x is inside the curve boundaries,

0, if x is outside the curve boundaries.
(22)

Due to the discretization of u, the (sets of) structuring
elements also have to be discretized. This realizes the
discretization of the morphological operators. In figure 4,
a possible discrete version Bd of B in definition 2.3 is
described. Here, Bd consists of four discrete line segments
with a length of three pixels and the origin at the pixel
coordinate (0,0). Analogously, the structuring element of the
Dilation and the Erosion given by the unit ball B1(0) can
be discretized.

Intuitively, the balloon force operator acts in a similar
way as the Dilation or the Erosion by inflating or
deflating a contour, respectively (see figure 3). So the
PDE of the balloon force term can be approximated by
the Dilation, if v > 0 and vice versa by the Erosion.
The smoothing term represents the mean curvature motion,

5
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Figure 4. A discrete set of structuring elements Bd with the origin at the
center. Adapted from: [29].

such that the PDE of this component is approximated
by the curvature morphological operator. Finally, the
remaining attraction force ∇g(I)∇u and image attachment
term ‖∇u‖2

(
λ2(I − c2)2 − λ1(I − c1)2

)
can be discretized

directly, as the remaining factors g(I) of the balloon
and the smoothing term. In [29] it is described how this
discretization is realized.

In conclusion, the level-set equations (9) and (11) are
solved by the successive computation of the composition of
three discrete and morphological operators in the mGAC or
the mACWE approach. The algorithms of both approaches
can be found in [29].

2.3. Mask R-CNN

The Mask R-CNN [37] is a Region-based Convolutional
Neural Network for instance segmentation. Hence, the goal
is to detect and classify each object of an image, whereby
it should be also distinguished between every individual
instance within a class. By a Mask R-CNN, the detection
and classification task and the generation of a mask for each
instance are managed simultaneously.

In particular, the Mask R-CNN is an extension of the
Faster R-CNN [38]. This framework for object detection
consists of two components: A Region Proposal Network
(RPN) and a region-based object detection network, here
given by the Fast R-CNN [39] (the predecessor of Faster R-
CNN). The RPN generates candidate object locations, called
“proposals”, which the Fast R-CNN uses to determine the
exact locations of the detected images. The innovation of
the Faster R-CNN is to unify those both networks into one
framework by developing training algorithms in which both
networks share some of their layers. Now, the extension of
the Faster R-CNN is realized by adding a mask branch. As
described in figure 5, the instance masks are generated by
a Fully Convolutional Network (FCN) [40] which aims at
classifying for each pixel, whether it belongs to a certain
class or not.

For the achievement of the prediction of high quality
masks, the authors of [37] show, that the introduction of
the following two novelties play a key role. Firstly, the
“RoIPooling”-layer (RoI: Region of Interest) of the Faster
R-CNN is substituted by the “RoIAlign”-layer. Actually, the
Faster R-CNN is not designed for a pixel-to-pixel relation
between the in- and output. By RoIAlign the features which
are extracted by the convolutional backbone, can be properly
aligned according to the input image (see figure 5). Thus, the
generation of pixel-accurate instance segmentation masks is
possible. Secondly, the classification task and the prediction

of the mask for each instance is decoupled. The loss
function is defined in such a manner, that binary masks are
predicted for all of the K classes independently, such that
no competition exists among these classes during inference.
Hence, the prediction of the class is not based on a predicted
mask, but solely on the classification branch. Since all
desired outputs are computed in parallel, the multi-task loss

L = LC + LB + LM (23)

is defined on each RoI which is composed of the
classification loss LC [39], the bounding box regression loss
LB [39] and the loss of the mask branch LM [37, 41]. These
loss functions are defined as described below.

Remark 2.4. (Notation)
The set of ground truth labels is given by Y , whereby #Y =
K + 1, and consists of K predefined object classes and an
additional background class. In particular, the background
class is denoted by y = 0. Moreover, the ground truth class
y of each instance is assigned to each RoI.

1. Classification loss LC . The output of the
classification branch is given by a discrete probability
distribution p = (p0, p1, . . . , py . . . , pK) over all K + 1
classes whereby

pk =
ezk

K∑
i=0

ezi
∀ k = 0, . . . ,K (24)

with z ∈ RK+1 as the output of the last fully connected
layer. Then the classification loss is defined as the log loss
of the true class y:

LC = − log(py) (25)

2. Bounding box regression loss LB . The output of the
bounding box regression branch is given by a four tuple of
pixel values b̂k =

(
b̂kc , b̂

k
d, b̂

k
w, b̂

k
h

)
∀ k = 1, . . . ,K. Here,

(·c, ·d) describe the pixel coordinates of the center of the
bounding box, while the width and height of the bounding
box are given by the pixel values with the indices w and
h. For detailed information on the derivation of the certain
pixel values we refer to [39]. With the ground truth bounding
box by = (byc , b

y
d, b

y
w, b

y
h), assigned to each RoI if y 6= 0, the

loss function is defined by

LB = 1{y>0}
∑

j∈{c,d,w,h}
H(b̂yj − byj ) (26)

with H(φ) the Huber loss function [42]

H(φ) =

{
0.5φ2, if |φ| < 1

|φ| − 0.5, else
(27)

and the indicator function

1{y>0} =

{
1, if y > 0

0, if y = 0 .
(28)
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Figure 5. Architecture of the Mask R-CNN. The orange shaded parts represent the extensions of the Faster R-CNN by which the Mask R-CNN is derived
(according to [37, 38]).

3. Loss of the mask branch LM . The output of the
mask branch has the dimension Km2 since it encodes a
binary mask of a spatial dimension of m × m for all K
object classes except the background class. The values of
each pixel of the predicted mask τ̂krs, k = 1, . . . ,K are
derived by applying a sigmoid activation function to the
outputs of the last feature map. With the pixel values τyrs of
the ground truth mask, the loss function is defined as the
average binary cross-entropy:

LM = 1{y>0}
1

m2

m∑

r=1

m∑

s=1

τyrs log(τ̂yrs)+(1−τyrs) log(1−τ̂yrs)

(29)
with 1{y>0} defined as in (28).

Those three tasks of classification, bounding box
regression and mask generation are solved in the head
architecture of the Mask R-CNN which operates on each
RoI, whereas the important features are extracted in the
convolutional backbone architecture. In this work, the
backbone architecture is given by a combination of the
ResNet with 101 layers [43] and the Feature Pyramid
Network (FPN) [44]. The head architecture is given only
by the FPN.

Summarizingly, the Mask R-CNN generates segmentation
masks of instances of interest are segmented from the
background and considered individually.

3. Datasets for Interior Sensing

Scenarios of interior sensing are highly complex. The
instances separated from the background belong to the
classes “Person”, “Child seat” and “Object” in this work.
Thus, the foreground instances can be both, dynamic and
static. Furthermore, only those detected instances which
are positioned on the front and back seats of the car are
of interest. Also modelling the background is non-trivial
since it contains dynamic elements due to the motion of
objects visible through the car windows. Moreover, the
camera position changes slightly from car to car in this
work. Additionally, the impact of environmental effects has
to be taken into account, like different weather conditions,
shadows, traffic lights and vibrations.

To solve the background-foreground segmentation task in
this high complex setting adequately, it is of importance,
especially for the training of the Mask R-CNN, that an
appropriate training set is available by which a wide range
of the challenges is covered. To this end, the ISSO dataset
has been created by APTIV and the authors of this work. It
consists of 1300 real-world images extracted from videos of
different interiors of stationary or driving cars. The images
contain a high variety regarding the foreground instances,
the background and the environmental conditions. Further
details are provided in the upcoming section.

Since the annotation of images is time-consuming and
costly, only a small amount of 1100 real-world images
is available for training. To overcome this problem, we
apply transfer learning. Here, the training of the Mask R-
CNN is initialized by a model pretrained on the COCO
dataset. This pretrained model is able to detect persons and
certain everyday objects outside the scope of car interiors.
Therefore, we also consider the impact of the COCO dataset
maintained during the training. Moreover, images of the
synthetic dataset SVIRO are used for the training of the
Mask R-CNN to overcome the problem of the small amount
of real-world annotated data. The SVIRO dataset consists
of rendered images describing scenarios in the passenger
compartment of different cars.

Hence, in total, we consider images and videos of three
different datasets – the COCO dataset, the SVIRO dataset
and our ISSO dataset. In the next section, we describe these
datasets in more detail.

3.1. The ISSO dataset

The Interior Sensing and Seat Occupancy (ISSO) dataset
has been created by APTIV and the authors of this work.
It consists of images which are extracted from videos that
have been recorded in driving or stationary cars by APTIV
in Wuppertal, Germany. The purpose of this dataset is to
enable the feasibility study provided by the present article
and it is not meant to be representative for a local or global
population. While selecting the images for the dataset, it
was taken into account, that a high variation within the
instances, the backgrounds and the light conditions is given
over all images. The camera is mounted on the upper or
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lower area of the windshield in each car. Hence, the position
changes slightly per car. Since the camera is not integrated,
its position might even change slightly in one and the same
car. In total, 1300 images were labeled from which we define
test, training and validation sets.

1. Training set. The training set is used to train the
Mask R-CNN. In total, it consists of 1100 labeled images
recorded in five different cars. 500 images were selected and
labeled at the beginning of this work. Since the class “Child
seat” suffered from a lack of variation, it was paid attention
to recording as many different child seats as possible in
later recording session. Of these new videos, 600 additional
images were chosen and labeled, such that the number of
instances for the class “Child seat” increased in particular.
Nevertheless, as one can see from figure 6, the instances
of this class are least represented in the training set. For
the class “Child seat” it is to remark that instances are not
clearly visible in two situations. Here, a situation refers to a
specific camera position in a specific car. Firstly, due to the
camera position, only a small part of a child seat is visible if
it is mounted on the back seat of the car interior. Second, a
child seat is hardly visible if it is occupied by a child. Hence,
especially for the training it is of interest in how many cases
the child seats are mounted on the front passenger seat and
thus clearly visible. In particular, the child seats are mounted
on the passenger front seat of the car in about 60% of the
images that contain a child seat. Of these front mounted
child seats over 80% are not occupied. Detailed statistics
for the training set are given in the appendix B.

Person

Object

Child seat

Absolute frequencies

0 200 400 600 800 1000

C
la

ss

Original
Additional

Figure 6. Distribution of the classes over the 1100 images of the training
set. By “Original” the set of the first 500 images is described. “Additional”
describes the set of the 600 images by which the training set was extended.

2. Validation set. The validation set consists of 100
images distributed over three different cars. It contains
five persons, among them one child, one female and four
male. The class “Object” is represented by four instances
of five main categories (laptop, PC-keyboard, bagpack and
beverage crate). Moreover, two child seats are available in
the validation dataset. In 29 images, a child seat is contained
whereby only seven of these images show a child seat
mounted on the passenger front seat. None of the front
mounted child seats is occupied by a child. All cars, child
seats, objects and persons are different from those shown
by the training set.

3. Test set. The test set is used to evaluate and to
compare the performance of the implemented foreground-
background detection methods. It consists of 100 labeled
images extracted from 70 videos that are recorded in five
different cars. 50 images are extracted from videos inside

a driving car and the other 50 images are extracted from
videos inside stationary cars.

The test set contains 13 persons, among them three
children and one baby, three female and ten male. In the
class “Object”, everyday items are collected, like a bag pack
or a wallet. As described in table 11, 42 instances of 16
main categories are included in the test set. Furthermore,
four different child seats are available in the test set. The
child seat is mounted on the passenger front seat of the
car in about 30% of the images that contain a child seat.
Additionally, about 53% of these front mounted child seats
are occupied. All cars, child seats, objects and persons are
different from those shown by the training and validation
sets.

Creation of the ground truth . The annotations of the
images are created by the tool “Labelme” from MIT [45]
extended by the function of an eraser. With “Labelme”,
it is possible to annotate the instances of an image by
closed polygon courses. By this information, the ground
truth segmentation masks with different gray scale values
for each instance can be created (see figure 7).

In this feasibility study we only focus on foreground-
background segmentation. Hence, for the images of the
test set, we generated binary ground truth segmentation
masks. As described by figure 8, the foreground instances
are represented by white pixels, while the background is
given by black pixels.

Figure 7. An image of the training set (left) and its corresponding gray
scale ground truth instance segmentation mask (right).

Figure 8. An image of the test set (left) and its corresponding binary ground
truth segmentation mask (right).

3.2. The SVIRO dataset

As the name suggests, the Synthetic Vehicle Interior
Rear Seat Occupancy (SVIRO) dataset [46] consists of
images produced artificially by a rendering software which
is Blender, version 2.79. These images depict randomly
generated scenarios in the passenger compartment of ten
different vehicles. For each of these cars 2500 images were
generated and split into a training and a test set. Here,
each training set contains 2000 labeled images and each
test set 500 images. The labeled instances of the classes
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“Person”, “Child seat” and “Everyday object” differ between
the training and the test set.

Herein, the training datasets of the five car models Ford
Escape, the Lexus GSF, the Tesla Model 3, the VW Tiguan
and the RenaultZoe are used. For the training set of each
car, the following statistics apply: Each training set contains
23 persons, whereby six persons are children and three
persons are babies. Moreover, three different child seats
and four different everyday objects are used in one training
dataset. Furthermore, different light conditions are taken
into account. For the task of instance segmentation, the
ground truth corresponding to the RGB image is given by
an instance segmentation mask as described in figure 9.

Figure 9. An RGB image (left) and the corresponding ground truth instance
segmentation mask (right) of the SVIRO dataset. Source: [46].

3.3. The COCO dataset

The “Common Objects in Context” (COCO, [47]) dataset
consists of images that depict everyday objects in typical
environments. Mainly, the images are non-iconic. This
means for example, that an object is not shown in front
of a calm background but in a complex scene. For this
work the training dataset of the year 2017 is used. This
dataset consists of over 118,000 labeled images covering
over 60 object categories of 10 main categories including
the category “background” as described in table 15. The
annotations are created by labeling each instance in an
image by a closed polygon course and their corresponding
bounding box.

4. Evaluation Metrics

The foreground-background masks generated by the
implemented frameworks are evaluated pixel-wise. The
metrics by which this evaluation is realized are composed
of the following four terms:

· True positives (TP): Pixels that belong to the
foreground and which are correctly classified.

· False positives (FP): Pixels that belong to the
background, but which are misclassified.

· True negatives (TN): Pixels that belong to the
background and which are correctly classified.

· False negatives (FN): Pixels that belong to the
foreground, but which are misclassified.

Thereof, commonly used metrics for the evaluation of
background-foreground segmentation tasks [48] can be

defined as given in table 1. While the precision describes
the amount correctly predicted foreground pixels relative
to the total number of predicted foreground pixels, recall
considers the predicted foreground pixels relative to the total
number of actual (true) foreground pixels, corresponding to
the ground truth. The specificity describes the proportion
of true background pixels that are correctly classified. The
accuracy provides the proportion of correct classifications
overall. The similarity is also known as the Jaccard index
or the Intersection over Union (IoU) [48–50]. This value
measures to what extent the ground truth mask and the
predicted mask resemble one another. Finally, the F1-score
describes the harmonic mean of precision and recall [51].

Name Formula
Precision Pr = TP

TP+FP

Recall Re = TP
TP+FN

Specificity Sp = TN
TN+FP

Accuracy Acc = TP+TN
TP+TN+FP+FN

Similarity Sim = TP
TP+FP+FN

F1-score F1 = Pr·Re
Pr+Re = 2TP

2TP+FP+FN

Table 1. DEFINITION OF THE EVALUATION METRICS.

Remark 4.1. (Evaluation on images of test set)
The performance of all methods is evaluated on the test set
presented in section 3.1. In section section 5, the averaged
values over the 100 images are reported for all evaluation
metrics. Furthermore, in our comparisons we mainly rely
on the metric “similarity” which we compute for each
test image separately and then compute the average over
the whole test set. The similarity is the most sensitive
and intuitive metric to measure the differences between
the ground truth and the predicted mask. As can be seen
in figure 10, the background of the given scenarios is
very dominant in relation to the foreground instances. In
this case, the accuracy would be still on a high level, if
the foreground instances would not be segmented properly
or detected at all. Due to this reason, the accuracy can
lead to misinterpretations of the results. Contrary, the
similarity is not affected by the distribution of background
and foreground pixels over a given image. So, this metric
produces more robust results. For example, for the predicted
mask shown in figure 10 the similarity is only 26% but the
accuracy is about 90%. In section section 5 the similarity
of the prediction and ground truth masks is denoted by the
term “similarity score”.

5. Results of Experiments

For each of the methods introduced in section 2,
implementation details and the results of our experiments are
summarized in the following. All codes have been written
in Python.
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Figure 10. A predicted foreground-background mask. Here, the colored
pixels are coded as follows: TP = white pixels, FP = orange pixels, TN =
black pixels, FN = blue pixels.

5.1. Gaussian Mixture Model (GMM)

Implementation details. For the
implementation of the GMM, the OpenCV-function
BackgroundSubtractorMOG2 [52, 53] implemented
in Python was used. By this function, a background model
can be created. Contrary to the other two considered
methods, the input of the GMM has to be a video since it
is a motion based approach. Thus, the GMM was applied
on the entire videos, from which the predicted masks of
the test images were extracted.

To initialize the background model, mainly one parameter
has to be set, namely T = τN (recall section 2.1, N denotes
the number of previous frames to be considered). This
parameter indicates, the number of the last frames which
are affecting the background model. After parameter tuning,
we fixed the value T = 250 for all presented experiments
below. Furthermore, the algorithm choses a learning rate
lr ∈ (0, 1) automatically where lr = 0 would mean that the
background model is never updated and lr = 1 would mean
that the background model is newly initialized for every
frame. For further details, see [54].

Results. The masks predicted by the GMM achieve
similarity of 15.5% (averaged over the whole test set). We
investigated if the quality of the masks can be enhanced
by the application of a post-processing and pre-processing
method. In particular, one can observe, that the predicted
foreground-background masks contain a lot of noise as
described by figure 11. Furthermore, the boundaries of the
detected instances are clearly visible, however big parts of
the areas inside the instance boundaries are not predicted
as foreground. Therefore, we investigated the effect of the
morphological operators “Opening” and “Closing”. Both
operators are defined by a composition of the morphological
operators Dilation and Erosion presented in section 2.2.
While noise can be removed from binary segmentation
masks by the operator Opening, the areas of the instance
boundaries can be filled by white pixel values with the help
of the operator Closing.

Remark 5.1. (Notation)
In the subsequent tables, the columns “MO”, ‘C’ and “CE”

Figure 11. A foreground-background mask predicted by the GMM.

contain the following information:

· MO describes which morphological operator was
applied: C = Closing and O = Opening.

· C shows if the color channel V or L was considered.
· CE represents the applied contrast enhancement

method: HE (Histogram equalization) or CHE
(CLAHE) (see appendix A).

· The baseline is given by the model with no application
of a pre- or post-processing marked by the entry “-”
of the columns MO, C and CE.

MO Pr Re Sp Acc Sim F1

- 0.333 0.325 0.811 0.744 0.155 0.256
C 0.337 0.368 0.794 0.736 0.172 0.279
O 0.357 0.269 0.837 0.756 0.131 0.220

Table 2. EVALUATION RESULTS FOR THE PREDICTED MASKS OF THE
GMM AFTER APPLYING POST-PROCESSING METHODS.

C CE Pr Re Sp Acc Sim F1

- - 0.333 0.325 0.811 0.744 0.155 0.256
V HE 0.289 0.380 0.776 0.720 0.163 0.268
V CHE 0.309 0.434 0.770 0.725 0.192 0.307
L HE 0.298 0.351 0.808 0.744 0.161 0.267
L CHE 0.315 0.418 0.785 0.736 0.192 0.308

Table 3. EVALUATION RESULTS FOR THE PREDICTED MASKS OF THE
GMM GENERATED OF PREPROCESSED FRAMES.

MO C Pr Re Sp Acc Sim F1

- - 0.333 0.325 0.811 0.744 0.155 0.256
C V 0.311 0.503 0.740 0.710 0.212 0.332
O V 0.345 0.358 0.815 0.750 0.175 0.282
C L 0.319 0.492 0.754 0.722 0.214 0.336
O L 0.350 0.335 0.831 0.762 0.171 0.278

Table 4. EVALUATION RESULTS FOR THE PREDICTED MASKS OF THE
GMM AFTER APPLYING POST-PROCESSING METHODS ON THE MASKS.
THE INPUT IMAGES ARE PRE-PROCESSED BY APPLYING CLAHE ON

THE RESPECTIVE COLOR CHANNEL.

As shown by table 2, the application of Closing on the
predicted masks leads to a slight improvement of about 2
percent points (pp.) for the similarity, whereas the quality
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of the predicted masks decreases when removing noise
via Opening. Moreover, the performance of the GMM
suffers from changes in the light conditions. To address this
problem, a pre-processing step PCC was introduced. Here,
an image of the RGB color space is converted into the color
spaces HSV or Lab. Then, the respective color channels
V or L are extracted since it is possible to control the
brightness of an image by them as described in appendix A.
Additionally, Histogram equalization or CLAHE can be
applied to the extracted channels to approximate a uniform
distribution regarding the brightness of an image and to
enhance the contrast at the same time. Thus, each frame of a
video sequence was pre-processed by PCC before the GMM
algorithm was applied on it. The corresponding results
are given in table 4. We observe that the similarity score
increases slightly by about 4 pp. by applying CLAHE on the
color channels V or L. If this pre-processing method was
applied together with the morphological operator Closing as
post-processing, the similarity even reached a value of about
21% as presented in table 4.

Limitations. The prediction of foreground-background
masks by the GMM approach poses problems for the given
scenario. The main reason is that the GMM is a motion
based approach. The detection of static foreground instances
that primarily belong to the classes “Object” or “Child seat”
depends highly on external effects as the movement by
a person or by the vibrations during the drive. But also
foreground instances, which are dynamic in general, might
not be detected if they do not move over a longer time
period, such that they can be incorporated to the background.
Additionally, a high number of false positives is generated
when the car is driving. In our experiments, we observed that
this can be attributed to motion visible in the car windows
but also changing illumination. Moreover, the GMM takes
a while to learn the background model. Hence, predicted
masks for frames at the beginning are of bad quality.

5.2. Morphological Snakes

Implementation details. To implement the
morphological snakes, the Python package morphsnakes
[55] was used. The input of the algorithm is a gray scale
image. For the MACWE as well as for the MGAC the
initial contour is given by a circle for which the center
(x, y) and the radius r have to be determined by the user.
Here, a contour was initialized on each car seat which is
occupied by at least one foreground instance. Furthermore,
the number of iterations i for the curve evolution and
the number of smoothing steps s ∈ {1, 2, 3, 4} have to
be defined for both methods, here s = 2. Besides that,
the following parameters have been set for each method
individually.

1. MACWE. For the MACWE, the weight parameters
for the region outside λ1 and inside λ2 the evolving curve
have to be defined. In the case λ1 > λ2, it is assumed that
the region outside the evolving curve contains more variation

in their pixel values, compared to the region inside the curve
and vice versa.

2. MGAC. To perform the MGAC algorithm properly
on an image, the contours of the foreground instances need
to be clearly visible. Due to this reason, a pre-processing
PMGAC was performed on the images to highlight these
contours. Here, PMGAC is given by an “inverse gaussian
gradient magnitude”-filter defined in (10). Applying this
filter to an image leads to all pixel values being inside the
interval [0, 1]. By this, the pixel values are close to zero,
particularly in the areas which are close to the contours of
the foreground instances as shown in figure 12. To conduct
this pre-processing, two parameters have to be defined. The
standard deviation σ of the Gaussian filter and the non-linear
scaling parameter α acting as a steepness parameter. The
larger α is, the steeper the transition between the areas of
the instance contours and the flat regions inside and outside
their contours is. Here, σ = 3 and α = 1000.

Additionally, two parameters have to be set for the actual
MGAC algorithm. The balloon force term v ∈ R determines
if a Dilation (v > 0) or Erosion (v < 0) should be
performed. By v = 0, no balloon force is applied. As a result
of parameter tuning, we set the value to v = 1.2. Secondly,
the stopping threshold τ has to be defined. Regions of the
image with smaller values than τ are considered as the
contours of the foreground instances. Thus, the evolution
of the curve stops in those regions. In the experiments, we
consider different values of τ .

Figure 12. A gray scale real-world image after the application of the pre-
processing PMGAC.

Results.
1. MACWE. We study the influence of the number

of iterations i and of the weights parameters λ1, λ2. In
particular, three different values are considered for i, λ1
and λ2 respectively, namely i ∈ {100, 200, 300} and λ1, λ2
∈ {1, 2, 3}. The baseline is represented by the assumption,
that the pixel values of the regions inside and outside the
evolving curve contain the same amount of variation, so
λ1 = λ2 = 1.

As shown by table 5, the similarity score increases with
the increase of λ2 for the case λ2 ≥ λ1 = 1. During
the experiments, we observed that the number of false
positives increases by the increase of iterations i. Therefore,
the values for the precision, accuracy, similarity and F1-
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score decrease with the increase of i. We made the same
observation for the case λ1 ≥ λ2 = 1. Here, the results
of the baseline could not be exceeded for any i. Therefore,
the hypothesis that the variation in the pixel values of the
region outside the evolving the curve is higher compared
to the pixel values inside the curve can be rejected for the
given test set.

i λ2 Pr Re Sp Acc Sim F1

100 1 0.810 0.343 0.989 0.892 0.313 0.465
100 2 0.762 0.400 0.984 0.896 0.345 0.501
100 3 0.740 0.437 0.980 0.897 0.366 0.525
200 1 0.671 0.384 0.970 0.882 0.315 0.463
200 2 0.616 0.455 0.956 0.880 0.338 0.491
200 3 0.588 0.514 0.943 0.877 0.358 0.513
300 1 0.593 0.406 0.951 0.870 0.309 0.454
300 2 0.533 0.484 0.927 0.860 0.323 0.471
300 3 0.506 0.558 0.905 0.852 0.340 0.491

Table 5. EVALUATION RESULTS FOR MACWE WITH λ1 = 1 FIXED.

2. MGAC. Analogously to the MACWE, the influence
of the number of iterations and the stopping threshold on
the performance of MGAC were investigated. In particular,
the values τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} are considered for
each number of iterations i ∈ {100, 200, 300} in the
experiments. Table 6 does not show a clear trend regarding
the influence of the number of iterations for MGAC. For
each i ∈ {100, 200, 300} we observe that the values of Sim,
Acc and F1 increase with increasing values of τ until the
respective best values are obtained. For τ > 0.4 we observe
in our experiments that the similarity, accuracy and F1-score
decrease with increasing τ .

i τ Pr Re Sp Acc Sim F1

100 0.3 0.788 0.572 0.981 0.914 0.469 0.633
200 0.4 0.778 0.565 0.975 0.911 0.466 0.627
300 0.4 0.712 0.603 0.958 0.902 0.456 0.616

Table 6. BEST EVALUATION RESULTS FOR EACH i FOR MGAC.

Limitations. Although the similarity score of the
MGAC is about 10 pp. higher than the score of MACWE,
both approaches have the same limitations. The generated
masks lose in quality if the pixel values of the foreground
instances and the background have similar values in RGB
color space. Furthermore, even slight changes in the
light conditions and shadows lead to poorly generated
foreground-background masks. One can observe that the
curve evolution quickly gets stuck in areas with strong
sunlight or at boundaries of shadows. The performance of
the approaches depends highly on exterior factors since the
essential parameters have to be determined by the user at
the beginning. Hence, the configuration of the algorithms
depends on the experience of the user.

Improvement of performance. Analogously to the
GMM, the performance of the morphological snakes suffers
from changes in the light conditions. For this reason we also
investigated if the performance could be positively affected

by the application of the pre-processing PCC . Thus, instead
of a general gray scale image, the contrast enhanced image
of the color channels V or L is presented to the respective
morphological algorithm.

We repeated the experiments with the best results for
both methods, MACWE and MGAC, now incorporating the
PCC pre-processing. The MACWE approach was repeated
with the parameters λ1 = 1 and λ2 = 3 for all i ∈
{100, 200, 300}. The MGAC approach was repeated for
the combination of the parameters, which are recorded in
table 6 whereby the pre-processing PCC was performed
before PMGAC. Especially for the MACWE, the similarity
of the generated and the ground truth masks increased by
up to 6 pp. by applying HE to V. The similarity of the
masks generated by the MGAC approach and the ground
truth masks increased only slightly by 2.05 pp.

Overall, the highest accuracy (91.86%), F1-score
(64.76%) and similarity (48.63%) was achieved by applying
MGAC with the parameters i = 100 and τ = 3 on the pre-
processed image of the color channel V whose contrast was
enhanced by using histogram equalization.

5.3. Mask R-CNN

Implementation details. For the experiments with
the Mask R-CNN, we used the implementation from [56].
Furthermore, we applied transfer learning, i.e., we trained
the Mask R-CNN by using the weights of a pre-trained
model as initial weights. This pre-trained model was trained
on the entire COCO dataset presented in section 3.3. The
training of the Mask R-CNN was performed on one Titan
XP GPU with 12 gigabytes working memory over 100
epochs with a batch size of 1. Per epoch, 1000 gradient
descent steps were performed. Here, the momentum of the
adam optimizer [57] was fixed to 0.9. During the inference,
the detection of an instance was accepted if the predicted
probability was ≥ 0.9. The results of the experiments
below are given for a confidence level of 90%. Within our
experiments, we study the influence of three factors on the
performance of the model:

1. The influence of the learning rate lr and the weight
decay λ. Here, the values lr ∈ {0.0005, 0.001, 0.002, 0.01}
and λ ∈ {0.0001, 0.001, 0.01} were considered.

2. The influence of data augmentation. The goal of data
augmentation is to increase variability of a dataset. This
of particular interest when the dataset is small. Since the
ISSO training dataset consists only of 1100 annotated real-
world images, we consider data offline augmentation (before
training) and online augmentation (during training). We
utilize both online and offline augmentation since different
kinds of augmentation are readily available in python.

To this end, each image and its corresponding ground
truth mask were horizontally flipped, randomly cropped and
as a combination of both stored to the offline augmented data
set. Additionally, we utilize further augmentation methods
in an online augmentation pipeline. To this end, we use
the Python package albumentations [58]. In detail, the
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pipeline performs four steps, in each step randomly choosing
one of the following augmentation methods:

1) Gaussian blur, glass blur;
2) Gaussian noise, ISO noise;
3) Random brightness contrast, CLAHE (see appendix A),

random sunflair;
4) Grid distortion, elastic transformation, optical

distortion.

In particular, the methods of (4) affect also the appearance
of the ground truth masks.

3. The influence of the data which is used during
training. The Mask R-CNN was trained on the three
different datasets presented in section 3. Below, the datasets
used in the training are denoted as follows:

· Aj : The ISSO training dataset which contains j real-
world images, j ∈ {500, 1100}.

· Aj
aug: The ISSO training dataset which contains

additionally the images of the offline augmentation.
Thus, in total, this dataset consists of 4j images,
j ∈ {500, 1100}.

· Sj : A subset of the SVIRO training set. This subset
consists of j images of five different car interiors of
the SVIRO dataset, j ∈ {2000, 4400}. The number
of images of each car is uniformly distributed in the
dataset Sj .

· Cj , j ∈ {4000, T}: A subset of the COCO dataset. The
subset CT consists of all images, which do not belong
to the main category “vehicle”, “outdoor” or “animal”
(see table 15). That is, CT contains images illustrating
persons and everyday objects. The instances of all
main categories are summarized to the class “Object”,
except the instances of the main category “Person”.
C4000 consists of 4000 randomly sampled images of
CT .

Lastly, the ISSO validation set was used for monitoring the
training progress and tuning parameters.

Results. Firstly, we discuss the results of experiments
that were obtained from the Mask R-CNN trained on the
datasets A500

aug as well as S2000 (4000 images in total)
and consider the effect of online augmentation. Offline
augmentation is performed by default and consists of
different augmentations than the online augmentation. The
learning rate and weight decay were adopted from [37]. As
documented by table 8 the similarity is about 4 pp. higher
if additional online augmentation is performed. Likewise,
the precision also increases. Due to this reason, we applied
online augmentation in all subsequent experiments.

Next, the influence of the learning rate and the weight
decay are considered. To test the influence of the parameter
lr the weight decay was set to λ = 0.0001. Table 9 suggest
that lr = 0 .001 is a descent choice. For a higher learning
rate the final similarity score after training decreases.
In all subsequent experiments, we fixed lr = 0.001.
In order to test the influence of the weight decay we
increased λ and considered lr = 0.001 and lr = 0.01.

This results in similarity scores of 69.61% and 70.58%,
respectively, therefore neither showing a clear tendency nor
a performance increase. Hence, we fix λ = 0.0001.

In addition to the experiments on data augmentation, we
consider different compositions of training sets and study
their influence on the similarity score after training. The
results are summarized in table 7. For this discussion, the
previously best model trained on A500

aug and S2000 with a
similarity of 73.5% sets the baseline. As described in table 7,
the Mask R-CNN trained only on the real-world images of
the ISSO dataset A500 or A500

aug reaches a similiarity of about
70%. A model solely trained on the synthetic data S2000

performs significantly worse, achieving a similarity score of
52.0%. This signals the presence of a strong domain shift
when going from synthetic to real data which is typical
for machine learning in computer vision [59]. Since the
initial weights were pretrained on the whole COCO dataset,
we study if the model’s performance can be improved by
adding the subset CT or C4000 to the training. This approach
aims at making the model memorize at least some of the
features from the COCO dataset. Contrary to the ISSO
and the SVIRO dataset, the images of the COCO dataset
show the foreground instances not in the setting of car
interiors but in an arbitrary environment. In table 7 it can
be observed that the performance of the model decreases
significantly, compared to the baseline, if the number of
images of the COCO dataset is much bigger than the number
of images describing the foreground instances in the setting
of car interiors during the training. Only the model trained
on a balanced dataset with 4000 images of the COCO
dataset (C4000) and 4000 images of the ISSO and SVRIO
dataset (A500

aug + S2000) reaches a similarity of about 71%.
Nonetheless, the model does not outperform the baseline.

When studying the predicted segmentations per image,
the problem observed for the baseline model is that child
seats are not detected reliably. This instability might occur
due to the small variation of four child seats in the datasets
A500 and A500

aug. To test this hypothesis the Mask R-CNN
was trained another time (after an extensions of the data
collection process) by the extended datasets A1100 and
A1100

aug which contain 16 different child seats in total. To
balance the ratio between synthetic and real-world data,
the amount of images of the SVIRO dataset was also
enlarged for the training. Table 7 shows that the similarity
increases by training the Mask R-CNN just on the 1100
real-world images of the extended dataset. By looking
through the background-foreground masks predicted by this
model we observed that all unoccupied child seats are
clearly segmented. However, occupied ones still remain
challenging.

In conclusion, the best model with a similarity score
of 75.5% was obtained by training the model on the
dataset A1100 with the use of online augmentation and the
determination of the parameters lr = 0.001 and λ = 0.0001.

Limitations. The detection of occupied child seats
and instances on the back seats of the car represent still
difficult cases. As described in section 3.1, only a small
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Data Pr Re Sp Acc Sim F1

A500
aug + S2000 0.904 0.790 0.989 0.965 0.735 0.840

A500 0.904 0.752 0.990 0.961 0.705 0.822
A500

aug 0.939 0.736 0.991 0.960 0.700 0.805
S2000 0.630 0.659 0.953 0.925 0.520 0.737

A500
aug + CT+S2000 0.739 0.717 0.967 0.940 0.594 0.742

A500
aug + C4000+S2000 0.863 0.782 0.985 0.962 0.708 0.813

A500
aug + C4000 0.837 0.778 0.979 0.958 0.680 0.788

A1100 0.919 0.797 0.991 0.969 0.755 0.866
A1100

aug 0.888 0.759 0.988 0.962 0.705 0.813
A1100

aug + S4400 0.804 0.801 0.967 0.947 0.669 0.778
Table 7. EVALUATION RESULTS FOR MODELS TRAINED ON DIFFERENT DATASETS BY APPLYING ONLINE AUGMENTATION WITH THE PARAMETERS

lr = 0.001 AND λ = 0.0001.

Online aug. Pr Re Sp Acc Sim F1

No 0.830 0.762 0.982 0.960 0.677 0.801
Yes 0.920 0.767 0.989 0.961 0.716 0.817

Table 8. EVALUATION RESULTS FOR MODELS TRAINED ON A500
aug AND

S2000 WITH lr = 0.002 AND λ = 0.0001.

lr Pr Re Sp Acc Sim F1

0.002 0.920 0.767 0.989 0.961 0.716 0.817
0.001 0.904 0.790 0.989 0.965 0.735 0.840
0.0005 0.894 0.752 0.987 0.961 0.694 0.800

0.01 0.000 0.000 1.000 0.855 0.000 NA

Table 9. EVALUATION RESULTS FOR MODELS TRAINED ON A500
aug AND

S2000 WITH λ = 0.0001.

number of occupied child seats is given in the ISSO training
dataset. Hence, this problem might be solved analogously to
the problem with the unoccupied child seats by extending
the dataset by more images of occupied child seats. The
problem of the detection on the back seats could be solved
by additional cameras, such that the instances on the back
seats become sufficiently visible for the detection task.

5.4. Comparison

In summary, the Mask R-CNN clearly outperforms the
two classical methods GMM and morphological snakes. As
described in table 10 the best model of the Mask R-CNN
achieves a similarity score of 75.5% which significantly
surpasses the best results of the morphological snakes by
26.9 pp. and of the GMM even by 53.9 pp. Moreover,
we can observe by figure 13 that the Mask R-CNN is the
only method which provides a clear segmentation of the
foreground instances. By our experiments we also found out
that the problems of the classical methods are addressed by
the Mask R-CNN. Contrary to the morphological snakes and
the GMM, the Mask R-CNN is much more robust against
changes in the light conditions, shadows and other exterior
factors, like traffic lights.

Method Pr Re Sp Acc Sim F1

Morph snakes 0.868 0.538 0.990 0.919 0.486 0.648
Mask R-CNN 0.919 0.797 0.991 0.969 0.755 0.866

GMM 0.342 0.465 0.777 0.737 0.216 0.337

Table 10. SUMMARY OF THE BEST EVALUATION RESULT FOR EACH
IMPLEMENTED METHOD.

6. Conclusion and Outlook

In this work we have introduced a benchmark for the task
of foreground-background segmentation in interior sensing.
We compared the segmentation performance of different
variants of classical methods, i.e., Gaussian Mixture
Models and Morphological Snakes, with the segmentation
performance of a recent deep learning model, the Mask
R-CNN. Similarly to other real-world computer vision
applications, we observe that the Mask R-CNN is much
more capable of handling the rather large variety in the
recorded scenes. Static and moving objects / persons inside
the car as well as static and moving backgrounds outside the
car as well as varying illumination and shadows contribute
to a complex scenery that classical methods cannot handle
anymore. We also found out that the hunger for data of the
Mask R-CNN to be reduced to some extent by state of the
art data augmentation techniques. However, the only way to
sate this hunger seems to be the recording and labeling of
new data.

Interesting directions for the future are comparisons with
other deep learning models, e.g. for semantic segmentation
[60]. Besides that, recording additional data that covers
difficult cases such as occupied child seats in the back of
the car seems of importance. Also deep learning models that
consider multiple frames as well as hybrid models that use
the output of, e.g., the GMM as an input could be of interest.
The latter technique could also be used to reduce the model
complexity, making deep neural networks more suitable for
embedded systems. Yet, the Mask R-CNN inference requires
0.34 seconds on a Titan XP GPU with 12 GB memory while
the GMM model only requires 0.015 seconds per inference
on an Intel Xeon E-2186M CPU with 2.90 GHz, a hardware
component with way less compute resources. Furthermore,
in the long run, the data collection and labeling process
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Figure 13. Comparison of the masks predicted by the investigated methods. 1st column: The RGB real-world images. 2nd column: The masks predicted
by the GMM. 3rd column: The masks predicted by the Morphsnakes. 4th column: The masks predicted by the Mask R-CNN.

could be supported by methods that make proposals towards
labeling those scenes that leverage the model’s performance
the most. This can be approached e.g. via active learning
for image segmentation [61, 62].

Appendix A.
Excursion: Color Spaces

Each pixel is modeled by a color space [63]. We
investigate the influence of the choice of the color space
for the performance of the implemented methods. To this
end, the considered color spaces RGB, HSV and Lab are
briefly introduced below. For the mathematics behind the
conversion between those colors spaces, we refer to [64]
and [65].

RGB. The RGB color space [63, 64, 66] can be
described as an additive color system since the colors arise
by a linear combination of the three primary colors Red,
Green and Blue (RGB). Mathematically, the RGB color
space can be comprehended as a cube which is located in

a three dimensional Cartesian coordinate system. Thereby,
each axis is represented by one of the color channels R, G
or B. Thus, RGB colors are given by a three dimensional
vector (r, g, b) where r, g and b describe the intensities
of the corresponding color channels red, green and blue,
respectively. The values of the color intensities lie in the
interval [0,M ]. The special case r = g = b represents the
colors white (M,M,M), black (0, 0, 0) and all gray-scale
values inbetween.

HSV. The problem about the RGB color space is that
the colors are not created according to the color perception
of a human. Intuitively, a human creates a color by selecting
a color of a certain spectrum and then develop a desired
saturation and brightness level. The HSV color space [63,
64, 66] is based on this idea. Thus, the goal of the HSV
color space is to adapt the definition of colors to the color
perception of humans. Hence, the HSV color space can
be described as a perceptive color model. The colors in a
HSV space derive by the determination of a Hue, Saturation
and Value. Mathematically, the HSV color space can be
described by a cylinder. The hue is represented by a pure

15



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

color. All possible pure colors are organized on the borders
of the circular base area of the cylinder as described by
figure 14. Hence, the Hue is defined by an angle degree on
the base area of the cylinder. The saturation describes how
vibrant a color is and is determined by defining a radius
inside the cylinder. Finally, the color channel V describes
the brightness of a color and is represented by a height inside
the cylinder. Usually, the value for this channel lies in the
range of [0,M ] with 0 < M ≤ 1.

Figure 14. The HSV color space. Source: [67].

CIEL∗a∗b∗ (Lab). The CIEL∗a∗b∗, also denoted by
Lab, was designed by the Commission Internationale d’
Èclairage (CIE) in 1976. Lab [65, 68] is a uniform color
space which should correlate with the color perception of
humans analogous to the HSV color space. By the color
channel L∗ the luminosity of a color is described. The
channels a∗ and b∗ represent the color pairs green-red and
blue-yellow, respectively. By the value of those color pairs
the saturation C∗ab and the hue h∗ab of a color are defined as

C∗ab =
√
a∗2 + b∗2 and (30)

h∗ab = arctan

(
b∗

a∗

)
, (31)

respectively. In this work, especially the color channels V
and L are of interest since it is possible to control the
brightness of an image by both of these color channels
independently of the hue and the saturation. Due to this
reason, image enhancement methods regarding the contrast
are generally applied on those two color channels. Common
contrast enhancement methods, which are also investigated,
are given by the Histogram Equalization (HE) [69] and
the Contrast Limited Adaptive Histogram Equalization
(CLAHE) [70].

Appendix B.
Detailed statistics for the ISSO dataset

While the statistics over the images of the ISSO test set
are given in table 11, the statistics of the ISSO training set
are described in tables 12 to 14. Herein, the statistics over
the first 500 images of the training set are described by
column “Original”/“Orig.”. In column “Additional”/“Add.”
the statistics over the 600 images by which the training set
was extended are captured. The summary of all quantities is
given by the column “Total”. In table 12 it is also described

by the row “Original” which objects the first 500 images
of the training set contain. In row “Additional” the objects
are recorded which have been added by the extension of the
training set.
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Main category Number of instances
Laptop 4
Jacket 10
Toys 6
Trolley 1
Glasses 1
Bag(pack) 5
Stack of books 1
Helmet 1
CD cover 1
Umbrella 2
Smartphone 3
Tissues 1
Wallet 2
Stack of clothes 1
Shoe 1
Beverage crate 1

Table 11. NUMBER OF INSTANCES PER MAIN CATEGORY OF THE CLASS
“OBJECT” IN THE TEST SET.

Number of instancesImages Main group Orig. Add. Total
Laptop 3 0 3
Bottle 4 5 9
Smartphone 5 0 5
Blanket 2 0 2
Jacket 9 4 13
Wallet 1 0 1
PC-keyboard 1 0 1
Sheet of paper 3 2 5
Bag(pack) 10 10 20
Baker’s bag 1 1 2
Socks 1 0 1

Original

Cardboard box 5 8 13
Suitcase 0 1 1
Toys 0 3 3
Face mask 0 1 1
Hat 0 2 2
Basket 0 1 1
Food 0 2 2

Additional

Cable drum 0 1 1
Total 45 41 86
Table 12. NUMBER OF INSTANCES PER MAIN CATEGORY OF THE

OBJECT CLASS IN THE TRAINING SET.

Number of instancesClass Original Additional Total
Person 21 8 29
Object 45 41 86
Child seat 4 12 16

Table 13. NUMBER OF INSTANCES PER CLASS IN THE TRAINING SET.

Number of instances
Original Additional Total

Female 8 2 10Gender Male 13 6 19
Baby 1 1 2
Child 0 1 1Age
Adult 20 6 26

Table 14. DETAILED DESCRIPTION FOR THE CLASS “PERSON” OF THE
TRAINING SET REGARDING THE CHARACTERISTICS GENDER AND AGE.

Appendix C.
List of object classes of the COCO dataset

In table 15 the main categories (exclusive the category
“background”) and the corresponding object classes of the
COCO training set, year 2017, are described.

Main
category

Object classes

person person
vehicle bicycle, car, motorcycle, airplane, bus,

train, truck, boat
outdoor traffic light, fire hydrant, stop sign,

parking meter, bench
animal bird, cat, dog, horse, sheep, cow,

elephant, bear, zebra, giraffe
accessory backpack, umbrella, handbag, tie,

suitcase
sports frisbee, skis, snowboard, sports ball, kite,

baseball bat,
baseball glove, skateboard, surfboard,
tennis racket

kitchen bottle, wine glass, cup, fork, knife,
spoon, bowl

food banana, apple, sandwich, orange,
broccoli, carrot, hot dog,
pizza, donut, cake

furniture chair, couch, potted plant, bed

Table 15. A LIST OF THE MAIN CATEGORIES AND THEIR
CORRESPONDING OBJECT CATEGORIES OF THE COCO TRAINING

DATASET FROM 2017.
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