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A Deep Smoothness WENO Method with
Applications in Option Pricing

Tatiana Kossaczká, Matthias Ehrhardt, and Michael Günther

Abstract We present the novel deep smoothness weighted essentially non-oscillatory
(WENO-DS) method and its application in finance. To improve the existing WENO
method, we apply a deep learning algorithm to modify the smoothness indicators of
the method. This is done in a way that preserves the consistency and accuracy of
the method. We present our results using a European digital option as an illustrating
example. Here we avoid the undesirable oscillations, especially in the first time steps
of the numerical solution.

1 Introduction

In this work, we use the newly developed weighted essentially non-oscillatory
(WENO-DS) method for solving the (backward-in-time) Black-Scholes equation

Vt +
1
2

σ
2S2VSS + rSVS− rV = 0, t ∈ [0,T ], (1)

where S is the price of an underlying asset at time t, r > 0 is the riskless interest rate
and σ2 is the volatility.

The WENO method [9] is a high-order method, originally developed for solving
hyperbolic conservation laws, where strong discontinuities appear in the solution.
Later, it was also generalized also for solving of nonlinear degenerate parabolic
equations [10]. Many modifications of the original WENO schemes have been done
later and we focus in this paper on the WENO-Z method introduced in [1] and
MWENO method developed in [2].

In computational finance problems, we often face the problems with disconti-
nuous initial or terminal data. Therefore, the WENO scheme has been used, e.g. in

Tatiana Kossaczká ·Matthias Ehrhardt ·Michael Günther
Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Gaußstraße
20, 42119 Wuppertal, Germany, e-mail: {kossaczka, ehrhardt, guenther}@uni-wuppertal.de

1
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[3, 6] for solving of these problems. In this paper, we solve the European digital
option pricing problem with the following terminal and boundary conditions:

V (S,T ) =

{
1, if S≥ K,

0, if S < K,

V (S, t)→ 0, for S→ 0, V (S, t)→ e−r(T−t), for S→ ∞,

(2)

with K being a strike price.
Although the WENO scheme should avoid the spurious oscillations in the so-

lution, they are still present in some cases, especially in the first time steps of the
numerical solution. This motivates us to use the enhanced WENO-DS scheme [7, 8]
for solving the European digital option pricing problem.

2 The WENO-DS scheme

Here we briefly summarize the basic idea of the WENO-DS method. We consider
the following diffusion-convection-reaction partial differential equation (PDE):

∂u(x, t)
∂ t

= a0
∂ 2u(x, t)

∂x2 +a1
∂u(x, t)

∂x
+a2u(x, t), (x, t) ∈Ω × (0,∞), (3)

where a0, a1 and a2 are constant coefficients. We introduce the uniform spatial grid
xi = x0 + i∆x, i = 0, . . . ,N. The semi-discrete formulation of (3) can be written as

dui(t)
dt

= a0

ûi+ 1
2
− ûi− 1

2

∆x2 +a1

ũi+ 1
2
− ũi− 1

2

∆x
+a2ui(t), t > 0, (4)

where ui(t) approximates pointwise u(xi, t) and ûi+1/2 = û(ui−2, . . . ,ui+3), ũi+1/2 =
ũ(ui−2, . . . ,ui+2) are the numerical flux functions. In order to obtain these values,
the WENO discretization is used.

The basic idea of the WENO scheme is to combine the numerical approximations
of the flux functions on three substencils to a final numerical approximation on the
main stencil. For this purpose, the nonlinear weights ωm, m = 0,1,2, have to be
calculated. For example, for the approximation of the positive part of the numerical
flux of the parabolic term, one obtains

ûi+ 1
2
=

2

∑
m=0

ωmûm
i+ 1

2
, (5)

where the explicit formulas for ûm
i+1/2 as well as expressions of ωm can be found

in [2]. For the formulas of the numerical fluxes and the nonlinear weights for the
hyperbolic term we refer to [1].
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To measure the smoothness of the solution on each of three candidate substencils,
the smoothness indicators βm, m = 0,1,2 [4] is used. In [7] a new idea of improving
these smoothness indicators was introduced. Namely they are computed as the mul-
tiplication of the original smoothness indicators βm and the perturbations δm, where
δm is an output of a particular neural network algorithm. The new smoothness indi-
cators take the form

β
DS
m = βm(δm +C), m = 0,1,2, (6)

where C is a constant that ensures the consistency and high-order accuracy of the
new method, which was analytically proven in [7] and [8]. Here, also a detailed
explanation of this method can be found.

3 Numerical Results

We first use the following variable transformation:

S = Kex, τ = T − t, V (S, t) = Ku(x,τ) (7)

and substitute this into (1) and (2). Then we obtain the (forward-in-time) PDE:

uτ =
σ2

2
uxx +

(
r− σ2

2

)
ux− ru, x ∈ R, 0≤ τ ≤ T. (8)

This equation is of the form (3) and can be easily discretized using the WENO-
DS scheme for both the hyperbolic and parabolic terms. It should be noted that for
the temporal discretization, we use a third-order total variation diminishing (TVD)
Runge-Kutta method [12], imposing intermediate boundary conditions as in [3].
Python with the Pytorch library is used for the implementation [11].

To obtain the enhanced WENO-DS scheme for solving the European digital op-
tion pricing problem, we train a convolutional neural network (CNN) on a large set
of data. For the training, we set K = 50, T = 1, and randomly generate the parame-
ters

σ = 0.31+max(0.07a,−0.3),
r = 0.11+max(0.07b,−0.1),

(9)

where a and b are normally distributed. Here, the problems with different combina-
tions of σ and r are covered. We use the computational domain [xL,xR] = [−6,1.5]
partitioned into 100 space steps and use the temporal step size ∆τ = 0.8∆x2/σ2. As
we mentioned earlier, the spurious oscillations mainly occur in the first time steps
of a numerical solution. Therefore, we proceed with a training as follows.

First, the parameters (9) are randomly generated. We initialize the weights of the
CNN randomly and perform a single time step of a solution. The structure of the
CNN can be seen in Figure 1. We emphasize that we use a rather small CNN to be
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computationally efficient. We use the same CNN structure for training both WENO-
DS for the hyperbolic term and WENO-DS for the parabolic term. We compute the
values udiff1, udiff2, which represent an effective preprocessing of the solution from
the current time step, since they give us information about the smoothness of the
solution. They are given by

udiff1,i = ū(x̄i+1)− ū(x̄i−1), udiff2,i = ū(x̄i+1)−2ū(x̄i)+ ū(x̄i−1), (10)

with

x̄i = (xi−k,xi−k+1, . . . ,xi+k),

ū(x̄i) =
(
u(xi−k),u(xi−k+1), . . . ,u(xi+k)

)
,

(11)

where 2k+1 is the size of the receptive field of the whole CNN. They are then used
as input values for the first hidden layer.

Conv1d
in_channels = 2
out_channels = 5
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 5
out_channels = 5
kernel_size = 5
padding = 2

Conv1d
in_channels = 5
out_channels = 1
kernel_size = 1
padding = 0

udiff2

udiff1

Fig. 1: The structure of the convolutional neural network.

Then we calculate a loss with

LOSS(u) =
N−1

∑
i=0

[
max(ui−ui+1,0)

]
, (12)

where ui is a numerical approximation of u(xi). This loss is positive, if the approxi-
mation of the solution is decreasing in x (in true solution it should be only increas-
ing), so we test the monotonicity of the solution. After that, the gradient with respect
to the weights of the CNN is calculated using the backpropagation algorithm. Then,
the Adam optimizer [5] with a learning rate of 0.001 is used to update the weights.
Next, we test the model on a validation set and repeat the above steps with newly
generated parameters (9). After the training, we select the weights from the training
step, at which the model performed best on the validation problems.

In the Figure 2, we show the evolution of the loss value for the problems from
the validation set. We see that the loss is decreasing and select the model obtained
after the last training step as our final WENO-DS scheme.

We compare the solution at the first time step on Figure 3a and see that the
WENO-DS reliably eliminates the oscillations that occur when using the original
WENO scheme (WENO-Z scheme [1] for the approximation of the hyperbolic term
and MWENO scheme [2] for the approximation of the parabolic term).

In most cases, the original WENO scheme is able to handle these oscillations
with increasing number of time steps. However, in some cases the oscillations are
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Fig. 2: Loss values for different validation problems.

still present. Figure 3b shows the solution at time T = 1 and we see that our method
produces a smooth solution unlike the original WENO method.
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(a) Solution at the first time step, σ = 0.4 and
r = 0.15
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(b) Solution at the last time step, T = 1,
σ = 0.3 and r = 0.2

Fig. 3: Comparison of the original WENO and WENO-DS methods, N = 100.

We compare the L∞ and L2 errors in Table 1 and show that the WENO-DS method
has a smaller error in all cases. Thus, we are not only able to eliminate the spurious
oscillations, but also improve the quality of the numerical solution.

4 Conclusion

In this paper, we applied the newly developed WENO-DS method to the European
digital option pricing problem that has discontinuous terminal data. In this prob-
lem, the spurious oscillations are present in the solution when the standard WENO
scheme is used. We have shown that they can be successfully eliminated using the
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L∞ L2

σ r WENO WENO-DS WENO WENO-DS
0.28 0.13 0.000933 0.000908 0.000660 0.000644
0.1 0.05 0.002751 0.002655 0.001196 0.001158
0.3 0.2 0.001120 0.000858 0.000650 0.000621
0.2 0.1 0.001833 0.001687 0.000890 0.000865
0.15 0.05 0.002446 0.002352 0.001055 0.001034
0.4 0.1 0.000676 0.000661 0.000570 0.000557

Table 1: Comparison of the L∞ and L2-error of original WENO and WENO-DS
methods for the solution of the transformed Black-Scholes equation (8) with various
parameters σ and r.

WENO-DS method. To this end, we trained a CNN to modify the smoothness indi-
cators of the original method. Since we can obtain smaller errors with the proposed
algorithm, the quality of the numerical solution was also improved.
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8. Kossaczká, T., Ehrhardt, M., and Günther, M.: A neural network enhanced WENO method
for nonlinear degenerate parabolic equations. tech. report, IMACM Preprint 21/16 (2021).

9. Liu, X.-D., Osher, S., and Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput.
Phys. 115.1 (1994): 200-212.

10. Liu, Y., Shu, C.-W., and Zhang, M.: High order finite difference WENO schemes for nonlinear
degenerate parabolic equations. SIAM J. Sci. Comput. 33.2 (2011): 939-965.

11. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Adv.
Neural Inform. Process. Syst. 32 (2019): 8026-8037.

12. Shu, Ch.-W., and Osher S.: Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys. 77.2 (1988): 439-471.


