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Abstract The problem of conjugate heat transfer in gas turbine blades and their cool-
ing ducts is studied by constructing a highly simplified mathematical model that fo-
cuses on the relevant coupling structures while aiming to reduce the unrelated com-
plexity as much as possible. The Port-Hamiltonian formalism is then applied to the
model and its subsystems, and the interconnections are examined. Finally, a sim-
ple spatial discretization is applied to the system to investigate the properties of the
resulting finite-dimensional Port-Hamiltonian system and whether the order of cou-
pling and discretization has any effect on the resulting semi-discrete system.
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1 Introduction

The role of gas turbines in the power grid will most likely change as the share of
renewable energy sources continues to rise. Their short start-up times and high ef-
ficiency make them well suited as backup power plants, and leading manufacturers
are working on new technologies to make them suitable for use in an energy storage
system in which they would run on hydrogen or synthetic methane. This brings new
requirements and places new demands on the design process. While there is an al-
most overwhelming amount of engineering research and development, surprisingly
little has been done on the mathematics for gas turbines. A mathematical approach to
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turbine blade design is being attempted as part of the GivEn project [1], which aims
to combine multiphysics simulations with multicriteria shape optimization.

One of the physical processes that must be considered to obtain useful results
from shape optimization is heat transfer within the turbine blade. Since gas turbines
operate at extreme temperatures for efficiency reasons – often close to or even above
the nominal melting point of the alloy used for the turbine blades – measures must
be taken to protect the blade from the 1200 °C to 1500 °C of the combustion gas sur-
rounding it. One method is to insert small cooling channels into the turbine blade,
filled with a continuous stream of relatively cool air, to cool the blade by convection
cooling from the inside. The shape, arrangement, and wall structure of these chan-
nels are themselves the subject of extensive engineering research, as described, for
example, in [10, 11]. Because the flow in these cooling channels is intentionally kept
highly turbulent to optimize heat transfer, it is difficult to simulate the flow explic-
itly. While it is possible, it is usually too sensitive and costly to do so as part of a
multiphysics simulation. Instead, in most cases, a parametric one-dimensional model
is used. Although quite dated, [19, 16] gives a reasonable overview of the basics of
such a one-dimensional model.

Combining these cooling channels with the heat transfer inside the turbine blade,
we obtain the so-called conjugate heat transfer (CHT) problem, i.e., strong thermal
interactions between solids and fluids. Although [12] focuses on the coupling with the
hot fluid surrounding the blade and not with the internal cooling fluid, both problems
belong to the same large group. Alternatively, [20] considers both the external and
internal fluids, but places little emphasis on coupling.

In this paper, we present a highly simplified model of conjugate heat transfer in-
volving the turbine blade and a cooling channel. While this model is too simplified
to be useful for actual engineering purposes, it is intended to represent the coupling
structure between the turbine blade and a cooling channel and to allow us to study
this coupling without having to deal with other engineering difficulties that might
cloud the results. We extend and improve on the work done in [15, 14], in which
we had considered a one-dimensional model for heat conduction within the blade
metal, which led to strange and undesirable behaviors and properties of the system.
Instead, we will consider a two-dimensional heat equation and investigate whether
this eliminates the problems of the one-dimensional model. We then formulate the
model system as an infinite-dimensional port-Hamiltonian system (PHS) and apply
a spatial discretization to obtain a finite-dimensional PHS. Port-Hamiltonian systems
are closely related to the Hamiltonian formalism, which was originally developed
in theoretical physics, and are therefore well suited for modeling physical systems.
The formalism makes conservation laws, a property central to virtually all physi-
cal systems, explicit and allows the construction of new port-Hamiltonian systems
by connecting two PHSs with a suitable coupling. It also allows time discretization
schemes that preserve the conservation laws of the continuous system [18].

The present paper is organized as follows. In Section 2, we introduce and mo-
tivate the mathematical model of the coupled system we study. In Section 3, we
present a port-Hamiltonian formulation for each of the subsystems and study the
coupling structure of their connection to determine whether the connection of these
two subsystems forms a PHS for the overall system. Section 4 will contain a spatial
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discretization of the PHS formulated in Section3. Here we will investigate whether
the resulting semi-discrete systems form finite-dimensional port Hamiltonian systems
and whether there is a difference between the coupling of the discretized systems and
the discretization of the coupled system. Finally, we will summarize the results in
Section 5, outline open questions, and make some concluding remarks.

2 The model system

Here we introduce the mathematical model of the coupled system under investigation.
Let Ωm = (0,1)× (0,1)⊂ R2 denote the spatial domain of the blade metal. The heat
equation on Ωm is given by

∂T
∂ t

(x,y, t) =
1

cmρm
div(λ gradT (x,y, t)) for (x,y) ∈Ωm. (1)

In Figure 1 we give a rough sketch of the model setting.
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Fig. 1 Schematic of the 2D model system with ∂Ωext marked as a red line and ∂Ωc as a blue line.

The left, upper and lower boundary (x = 0, y = 0 and y = 1) should be in contact
with a thermal reservoir with a given temperature Text, leading to a Robin-BC:

−λ
∂T
∂x

(x,y, t) = h0
(
Text(t)−T (x,y, t)

)
for x = 0, y ∈ [0,1] (2a)

−λ
∂T
∂y

(x,y, t) = h0
(
Text(t)−T (x,y, t)

)
for x ∈ (0,1), y = 0 (2b)

λ
∂T
∂y

(x,y, t) = h0
(
Text(t)−T (x,y, t)

)
for x ∈ (0,1), y = 1 (2c)

In the following, we denote these parts of the boundary with ∂Ωext . The right bound-
ary (x = 1), which is in contact with the cooling channel will be denoted by ∂Ωc, so
that ∂Ωm = ∂Ωext ∪∂Ωc.
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For ∂Ωc, we then have the boundary condition

−λ
∂T
∂x

(1,y, t) = h1
(
T (1,y, t)−Θ(y, t)

)
for (1,y) ∈ ∂Ω , (3)

where Θ denotes the temperature of the cooling channel and is governed by a trans-
port equation with an additional source term describing the heat flux into the channel:

∂Θ

∂ t
(y, t) =−v

∂Θ

∂y
(y, t)+

h1

ccρc

(
T (1,y, t)−Θ(y, t)

)
, (4)

Θ(0, t) =Θin(t). (5)

3 Port-Hamiltonian Formulation

In this section, we formulate port-Hamiltonian systems for each of the two subsys-
tems. To this end, we will use quadratic Hamiltonians (referred to as the Lyapunov
formulation in [21]) rather than physical (thermodynamic) energy for two reasons.
First, the resulting boundary ports of the heat equation will involve measurable quan-
tities relevant in practice. Second, and more importantly, the transport equation causes
problems with a non-quadratic Hamiltonian.

3.1 Heat Equation

For the heat equation in the metal rod we choose the Hamiltonian

H(t) =
1
2

∫
Ωm

ρ(~x)cm(~x)T (t,~x)2 d~x (6)

with T (t,~x) the temperature and cm denotes the isochoric specific heat capacity of the
metal, i.e. the specific heat capacity at constant volume. We assume that cm does not
depend on the temperature, similar to the Dulong-Petit model. For further thermody-
namic details, we refer the reader to [3]. These assumtions and choice of Hamiltonian
are similar to those made in [21]. However, we choose to take the temperature T as
our state variable, which allows us to eliminate the internal energy from occurring in
our system.

We now choose the usual flow and effort variables

eT = δT H = T, fT = ∂tT, (7)

with δT denoting the variational derivative w.r.t. the temperature T . Note that, just
like in [21], ρcm vanishes because we take the variational derivative with respect to
the weighted L2

ρcm(Ω) space, i.e. with measure ρ(~x)cm(~x)d~x.
With the above mentioned assumptions, the first law of thermodynamics gives us

ρ(~x)cm(~x)∂tT (t,~x) =−div ~ΦQ(t,~x), (8)
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with the heat flux ΦQ. From the (isotropic) Fourier’s law, we have

~ΦQ(t,~x) =−λ gradT (t,~x). (9)

Note that an anisotropic thermal conductivity would also be possible, as in [21], but
would not add anything interesting to the model while complicating the coupling
formulation. Therefore we introduce the additional flow and effort variables similar
to [21]

~eQ = ~ΦQ, ~fQ =−gradT, (10)

to obtain the system of equations(
ρcm fT
~fQ

)
=

(
0 −div

−grad 0

)(
eT
~eQ

)
, (11)

~eQ = λ~fQ. (12)

We can now calculate the time derivative of the Hamiltonian:

dtH =
∫

Ωm

ρ(~x)cm(~x)∂tT (t,~x)T (t,~x)dx

=−
∫

Ωm

div(~ΦQ)T dx

=
∫

Ωm

~ΦQ grad(T )dx−
∫

∂Ωm

T ~ΦQ~ndγ

=−
∫

Ωm

~eQ~fQ dx−
∫

∂Ωm

eT (~eQ~n)dγ,

(13)

recovering the same boundary port variables as [21], i.e. the temperature T and the
heat flux into the system −~ΦQ ·~n.

Since our model system from section 2 does not prescribe the heat flux ~ΦQ di-
rectly, but has Robin boundary conditions instead, we need to modify this boundary
port. We first split the single boundary port into two ports, one each for ∂Ωext and
∂Ωc. The latter part will then be coupled to the cooling channel later, while the port
for ∂Ωext will stay an external port for the coupled system. To replicate the boundary
conditions (2), we set

~eQ~n = ~ΦQ~n = h0 (T −Text)on ∂Ωext (14)

~eQ~n = ~ΦQ~n = h1 (T −Θ)on ∂Ωc (15)

so equation (13) becomes

dtH =−
∫

Ωm

~eQ~fQ dx−
∫

∂Ωm

eT (~eQ~n)dγ

=−
∫

Ωm

~eQ~fQ dx

−
∫

∂Ωext

h0e2
T dγ +

∫
∂Ωext

h0eT Text dγ

−
∫

∂Ωc

h1e2
T dγ +

∫
∂Ωc

h1eTΘ dγ,

(16)
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turning the boundary port of equation (13) into two new boundary ports and addi-
tional dissipative terms on the boundary. These new boundary ports have the internal
(T ) and external (Text ) temperatures as the port variables for the external port, as well
as T and Θ for the coupling port.

3.2 Cooling Channel

We remind the reader that we try to formulate the following equation as a PHS:

∂Θ

∂ t
(y, t) =−v

∂Θ

∂y
(y, t)+

h1

ccρc

(
T (1,y, t)−Θ(y, t)

)
, (17)

with the temperature of the cooling fluid Θ(y, t) in the cooling channel and assuming
that ρc and cc are constant. We consider the Hamiltonian

H =
1
2

∫ 1

0
ρccc Θ

2(y, t)dy. (18)

By taking again the variational derivative w.r.t. the measure ρccc dy, we have

eΘ = δΘ H =Θ , fΘ =
∂Θ

∂ t
. (19)

We choose

J =−vρccc
∂

∂y
, R = 0,

B = 1, P = 0,

fd = h1
(
T (1,y, t)−Θ(y, t)

)
=~ex~Φ(1,y, t), ed =Θ ,

e∂ =
1√
2

(
Θ(1, t)+Θ(0, t)

)
, f∂ =− 1√

2
vρccc

(
Θ(1, t)−Θ(0, t)

)
,

resulting in the system, cf. [17]

ρccc fΘ = (J−R)eΘ +(B−P) fd , (20a)

ed = (B+P)>eΘ , (20b)

e∂ =
1√
2

(
Θ(1, t)+Θ(0, t)

)
, (20c)

f∂ =− 1√
2

vρccc
(
Θ(1, t)−Θ(0, t)

)
. (20d)

This gives us

dH
dt

=
∫ 1

0
eΘ fΘ dy =

∫ 1

0
ρcccΘ

∂Θ

∂ t
dy

=
∫ 1

0
Θ

(
−vρccc

∂Θ

∂y
+ fd

)
dy

=−vρccc

∫ 1

0
Θ

∂Θ

∂y
dy︸ ︷︷ ︸

=− v
2 ρccc[Θ 2]

y=1
y=0

+
∫ 1

0
Θ fd dy.

(21)
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For the system to be dissipative, we need

dH
dt
≤ e∂ f∂ +

∫ 1

0
ed fd dy

=− v
2

ρccc[Θ
2]y=1

y=0 +
∫ 1

0
Θ fd dy.

(22)

A comparison with equation (21) shows that the equality holds. We therefore have the
distributed output ed =Θ(y, t) and the distributed input fd = h

(
T (1,y, t)−Θ(y, t)

)
.

For the boundary input, we set u(t) =WB
( f∂

e∂

)
, and for the output w(t) =WC

( f∂
e∂

)
.

Then, according to [13, 25], we have a port-Hamiltonian system if WBΣW>B is positive
semi-definite and

(WB
WC

)
has full rank. If we want to use the inlet temperature as the

input and the outlet temperature as output, this setting results in

WB =
1√
2

(
1

vρccc
1
)
, (23)

WC =
1√
2

(
− 1

vρccc
1
)
, (24)

which satisfies the above criteria.

3.3 Coupling

To recover a port-Hamiltonian formulation of the model system discussed in Sec-
tion 2 by coupling the port-Hamiltonian systems discussed in Sections 3.1 and 3.2,
we need the following equality:

−λ
∂T
∂x

(1,y, t) = h1
(
T (1,y, t)−Θ(y, t)

)
. (25)

Considering the relevant inputs and outputs of the two systems, we find that

e1 = T (1,y, t), f1 =−λ
∂T
∂x

(1,y, t), (26)

e2 = h
(
T (1,y, t)−Θ(y, t)

)
, f2 = T (1,y, t). (27)

The standard ‘gyrative’ interconnection, cf. [7]

e1 = f2, e2 =− f1, (28)

is a Dirac structure, and obviously satisfies (25). Therefore, the combined system is
again a port-Hamiltonian system.



8 Jens Jäschke et al.

4 Finite Difference Discretization

In this section, we present a finite difference discretization of the port-Hamiltonian
systems from the previous section. A finite difference discretization is certainly not
the only possible discretization and others, such as the Partitioned Finite Element
Method (PFEM) presented in [6, 23, 4] and applied to the heat equation in [22, 9] and
[5, Section 3.4], might give better results from a numerical point of view. However,
the simplicity of a finite difference scheme makes it more suitable for our purposes,
since it is easier to explicitly write down and compare the matrices of the discretized
system. For an alternative approach to the heat equation based on finite difference we
refer the reader to [24]. Here, variables considered on the spatial grid are indicated
by an underscore, e.g. x.

4.1 Heat Equation

We assume that ρ and cm are constant. We consider a uniform grid in x-direction with
N +1 equidistant discretization points x0 = 0, x1 = ∆x,. . . ,xN = 1 and similarly for y
with M+1 points, leading to the grid variable y and a space step ∆y. We define T ∈
RN·M , such that T is defined on an offset grid, i.e. T i+ jN ≈ T (xi +

∆x
2 ,y j +

∆y
2 ), i =

0, . . . ,N−1, j = 0, . . . ,M−1.
We discretize the Hamiltonian (6) w.r.t. space using the midpoint rule

H =
1
2

ρcm∆x∆yT>T , (29)

with the time derivative
dH
dt

= ρcm∆x∆yT>
∂T
∂ t

, (30)

giving us the internal energy change as flow variable and the temperature as effort
variable:

f (T ) = ρcm∆x∆y
∂T
∂ t

, e(T ) = T . (31)

Using central differences (with half step sizes) to discretize equation (9), we ob-
tain the following approximation for the heat fluxes in the interior

Φx(xi,y j +
∆y
2 ) =−λ

1
∆x

(
T i+N j−T i−1+N j

)
+O(∆x2),

Φy(xi +
∆x
2 ,y j) =−λ

1
∆y

(
T i+N j−T i+N( j−1)

)
+O(∆y2).

On the boundary, we use one-sided difference quotients to approximate the heat
fluxes, since this accuracy is sufficient according to Gustafsson [8]. Together with
the boundary conditions, we then have for the left boundary

Φx(x0,y j +
∆y
2 ) = h

(
Text(x0,y j +

∆y
2 )−T (x0,y j +

∆y
2 )
)

Φx(x0,y j +
∆y
2 ) =−λ

2
∆x

(
T (x0 +

∆x
2
,y j +

∆y
2 )−T (x0,y j +

∆y
2 )
)
+O(∆x)
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Solving both for T (x0,y j +
∆y
2 ) and combining them, we find

Φx(x0,y j +
∆y
2 )≈ 2hλ

2λ +h∆x

(
Text(x0,y j +

∆y
2 )−T 0+N j

)
.

Similarly, for the right, lower and upper boundary, we find

Φx(xN ,y j +
∆y
2 )≈ 2hλ

2λ +h∆x

(
T N−1+N j−Θ(y j +

∆y
2 )
)

Φy(xi +
∆x
2
,y0)≈

2hλ

2λ +h∆y

(
Text(xi +

∆x
2 ,y0)−Ti

)
Φy(xi +

∆x
2
,yM)≈ 2hλ

2λ +h∆y

(
Ti+(M−1)N−Text(xi +

∆x
2 ,yM)

)
Let Φx ∈ R(N+1)M and Φy ∈ RN(M+1) with

Φxi+(N) j ≈Φx(xi,y j +
∆y
2 ) for i = 0, . . . ,N and j = 0, . . . ,M−1

Φyi+N j
≈Φy(xi +

∆x
2 ,y j) for i = 0, . . . ,N−1 and j = 0, . . . ,M.

Using central differences again to discretize (8), we get

ρcm∆x∆y
∂T i+N j

∂ t
= ∆y

(
Φxi+(N+1) j−Φxi+1+(N+1) j

)
+∆x

(
Φyi+N j

−Φyi+N( j+1)

)
Let Jx,1 ∈RN×(N+1), Jx ∈R(N∗M)×((N+1)∗M), Jy ∈R(N∗M)×(N∗(M+1)) and IN×N the

N×N unit matrix, with

Jx,1 =

1 −1
. . . −1

1 −1

 , Jx = ∆y

Jx,1
. . .

Jx,1

 , (32)

Jy = ∆x

IN×N −IN×N
. . . . . .

IN×N −IN×N

 . (33)

Also, let Rx ∈R(N+1)M×(N+1)M , Rx,1 ∈R(N+1)×(N+1) and Ry ∈RN(M+1)×N(M+1) with

Rx,1 = ∆y


2λ+h∆x

2hλ
∆x
λ

. . .
∆x
λ

2λ+h∆x
2hλ

 , Rx =

Rx,1
. . .

Rx,1

 , (34)
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Ry = ∆x



2λ+h∆y
2hλ

IN×N
∆y
λ

IN×N
. . .

∆y
λ

IN×N
2λ+h∆y

2hλ
IN×N

 . (35)

Finally let

bx,0 =
(
1 0 . . . 0

)> ∈ RN+1, bx,N =
(
0 . . . 0 1

)> ∈ RN+1,

Bx,0 = ∆y

bx,0
. . .

bx,0

 ∈ R(N+1)M×M, By,0 = ∆x
(

IN×N

0
)
∈ RN∗(M+1)×N ,

Bx,N =−∆y

bx,N
. . .

bx,N

 ∈ R(N+1)M×M, By,M =−∆x
(

0
IN×N

)
∈ RN∗(M+1)×N .

We can now recover the discretized version of (11) in the form of a port-Hamiltonian
descriptor system (pHDAE) [2]:

 f (T )

0
0

= (J−R)

e(T )

Φx
Φy

+B


Text(x0,y+

∆y
2 )

Text(x+ ∆x
2 ,y0)

Text(x+ ∆x
2 ,yM)

Θ(y+ ∆y
2 )

 , (36)

w = B>

 e
Φx
Φy

≈


∆yΦx(x0,y+
∆y
2 )

∆xΦy(x+ ∆x
2 ,y0)

−∆xΦy(x+ ∆x
2 ,yM)

−∆yΦx(xN ,y+
∆y
2 )

 , (37)

with

J =

 0 Jx Jy
−J>x 0 0
−J>y 0 0

 , R =

0 0 0
0 Rx 0
0 0 Ry

 , (38)

B =

 0 0 0 0
Bx,0 0 0 Bx,N

0 By,0 By,M 0

 . (39)

4.2 Transport Equation

We choose the M + 1 equidistant discretization points y0 = 0, y1 = ∆y,. . . ,yM = 1

with ∆y = 1
M . Then we set Θ = (Θ(y0 +

∆y
2 ), . . . ,Θ(yM−1 +

∆y
2 ))> ∈ RM , matching
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the discretization scheme of the heat equation above. Discretizing equation (18) with
the midpoint rule results in the semi-discrete Hamiltonian

H =
1
2

∆y
M−1

∑
i=0

ρcccΘ
2
i , (40)

with the time derivative

dH
dt

= ∆y
M−1

∑
i=0

ρcccΘ i
∂Θ i

∂ t
, (41)

allowing us to set the flow and effort variables

f
i
= ∆yρccc

∂Θ i

∂ t
, ei =Θ i, ∀i = 0, . . . ,M−1. (42)

Using an upwind discretization for the spatial derivative, i.e.

∂Θ

∂y
(yi) =

Θ i−Θ i−1

∆y
+O(∆y), (43)

we obtain the following discretized version of equations (20)

f = (J−R)e+(B−P)u, (44)

w = (B+P)>e+(S−N)u, (45)

with

J =
1
2

vρcc


0 1

−1
. . . . . .
. . . . . . 1
−1 0

 , R =
1
2

vρcc


2 1

−1
. . . . . .
. . . . . . 1
−1 2

 , (46)

B =


1 1

. . . 0
. . .

...
1 0

 , P = 0, (47)

S = 0, N = 0, (48)
(49)

as well as the input u and output w

u =

(
∆yΦx(xN ,y+

∆y
2 )

vρccΘin

)
, w =

(
Θ

Θ 0

)
. (50)

Note that we could also use Θ in as input by moving the preceding factors into B,
which would make those factors also appear in the output. If an output at the end of
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the cooling channel is desired, this requires an artificial feed-through between input
and output, as in [14]. With matrices chosen as above, we easily find that

W =

(
R P

P> S

)
(51)

is positive semi-definite according to the Gershgorin circle theorem.

4.3 Coupling the Discretized Systems

We consider two finite-dimensional port-Hamiltonian (descriptor) systems of the
form

E f = (J−R)e+(B−P)u, (52)

w = (B+P)>e+(S−F)u, (53)

and Hamiltonian H. According to [18], the system resulting from an interconnection
of these two systems is again a PHDAE, if there are matrices M and N, so that

Mu+Nw = 0, (54)

with u =
(u1

u2

)
the combined inputs of both systems and w =

(w1
w2

)
their combined

outputs. If Mu+Nw = 0 defines a Dirac structure for (w,u), the system can usually
be made smaller through index reduction and row operations. The coupled system
takes the form

E f
0
0
0

=


J−R B−P 0 0

−(B+P)> S−F I −M>

0 −I 0 −N>

0 M N 0




e
û
ŵ
0

+


0
0
I
0

u, (55)

w = ŵ, (56)

with I the identity, E = diag(E1,E2), J = diag(J1,J2) and R,B,P,S,F similar. The
form given here is equivalent to the one given in [18], but without requiring the (un-
specified) permutation matrices present in their formulation.

Setting the heat equation to be the first system and the transport equation to be
the second system, we can choose

M =

(
0 0 0 IM×M 0 0
0 0 0 0 IM×M 0

)
, N =

(
0 0 0 0 −IM×M 0
0 0 0 IM×M 0 0

)
, (57)

which defines a Dirac structure for those parts of the input and output, that are in-
volved in the interconnection. It should therefore be possible to shrink the system.
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Writing down the vectors and matrices for the coupled system,

J =


0 Jx Jy 0
−J>x 0 0 0
−J>y 0 0 0

0 0 0 JΘ

 , R =


0 0 0 0
0 Rx 0 0
0 0 Ry 0
0 0 0 RΘ

 , (58)

B =


0 0 0 0 0

Bx,0 0 0 Bx,N 0
0 By,0 By,M 0 0
0 0 0 0 BΘ

 , (59)

u = û =



Text(x0,y+
∆y
2 )

Text(x+ ∆x
2 ,y0)

Text(x+ ∆x
2 ,yM)

Θ

∆yΦx(xN ,y+
∆y
2 )

vρccΘin


, w = ŵ =



∆yΦx(x0,y+
∆y
2 )

∆xΦy(x+ ∆x
2 ,y0)

−∆xΦy(x+ ∆x
2 ,yM)

−∆yΦx(xN ,y+
∆y
2 )

Θ

Θ 0

 , (60)

we immediately see that Θ and ∆yΦx(xN ,y+
∆y
2 ) appear in both, input and output,

and from the previous sections, we also know that they occur in e as well. We can
therefore eliminate them from the input and output and move the relevant terms into
J, resulting in the – significantly more compact – condensed system

f (T )

0
0

f (Θ)

=


0 Jx Jy 0
−J>x −Rx 0 Bx,N
−J>y 0 −Ry 0

0 −B>x,N 0 JΘ −RΘ




e(T )

Φx
Φy

e(Θ)

 (61)

+


0 0 0 0

Bx,0 0 0 0
0 By,0 By,M 0
0 0 0 BΘ


︸ ︷︷ ︸

B̃


Text(x0,y+

∆y
2 )

Text(x+ ∆x
2 ,y0)

Text(x+ ∆x
2 ,yM)

vρccΘin

 , (62)

w = B̃>


e(T )

Φx
Φy

e(Θ)

 , (63)

with BΘ =
(
1 0 · · · 0

)>.

4.4 Discretizing the coupled system

Coupling the two systems from Sections 3.1 and 3.2 results in a system with the
Hamiltonian

H =
1
2

∫
Ω

ρ(~x)cm(~x)T (t,~x)2 d~x+
1
2

∫ 1

0
ρccc Θ

2(y, t)dy. (64)
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Discretizing T and Θ each with an appropriate midpoint rule as in subsections 4.1
and 4.2, results in

H =
1
2

ρcm∆x∆yT>T +
1
2

∆y
M−1

∑
i=0

ρcccΘ
2
i . (65)

Proceeding as in the previous sections, we then obtain the following system:
f (T )

0
0

f (Θ)

=


0 Jx Jy 0
−J>x −Rx 0 Bx,N
−J>y 0 −Ry 0

0 −B>x,N 0 JΘ −RΘ




e(T )

Φx
Φy

e(Θ)

+B


Text(x0,y+

∆y
2 )

Text(x+ ∆x
2 ,y0)

Text(x+ ∆x
2 ,yM)

vρccΘin

 ,

w̃ = B>


e(T )

Φx
Φy

e(Θ)

 ,

with

B =


0 0 0 0

Bx,0 0 0 0
0 By,0 By,M 0
0 0 0 BΘ

 , BΘ =


1
0
...
0

 ∈ RM×1,

all other matrices and vectors containing Θ as in Section 4.2 and the remaining quan-
tities as in Section 4.1. As we can see, this is the same system we got by eliminating
superfluous variables from the system in Section 4.3.

5 Conclusion and Outlook

In this work, we proposed a model consisting of two subsystems for a simplified con-
jugate heat transfer in a turbine blade. We were then able to show that each of these
subsystems is a port-Hamiltonian system and their interconnection defines a Dirac
structure. Therefore, the entire model is also a port-Hamiltonian system. While the
one-dimensional model previously proposed in [15] had constraints on the physical
parameters, this two-dimensional model no longer has constraints beyond those that
are physically meaningful. However, the question of the existence and uniqueness of
the solution is still open, since one of the subsystems involved has a spatial dimension
larger than one.

In Section 4 it was then shown that the application of an appropriate but very sim-
ple spatial discretization leads to a finite-dimensional port-Hamiltonian system. The
finite-dimensional port-Hamiltonian system resulting from the discretization of the
subsystems and the coupling of the resulting finite-dimensional subsystems is equi-
valent to the system resulting from the coupling of the subsystems and the subsequent
discretization of the complete coupled system (using the same discretization scheme).
It might be worthwhile to investigate whether this is a peculiarity of the system and
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discretization method under consideration, or whether it is a general result that holds
for all port-Hamiltonian systems.

While the intuitive choices for quadrature of the Hamiltonian and the spatial dis-
cretization worked quite well for this system, it remains an open question whether the
same holds for the general case. It would also be interesting to investigate whether a
particular choice of quadrature for the Hamiltonian uniquely determines the spatial
discretization of the differential equations and vice versa.
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14. Jäschke J, Ehrhardt M, Günther M, Jacob B (2021) Discrete port-Hamiltonian
coupled heat transfer, iMACM Preprint 21/17
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15. Jäschke J, Ehrhardt M, Günther M, Jacob B (2021) A port-Hamiltonian formu-
lation of coupled heat transfer, iMACM Preprint 21/08

16. Kumar G, Roelke R, Meitner P (1989) A generalized one dimensional computer
code for turbomachinery cooling passage flow calculations. In: 25th Joint Propul-
sion Conference, p 2574

17. Macchelli A, van der Schaft AJ, Melchiorri C (2004) Port Hamiltonian formu-
lation of infinite dimensional systems I. Modeling. In: 2004 43rd IEEE Con-
ference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), vol 4, pp
3762–3767 Vol.4

18. Mehrmann V, Morandin R (2019) Structure-preserving discretization for port-
Hamiltonian descriptor systems. In: 2019 IEEE 58th Conference on Decision
and Control (CDC), pp 6863–6868

19. Meitner PL (1990) Computer code for predicting coolant flow and heat transfer
in turbomachinery. Tech. rep., NASA

20. Reyhani MR, Alizadeh M, Fathi A, Khaledi H (2013) Turbine blade temperature
calculation and life estimation-a sensitivity analysis. Prop Power Res 2(2):148–
161

21. Serhani A, Haine G, Matignon D (2019) Anisotropic heterogeneous n-D
heat equation with boundary control and observation: I. Modeling as port-
Hamiltonian system. IFAC-PapersOnLine 52(7):51–56, 3rd IFAC Workshop on
Thermodynamic Foundations for a Mathematical Systems Theory TFMST 2019

22. Serhani A, Haine G, Matignon D (2019) Anisotropic heterogeneous n-D heat
equation with boundary control and observation: II. Structure-preserving dis-
cretization. IFAC-PapersOnLine 52(7):57–62, 3rd IFAC Workshop on Thermo-
dynamic Foundations for a Mathematical Systems Theory TFMST 2019

23. Serhani A, Matignon D, Haine G (2019) A partitioned finite element method
for the structure-preserving discretization of damped infinite-dimensional port-
hamiltonian systems with boundary control. In: Nielsen F, Barbaresco F (eds)
Geometric Science of Information, Springer International Publishing, Cham, pp
549–558

24. Trenchant V, Hu W, Ramirez H, Gorrec YL (2018) Structure preserving finite dif-
ferences in polar coordinates for heat and wave equations. IFAC-PapersOnLine
51(2):571–576, 9th Vienna International Conference on Mathematical Modelling

25. Villegas JA (2007) A port-Hamiltonian approach to distributed parameter sys-
tems. PhD thesis, University of Twente


