
Bergische Universität Wuppertal

Fakultät für Mathematik und Naturwissenschaften

Institute of Mathematical Modelling, Analysis and Computational
Mathematics (IMACM)

Preprint BUW-IMACM 21/25
(updated version of Preprint 21/02)

Tatiana Kossacká, Matthias Ehrhardt and Michael Günther

Enhanced fifth order WENO Shock-Capturing Schemes
with Deep Learning

August 2, 2021

http://www.imacm.uni-wuppertal.de



Enhanced fifth order WENO Shock-Capturing Schemes

with Deep Learning

Tatiana Kossaczká∗, Matthias Ehrhardt, Michael Günther

Institute of Mathematical Modelling, Analysis and Computational Mathematics
(IMACM), Chair of Applied Mathematics and Numerical Analysis, Bergische Universität

Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

Abstract

In this paper we enhance the well-known fifth order WENO shock-capturing
scheme by using deep learning techniques. This fine-tuning of an existing
algorithm is implemented by training a rather small neural network to modify
the smoothness indicators of the WENO scheme in order to improve the
numerical results especially at discontinuities. In our approach no further
post-processing is needed to ensure the consistency of the method. Moreover,
the formal order of accuracy of the resulting scheme can be proven.

We demonstrate our findings with the inviscid Burgers’ equation, the
Buckley-Leverett equation and the 1-D Euler equations of gas dynamics.
Hereby we investigate the classical Sod problem and the Lax problem and
show that our novel method outperforms the classical fifth order WENO
schemes in simulations where the numerical solution is too diffusive or tends
to overshoot at shocks. Finally, the straight-forward extension of the method
to two-dimensional problems is included and illustrated using the 2D Burgers’
equation.

Keywords: Weighted essentially non-oscillatory method, Hyperbolic
conservation laws, Smoothness indicators, Deep Learning, Neural Networks
2000 MSC: 65M06, 68T07, 76L05

∗corresponding author
Email addresses: kossaczka@uni-wuppertal.de (Tatiana Kossaczká),

ehrhardt@uni-wuppertal.de (Matthias Ehrhardt), guenther@uni-wuppertal.de
(Michael Günther)

Preprint submitted to Results in Applied Mathematics August 2, 2021



1. Introduction1

Typically, numerical fluid mechanics deals with nonlinear hyperbolic par-2

tial differential equations (PDEs). In its simplest one-dimensional form, these3

equations can be represented as4

∂u

∂t
+
∂f(u)

∂x
= 0, t > 0, (1)

where x represents space, t denotes time, u(x, t) is conserved quantity and5

f(u(x, t)) is its flux. It is well-known that discontinuities may develop after6

a finite time regardless of the smoothness of the initial or boundary data.7

Hence, suitable numerical methods must be designed for these problems, es-8

pecially to approximate discontinuous solutions. First in 1980, Crandall and9

Majda [1] proposed the class of monotone schemes that are nonlinearly sta-10

ble in the L1 norm and satisfy certain entropy conditions. It can be proven11

that the corresponding solutions converge to bounded variation entropy so-12

lutions including error estimates. However, these schemes are only first order13

accurate and by the fundamental Godunov theorem [2] it is known that one14

has to consider nonlinear non-oscillatory schemes to overcome this accuracy15

barrier.16

In this direction so-called shock-capturing schemes were developed that17

were able to resolve sharply a shock or a steep gradient region without intro-18

ducing too much diffusion or overshoot behaviour [3]. Additionally, to remedy19

the above mentioned drawback, at regions with smooth flow these schemes20

exhibit a rather high order of convergence. The well-known representative of21

this class of methods are the essentially non-oscillatory (ENO) schemes [4]22

with high order accuracy in smooth regions and sharply resolving shocks in23

an essentially non-oscillatory way using a smoothness indicator function, see24

e.g. [5]. Later on Jiang and Shu [6] further improved these schemes and pro-25

posed a weighted ENO (in the sequel abbreviated with WENO-JS) scheme,26

that is still regarded as a state-of-the-art solution approach.27

In order to achieve higher order accuracy for WENO schemes, the sten-28

cil for the spatial reconstruction needs to be enlarged and to keep it in a29

compact size Qiu and Shu [7, 8] developed the Hermite WENO (HWENO)30

schemes. In order to further increase the efficiency, Pirozzoli [9] developed31

a hybrid compact-WENO scheme using up-wind schemes in the smooth re-32

gions. Alternatively, Hill and Pullin [10] designed another hybrid WENO33

scheme, combining special centered difference schemes with WENO methods,34

cf. [11, 12] for most recent approaches.35

2



Subsequently, different new strategies were developed by modifying the36

WENO-JS schemes, i.e. by altering by smoothness indicators [13, 14, 15, 16,37

17, 18] or by modifying the nonlinear weights [19]. Besides, another goal in38

optimizing these schemes was to minimize the dispersion error (dispersion-39

relation-preserving (DRP) schemes) [20, 21], also combined with the WENO40

approach leading to optimized WENO (OWENO) schemes [22]. Since clas-41

sical WENO methods are too dissipative for direct numerical simulations42

(DNS) of turbulence, a goal was to reduce the dissipation by including an43

automatic dissipation adjustment [23]. In 2016 Fu, Hu and Adams [24] pro-44

posed a family of high-order targeted ENO (TENO) schemes that are par-45

ticularly suitable for DNS. These methods reduce the numerical dissipation46

by an ENO-like stencil selection and increase the numerical robustness by47

assembling a set of low-order candidate stencils with increasing width, see48

also the extensions in [25, 26]. For a detailed review on WENO schemes we49

refer to [27].50

Recently, machine learning was widely used to compute the solution of51

PDEs. We refer to [28, 29, 30], where the neural network algorithm is used52

to approximate a solution of a particular PDE problem. Following that53

approach, the solution of a particular PDE is a result of a neural network54

training procedure. Another idea is to improve a specific numerical scheme55

using neural networks. The training of a neural network is made offline and56

results in a new numerical scheme applicable to a wider class of problems.57

This idea was recently used by Beck et al. [31] for discontinuous Galerkin58

methods or in [32] for learning iterative PDE solvers and we also follow this59

approach. Bar-Sinai et al. [33] use neural networks and learn from high60

resolution solutions to approximate a spatial derivative on a coarse grid. We61

refer the reader also to [34, 35, 36] for other work in this direction.62

In [37] deep reinforcement learning is applied to design a new numerical63

scheme to solve hyperbolic conservation laws. Authors apply their method for64

solving of the Burgers’ equation and compare their results with the standard65

WENO scheme. The recent work of Stevens and Colonius [38] introduces66

new WENO-NN scheme based on neural network algorithm. In their work,67

the finite-volume coefficients of the WENO-JS scheme are perturbed, while68

maintaining the original smoothness indicators and nonlinear weights. How-69

ever, the resulting scheme presented in their paper has only first order of70

accuracy. Another neural network based WENO scheme was developed by71

Liu and Wen [39], where the new smoothness indicators are an output of the72

neural network algorithm. However, in this case the formal order of accu-73

3



racy of the reconstruction of the resulting method can neither be analytically74

proven, nor guaranteed. For a detailed discussion on the formal order of ac-75

curacy (in contrast to the term ”convergence”) for WENO methods, see e.g.76

[40, 41].77

We implement in our work another WENO extension based on deep learn-78

ing. This approach is used to improve the classic WENO-JS and WENO-Z79

[13] scheme in this paper, but could be efficiently applied also to other WENO80

methods. For this purpose we will train a rather small neural network to81

perturb the smoothness indicator functions of the WENO-JS scheme. As82

we do not develop any new smoothness indicators as in [39], but only their83

multiplicative perturbations, we are able to prove the formal order of accu-84

racy of the resulting scheme. We call this new scheme WENO-DS (Deep85

Smoothness), as we modify the smoothness indicators using deep neural net-86

works. This scheme has less diffusion and less overshoot in shocks than the87

WENO-JS and the WENO-Z scheme, while maintaining high order accuracy88

in smooth regions.89

Finally, let us note that the use of WENO methods is not limited to90

hyperbolic PDEs, see e.g. [42] for an application to parabolic PDEs in finance.91

The paper is structured as follows. In Section 2 we introduce the WENO-92

JS and WENO-Z schemes under consideration in detail. Next, in Section 393

we introduce our deep learning approach, where neural networks are used to94

further improve WENO methods without any post-processing. The corres-95

ponding proofs of the formal order of accuracy for two WENO schemes are96

given in Section 4. Then we present our numerical results in Section 5, which97

illustrate the improvements of our proposed method. Finally, we conclude98

our work in Section 6.99

2. The WENO Scheme100

Let {Ii} be the partition of a spatial domain with the i-th cell Ii =101

[xi− 1
2
, xi+ 1

2
]. We consider a uniform grid defined by the points xi = x0 + i∆x,102

i = 0, . . . , N , which are the centers of the cells with cell boundaries defined103

by xi+ 1
2

= xi +
∆x
2

. The value of a function f at xi is indicated by fi = f(xi).104

The spatial discretization of one-dimensional conservation laws (1) yields105

a system of ordinary differential equations (ODEs) and the resulting semi-106

discrete scheme is107

dui
dt

= − 1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (2)

4



where f̂ is a numerical approximation of the flux function f . Following [6],108

if we define a function h implicitly by109

f
(
u(x)

)
=

1

∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ) dξ, (3)

then (2) is approximated by110

f ′
(
u(xi)

)
=

1

∆x

(
hi+ 1

2
− hi− 1

2

)
, hi± 1

2
= h(xi± 1

2
), (4)

where hi± 1
2

approximates the numerical flux f̂± 1
2

with fifth order of accuracy111

f̂i± 1
2

= hi± 1
2

+O(∆x5). (5)

Further, the flux splitting method is applied, thus we write112

f(u) = f+(u) + f−(u), where
df+(u)

du
≥ 0 and

df−(u)

du
≤ 0. (6)

The numerical flux f̂i± 1
2

is then represented by f̂i± 1
2

= f̂+
i± 1

2

+ f̂−
i± 1

2

and the113

final scheme is formed as114

dui
dt

= − 1

∆x

[(
f̂+
i+ 1

2

− f̂+
i− 1

2

)
+
(
f̂−
i+ 1

2

− f̂−
i− 1

2

)]
. (7)

Next, only the construction of f̂+
i± 1

2

is considered. The negative part can be115

then obtained using symmetry (see e.g. [43]).116

2.1. Fifth order WENO scheme117

For a construction of f̂i+ 1
2
, the fifth order WENO method uses a 5-point118

stencil119

S(i) = {xi−2, . . . , xi+2} (8)

divided into three candidate substencils, which are given by120

Sm(i) = {xi+m−2, xi+m−1, xi+m}, m = 0, 1, 2. (9)

To form the numerical flux over the entire 5-point stencil, the numerical flux121

for each of these substencils f̂m
i+ 1

2

= hi+ 1
2
+O(∆x3) is calculated. These fluxes122

are then averaged in such a way, that fifth order accuracy is ensured in the123

5



smooth regions. In regions with discontinuities, the weights should partly124

remove the contribution of these stencils so that the solution near the shock125

can be approximated in more stable manner.126

Let f̂m(x) be the polynomial approximation of h(x) on each of the subs-127

tencils (9). Then, evaluated at i+ 1
2

we obtain128

f̂m(xi+ 1
2
) = f̂m

i+ 1
2

=
2∑

j=0

cm,j fi+m−2+j, i = 0, . . . , N, (10)

where cm,j are the Lagrangian interpolation coefficients, dependent on m (see129

[6]). They take an explicit form130

f̂ 0
i+ 1

2
=

2fi−2 − 7fi−1 + 11fi
6

,

f̂ 1
i+ 1

2
=
−fi−1 + 5fi + 2fi+1

6
,

f̂ 2
i+ 1

2
=

2fi + 5fi+1 − fi+2

6
,

(11)

and the numerical fluxes f̂m
i− 1

2

can be obtained by shifting each index by −1.131

Using the Taylor series expansion it can be shown that:132

f̂ 0
i± 1

2
= hi± 1

2
− 1

4
fxxx(0)∆x3 +O(∆x4),

f̂ 1
i± 1

2
= hi± 1

2
+

1

12
fxxx(0)∆x3 +O(∆x4),

f̂ 2
i± 1

2
= hi± 1

2
− 1

12
fxxx(0)∆x3 +O(∆x4),

(12)

where we used the short notation for the derivatives fx = f ′(u)ux, etc.. Doing133

so, we obtain the general form of these expressions134

f̂m
i± 1

2
= hi± 1

2
+ Am∆x3 +O(∆x4), (13)

with Am being independent of ∆x.135

Then, the convex combination of the interpolated values f̂m
i± 1

2

given by136

f̂i± 1
2

=
2∑

j=0

ωm f̂
m
i± 1

2
(14)

6



yields the WENO approximation of the value hi± 1
2
, where ωm are the non-137

linear weights defined as, cf. [6]138

ωJS
m =

αJS
m∑2

i=0 α
JS
i

, where αJS
m =

dm
(ε+ βm)2

. (15)

The scheme using these nonlinear weights is denoted as the WENO-JS scheme.139

The parameter ε guarantees that the denominator does not become zero, and140

the coefficients d0, d1 and d2 are called ideal weights, which would form the141

upstream fifth order central scheme for the 5-point stencil and satisfy (5).142

Their values are:143

d0 =
1

10
, d1 =

6

10
, d2 =

3

10
. (16)

The parameter βm is called the smoothness indicator and is analyzed in the144

next section.145

2.2. Smoothness Indicators146

The role of smoothness indicators is to measure the regularity of the147

polynomial approximation f̂m(x) in each of three substencils. As developed148

in [6], they are defined as:149

βm =
2∑

q=1

∆x2q−1

∫ x
i+ 1

2

x
i− 1

2

(dqf̂m(x)

dxq

)2

dx. (17)

Corresponding to the flux approximation f̂i+ 1
2

they take an explicit form150

β0 =
13

12

(
fi−2 − 2fi−1 + fi

)2
+

1

4

(
fi−2 − 4fi−1 + 3fi

)2
,

β1 =
13

12

(
fi−1 − 2fi + fi+1

)2
+

1

4

(
−fi−1 + fi+1

)2
,

β2 =
13

12

(
fi − 2fi+1 + fi+2

)2
+

1

4

(
3fi − 4fi+1 + fi+2

)2
,

(18)

7



and their Taylor expansions at xi are:151

β0 = f 2
x∆x2 +

(13

12
f 2
xx −

2

3
fxfxxx

)
∆x4

+
(
−13

6
fxxfxxx +

1

2
fxfxxxx

)
∆x5 +O(∆x6),

β1 = f 2
x∆x2 +

(13

12
f 2
xx +

1

3
fxfxxx

)
∆x4 +O(∆x6),

β2 = f 2
x∆x2 +

(13

12
f 2
xx −

2

3
fxfxxx

)
∆x4

+
(13

6
fxxfxxx −

1

2
fxfxxxx

)
∆x5 +O(∆x6).

(19)

These indicators are designed to come closer to zero for smooth parts of the152

solution so that the nonlinear weights ωm come closer to the ideal weights153

dm. In the case that the stencil Sm contains a discontinuity, βm is O(1) and154

the corresponding weight ωm becomes smaller, therefore the contribution of155

the substencil Sm is reduced.156

Following the work of Henrick, Aslam and Powers [19], it can be shown
that demanding (5) we obtain the sufficient conditions for the fifth order
accuracy:

2∑
m=0

(ω±m − dm) = O(∆x6), (20)

ω±m − dm = O(∆x3). (21)

Considering the overall finite difference formula

f̂j+ 1
2
− f̂j− 1

2
= f ′(x)∆x+O(∆x6),

it can be shown, that (21) may be relaxed and we obtain the following suffi-
cient and necessary conditions:

2∑
m=0

(ω±m − dm) = O(∆x6), (22)

2∑
m=0

Am(ω+
m − ω−m) = O(∆x3), (23)

ω±m − dm = O(∆x2). (24)

8



Note that due to the normalization (15), the first condition (22) (resp. (20))157

is always fulfilled. The superscripts ± on ωm specify their use in f̂i+ 1
2

or f̂i− 1
2
.158

The analysis of the formal order of accuracy was performed in [6] and it159

was shown that if160

βm = D
(
1 +O(∆x2)

)
, (25)

with D being a non-zero constant independent of m, the condition (24) is161

satisfied and the scheme has the expected fifth order accuracy. However, it162

was shown in [19] that at the critical points where the first derivative of f163

vanishes, the order of accuracy of the scheme from [6] decreases to the third164

order. Moreover, if the second derivative also vanishes, the accuracy order165

is further reduced to the second order. For a further explanation of this166

problem we refer the interested reader to [19].167

2.3. The WENO-Z scheme168

In this paper we consider the modified WENO scheme of Borges et al.169

[13] with a new global smoothness indicator, which is characterized by170

τ5 = |β0 − β2|. (26)

It is easy to see from the equations (19) that171

τ5 =
∣∣∣−13

3
fxxfxxx + fxfxxxx

∣∣∣∆x5 +O(∆x6). (27)

The new WENO-Z weights are then defined by172

ωZ
m =

αZ
m∑2

i=0 α
Z
i

, where αZ
m = dm

[
1 +

( τ5

βm + ε

)2
]
. (28)

Borges et al. [13] have shown that when using these nonlinear weights, fifth173

order accuracy is preserved, even at the critical points where f ′(u) = 0.174

3. The Deep Learning Approach for WENO Schemes175

To better capture discontinuities and avoid oscillations, we propose to176

apply deep learning to develop new smoothness indicators. We construct177

them as products of the original smoothness indicators βm and multipliers178

δm which are outputs of a neural network algorithm. We refer to these179

9



new smoothness indicators as βDS
m , where index DS corresponds to the new180

WENO-DS scheme:181

βDS
m = βm(δm + C), (29)

where C is a constant, whose role is crucial for the proof of consistency182

and the formal order of accuracy and we will explain how to choose it in183

the Section 4. We emphasize that this formulation as a multiplication is184

very advantageous in a sense that the consistency and accuracy properties185

can be analytically shown. In the case that the solution is smooth and the186

original smoothness indicator βm converges to zero, the smoothness indicator187

βDS
m behaves in the same way. If the smoothness indicator βm is O(1), the188

multiplier δm can change it so that the final scheme performs better. We189

emphasize, that there was an attempt by Liu and Wen [39] to learn the190

smoothness indicators directly. However, in this case the consistency and191

accuracy analysis could not be performed.192

In the original WENO method, the stencil (8) is used to approximate193

the solution in xi, and the fluxes are being reconstructed in the points xi− 1
2

194

and xi+ 1
2
. To define f̂m

i− 1
2

we use (10) and shift each index by −1. In our195

approach we proceed as in the classical WENO method [5] and compute the196

smoothness indicators as described in (17) in the Section 2.2. We use them197

for a flux reconstruction f̂i+ 1
2

and then by shifting each of the index by −1 we198

compute the smoothness indicators corresponding to the flux approximation199

f̂i− 1
2
. We denote them as βm,i+ 1

2
and βm,i− 1

2
, respectively. For a fixed m we200

could make the multiplier δm for βm,i+ 1
2

and βm,i− 1
2

dependent on the location201

of the substencils corresponding to βm,i+ 1
2

and βm,i− 1
2
. This would result in202

two different multipliers for βm,i+ 1
2

and βm,i− 1
2
. However, experimentally we203

got the superior results by using the same multiplier δm,i for both βm,i+ 1
2

204

and βm,i− 1
2
, dependent only on the position i of the global stencil. The new205

smoothness indicators are then computed as206

βDS
m,i+ 1

2
= βm,i+ 1

2
(δm,i + C),

βDS
m,i− 1

2
= βm,i− 1

2
(δm,i + C),

(30)

and the values δ0, δ1, δ2 are obtained by simple index shift so that it holds207

δ0,i+1 = δ1,i = δ2,i−1, i = 0, . . . , N. (31)

Finally, we obtain the flux approximations in the same way as in classical208

10



WENO schemes, but using the new smoothness indicators (30):209

f̂p

i− 1
2

and f̂n
i+ 1

2
, (32)

which are used for approximating of a solution in a point xi. Superscripts p210

and n indicate the difference between the values at the same location xi+ 1
2

211

when we approximate the solution in points xi and xi+1 (resp. at the same212

location xi− 1
2

when we approximate the solution in points xi−1 and xi). We213

present the whole algorithm of the method in the Figure 1.214

Figure 1: The structure of the WENO method combined with the neural network algo-
rithm. The white parts of the graph correspond to the original WENO method. The grey
parts are added to this method so that the whole graph corresponds to the new method
WENO-DS. 2k + 1 is the size of the receptive field of the whole CNN, × denotes the
element-wise multiplication.

As we mentioned before, the flux splitting technique (6) is used. Each215

11



part of a flux, f+ and f− represents different type of input data to the neu-216

ral network. Therefore we use two neural networks, for the positive and217

negative part of a flux with the input values f+(xi) to the first neural net-218

work and f−(xi) to the second neural network, i = 0, . . . , N . Each of the219

neural networks produces different outputs, multipliers corresponding to the220

positive and negative part of a flux. For simplicity we further drop the221

superscripts ± and when we talk about the inputs to the neural network222

we always mean both f+(xi) and f−(xi). We denote by f̄(x) the vector223 (
f(x0), f(x1), . . . , f(xN)

)
and formulate the neural network as a function224

F
(
f̄(x)

)
.225

To ensure consistency we propose the use of a convolutional neural net-226

work (CNN). Firstly, this type of neural network is computationally efficient227

and secondly, it makes the multipliers independent of their position in the228

spatial grid so that the final numerical scheme is spatially invariant. To229

ensure the accuracy of the method, we use the differentiable activation func-230

tions like the exponential linear unit (ELU) and the sigmoid function. If the231

layers of the neural network are differentiable functions, then their composi-232

tion, the neural network function F (·), is also a differentiable function. The233

ELU activation function has the advantage that it does not cause the dying234

gradient problem, the sigmoid activation function ensures that the output of235

the neural network is between 0 and 1.236

Let us note that we use for the implementation Python with the deep237

learning library PyTorch [44] (https://pytorch.org/), which is capable of238

GPU acceleration.239

4. Accuracy analysis of the new WENO scheme (WENO-DS)240

4.1. Accuracy analysis of WENO-JS scheme with new smoothness indicators241

βDS
m,i± 1

2

242

Let us express the multipliers δm,i for the smoothness indicators βm,i± 1
2
,243

m = 0, 1, 2 used in the node xi as the outputs of a neural network function.244

Following (31) and using the fact, that the layers of the CNN are spatially245

invariant differentiable functions, we can write246

δ0,i = F
(
f̄(x̄i−1)

)
= Φ(x̄i −∆x) = Φ(x̄i)−O(∆x),

δ1,i = F
(
f̄(x̄i)

)
= Φ(x̄i),

δ2,i = F
(
f̄(x̄i+1)

)
= Φ(x̄i + ∆x) = Φ(x̄i) +O(∆x),

(33)

12



where247

x̄i = (xi−k, xi−k+1, . . . , xi+k),

f̄(x̄i) =
(
f(xi−k), f(xi−k+1), . . . , f(xi+k)

)
,

(34)

where 2k+ 1 is the size of the receptive field of the whole CNN and Φ is the248

function composition F ◦ f̄ . Then using (25) it holds249

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i + C) = D

(
1 +O(∆x2)

)(
Φ(x̄i) +O(∆x) + C

)
, (35)

with D being some non-zero constant independent of m. We denote P (x̄i) =250

Φ(x̄i) +C and we set C such that Φ(x̄i) +C > κ > 0 with κ fixed. Then we251

ensure that P (x̄i) = O(1). Performing the multiplication in (35) we obtain252

βDS
m,i± 1

2
= D

(
P (x̄i) + P (x̄i)O(∆x2) +O(∆x) +O(∆x3)

)
= DP (x̄i)

(
1 +O(∆x)

)
= D̃

(
1 +O(∆x)

)
.

(36)

Here we can proceed as in [19], but for the reader’s convenience we repeat253

the steps of the proof: insert (36) into (15) and take ε = 0254

αDS
m,i± 1

2
=

dm(
D̃(1 +O(∆x)

)2 =
dm

D̃2

(
1 +O(∆x)

)
. (37)

This implies that255

2∑
m=0

αDS
m,i± 1

2
=

1

D̃2

(
1 +O(∆x)

)
, (38)

where we used the fact that
∑2

m=0 dm = 1. Finally, substituting into (15) we256

obtain257

ωDS
m,i± 1

2
= dm +O(∆x), (39)

where the superscript DS denotes the enhancement of the nonlinear weights258

(15) using our novel method. We see, that neither the condition (21), nor259

(24) is satisfied. However, as (39) holds, we can still guarantee that for the260

WENO-JS scheme with the smoothness indicators (29) we have a formal261

order of accuracy degraded to the third order, cf. Borges et al. [13].262

13



4.2. Accuracy analysis of WENO-Z scheme with new smoothness indicators263

βDS
m,i± 1

2

264

Let us now analyse the formal order of accuracy (of the reconstruction)265

of the scheme (28) with the new smoothness indicators (29). From (19) we266

see that the smoothness indicators βm,i± 1
2

are of the form267

βm,i± 1
2

= f 2
x∆x2 +O(∆x4), (40)

and the global smoothness indicator (26)268

τ5 = O(∆x5). (41)

Then it holds269

βDS
m,i± 1

2
= βm,i± 1

2
(δm,i + C) =

(
f 2
x∆x2 +O(∆x4)

)(
P (x̄i) +O(∆x)

)
= f 2

xP (x̄i)∆x
2 +O(∆x3).

(42)

We take ε = 0 and choose C such that Φ(x̄i) + C > κ > 0, with κ fixed.270

Then we see that in the non-critical points where fx 6= 0271

τ5

βDS
m,i± 1

2

= D̂∆x3 +O(∆x4), (43)

where D̂ =
|− 13

3
fxxfxxx+fxfxxxx|

f2
xP (x̄i)

. Substituting this into (28) we obtain272

αDS
m,i± 1

2
= dm

(
1 +O(∆x6)

)
and

2∑
m=0

αDS
m,i± 1

2
=
(
1 +O(∆x6)

)
, (44)

so it follows directly273

ωDS
m,i± 1

2
= dm +O(∆x6) (45)

and the condition (21) is satisfied. Here we use the superscript DS denoting274

the enhancement of the nonlinear weights (28) using our novel method. Since275

we ensure P (x̄i) > C > κ > 0, the multipliers P (x̄i) do not introduce any276

further critical points. Therefore the analysis of the critical points with277

fx = 0 remains the same as in [13]. Thus we can guarantee the fifth order278

accuracy of the scheme (28) with the smoothness indicators (29) also in the279

critical points.280

14



5. Numerical Results281

For the system of ODEs resulting from (2) we use a third-order total282

variation diminishing (TVD) Runge-Kutta method [45] given by283

u(1) = un + ∆t L(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t L(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆t L(u(2)),

(46)

where L = − 1
∆x

(f̂i+ 1
2
− f̂i− 1

2
) and un is the solution at the time step n.284

For (6) we consider in our examples the Lax-Friedrichs flux splitting285

f±(u) =
1

2

(
f(u)± αu

)
, (47)

where α = max
u
|f ′(u)|.286

The Neural Network Structure287

The proposed neural network algorithm can be generally applied to any288

type of conservation laws. For the equations where discontinuities or shocks289

are present, we propose to train a neural network separately for each equation290

class. Then we can better adjust the size of a neural network and its structure291

as well as the loss function, which leads to better results.292

As we mentioned earlier, the inputs to the CNN are the values f+(xi)293

and f−(xi), i = 0, . . . , N and we train two neural networks for a positive and294

negative part of a flux. (The superscripts ± will be further dropped.)295

The first layer of the neural network is not learned, but represents a296

preprocessing of the solution from the last time step into a set of features297

that we assume to be suitable inputs for the following learned layers. Since298

our goal is to improve the smoothness indicators, we first compute the first299

and second central finite differences of f̄(x̄i) as defined in (34), i = 0, . . . , N .300

These parameters give us information about the smoothness of the solution301

and can facilitate and speed up the training of the CNN, and we can use302

a rather small CNN that still remains powerful. So we have the following303

values as input for the first learned hidden layer:304

fdiff1,i = f̄(x̄i+1)− f̄(x̄i−1), fdiff2,i = f̄(x̄i+1)− 2f̄(x̄i) + f̄(x̄i−1). (48)

15



The values fdiff1,i, fdiff2,i computed from f+ from (47) represent the input305

values for the first neural network and the values fdiff1,i, fdiff2,i computed306

from f− represent the input values for the second neural network.307

Next, we use a fixed number of hidden layers, each with a specific kernel308

size and number of channels. We set these CNN parameters separately for309

each of the equation classes and experimentally find the best setting for each310

equation, keeping the size of proposed CNN small. We move the kernel311

by one space step so the stride is set to 1, and we use an ELU activation312

function in all hidden layers except the last one where we use sigmoid. In all313

our experiments, we set C = 0.1 in (29), which we experimentally found to314

be efficient. Let us note, that due to subsequent normalization of βDS
m during315

the computation of nonlinear weights, using large value of C would decrease316

the effect of the trained multipliers. On the other hand, for C close to zero317

the experimental order of convergence could be smaller on coarse grids (but318

still achieved for ∆x→ 0). We use the nonlinear weights as defined in (28),319

replacing βm with βDS
m . The value of ε is set to 10−13.320

As the first choice of the loss function we use the mean square error321

LOSSMSE(u) =
1

N

N∑
i=0

(ui − uref
i )2, (49)

where ui is a numerical approximation of u(xi) and uref
i is the corresponding322

reference solution. An advantage of this L2-norm based loss function in323

contrast to the L1-norm based loss function is stronger gradients with respect324

to ui resulting in faster training.325

5.1. The Buckley-Leverett equation326

In the first example, we apply our neural network algorithm to the Buckley-327

Leverett equation, which was also considered, for example, in [45, 46, 6]. It328

is a typical example with a non-convex flux function modeling a two-phase329

fluid flow in a porous medium [47]. The flux in (1) is given by330

f(u) =
u2

u2 + a(1− u)2
, −1 ≤ x ≤ 1, 0 ≤ t ≤ 0.4, (50)

where a < 1 is a constant indicating the ratio of the viscosities of the two331

fluids. The initial condition is set as332

u(x, 0) =

{
1, if − 0.5 ≤ x ≤ 0,

0, elsewhere
(51)

16



and we use periodic boundary condition.333

In our implementation, we use the CNN with 3 hidden layers with the334

structure described in the Figure 2. The inputs to the learned hidden layers335

are the features (48). First, we create the dataset for which we compute336

the reference solution for the equation (1) with the flux (50) and the initial337

condition (51). We randomly generate the parameter a from a uniformly338

distributed range [0.05, 0.95]. We divide the computational domain [−1, 1]339

into 1024 spatial steps and the solution is computed up to time T = 0.4,340

where the time domain is divided into 8960 time steps. We use the WENO-Z341

method to compute this reference solution.342

Conv1d
in_channels = 2
out_channels = 5
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 5
out_channels = 3
kernel_size = 5
padding = 2

Conv1d
in_channels = 3
out_channels = 1
kernel_size = 1
padding = 0

fdiff2

fdiff1

Figure 2: A structure of the convolutional neural network used for the Buckley Leverett
equation (the structure is same for both inputs f+(xi) and f−(xi), fdiff1 and fdiff2 are
defined in (48) and are computed from both f+(xi) and f−(xi)).

For the training, we proceed as follows. At the beginning, we randomly343

choose a problem and its reference solution from our dataset. The weights344

of the CNN are randomly initialized and we train our model on a solution345

where our computational domain is divided into 128×140 steps and succes-346

sively compute the entire solution until the final time T . Using the solution347

at the time step n, we compute the solution at the time step n + 1 and348

during this computation the CNN is used to predict the multipliers of the349

smoothness indicators. After each of these time steps, we compute the loss350

and its gradient with respect to the weights of the CNN using backpropa-351

gation algorithm. Then we use this gradient to update the weights, using352

the well-known Adam optimizer [48] with learning rate 0.0001. After the last353

time step at time T , we test a model on a validation set and repeat the above354

steps. Then we select the model with the best performance on the validation355

set as our final model. For both training and comparing the performance of356

the models, we use the loss function defined as357

LOSS(u) = LOSSMSE(u) + LOSSOF (u), (52)

17



where LOSSMSE(u) is defined in (49) and358

LOSSOF (u) =
N∑
i=0

|min(ui, umin)− umin|+ |max(ui, umax)− umax| (53)

represents the sum of the overflows of the solution above the maximum and359

below the minimum value of u, in our case umax = 1 and umin = 0. By adding360

this term to our loss function, we want to avoid the undesirable oscillations361

that occur especially in the first time steps of the solution.362

0 10 20 30 40 50 60
number of training cycles

0.0005

0.0010

0.0015

0.0020

0.0025

LO
SS

Figure 3: Loss values for different validation problems at different training cycles (x-axis).

The Figure 3 shows how the value of the loss function for the problems363

from the validation set (which are not present in the training set) changes364

with increasing number of training cycles. As training cycle we denote a365

sequence of training steps performed on a solution for a single randomly366

chosen parameter a until the final time T . The loss is then evaluated at this367

final time T . We apparently see two optima for different values of a. If there368

are more than 50 training cycles, the loss begins to increase significantly369

for some problems, indicating that further training is not efficient. This is370

caused by a fact, that the neural network structure is not complex enough371

to represent multipliers suitable for the whole range of problems. Instead,372

the optimization finds a compromise, which is suboptimal for some of the373

problems (leading to loss increase). Since we want only one final numerical374

18



scheme as output, we choose the model obtained after the 46th training cycle375

as the final model and present the result computed with it.376

We compare the L∞- and L2-error in the Table 1 for the solution of the377

conservation law (1) with (50), a ∈ {0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Let us378

note that these parameters were neither in the training, nor in the validation379

set. We highlight the best performing WENO method in bold. In the ’ratio’

L∞ L2

a WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

0.25 0.429654 0.435090 0.183302 2.34 0.068405 0.067912 0.034065 1.99
0.4 0.408252 0.405047 0.340068 1.19 0.059344 0.058160 0.056051 1.04
0.5 0.317824 0.320094 0.179696 1.77 0.049913 0.049026 0.033758 1.45
0.6 0.459994 0.456687 0.297523 1.53 0.062155 0.061275 0.048766 1 26
0.7 0.476089 0.475015 0.310196 1.53 0.073021 0.072581 0.049836 1.46
0.8 0.207676 0.197021 0.250032 0.79 0.032560 0.030994 0.038974 0.80
0.9 0.375720 0.367802 0.181120 2.03 0.062257 0.061834 0.038510 1.61

Table 1: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Buckley-Leverett equation with the initial condition (51). As ’ratio’
we denote the minimum error of the methods WENO-JS and WENO-Z divided by the
error of WENO-DS (rounded to 2 decimal points).

380

column, we divide the minimum error of WENO-JS and WENO-Z by the381

error of WENO-DS to show how well our new method performs compared382

to the better of the standard methods mentioned. WENO-DS outperforms383

the standard WENO methods in most cases. Only for a = 0.8 is the error384

of WENO-DS larger than the error of the other two methods. However,385

this may be due to the fact that the standard WENO methods perform386

disproportionately well for a = 0.8. a = 0.8 perform disproportionately well387

compared to other values of the parameter a.388

In the Figure 4, we show the solution of the Buckley-Leverett equation389

for the test problems with a = 0.25 and a = 0.5. It can be seen that the390

WENO-DS gives a better solution quality than the WENO-JS or WENO-Z.391

392

We also analyze the computational cost of our method and present the393

comparison in Figure 5. For this purpose, we also retrained the neural net-394

work on 64 and 256 grid points in space. In the Figure 5a, we compare the395

computational cost of all discussed methods for solving the Buckley-Leverett396

equation with a = 0.25. We see that WENO-DS performs significantly bet-397

ter than WENO-JS and WENO-Z. In the second Figure 5b we compare the398

methods for a = 0.6. From the Table 1, we see that WENO-DS provides only399

19



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(a) Solution for a = 0.25

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(b) Solution for a = 0.5

Figure 4: Comparison of the WENO-JS, WENO-Z and WENO-DS methods on the solu-
tion of the Buckley-Leverett equation with the initial condition (51), N = 128.

a moderate improvement in error rate, but even in this case it outperforms400

the other two methods in efficiency. Furthermore, it should be noted that401

the neural network implementation is not yet optimized. For example, the402

speed could be further increased by GPU acceleration.403

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log10(sec)

1.6

1.5

1.4

1.3

1.2

1.1

lo
g 1

0(
L 2

)

WENO-JS
WENO-Z
WENO-DS

(a) a = 0.25

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log10(sec)

1.6

1.5

1.4

1.3

1.2

1.1

1.0

lo
g 1

0(
L 2

)

WENO-JS
WENO-Z
WENO-DS

(b) a = 0.6

Figure 5: Comparison of computational cost against L2-error on the solution of the
Buckley-Leverett equation with the initial condition (51).

A further improvement in the speed of our method could be achieved if404

the multipliers were updated only once per time step. More precisely, we405

can compute the multipliers only in the first Runge-Kutta stage and then,406

assuming that the smoothness of the solution does not change significantly407

within one time step, the same multipliers could be used in the following two408

Runge-Kutta stages. This means that the costly evaluation of the CNN is409

20



performed only once per time step instead of three times per time step, and410

the corresponding additional time cost is reduced to only about 1/3. We411

used this approach to test our method and examine how the error values412

change. Corresponding results can be found in Table 2. We see that very413

similar error values are obtained, which justifies this approach and makes it414

interesting for future research.415

L∞ L2

a WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

0.25 0.429654 0.435090 0.209345 2.05 0.068405 0.067912 0.036956 1.84
0.4 0.408252 0.405047 0.314087 1.29 0.059344 0.058160 0.054628 1.06
0.5 0.317824 0.320094 0.166484 1.91 0.049913 0.049026 0.033010 1.49
0.6 0.459994 0.456687 0.306510 1.49 0.062155 0.061275 0.047933 1.28
0.7 0.476089 0.475015 0.318173 1.49 0.073021 0.072581 0.050179 1.45
0.8 0.207676 0.197021 0.226666 0.87 0.032560 0.030994 0.036531 0.85
0.9 0.375720 0.367802 0.184700 1.99 0.062257 0.061834 0.038899 1.59

Table 2: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Buckley-Leverett equation with the initial condition (51), when the
evaluation of the CNN was done only in the first Runge-Kutta stage.

Finally, we verify the analytically proven fifth-order accuracy of the WENO-416

DS scheme for a transport equation with a smooth solution given as417

∂u

∂t
+
∂u

∂x
= 0, u(x, 0) = sin(πx), 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.5, (54)

with periodic boundary conditions. Let us note, that we use the same418

WENO-DS method, which is an output of the training procedure for the419

Buckley-Leverett equation and we also do not retrain the neural network420

for different N . Here we demonstrate numerically, that our method can be421

reliably used also for different class of equation with different initial condi-422

tion and remains convergent. The results can be found in Table 3. There423

is a great improvement when we compare our scheme with the WENO-NN424

scheme of Stevens and Colonius [38], where the resulting scheme exhibits425

only first-order accuracy.426

Although our scheme remains convergent for any type of equation and427

for arbitrary discretization, in examples with strong discontinuities we rec-428

ommend to retrain the neural network for solving a new class of PDE. Doing429

so, we can improve the performance of the neural network and achieve the430

enhancement when compared to the existing methods. We refer to [38],431

where authors aim to use the neural network trained only once for any class432

21



WENO-Z WENO-DS
N L∞ Order L∞ Order

20 9.369742e-03 - 9.402549e-03 -
40 2.558719e-04 5.194516 2.558830e-04 5.199496
80 9.466151e-06 4.756500 9.466165e-06 4.756560
160 3.177833e-07 4.896663 3.177834e-07 4.896665
320 9.957350e-09 4.996137 9.957351e-09 4.996138
640 3.117835e-10 4.997145 3.117834e-10 4.997146

Table 3: L∞-norm error and convergence order of WENO-Z and WENO-DS on (54).

of PDE. However, no improvement e.g. in Burgers’ equation is achieved and433

as demonstrated on example with 1-D Euler equations, also no improvement434

can be guaranteed when the discretization changes.435

5.2. The inviscid Burgers’ equation436

In the next example we consider the inviscid Burgers’ equation, where437

the flux function in (1) is given by438

f(u) =
u2

2
, 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.3. (55)

We consider following initial conditions

u(x, 0) =

{
z1, if 1 ≤ x ≤ 2,

0, elsewhere,
(56)

u(x, 0) = exp
(
−z2(x− 1)2

)
, (57)

u(x, 0) = z3 sin(πx), (58)

where439

z1 ∈ U [1, 2], z2 ∈ U [10, 30], z3 ∈ U [1, 2]. (59)

Using these initial conditions, we cover problems with both continuous and440

discontinuous initial conditions, and we simulate the shocks and discontinu-441

ities very well. We train a single CNN on all mentioned classes of initial442

conditions and use periodic boundary condition.443

We first create the data set for training, in which we compute the reference444

solution of the Burgers’ equation with the initial conditions (56)–(58). The445

22



Conv1d
in_channels = 2
out_channels = 10
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 10
out_channels = 10
kernel_size = 5
padding = 2

Conv1d
in_channels =10
out_channels = 1
kernel_size = 1
padding = 0

fdiff2

fdiff1

Figure 6: A structure of the convolutional neural network used for the Burgers’ equation
(the structure is the same for both inputs f+(xi) and f−(xi), fdiff1 and fdiff2 are defined
in (48) and are computed from both f+(xi) and f−(xi)).

computational domain is divided into 1024 space steps and 6400 time steps446

and the solution is computed up to time T = 0.3 using the WENO-Z scheme.447

We use the CNN with 3 hidden layers with the structure described in the448

Figure 6. For the training, we proceed in the same way as in the previous449

example. The only differences are that the computational domain is divided450

into 128×100 steps and the learning rate used by the Adam optimizer is451

0.001. In this example, we use the mean square error loss function (49) for452

training and validation. As the training on Burgers’ equation exhibits much453

higher variance than in the Buckley-Leverett case, we performed 3 trainings454

each with 90 training cycles and finally selected the model showing the best455

performance on the validation set.456

L∞ L2

initial
condition

zj WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(56) 1.19 0.632213 0.632788 0.303060 2.09 0.082373 0.082141 0.046932 1.75
1.53 0.594943 0.58678 0.485714 1.21 0.080341 0.07877 0.067175 1.17
1.84 0.704680 0.694358 0.542599 1.28 0.094967 0.093019 0.076102 1.22

(57) 14.94 0.113498 0.104374 0.100061 1.04 0.016926 0.015137 0.015164 1.00
21.65 0.236125 0.229290 0.196110 1.17 0.032979 0.031680 0.029141 1.09
29.08 0.312595 0.310937 0.388739 0.80 0.040632 0.040199 0.049385 0.81

(58) 1.46 0.059072 0.056751 0.051553 1.10 0.010443 0.010032 0.007307 1.37
1.6 0.063780 0.061391 0.037165 1.65 0.011275 0.010853 0.005552 1.95
1.9 0.072586 0.069995 0.023841 2.94 0.012831 0.012373 0.003396 3.64

Table 4: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Burgers’ equation with the initial condition parameters inside of
training set intervals (59). As ’ratio’ we denote the minimum error of the methods WENO-
JS and WENO-Z divided by the error of WENO-DS (rounded to 2 decimal points).

We compare the errors on the problems from the test set in Table 4457

and 5. These were not in the training or validation set and the parameters458

were randomly generated. We observe rather small or no improvement for459

problems with the initial condition (57), but the improvement is significant460

for the solution with the discontinuous initial condition (56) as well as with461

23



L∞ L2

initial
condition

zj WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

(56) 0.71 0.204162 0.199246 0.150400 1.32 0.031740 0.030740 0.028178 1.09
2.41 1.541714 1.554201 1.004904 1.53 0.199285 0.200194 0.129223 1.54
2.57 1.063823 1.055948 0.755908 1.40 0.140068 0.138411 0.102963 1.34
3.13 0.622858 0.600619 0.287540 2.09 0.087067 0.084495 0.054477 1.55

(57) 33.9 0.351086 0.345278 0.266422 1.30 0.045665 0.044691 0.036426 1.23
34.67 0.285791 0.283237 0.194424 1.46 0.037350 0.036815 0.027150 1.36

(58) 0.94 0.009524 0.007189 0.007898 0.91 0.001737 0.001509 0.001491 1.01
2.12 0.077503 0.074744 0.012296 6.08 0.013701 0.013213 0.001712 7.72
2.44 0.083010 0.080022 0.003978 20.12 0.014675 0.014147 0.000537 26.35

Table 5: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Burgers’ equation with the initial condition parameters outside of
training set intervals (59). As ’ratio’ we denote the minimum error of the methods WENO-
JS and WENO-Z divided by the error of WENO-DS (rounded to 2 decimal points).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(a) Initial condition (58) with z3 = 1.6.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(b) Initial condition (58) with z3 = 2.12.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(c) Initial condition (57) with z2 = 29.08.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.5

1.0

1.5

2.0

2.5

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(d) Initial condition (56) with z1 = 2.41.

Figure 7: Comparison of the WENO-JS, WENO-Z and WENO-DS methods for the solu-
tion of the Burgers’ equation with various initial conditions, N = 128.

24



the initial condition (58).462

We conclude that the WENO-DS significantly outperforms the classical463

WENO methods. It should be noted that although our training set was464

created with the parameters sampled from uniform distribution as specified465

in (59), the method can also generalise for parameter values outside of these466

intervals, as can be seen in Table 5. Especially, we highlight the last two467

problems from Table 5, where we see a great improvement.468

In the Figure 7 we show the solution of the Burgers’ equation with the469

initial condition (56) for z1 = 2.41, (57) for z2 = 29.08, (58) for z3 = 1.6470

and (58) for z3 = 2.12. We observe that WENO-DS captures shocks and471

discontinuities very well and gives us a better solution compared to WENO-472

JS and WENO-Z.473

Next, we test our method on two examples, where the Burgers’ equation
with the flux function (55) and following initial conditions will be solved:

u(x, 0) = 1 + sin(4πx), 0 ≤ x ≤ 2, (60)

u(x, 0) = −x sin
(3

2
πx
)
, −1 ≤ x ≤ 1. (61)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(a) Initial condition (60).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(b) Initial condition (61).

Figure 8: Comparison of the WENO-JS, WENO-Z and WENO-DS methods for the solu-
tion of the Burgers’ equation with various initial conditions, N = 128.

We compute the solution up to time T = 0.3. Let us note, that the474

method was not retrained on these initial conditions and still performs well.475

Figure 8 illustrates the solution.476

Finally, we test our method on the equation (1) with another flux func-477

25



tion, according to [37]478

f(u) =
u4

16
, 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.3. (62)

For this purpose, we use the initial condition (56) with z1 = 1.5 and z1 = 2.479

We illustrate the solution in Figure 9 computed up to the final time T = 0.3480

and see that WENO-DS performs very well in both cases.481

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(a) Initial condition (56) with z1 = 1.5.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

(b) Initial condition (56) with z1 = 2.

Figure 9: Comparison of the WENO-JS, WENO-Z and WENO-DS methods for the solu-
tion of the equation (1) with the flux function (62), N = 128.

5.3. The two-dimensional Burgers’ equation482

To demonstrate the performance of WENO-DS in two dimensional space483

we apply the method trained on one-dimensional data for the 1D Burgers’484

equation (55) to the two-dimensional Burgers’ equation of the form485

∂u

∂t
+
∂f(u)

∂x
+
∂f(u)

∂y
= 0, f(u) =

u2

2
(63)

on the spatial domain [−1, 1]× [−1, 1] divided into 128× 128 uniform cells.486

As considered by Cao, Xu and Zheng [49] we use the initial condition487

u(x, y, 0) = (x2 − 1)2 (y2 − 1)2, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. (64)

We present the solution at time T = 0.8 in the Figure 10. We compare the488

error values in Table 6, where the reference solution was computed on the489

spatial discretization with 256 × 256 cells. Let us note, that no additional490

retraining was needed, as we apply the method using dimension-by-dimension491

principle.492

26



1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.500.250.000.250.500.751.00

0.0

0.2

0.4

0.6

0.8

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 10: Numerical solution of the two-dimensional Burgers’ equation using WENO-DS
at T = 0.8. 128× 128 cells.

L∞ L2

N ×N WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

64× 64 0.411625 0.409869 0.323205 1.27 0.023487 0.022837 0.020863 1.09

Table 6: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the two-dimensional Burgers equation with the initial condition (64).
As ’ratio’ we denote the minimum error of the methods WENO-JS and WENO-Z divided
by the error of WENO-DS (rounded to 2 decimal points).

5.4. The one-dimensional Euler equations493

We now investigate how WENO-DS behaves when applied to the one-494

dimensional Euler system, which is considered a classical benchmark problem495

for methods for conservation laws. It has the form496

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂ρu

∂t
+
∂(ρu2 + p)

∂x
= 0,

∂E

∂t
+
∂(uE + up)

∂x
= 0,

(65)

where ρ is the density, u is the velocity, p is the pressure and E is a total497

energy given by498

E =
p

γ − 1
+

1

2
ρu2. (66)

27



We take γ = 1.4, which is the ratio of the specific heats. To compute the499

fluxes, we use the characteristic decomposition of the system according to the500

steps in [5]. We use the Roe scheme to obtain the eigenvectors and eigen-501

values [50] and the Lax-Friedrichs flux splitting to obtain the corresponding502

component of the flux. We take the solution based on [51] as the reference503

solution.504

The most common benchmark problems are the Sod problem [52], where505

the initial condition is specified as506

(ρ, u, p) =

{
(1, 0.75, 1) 0 ≤ x < 0.5,

(0.125, 0, 0.1) 0.5 ≤ x ≤ 1
(67)

and the Lax problem [53] with an initial condition507

(ρ, u, p) =

{
(0.445, 0.698, 3.528) 0 ≤ x < 0.5,

(0.5, 0, 0.571) 0.5 ≤ x ≤ 1.
(68)

We use an adaptive step size508

∆t =
0.9∆x

max(ci + |ui|)
, c2 =

γp

ρ
, (69)

where ui is the local velocity and ci the local speed of sound.509

The solution consists of the left rarefaction wave, the right travelling510

contact wave and the right shock wave. We want to imitate this behavior of511

the solution, so we construct our data set as described in Appendix A.512

We use the CNN with 3 hidden layers with the structure described in513

Figure 11. After projecting the flux and the solution on the characteristic514

fields using the left eigenvectors, we use Lax-Friedrichs flux splitting for each515

component of characteristic variables. From these values we compute the516

features (48), which are the inputs to the learned hidden layers.517

In this example we repeat the training procedure of the previous exam-518

ples with some small modifications described below. To begin, we randomly519

generate the initial state from the dataset described earlier. We divide the520

spatial domain into 100 steps and compute the solution for the given initial521

state up to the time T = 0.05. After each time step we compute loss using522

the reference solution from [51]. We use the gradient to update the weights,523

using Adam optimizer with learning rate 0.001. At the last time step we test524

the model on the validation problems, which are the problems with randomly525

28



Conv1d
in_channels = 6
out_channels = 10
kernel_size = 5
padding = 2

ELU ELU Sigmoid

Conv1d
in_channels = 10
out_channels = 10
kernel_size = 5
padding = 2

Conv1d
in_channels = 10
out_channels = 3
kernel_size = 1
padding = 0

fdiff2

fdiff1

Figure 11: A structure of the convolutional neural network used for the Euler system (the
structure is same for both inputs f+(xi) and f−(xi), fdiff1 and fdiff2 are defined in (48)
and are computed from both f+(xi) and f−(xi)).

generated initial conditions according to algorithm described in Appendix A526

and repeat the procedure with the new initial parameters (ρ, u, p). We use527

the loss function528

LOSS(ρ, u, p) = LOSSMSE(ρ) + LOSSMSE(u) + LOSSMSE(p) (70)

for training and validation.529

Based on the validation problems, we choose the final model and present530

the solution of the Sod problem (67) for ρ, u and p using 100, 200 and 300531

space points. We compute the solution up to time T = 0.2. We illustrate the532

solution in Figure 12 and compare the corresponding error values in Table 7.533

Next, we also present the solution of the Lax problem (68) with the final534

time T = 0.13 in the Figure 13.535

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

p

WENO-JS
WENO-Z
WENO-DS
ref. sol.

Figure 12: Solution of Sod problem (67), using the WENO-JS, WENO-Z and WENO-DS
methods, T = 0.2, N = 100.

Finally, we also applied the trained method to the shock entropy wave536

interaction problem [46] with an initial condition537

(ρ, u, p) =

{
(3.857143, 2.629369, 10.33333) − 5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1) − 4 ≤ x ≤ 5.
(71)

29



L∞ L2

N = 100 WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.150172 0.152604 0.151802 0.99 0.024930 0.024381 0.023882 1.02
p 0.225413 0.228468 0.211217 1.07 0.026963 0.026894 0.025194 1.07
u 0.628438 0.643351 0.577795 1.09 0.069043 0.069791 0.064271 1.07

N = 200 WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.136956 0.138225 0.136976 1.00 0.016462 0.015903 0.015272 1.04
p 0.215353 0.217666 0.186693 1.15 0.017538 0.017530 0.015451 1.13
u 0.591525 0.603275 0.495718 1.19 0.046245 0.046542 0.042207 1.10

N = 300 WENO-JS WENO-Z WENO-DS ratio WENO-JS WENO-Z WENO-DS ratio

ρ 0.126180 0.125691 0.124829 1.01 0.012834 0.012254 0.011701 1.05
p 0.204582 0.208307 0.165333 1.24 0.013423 0.013479 0.011468 1.17
u 0.553209 0.570251 0.430247 1.29 0.035888 0.036231 0.035287 1.02

Table 7: Comparison of L∞ and L2 error of WENO-JS, WENO-Z and WENO-DS methods
for the solution of the Euler equations of gas dynamics for the Sod problem (67) with
N = 100, N = 200 and N = 300. As ’ratio’ we denote the minimum error of the methods
WENO-JS and WENO-Z divided by the error of WENO-DS (rounded to 2 decimal points).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

WENO-JS
WENO-Z
WENO-DS
ref. sol.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5
p

WENO-JS
WENO-Z
WENO-DS
ref. sol.

Figure 13: Solution of Lax problem (68), using the WENO-JS, WENO-Z and WENO-DS
methods, T = 0.13, N = 100.

In the Figure 14 we show the solution using WENO-Z and WENO-DS me-538

thods, when the computational domain is divided into 512 uniform cells up539

to final time T = 1.8. As a reference solution we used the solution computed540

using WENO-Z method with 2048 space points. This is an example, which541

has a moving Mach = 3 shock interacting with sine waves in density, so the542

numerical method needs to deal with the physical oscillations contained in a543

flow. Finally, let us note, that although we have not trained the presented544

model on the parameters that would lead to such a solution, the method is545

robust enough and can detect the shocks present in the solution.546

30



4 2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
WENO-Z
WENO-DS
ref. sol.

Figure 14: Solution of shock entropy wave interaction problem (71), N = 512.

6. Conclusion547

In this work, we have improved the fifth-order WENO shock-capturing548

scheme by using deep learning techniques. To do this, we trained a relatively549

small neural network to obtain modified smoothness indicators of the WENO550

scheme. This was done in a way that avoided post-processing of the coeffi-551

cients to ensure consistency. We applied our enhancement to the WENO-Z552

scheme, where the (formal) fifth-order accuracy on the smooth solutions can553

be proven analytically.554

Our new method, the WENO-DS scheme, is quite easy to use and signif-555

icantly improves the numerical results, especially in the presence of discon-556

tinuities, even for cases that have not been trained before. We have demon-557

strated our results with the inviscid Burgers’ equation, the Buckley-Leverett558

equation, and the 1-D Euler equations of gas dynamics. We showed, that the559

method can efficiently solve the problems in more dimensional space without560

additional retraining.561

Finally, let us note, that this paper can be seen as a proof of concept,562

that neural networks can be efficiently combined with an existing numerical563

scheme, preserving its formal accuracy order. As part of our future work we564

will extend our numerical scheme to more applications in 2D and 3D and565

also study more efficient variants of our approach using GPU computing.566

31



Appendix A. Parameters used for generating the data set for 1-D567

Euler equations of gas dynamics568

The problem samples representing different versions of the Euler equa-569

tions of gas dynamics (67) were defined using parameters generated by the570

following algorithm.571

Choose randomly s ∈ {0, 2}572

if s = 0 then573

pl = a+ b, a ∈ U [0.5, 10], b ∈ U [−0.05, 0.05],574

pr = 1/c, c ∈ U [5, 10],575

ρl = pl,576

ρr = pr + d, d ∈ U [−0.05, 0.05],577

ul = e, e ∈ U [0, 1],578

ur = 0,579

else if s = 1 then580

pl = 1,581

pr = 0.1,582

ρl = k, k ∈ U [1, 3],583

ρr = 1
10
ρl + l, l ∈ U [−0.05, 0.05],584

ul = m, m ∈ U [0, 1],585

ur = 0,586

else587

pl = n, n ∈ U [3, 4],588

pr = 1
7
pl + q, q ∈ U [−0.05, 0.05]589

ρl = r, r ∈ U [0.3, 0.6],590

ρr = ρl + s, s ∈ U [−0.05, 0.05],591

ul = t, t ∈ U [0, 1],592

ur = 0,593

end if594

where595

(ρ, u, p) =

{
(ρl, ul, pl) 0 ≤ x < 0.5,

(ρr, ur, pr) 0.5 ≤ x ≤ 1.
(A.1)

References596

[1] M. Crandall, A. Majda, Monotone difference approximations for scalar597

conservation laws, Math. Comput. 34 (1980) 1–21.598

32



[2] S. Godunov, Different Methods For Shock Waves, Ph.D. thesis, Moscow599

State University, 1954.600

[3] A. Harten, High resolution schemes for hyperbolic conservation laws, J.601

Comput. Phys. 49 (1983) 357–393.602

[4] A. Harten, B. Engquist, S. Osher, S. Chakravarthy, Uniformly high order603

accurate essentially non-oscillatory schemes, III, in: M. Hussaini, B. van604

Leer, J. Van Rosendale (Eds.), Upwind and High-Resolution Schemes,605

Springer, 1987, pp. 218–290.606

[5] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-607

oscillatory schemes for hyperbolic conservation laws, in: A. Quar-608

teroni (Ed.), Advanced Numerical Approximation of Nonlinear Hy-609

perbolic Equations: Lectures given at the 2nd Session of the Centro610

Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy,611

June 23–28, 1997, Springer, Berlin, 1998, pp. 325–432. URL: https:612

//doi.org/10.1007/BFb0096355. doi:10.1007/BFb0096355.613

[6] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO614

schemes, J. Comput. Phys. 126 (1996) 202–228.615

[7] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as lim-616

iters for Runge-Kutta discontinuous Galerkin method: one-dimensional617

case, J. Comput. Phys. 193 (2004) 115–135.618

[8] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as619

limiters for Runge-Kutta discontinuous Galerkin method II: Two dimen-620

sional case, Computers & Fluids 34 (2005) 642–663.621

[9] S. Pirozzoli, Conservative hybrid compact-WENO schemes for shock-622

turbulence interaction, J. Comput. Phys. 178 (2002) 81–117.623

[10] D. J. Hill, D. I. Pullin, Hybrid tuned center-difference-WENO method624

for large eddy simulations in the presence of strong shocks, J. Comput.625

Phys. 194 (2004) 435–450.626

[11] Z. Zhao, Y.-T. Zhang, Y. Chen, J. Qiu, A Hermite WENO627

method with modified ghost fluid method for compressible two-628

medium flow problems, Comm. Comput. Phys. 30 (2021) 851–873.629

33



URL: http://global-sci.org/intro/article_detail/cicp/19319.630

html. doi:https://doi.org/10.4208/cicp.OA-2020-0184.631

[12] Z. Zhao, Y. Chen, J. Qiu, A hybrid WENO method with modified632

ghost fluid method for compressible two-medium flow problems, Numer.633

Math.: Theor. Meth. Appl. (2021) to appear. URL: http://arxiv.org/634

abs/2009.00461.635

[13] R. Borges, M. Carmona, B. Costa, W. S. Don, An improved weighted636

essentially non-oscillatory scheme for hyperbolic conservation laws, J.637

Comput. Phys. 227 (2008) 3191–3211.638

[14] M. Castro, B. Costa, W. S. Don, High order weighted essentially non-639

oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Com-640

put. Phys. 230 (2011) 1766–1792.641

[15] C. H. Kim, Y. Ha, J. Yoon, Modified non-linear weights for fifth-order642

weighted essentially non-oscillatory schemes, J. Sci. Comput. 67 (2016)643

299–323.644

[16] S. Rathan, G. N. Raju, A modified fifth-order WENO scheme for hy-645

perbolic conservation laws, Comput. Math. Appl. 75 (2018) 1531–1549.646

[17] Y. Ha, C. H. Kim, Y. J. Lee, J. Yoon, An improved weighted essentially647

non-oscillatory scheme with a new smoothness indicator, J. Comput.648

Phys. 232 (2013) 68–86.649

[18] L. Li, H. B. Wang, G. Y. Zhao, et al., Efficient WENOCU4 scheme with650

three different adaptive switches, J. Zhejiang Univ. Sci. A 21 (2020)651

695–720. URL: https://doi.org/10.1631/jzus.A2000006.652

[19] A. K. Henrick, T. D. Aslam, J. M. Powers, Mapped weighted essentially653

non-oscillatory schemes: achieving optimal order near critical points, J.654

Comput. Phys. 207 (2005) 542–567.655

[20] Y. Liu, Globally optimal finite-difference schemes based on least squares,656

Geophysics 78 (2013) T113–T132.657

[21] C. K. Tam, J. C. Webb, Dispersion-relation-preserving finite difference658

schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262–659

281.660

34



[22] Z. Wang, R. Chen, Optimized weighted essentially nonoscillatory661

schemes for linear waves with discontinuity, J. Comput. Phys. 174 (2001)662

381–404.663

[23] J. Fernández-Fidalgo, L. Ramı́rez, P. Tsoutsanis, I. Colominas,664

X. Nogueira, A reduced-dissipation WENO scheme with automatic dis-665

sipation adjustment, J. Comput. Phys. 425 (2021) 109749.666

[24] L. Fu, X. Y. Hu, N. A. Adams, A family of high-order targeted ENO667

schemes for compressible-fluid simulations, J. Comput. Phys. 305 (2016)668

333–359.669

[25] L. Fu, X. Y. Hu, N. A. Adams, A new class of adaptive high-order670

targeted ENO schemes for hyperbolic conservation laws, J. Comput.671

Phys. 374 (2018) 724–751.672

[26] L. Fu, A hybrid method with TENO based discontinuity indicator for673

hyperbolic conservation laws, Commun. Comput. Phys. 26 (2019) 973–674

1007.675

[27] C.-W. Shu, High order weighted essentially nonoscillatory schemes for676

convection dominated problems, SIAM Review 51 (2009) 82–126.677

[28] I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for678

solving ordinary and partial differential equations, IEEE Trans. Neural679

Netw. 9 (1998) 987–1000.680

[29] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for681

solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–682

1364.683

[30] J. Berg, K. Nyström, A unified deep artificial neural network approach684

to partial differential equations in complex geometries, Neurocomputing685

317 (2018) 28–41.686

[31] A. D. Beck, J. Zeifang, A. Schwarz, D. Flad, A neural network based687

shock detection and localization approach for discontinuous Galerkin688

methods, J. Comput. Phys. 423 (2020). doi:10.1016/j.jcp.2020.689

109824.690

35



[32] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, S. Ermon, Learning691

neural PDE solvers with convergence guarantees, 2019. URL: https:692

//arxiv.org/abs/1906.01200. arXiv:1906.01200.693

[33] Y. Bar-Sinai, S. Hoyer, J. Hickey, M. P. Brenner, Learning data-driven694

discretizations for partial differential equations, Proc. Nat. Acad. Sci.695

116 (2019) 15344–15349.696

[34] N. Discacciati, J. S. Hesthaven, D. Ray, Controlling oscillations in high-697

order discontinuous Galerkin schemes using artificial viscosity tuned by698

neural networks, J. Comput. Phys. 409 (2020) 109304.699

[35] D. Ray, J. S. Hesthaven, Detecting troubled-cells on two-dimensional700

unstructured grids using a neural network, J. Comput. Phys. 397 (2019)701

108845.702

[36] Y. Feng, T. Liu, K. Wang, A characteristic-featured shock wave indica-703

tor for conservation laws based on training an artificial neuron, J. Sci.704

Comput. 83 (2020) 1–34.705

[37] Y. Wang, Z. Shen, Z. Long, B. Dong, Learning to discretize: Solving706

1D scalar conservation laws via deep reinforcement learning, Commun.707

Comput. Phys. 28 (2020) 2158–2179. URL: http://global-sci.org/708

intro/article_detail/cicp/18408.html. doi:https://doi.org/10.709

4208/cicp.OA-2020-0194.710

[38] B. Stevens, T. Colonius, Enhancement of shock-capturing methods via711

machine learning, Theor. Comput. Fluid Dyn. 34 (2020) 483–496. URL:712

https://doi.org/10.1007/s00162-020-00531-1.713

[39] Q. Liu, X. Wen, The WENO reconstruction based on the artificial714

neural network, Adv. Appl. Math. 9 (2020) 574–583. URL: https:715

//doi.org/10.12677/aam.2020.94069.716

[40] W.-S. Don, R. Borges, Accuracy of the weighted essentially non-717

oscillatory conservative finite difference schemes, J. Comput. Phys. 250718

(2013) 347–372.719

[41] F. Aràndiga, A. Baeza, A. Belda, P. Mulet, Analysis of WENO schemes720

for full and global accuracy, SIAM J. Numer. Anal. 49 (2011) 893–915.721

36



[42] T. Kossaczká, The Weighted Essentially Non-Oscillatory Method for722

Problems in Finance, Master’s thesis, Bergische Universität Wuppertal,723

Germany, 2019.724

[43] R. Wang, R. J. Spiteri, Linear instability of the fifth-order WENO725

method, SIAM J. Numer. Anal. 45 (2007) 1871–1901.726

[44] A. Paszke, et al., PyTorch: An imperative style, high-performance deep727

learning library, in: H. Wallach, et al. (Eds.), Advances in Neural In-728

formation Processing Systems 32, Curran Associates, Inc., 2019, pp.729

8024–8035.730

[45] C.-W. Shu, S. Osher, Efficient implementation of essentially non-731

oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–732

471.733

[46] C.-W. Shu, S. Osher, Efficient implementation of essentially non-734

oscillatory shock-capturing schemes, II, in: M. Hussaini, B. van735

Leer, J. Van Rosendale (Eds.), Upwind and High-Resolution Schemes,736

Springer, 1989, pp. 328–374.737

[47] R. J. LeVeque, Finite volume methods for hyperbolic problems, vol-738

ume 31, Cambridge University Press, 2002.739

[48] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,740

arXiv preprint arXiv:1412.6980 (2014). Published as a conference paper741

at ICLR 2015.742

[49] W. Cao, Q. Xu, Z. Zheng, Solution of two-dimensional time-fractional743

Burgers equation with high and low Reynolds numbers, Adv. Difference744

Eqs. 2017 (2017) 1–14.745

[50] P. L. Roe, Approximate Riemann solvers, parameter vectors, and dif-746

ference schemes, J. Comput. Phys. 43 (1981) 357–372.747

[51] P. Wesseling, Principles of Computational Fluid Dynamics, volume 29,748

Springer Science & Business Media, 2009.749

[52] G. A. Sod, A survey of several finite difference methods for systems750

of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978)751

1–31.752

37



[53] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their753

numerical computation, Comm. Pure Appl. Math. 7 (1954) 159–193.754

38


