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Abstract In the context of 2019 coronavirus disease (COVID-19), consider-
able attention has been paid to mathematical models for predicting country-
or region-specific future pandemic developments. In this work, we developed
an SVICDR model that includes a susceptible, an all-or-nothing vaccinated,
an infected, an intensive care, a deceased, and a recovered compartment. It
is based on the susceptible-infectious-recovered (SIR) model of Kermack and
McKendrick, which is based on ordinary differential equations (ODEs).

The main objective is to show the impact of parameter boundary modifica-
tions on the predicted incidence rate, taking into account recent data on Ger-
many in the pandemic, an exponential increasing vaccination rate in the con-
sidered time window and trigonometric contact and quarantine rate functions.
For the numerical solution of the ODE systems a model-specific non-standard
finite difference (NSFD) scheme is designed, that preserves the positivity of
solutions and yields the correct asymptotic behaviour.
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1 Introduction

The first cases of the previously unknown severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) occurred in China in late 2019, but were not
recognized at that time as infections with the novel coronavirus (2019-nCov).
The genetic sequence of SARS-CoV-2 was identified in early January 2020.
SARS-CoV-2 is thought to have a zoonotic origin, but the route of trans-
mission from natural reservoirs to humans remains unclear [WHO 2021]. The
novel coronavirus has been found in domestic and farm animals, that have been
in contact with infected humans in several countries. Potential intermediate
hosts include mink, pangolins, rabbits, and domesticated cats, which can be-
come infected with SARS-CoV-2 [WHO 2021]. Viruses derived from Chinese
and Malayan pangolins were found to have high genomic similarity to SARS-
CoV-2 [WHO 2021], and it is conceivable that raccoon dogs may have played
a significant role in the development of the pandemic [Freuling 2020]. Environ-
mental samples taken from the Huanan Wholesale Seafood Market in Wuhan
City, where seafood, wild, and farmed animal species were sold in December
2019, were tested positive for SARS-CoV-2, implying that this market played
a role in the initial amplification of the outbreak [WHO 2020]. Nonetheless, it
is not yet clear how the infection was introduced into the market [WHO 2021].

Originating from China, the virus spread across the whole world via air-
borne virus infection from the end of January 2020. Between December 315
2019 and the 26" calendar week in 2021, 184,424,524 cases and 3,986,982
deaths were registered worldwide [European Centre for Disease Prevention].
Governments around the globe took measures to combat the infectious disease
in their own countries, which included temporary lockdowns of the population
and shut-downs of certain production activities [Bretschger 2020]. The devel-
opment and efficient distribution of vaccines, that are also effective against
several mutated virus variants, and the fast and safe vaccination of large parts
of populations worldwide is a current worldwide challenge. Worldwide per-
centages of populations fully vaccinated until July 16" 2021 include 70.41 %
in Malta, 68.27 % in Iceland, 67.52 % in the United Arab Emirates, 57.54 %
in Israel, 52,60 % in the United Kingdom, 48.87 % in the United States, 47.82
% in Spain, 44.66 % in Germany, 43.69 % in Austria, 41.86 % in Switzerland,
40.63 % in Ttaly, 35.80 % in Sweden and 25.92 % in Finland. Very low immu-
nisation rates can be found in African, South Asian and some South American
countries [John Hopkins University].

The transition dynamics of the model created in this paper contain dis-
tinct degrees of intervention measures like non-pharmaceutical interventions
(NPIs), isolation and vaccination programs in order to reflect distinct degrees
of intervention measures.
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2 The SVICDR Model

In compartmental models, individuals may be in a finite number of discrete
states, some of which are simply labels specifying the various characteristics of
individuals, some of which change over time, such as age class, some of which
are fixed, such as sex or species, and some of which indicate the progress of
an infection [Diekmann 2009, p. 873]. The transitions of individuals between
different compartments can be expressed by systems of ODEs. Such a com-
partmental model assumes a homogeneous population, which can be viewed
as one in which individuals mix uniformly and randomly. For a homogeneous
population, it can be assumed that all susceptible individuals in the same
compartment at any point in time have the same probability of coming into
contact with any other individual in the population and that individuals dif-
fer only in their disease state. Next, we summarize the assumptions of the
SVICDR model and describe the considered compartments.

2.1 Model Assumptions

In the basic form of Kermack and McKendrick’s SIR model, no births and
no deaths are included in the system. The basic version of the model also
assumes that the population size remains constant and that recovered indi-
viduals are completely immune, so that they can never contract the disease
again [Martcheva 2015, pp. 10+13]. These two assumptions are modified in
the SVICDR model as follows:

Death rates are included in the model because of the nonnegligible number
of infected persons who died worldwide for reasons related to the coronavirus
(2.16 %) [European Centre for Disease Prevention|. First, a natural mortality
rate p is included. It is the rate at which persons die per unit time from
causes unrelated to SARS-CoV-2. Disease-related deaths are accounted for
using mortality rates A; for infected non-ICU patients and Ay for ICU patients.

Whereas lethality is the proportion of confirmed cases who died among
all infected cases in a population with respect to a given infectious disease
within a given period of time [RKI Monitoring] mortality is the proportion
of confirmed cases that died among all individuals in a population. The case-
fatality rate (CFR) is a measure used to represent the lethality of a disease. It
is used in this work to describe the transition of individuals from the infected
to the COVID-19-induced deceased compartment.

To calculate the CFR of novel coronavirus with respect to a given popu-
lation, the number of confirmed deceased cases is divided by the number of
confirmed infected cases. The rate can be related to a specific time period.
Thus, the CFR indicates the proportion of confirmed infections that are fatal
[Bjornstad 2018, p. 32]. The difference between a lethality rate and the CFR
is that the divisor of the lethality rate is more general and can still be spec-
ified. The rationale for using the CFR instead of other lethality rates is that



4 Sarah Marie Treibert et al.

the number of all infected persons is unknown [RKI SARS-CoV-2 Profile], so
usually only detected cases can be counted as infected cases.

We note that various data sources may treat deaths of persons whose
demise was actually caused by or who died in association with SARS-CoV-2
infection as COVID-19 deaths. The German Robert-Koch Institute records
deaths of persons with verified SARS-CoV-2 infection as COVID-19 deaths.

In general, when CFR is used as an indicator of SARS-CoV-2 lethality, it is
very likely to overestimate the actual lethality rate because a large proportion
of infected individuals remain undiagnosed because they are not included in
the population of confirmed cases. In most cases, only symptomatic cases are
tested and detected. In addition, people who have died from comorbidities
may be counted as COVID-19 deaths. However, a CFR may underestimate
the region-specific lethality rate for a given period in that the cumulative
number of deaths may continue to increase as the number of patients in ICUs
increases.

Nationwide testing programs and the recognition of region-specific case-
notification rates seem significant to find an appropriate lethality measure.

Permanent cure is not necessarily assumed, so a certain small proportion of
cured individuals per unit time will experience an effect of declining immunity
and re-infection. This small proportion transits from the recovered back to the
infected state per unit of time.

L.

2.2 Compartments and Transition Rates in the SVICDR Model

The SVICDR model consists of a susceptible, a vaccinated, an infected, an
intensive care, a deceased, and a recovered compartment. In addition to the
control measure of vaccination, the possibility of quarantine is also included
in the model. It is significant to note that positively tested individuals are
defined as confirmed cases in the established model.

The compartment S contains the susceptibles of the population. For 2019-
nCoV, this is all residents of the country or region under consideration except
those who have already become infected or recovered from the disease. The
class S does not need to include all susceptibles in the system, as susceptible
individuals may be quarantined in general, including self-quarantine. Inflicted
quarantine is the temporary segregation of persons suspected of being infected.

For the vaccinated compartment an all-or-nothing vaccine is assumed. Con-
sequently, all vaccinated individuals will be become fully immune with a cer-
tain probability. In this model, vaccination causes full protection from infection
for a fraction V of the susceptible class per unit time ¢, while the fraction 1 -V
gains no protection. Vaccinated individuals thus transit from compartment S
to a vaccinated compartment V at the rate V in the model considered. This
rate is defined as a time-dependent function V(t) if a fluctuating vaccina-
tion strategy or an increasing number of available doses is assumed. It is not
assumed that the immunizing vaccination effect can wane and that antibody
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levels in vaccinated individuals can fall below a critical level. Thus, individuals
are unable to transit back from compartment V into S. Booster vaccinations
after several years are possible in this case to maintain vaccine protection.

An alternative to an all-or-nothing vaccination schedule is a nonrandom
vaccination schedule in which all vaccinated individuals respond identically
to vaccination in terms of protection against infection and protection against
transmission [Ball 2018]. A special case is a leaky vaccine scenario, in which
vaccinated individuals do not achieve complete protection. This may mean, for
example, that vaccination has no effect on the ability to transmit the disease.
For all of these vaccination regimens, a threshold parameter can be derived
that determines the probability of a large outbreak and the proportion of the
population that will be infected by the disease outbreak [Ball 2018].

The infected compartment I consists of individuals who have contracted
the infection and are infected. It comprises infected individuals whether or
not they are capable of transmitting the infection or showing symptoms. The
transmission rate describing the transition from S to I is the time-dependent
continuous function 0;(t), cf. Subsection 3.3. It is affected by the transmission
risk 3, the contact rate function v(t), and the quarantine rate function ¢(t).

Let the CFR of individuals in compartment I equal M; and the average
time from infection to recovery equal T7. Let there be a fraction x of infected
individuals per moment of time transits to compartment C' with intensive care
patients. Individuals in the I compartment die for reasons related to SARS-
CoV-2 at a rate of

1— 1% T]
M=—7—""M 1
1 T, I (1)
are admitted to an intensive care unit (ICU) at a rate
1-— [J,T[
- alntl 2
R LY )
and recover at a rate
1—uT
w1=$(1—M[—KZ>. (3)
17

Infected SARS-CoV-2 cases may be transferred to an intensive care unit
(ICU). We include a corresponding intensive care compartment C' in the model
because it allows us to predict the number of future patients in the ICU. The
letter C stands for critical cases. Let the CFR of ICU patients be M¢ and the
average time from ICU admission to recovery be T > T7. Individuals in the
ICU die from causes related to SARS-CoV-2 at a rate of

717NTC

A
2 To

Mc (4)

and recover at a rate

wgz%(l—Mc). (5)
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The death rates for compartment I and C' underlie CFRs Mg and Mg,
respectively, which result in individuals with rates A; and Ay entering the
deceased compartment D. Thus, the deceased compartment D(t) contains all
individuals classified as deceased COVID-19 deaths by time ¢t from the data
source chosen for implementation.

In this compartment model, recovery of an individual is identified with the
attainment of a level of virus in the individual that makes it impossible or ex-
tremely unlikely to transmit the infection to susceptible individuals. Recovery
is not equated with the disappearance of symptoms or the complete loss of
infectivity.

If the time to switching to the next compartment ¢y is is exponentially
distributed with a probability density function p(t) = % e~ B and
G(t) = P(tp > t) is the corresponding survival function, the average time of

sojourn in the regarded compartment is

/Ooct-p(t)dt:/ooo;)-e-édt:D:/Ooog(t). (6)

The average time to recovery of compartments I and C is the average length
of the infectious period 77 and the average length of stay in the intensive
care unit T, respectively. Although it is not clear exactly how long these
periods are, it is certain that infectivity reaches its maximum at the time
when people develop symptoms, that is, at the time when the incubation
period, i.e., the period between infection and the onset of symptoms, ends.
It is also certain that the infectivity of an individual decreases over time,
and severely ill individuals are infectious longer than individuals with mild
symptoms [RKI SARS-CoV-2 Profile].

As indicated above, the rate at which recovered compartment R is achieved
by infected non-ICU cases is wy and by ICU patients wo. Once infected, that
is, once in compartment I, individuals are certain to reach the recovered com-
partment R after some time unless they die.

Based on current knowledge, it is possible for symptoms to reappear at
any time point and even for susceptibility to be regained by (some) individ-
uals due to a lessening of the protective effect of recovery. A mathematical
modeling framework capable of describing immunity as decreasing and build-
ing over time seems reasonable [Diekmann 2018]. In this work, a fraction 7 of
recovered individuals whose immune status has fallen below a certain critical
value returns to the I compartment per unit time.

In a longitudinal cohort study, the incidence of PCR-confirmed SARS-CoV-
2 infection was assessed in seropositive and seronegative health care work-
ers screening 12,541 asymptomatic and symptomatic individuals at Oxford
University Hospitals using an enzyme-linked immunosorbent assay (ELISA)
against trimeric spike immunoglobulin G (IgG). Baseline antibody status was
determined by anti-spike and anti-nucleocapsid IgG assays, and employees
were followed for up to 31 weeks. Results suggested that a previous infection
resulting in antibodies to SARS-CoV-2 provides protection against re-infection
for at least 6 months in most individuals [Lumley 2020].



A Nonstandard Finite Difference Scheme for a COVID-19 model 7

3 Transmission Dynamics in the SVICDR Model

In the proposed model, the quarantine and contact rates used are assumed
to be cosine functions and defined in Subsection 3.2. Contact here includes
contact with any other individuals in the population under consideration. The
resulting transmission rate of the model is derived in Subsection 3.3.

3.1 The Transmission Risk

Let c. denote the average number of all contacts between a susceptible and
an infectious person in the population under consideration per unit time. It
is also called the effective contact rate of a population. In addition, a certain
condition can be imposed, such as a sufficiently small distance between the
two individuals involved. Let s be the average number of acquired secondary
infections per unit time in the population under consideration. Here, the trans-
mission risk B with respect to a given infection and population is defined by
the ratio of s to c., i.e. 8 = s/c,.

The above definition of transmission risk can also be called secondary attack
rate, which allows statements about the contagiousness of an agent. Let v =
7 N (t) be the number of contacts an individual makes per unit time ¢. Where
7 is the per capita contact rate. The effective contact rate c. is less than or
equal to the total contact rate ~y. Multiplying the per capita contact rate ¥
by (3 yields the rate B, that is, the rate at which susceptible individuals are
infected per unit time: B = B7.

Since the number of susceptibles who get infected per infectious individual
per unit of time ¢ is

_ S(t) ~
5 (N W) i =B, (7)
where S(t)/N(t) is the proportion of susceptibles within the population, the
term 3 I(t) S(t) represents the number of susceptibles infected by individuals in
compartment I at time ¢, where 8 I(t) describes the corresponding infectivity
[Martcheva 2015, p. 10].

Transmission risks posed by different compartments are different. In Sec-
tion 2.2, six compartments were presented, of which compartments I and C' are
the infected states in the SVICDR model presented. Since no subdivision into
noninfectious and infectious sub-compartments is made here, compartments 1
and C are simultaneously the so-called infectious states, since individuals in
them can be infectious. With respect to the compartments K € {I,C}, the
number of individuals infected by a compartment K at time ¢ is defined as

B () K(t) S(t). (®)

The difference between the transmission risks posed by I and C must
be expressed. Hence, a factor ex € [0,1] is multiplied by the transmission
risk 8 to obtain the specific transmission risk emanating from class K. A
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compartment where susceptible individuals have a higher risk of infection on
contact than another class is interpreted as a compartment that poses a higher
risk of transmission. Since ICU patients are more isolated than other infected
individuals, the following inequality between the two modifiers can be deduced:
1>€er >e€ec>0.

3.2 Contact and Quarantine Rates

The course of the SARS-CoV-2 incidence in Germany implies that the re-
strictive measures of the respective federal state increased until April 2020,
were continuously reduced between May and September 2020, expanded again
strongly during the second major wave between October 2020 and February
2021, and decreased again from the end of May 2021.

The initial time point considered, to which the initial contact rate ¢y and
quarantine rate qq refer, is the beginning of the 10" calendar week in 2020.
The value 7(t) is the average number of contacts of an individual in the popu-
lation in week ¢. The value ¢(t) denotes the average proportion of individuals
quarantined in week t. The form of the contact and quarantine rate functions
is as defined in the equations (9) and (10).

~(t) = (c2 — o) COS(210 (t— zl)) +cq, (9)
alt) = a1 cos( 5 (t = 22)) +ar. (10)

For example, under no-pandemic conditions, the average number of con-
tacts per person per week can be assumed to be greater than 100 (i.e., greater
than an average of 14 contacts of any type per person per day) and the quar-
antine rate to be zero or very slightly greater than zero. Under pandemic
conditions, the contact rate should be assumed to be significantly less than
this and the quarantine rate should be assumed to be greater than this, in
accordance with high vigilance, standoff regulations, and more extensive in-
tervention measures, if necessary. Increased government intervention and pre-
cautionary measures should generally lead to an increase in the ¢; parameter
in the ¢(t) rate and a decrease in the ¢; parameter in the () rate.

3.3 Transmission Rate

Recalling the discussion in Subsection 3.1, the number of individuals infected
with K € {I,C} per unit time is

Lnew(t) = By (t) ex K(t) S(t). (11)

If a bilinear incidence is assumed, it can be seen that the number of susceptibles
infected at time ¢ is given by

Lnew(t) := B(t) (e1 I(t) + ec C(t)) S(t). (12)
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Incorporating the quarantine rate ¢(¢) into (12), the transition from the class
S to I can be derived:

01(t) = By(t) (1 - q(t)). (13)
The number of individuals moving from the compartment S to I is:
O1(t) S(t) == 0r(t) (er I(t) + ec C(t)) S(¢). (14)

A compartment S, reached by susceptibles who are quarantined and thus
cannot be infected per moment of time ¢ could be included in the model.
To include this compartment S, in the implementation, reliable data on the
number of individuals in preventive quarantine per unit time would need to
be available.

4 Transition Dynamics in the SVICDR Model

Since no tourism and births are considered and individuals in the considered
population may die and thus leave the system, the total number of individuals
is not assumed to be constant N at all time points, but is described by a
time-dependent function N (t). We obtain the SVICDR model and it holds

N:[0,T] =N, N(t):=S8@t)+V(t)+I(t)+Ct)+ D)+ R(). (15)

A standard incidence is used in the implementation. Thus, when multiplying
the transmission rate by the size of the susceptible compartment at time ¢,
S(t) is normalized to the size of the total population minus the size of the
deceased compartment at time t.

On the one hand, the use of a standard incidence requires the calculation
of the time derivative of the time-dependent relation S(¢)/N(t). On the other
hand, constancy can be achieved by adding the value N as a recruitment
rate to the ODE related to the susceptible compartment. The resulting ODE
system for the SVICDR model reads

%ﬁt) = —0y(t) N(t)SEt)D(t) —(V+u)S),

MO v 50— nvin,

dI () S(t)

T @I(t)m—FnR(t)—(ﬁ—i-wl + M "’H) 1(t), 16)
dcdf) = €1(t) — (w2 + Ao+ 1) C(1),

dD(#)

dR(t)
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Here, the rate of transition from the compartment S to I is defined by
Or(t) :=0;(¢) (6[ I(t) + ec C(t)) (17)

The dynamics of this model with pooled infected compartments arising from
the system (16) are visualized in Figure 1. Blue arrows from one compartment
to another indicate a transition, where the compartment from which a red
dashed arrow emanates can infect susceptibles.

Fig. 1 Compartment model for the SVICDR model

Let us note that a larger compartment model with 13 compartments, from
which the presented SVICDR model can be derived as a submodel, is derived
concisely in [Treibert 2021].

The basic reproduction number is defined as the expected number of sec-
ondary infections caused by the first infected individual introduced into a pop-
ulation of only susceptible individuals without immunized population mem-
bers and in the absence of controlling interventions. For an arbitrary system
of ODEs of a compartment model the basic and control reproduction numbers
can be computed with the aid of the technique of so-called next generation
matrices (NGMs) [Diekmann 2009]. Using the function f : R™ — R"™, that
maps the state variables to their derivations, the dynamics of the system of
ODEs can be written as

X'(t)=f(X(t), with X =(X1,...,Xp, Xps1,...,Xn) ",

of which X, 1,...,X, are the infected states. Let F; be the flux of newly
infected individuals in the compartment i, and V;" (V;") the other enter-
ing (leaving) fluxes related to the compartment i, i € {1,...,n}. All three
are non-negative functions. Then the infected subsystem can be separated as
[Perasso 2018]

f(X)=F(X)+VH(X)+V (X).
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An endemic equilibrium (EE) point is a steady-state solution where the disease
persists in the population, which is the case when Ry > 1. A disease-free
equilibrium (DFE) point of an ODE system corresponding to a compartment
model is a steady-state solution where there is no disease i.e. Ry < 1. A DFE
point is given by X* = (X1%,...,X,",0,...,0), where the zero appears n — p
times, for which it holds that [Perasso 2018]

n-(). ()

with J; and Jy two resulting matrices. It holds that
[(Xy) =X =F(X)+Vi(X) forallie{p+1,...,n},

and the linearised system at the DFE can be written by means of the lineari-
sation of F and V:

0F;
5.Z‘j

oV;

gij - 7(5.Tj

(X7), T;; =

(X7).

Consequently, it holds that X’ = (£ + T') X [Barbarossa 2021]. The matrix
T corresponds to the transmissions and the matrix £ to the transitions in
the system. Let o(@) denote the spectrum of any square matrix @, then the
spectral radius of @ is

p(Q) = max{|\|, A € o(@) }.

and the stability modulus of @) is defined by
a(Q) = maX{Re(/\), A€ O'(Q)}.

If «(T) < 0, then the basic reproduction number Ry linked to the DFE X* of
the underlying system of ODEs is defined as [Perasso 2018]

Ry = p(—é’T_l), where K := —£T7L.

The matrix K7, is called the nezt-generation matric (NGM) with large domain.
Equivalent to K, the NGM with classical domain can be defined as

Kc=ETET'E,

Using this NGM technique, setting n = 0 and omitting for simplicity the
time reference t, the basic reproduction number RoSVICPR of the SVICDR
model can be derived as, cf. [Treibert 2021]

RySVICDR _ Beer(¢—1) Beec€(g—1) .
MAputw +& Qe+pt+w) N +p+w +8)

(18)
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Next, the normalized forward sensitivity index is used for a sensitivity
analysis of a basic reproduction number Ry depending on a certain model
parameter. This index is defined as [Chintis 2008]

Ry _ 0T P (19)
P dp Ro’
where p is a selected model parameter. A positive (negative) sensitivity index
means that the prevalence of the disease increases (decreases) if the value of the
respective parameter is increased. For instance, with respect to equation (18)
the normalized forward sensitivity index of Ro®Y!°PR depending on ~ is

SROSVICDR B Ber(g—1) B Bec&(qg—1)
v MAp+twr+€ Qotptw)M+ptw +8)°

The message propagation technique, applicable to compartment models in
which contacts are modeled as a network, even allows upper bounds on the
size of disease outbreaks in the form of upper bounds on the probability that
a given individual will ever contract the disease [Wilkinson 2017].

Adding the recruitment rate 4 N, the equilibrium conditions for the model
(16) are given by

(20)

S*

pN" =0 5 + (V+u) s,
VS*=puV*,
g
@?m=(§+w1+>\1+u)—n3*, (21)
1" = (wa + Ao + ) C,
MIF =X CF,

wll*—i—wzC’*:(n—i—u)R*,

where ©F = 0} (e; I* + ec C*). Substitution of the fourth of these conditions
into the last gives

* £rr
wi I* + ws
R* = atieth (22)

n+p
Then, substituting the equation (22) and the fourth equation of the system
(21) into the third yields

9*( I )
e d e e ) Ne—Dr

* &I
w1 I + w2 wa+Ao+ 1 . (23)

n+u

:(£+w1+>\1+u)77l

This indicates that either I* = 0 (point of the DFE) or

* gI*
w1 I™+ws watAotp

gr*
o7 (fff*“Om)
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(endemic equilibrium point). Regarding the first equation in (21) we see

N*
S* = a 1 ) (25)
07 (€II*+€CC*) ~vopr tV+u
such that S* = ’\‘}—ﬂ in the DFE. Rearranging terms in the second equation
in (21), we obtain that
VY S*
V= . 26
. (26)
It follows that the DFE point is
uN* VuN*
S VIO DR = (L 10,0,0,0). 27
( 1= +ul p(V+p) @)
The endemic equilibrium exists in this case if and only if S* is less than “‘;—f;

5 Numerical Methods

The ODE system given in Section 4 is solved by an explicit nonstandard
finite difference (NSFD) scheme designed in Section 5.2. The discrete ¢2-error
between the reported time series data and the compartment size data output
by the NSFD scheme is calculated using the nonlinear least squares (NLS)
method in MATLAB, see Subsection 5.1.

5.1 The Nonlinear Least Squares Approach to Compartment Models

The term measurement describes a quantification of a certain state variable,
and D;(t;), 5 € {1,...,1}, i € {1,..., N} be the measurement with respect to
the state variable z; representing the size of the compartment C; at a time
t; € [to, t;] in this context. Let the measured data for the i*" compartment and
the 7' time point be represented in the vector D]m = D;(t;).

Subsequently, a measurement function ®(t) exists that maps a point in
time ¢; € [to,?;] into a measured s-dimensional data set:

$:R—-R5, &) :=[D;V,... D;INT eRs. (28)

The complete set of measured data covering all compartments and all points
in time t € [to, ;] is saved as a matrix of the size I X s, that can be transformed
into a vector @ of the form & := [B(ty),...,d(t;)]T € R" with n = Is.

Next, let Y;(¢;,9) be the program output data for the compartment K;,
i€ {l,...,s} and the time ¢;, j € {1,...,1}, which is abbreviated as Yj(l) =
Yi(t;,9). Consequently, a model function Y(t,9) exists that maps a point in
time ¢; into a set of generated data for a given parameter vector ¥:

V:RxR™ =R, V(t;,9) =[v;Y, ... v, (29)
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The complete set of data provided by the model, which includes all s com-
partments and all time points ¢ € [to,#], is stored as a matrix of size | X s,
which is transformed into a vector ) of the form

V) = [V(to,9),...,V(t1,9)]  €R". (30)

A model output data set )>(19) obtained from the integration of a system of
ODEs with certain initial conditions can be fitted as optimally as possible
to a given time series data set & by optimizing the adjustable part of the
model parameters 9. Thus, let the adjustable part of the parameter vector
¥ to be optimized be ¥ € R™, and let the fixed part of ¥ be ¥ € R™2
with m; + mo = m. In the following, an entry of the vector & is denoted
by @, k € {1,...,n} and an entry of the vector Y(¢)) is denoted by Vi (1),
ke{l,...,n}.

A nonlinear optimization problem is an NLS problem if the objective func-
tion f has the form of so-called squared residuals. We assume for each of the
s compartments Kq,...,Ks the same [ observation points in time. Let the
mentioned residuals be denoted by r, with r: R™ — R"”, for which it holds

Vk e {1,...,n}: rp(0) := &y — Vi(9) with Y(9) € R", & € R, 9 € R™. (31)

The objective function of the respective least squares problem is defined as
f:R™ =R, [ Zrk . (32)

Expressed mathematically and using the Euclidean norm, the resulting uncon-
strained optimization problem has the objective function

Juin f(9) ZTk P= e = 1@ = Y)II5 =Y (P — V()"

k=1

(33)

5.2 A Nonstandard Finite Difference Scheme for the SVICDR model

Finite difference methods are a class of numerical techniques to solve differen-
tial equations by approximating the derivatives with finite difference quotients.
In addition to properties such as stability and continuity, qualitative properties
such as positivity preservation and correct asymptotic long-term behavior are
also important, e.g. in biological systems where the positivity of the number
of individuals in the compartments must be preserved. This is exactly where
nonstandard finite difference (NSFD) procedures come into play to meet these
requirements.

A numerical scheme for a system of first-order differential equations is
called NSFD scheme if at least one of the following conditions described in
[Mickens 2000] is satisfied:
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— First-order derivatives are approximated by the generalized forward differ-

ence method (forward Euler method) %= ~ “”;gg)“", where u,, = u(ty)

and ¢ = ¢(h) is the so-called denominator function with ¢(h) = h+O(h?).
— The nonlinear terms are approximated in a non-local way, e.g. by a suitable
function of several grid points, like u?(t,) &~ Upun11 or u3(t,) & U2 t,41.

According to [Mickens 2000], further basic rules of NSFD are the equivalence
between the orders of the discrete derivatives and the orders of the correspond-
ing derivatives appearing in the differential equations, non-trivial denominator
functions of the discrete representations for the derivatives, etc.

In order to be able to derive the denominator function ¢ the following
consideration is made. It is defined that N = N—D = S+V+I+C+R, and an
actually negligible recruitment rate p is added to the system [Suryanto 2011].
Adding the differential equations of the model yields

P 1 5)), (39
that is solved by
Nit)=1+(N"—1)e "' =N+ (N —1)(e " —1). (35)

with NO = §(0) + V(0) 4 1(0) 4+ C(0) + R(0).
The transmission rate in the n'® step is defined as

07 (t) = B"y"(t) (1 - q" (1)) (36)

With the aid of these and the denominator function, an NSFD scheme can be
established for the SVICDR model (16):

V”:;(h) vt Y st _ yntt
I";l(h—) o 07 (er I +ec C™) 7an_+;n +nR"
_ (§+W1 + )\ +M) In-irl7
Cn;l(h)cn = &I — (wo + Ao+ p) C™T, (37)
Dn:(h_> A o
W =w I"M +w, O™ — (4 p) R

Analogously to the continuous model (16), adding the equations (37) yields

NnJrl . Nn

O (1-N"t1), h=At (38)
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The denominator function can be derived by comparing equation (38) with
the discrete version of equation (35), that is

N = N 4 (N — 1) (e7#t = 1), (39)
such that the denominator function is defined by

—uh 1 ..272
P P it S St UL L St S S TR SO TS
—H —H 2

(40)
This means that the solution of equation (39) is exactly the discrete version
of equation (35) if we use the denominator function given in (40). In other
words, using the NSFD the long term behaviour of the total population is
properly modelled. An even more accurate way to compute the denominator
function would take into account the transition rate 7} at which the i*® com-
partment is entered by individuals for all model compartments IC;, i = 1,2,.. .,
cf. [Ehrhardt, Mickens]. In this case the parameter p occurring in the denom-
inator function in equation (40) would be replaced by a parameter T*. T*
could be determined as the minimum of the inverse transition parameters:

=i {7} )

The designed NSFD scheme (37) is formally implicit. However, it can be
easily rearranged to obtain a scheme that can be evaluated sequentially in an
efficient explicit way, i.e., a solution of a nonlinear system is avoided. Here we
give this rearranged NSFD scheme for the SVICDR model (37):

gt — 5"
L4 9(h) (07 (e I + €0 C") ypm + (V4 1))
yrtl — V" 4+ ¢(h) VSt
1+ o(h)
I re ) (07 ec C" 55w +n R")
1+ ¢(h) ((€+w1+/\1+u) O er e ) (42)
ot OO €I

L+ ¢(h) (w2 + A2 +p)’
D™ = D"+ ¢(h) (A "+ A O™,
R"™ + ¢(h> (Wl I7L+1 +w07l+1)
L+ (h) (n+ p)
The NSFD scheme (42) is positivity preserving, i.e. for positive data it al-
ways produces non-negative solutions since all parameters and the denomina-
tor function are non-negative (if e; is sufficiently small). Thus negative values

for the solution are avoided. Moreover, stability with respect to the maximum
norm is ensured, cf. [Ehrhardt, Mickens].

Rn+1 —
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6 Results

Online sources accessed to obtain compartment size data related to Germany
include the Robert-Koch Institute [RKI Incidence Data, RKI Mortality Data],
the German Interdisciplinary Association for Intensive Care and Emergency
Medicine (DIVI) [DIVI 2021], and the German COVID-19 Vaccination Dash-
board [Vaccination Dashboard]. Data are for March 2020 through June 2021.
The corresponding Matlab scripts can be found in [Treibert Gitlab].

Table 1 shows all parameters used in the implementation of the SVICDR
model. It contains all parameter definitions, parameter calculation formulas,
and parameter values used to fit the ODE system to the observed pandemic
situation in Germany.

The vaccination rate is the exponential function v(t) = 0.001-e/!'. Figure 2
shows v(t) and the proportion of actually secondarily vaccinated individuals
in the German population between spring 2020 and summer 2021.

o
©

= actual proportion of second vaccinations
exponential vaccination rate v(t)

e
3

o
o
T

I
o

X 65 i
Y 0.3991
J i

o
w

fraction of the German population
o =}
n S

o

0 10 20 30 40 50 60 70 80
calendar weeks starting from April 13th 2020

Fig. 2 The actual proportion of second vaccinations in Germany [Vaccination Dashboard]
between April 13" 2020 and July 11*" 2021 and the selected exponential vaccination rate
v(t) = 0.001 - et/11 from April 132 2020.

As Figure 2 shows, the proportion of effective second vaccinations in the
German population is about 3.5 % in calendar week 11 in 2021 (mid-March),
11 % in calendar week 20 (mid-May), 25 % in calendar week 29 (end of June),
and 40% in calendar week 28 (mid-July). The vaccination rate v(t) yields
higher values than the actual immunisation rate until calendar week 23 (early
June), i.e., 7% in calendar week 11 and 16 % in calendar week 20, but slightly
lower values than these from then on, i.e., 27.6% in calendar week 25 and
38.4% in calendar week 28.

The following Figures 3 to 7 show the results of the differently chosen
bounds of the estimated parameters. The aim was to create different scenarios
of the courses of the pandemic wave in autumn 2021. Four different values for
the parameter ¢; with the same fixed bounds for the other estimated parame-
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Table 1 Selected parameter values and definitions for the SVICDR Model for Germany

Parameter

N
L

o
B
co
C1
c2
Z1
(1)
q1
z2
q(t)

€1
€c

0r(t)
Tr
Tc
My
Mc
K
n
va
vB

v(t)

Parameter Definition

population size
life expectancy in years
weekly natural death rate
transmission risk
first contact rate parameter
second contact rate parameter
amplitude of the contact rate
shift of v(¢) on the x-axis
time-dependent contact rate
determines max. quarantine ratio
shift of ¢(¢) on the x-axis
time-dependent case quarantine rate
modification of the
transmission risk for I
modification of the
transmission risk for C'
transmission rate for S — I
length of contagious period
time from ICU admission until recovery
CFR for the infected
CFR for the intensive care patients
case-ICU admission rate
case-re-infection ratio
initial vaccination ratio
inverse exponent of the vaccination rate

vaccination rate

Sourcing

Reported
Reported
£52
Estimated
exemplary
exemplary
exemplary
exemplary
(e2 — novnOmmwﬁ - vav +ec1
Estimated
exemplary
awnomAmq‘oﬁ - nwvv + a1

Estimated

Estimated

B(t) (1 — q(t))
Reported
Reported
Reported

Estimated
Reported
Estimated
Reported
Reported

t

vpevB

Bound Interval

[0.01,0.05)

[0.05,0.7]

[0.05,0.5)
[0.05,0.25)

[0.1,0.7]

0,0.0005]

Final Value (Interval)

83,100,000 [Federal Statistical Office, Population]
80.8 [Federal Statistical Office, Life Expectancy]
0.0002374
0.03,0.05]

10
30,60]

30
13

[0.05,0.7], bound values rarely hit
25

[0.26,0.34]

[0.1,0.24]

1.71429 [RKI SARS-CoV-2 Profile]
2.57143 [RKI SARS-CoV-2 Profile]
0.02634249
[0.1,0.59], bound values not hit
0.078551937
[0,0.0005], bound values sometimes hit
o.moH

1
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Fig. 3 Prediction of the size of the infected compartment for the parameter bounds
B €[0.01,0.05], c1 € [38,47], q1 € [0.05,0.7], ec € [0.05,0.25], e; € [0.05,0.5].

ters were used to create Figure 3. The parameter 5 was optimized in different
program runs in a range between 0.03 and 0.049.

It can be seen that higher values of 3, ¢1, e and €; result in comparatively
higher curve levels. Figure 3 shows that there is a peak of varying magnitude
in calendar week 34 in 2021. In the upper left plot, there is a comparatively
small peak of 14,340 infected individuals, while in the upper right plot it is
43,530, in the lower left plot it is 22,960, and in the lower right plot it is 80,040.
Despite the smaller value of ¢; in the upper right compared to the lower left
diagram, here the much higher transmission risk leads to a peak almost twice
as high.

In 2020, 15,921 new infections were observed in Germany in calendar
week 40, 26,111 in calendar week 41, 42,055 in calendar week 42, and 74,848
in calendar week 43, and a peak number of 174,772 in calendar week 51
[RKI Incidence Datal. It should be noted that the number of individuals in
the infected compartment is likely to be 1.3 to 2.3 times higher than the num-
ber of new infections per unit time.

In 2021, high numbers of second COVID-19 vaccinations should lead to
a decrease in incidence compared with 2020. Nonetheless, mutant variants,
such as the delta variant (B.1.617.2) in particular, that accounted for 37 % of
SARS-CoV-2-positive cases in Germany in calendar week 24 in 2021, may be
more resistant to given vaccines as well as more dangerous to unvaccinated
individuals [RKI 2021].

One possible factor increasing the transmission risk 5 and the re-infection
rate n is an increased proportion of mutations with higher transmissibility
than the originally known novel coronavirus among all infections. According
to preliminary results, COVID-19 vaccines approved in Germany immunize
the vaccinated more effectively against the Alpha (B.1.1.7) than against the
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Delta variant of concern, although high protection against B.1.617.2 appears
to be present in fully vaccinated individuals [RKI 2021].

If a leaky vaccination was assumed without introducing any leaky-vaccinated
compartment, the transmission risk S emerging from vaccinated people in a
subsequent infected state would be reduced. In this case, a poorly organized
vaccination strategy would result in a comparatively large transmission risk.

£ =10.0488488, c1=38, q1= 0.376184, 3 =0.0488488, c1=40, q1= 0.376184,
5 €.,=0.149884, ¢ =0.245577 5 €.,=0.149884, ¢ =0.245577
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92 92 xis
@ 1 v ¥ 101900 b 1 \_/

0 0

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
calendar weeks from week 19 (May 10th) 2021 calendar weeks from week 19 (May 10th) 2021
8 =10.0488488, c1=42, q1= 0.376184, £ =0.0488706, c1=45, q1= 0.376178,
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Fig. 4 Prediction of the size of the infected compartment for the parameter bounds
B €[0.01,0.1], ¢ € [38,45], q1 € [0.05,0.7], ec € [0.05,0.25], e; € [0.1,0.4].

Compared to Figure 3, the bounds of parameters 5 and €; are changed in
the scenario presented in Figure 4. The estimated parameter values obtained
in the four resulting plots are very similar among themselves. The only clear
difference between the four plots is the value of the parameter ¢; shaping the
contact rate function, which is fixed. The value ¢; = 38 causes local maxima
of 58 and local minima of 18 contacts, whereas the value ¢; = 47 results in
local maxima of 67 and local minima of 27 contacts per week. It can be noted
that the increase of ¢; from 38 to 40 (42, and 45, respectively) leads to an
increase of 29,900 (70,600, and 162,600, respectively), i.e. to a tripling (almost
sevenfold, and almost 16-fold, respectively) of the size of the local maximum
reached in calendar week 34/35 (end of August).

In the Figures 5 and 6, the bound of the parameter ¢; is set to [0.01,0.1] to
obtain the upper left plot, [0.01,0.25] to obtain the upper right plot, [0.01, 0.5]
to obtain the lower left plot, and [0.01,0.7] to obtain the lower right plot.
The other model parameters remain at very similar or the same level in the
four plots. Assigning g1 to a value in the interval (0,0.1) as in the upper left
diagram can be considered as a scenario of lighter NPIs or a baseline scenario.

Values ¢; € (0.1,0.5) as in the other three graphs correspond to interven-
tion scenarios of varying magnitude, including increased testing activity lead-
ing to more case isolations, more actual quarantines imposed on contacts of
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Fig. 5 Prediction of the size of the infected compartment for the parameter bounds
B €[0.01,0.1], ¢; = 43, e¢ € [0.05,0.25], €7 € [0.1,0.4].
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Fig. 6 Prediction of the size of the intensive care compartment for the parameter bounds
B € [0.01,0.1], ¢c1 =43, ec € [0.05,0.25], e € [0.1,0.4].

infected cases, curfews, and remote work in possible sectors. Adopting control
measures such as closing schools, universities, restaurants, and other facilities
can be considered ”partial quarantine” for affected individuals. This type of
quarantine is not imposed directly by the state or an institution and is not a
self-quarantine, but ensures that individuals have fewer contacts and leave the
house less often.

A scenario characterized by the absence of a broad quarantine program,
but primarily increased awareness in response to the pandemic itself and initial
recommendations from the media or health institutions, does not result in a
substantial change in the parameter ¢;, but in a decrease in ¢;.
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In Figures 5 and 6 it can be observed that an increase in ¢; leads to an
earlier reaching of the peak as well as to a larger local maximum. The peak in
the size of the infected compartment occurs between calendar weeks 35 and 36
(cf. Fig. 5) and the peak in the size of the intensive compartment occurs 1-2
weeks later between calendar weeks 36 and 38 (cf. Fig. 6) in September 2021.
The respective delay in ICU admission after infection appears reasonable.

An increase in the peak size between the upper left diagram (¢; = 0.055387)
and the upper right diagram (g1 = 0.124728) of 23 (24) %, the lower left
diagram (g1 = 0.279607) of 51 (61)%, and the lower right diagram (¢, =
0.356349) of 63 (77) % is discernible in Figure 6 (Figure 5). The corresponding
increase in the transmission risk 5 outweighs the increase in ¢;.
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Fig. 7 Prediction of the size of the infected compartment for the parameter bounds
B €[0.01,0.1], ¢1 € [50,60], q1 € [0.05,0.7], ec € [0.05,0.25], e = 0.175.

In Figure 7 the parameter ¢; is fixed to the value 0.175. In several program
runs, this value was found to yield comparatively reasonable curve shapes
and peak height ranges in the four plots when the bound of the contact rate
parameter ¢ is raised to the interval [50,60]. While 117,400 infected persons
(upper left plot of Fig. 7) are not unlikely in calendar week 34 in 2021, 346,500
infected persons i.e. ¢; = 60 (lower right plot of Fig. 7) are considered unlikely
because of the large proportion of vaccinated persons in the population. A
number of more than 200,000 infected persons should be considered high,
since the peak size in the German pandemic so far was about 175,000 weekly
new infections in December 2020 [RKI Incidence Data).

A comparison of the lower right plot of Figure 7 with the lower right plot
of Figure 5 proves that increasing 5 and c; leads to a large increase in peak
height despite the simultaneous slight increase in ¢; and decrease in e;. It
amounts to 31 % in this case, i.e., almost one third. It is noticeable that the
local minima in all four plots per figure in the Figures 3 to 7 reach very similar
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levels between calendar weeks 27 and 28, although stronger local maxima in
the autumn of 2021 are accompanied by somewhat weaker local minima in the
summer of 2021.

7 Conclusion

Since the application of the NSFD scheme for the SVICDR model leads to
realistic results and this method has a number of favorable properties such as
preservation of positivity and correct long-term behavior, the performance of
NSFD schemes applied to other compartment models should be investigated.

Our implementation based on the model-specific NSFD scheme shows that
increasing the g; parameter in the quarantine rate function ¢(¢) or decreasing
the ¢; parameter of the contact rate function 7(t) leads to containment of
infection counts. We found that program runs with lower bounds on ¢; resulted
in later peak performances. We note that an increase in quarantine rates is
usually accompanied by a decrease in contact rates in terms of an intervention
strategy, so that the containment effect of an increased ¢; is again maintained.

A change in the vaccination strategy or testing policy may indirectly affect
quarantine rates because quarantine or testing policies may be adjusted to
reflect the general vaccination status of the population.

In this work, a specific exponential vaccination rate was used, which fits
well with the previous course of vaccination development in Germany. Program
runs demonstrated that changing only the parameter v, in the vaccination rate
v(t) = vaet/"® changes the maximum achieved number of infections in the
expected direction (i.e., a moderately increased v, causes a slightly higher
incidence due to slower functional growth). If the bounds on other parameters
are set further, a program run with increased v, may result in comparatively
lower infection rates through the simultaneous optimization of other estimated
parameters such as transmission risk g or reinfection rate 7.

A reduced transmission risk 8 always favors a scenario with reduced infec-
tion, ICU, and case-fatality rates. The calculation of sensitivity indices (see
Section 4) of estimated model parameters as a function of the model-specific
basic reproduction number according to [Treibert 2021, p. 100] shows the large
influence of the transmission modification factors ¢; and - on the forward
normalized sensitivity indices of 3, v(¢), and ¢(t).

A possible extension of the SVICDR model is to divide the infected com-
partment [ into an asymptomatic compartment and a symptomatic compart-
ment. The associated goal would be to track the evolution of asymptomatic
transmissions and their proportion of all observed transmissions.

Another interesting research question is the extent to which declining im-
munity in recovered and fully vaccinated individuals may influence future pan-
demic evolution. There are few approaches to compartmental models of de-
clining immunity in the literature [Ehrhardt 2019]. For example, the level of
antibodies as a function of elapsed time can be modeled by a probability dis-
tribution. In addition, models with lag differential equations take into account



24 Sarah Marie Treibert et al.

a lag representing the average duration of disease-induced immunity. They are
characterized by a higher degree of accuracy than SIR models. The distribution
of immune status, i.e., antibody levels, could be described based on a within-
host submodel for continuous decay and occasional boosting [Diekmann 2018].

Finally, the major future advance is to use PDEs instead of comparatively
simple ODEs for disease modeling. In this way, the spatial dependence of
pandemic spread could be studied in much more detail. Then the network
is defined by a metric graph, i.e., a graph where the connections between
nodes (called bonds) are intervals rather than just undirected connections.
The blocking measures and mobility restrictions or impacts of travel activities
can then be modeled in a much more sophisticated way by using appropriate,
specially designed constraints at the branch points of the metric graph. These
conditions accurately model the spatial effects of the restrictions or relax-
ations, much better than simply adjusting the transition rates as in the ODE
case before. However, these branch point conditions are quite complicated and
computationally expensive.
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