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Abstract

Reliable epistemic uncertainty estimation is an essential component for backend applications of deep object detectors in
safety-critical environments. Modern network architectures tend to give poorly calibrated confidences with limited predictive
power. Here, we introduce novel gradient-based uncertainty metrics and investigate them for different object detection architectures.
Experiments on the MS COCO, PASCAL VOC and the KITTI dataset show significant improvements in true positive / false
positive discrimination and prediction of intersection over union as compared to network confidence. We also find improvement
over Monte-Carlo dropout uncertainty metrics and further significant boosts by aggregating different sources of uncertainty metrics.
The resulting uncertainty models generate well-calibrated confidences in all instances. Furthermore, we implement our uncertainty
quantification models into object detection pipelines as a means to discern true against false predictions, replacing the ordinary
score-threshold-based decision rule. In our experiments, we achieve a significant boost in detection performance in terms of mean
average precision. With respect to computational complexity, we find that computing gradient uncertainty metrics results in floating
point operation counts similar to those of Monte-Carlo dropout.

Index Terms

deep learning, uncertainty quantification, gradient metrics, object detection

I. INTRODUCTION

Deep artificial neural networks (DNNs) designed for tasks such as object detection or semantic segmentation provide a
probabilistic prediction on given feature data such as camera images. Modern deep object detection architectures [1, 2, 3,
4] predict bounding boxes for instances of a set of learnt classes on an input image. The so-called objectness or confidence
score, indicates the probability of the existence of an object. Throughout this work, we will refer to this quantity which the
DNN learns as the “score”. We use the term “confidence” more broadly than “score” to refer to quantities which represent the
probability of a detection being correct, thus reflecting the model’s overall level of competency when presented with a given
input

Accurate probabilistic predictions are desirable for applications such as automated surgery or driving. A well-known problem
with modern DNNs in general [5, 6, 7], is that their probabilistic predictions are statistically miscalibrated, i.e., the score they
generate is not reflective of the relative frequency of correct predictions. See fig. 1 for a comparison of different sources of
uncertainty in terms of their reliability / conditional accuracy over confidence bins.

For individual detections, miscalibration implies that the given confidence and thus, the entire prediction is unreliable. This,
in turn, could conceivably lead to technological breakdown. Over-confident predictions might render an autonomous driving
system inoperable by perceiving non-existent instances (false positives / FP). Perhaps even more detrimental, under-confidence
may lead to false negative (FN) predictions possibly endangering humans outside autonomous vehicles like pedestrians and
cyclists, as well as passengers.
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Fig. 1. Reliability plots for score (left), MC dropout uncertainty (center) and
our proposed gradient uncertainty metrics G (right). As a reference, we show
the optimally calibrated diagonal in gray. See section IV and section D for
more details. Model: Faster R-CNN, dataset: KITTI evaluation split.

The notion of prediction confidence is intimately linked to
measures of uncertainty and the probability estimation of a
prediction being accurate. Uncertainty for statistical models,
in particular DNNs, can broadly be divided into two types [8]
depending on their primary source [9, 10]. Whereas aleatoric
uncertainty is mainly founded in the stochastic nature of the
data generating process, epistemic uncertainty stems from the
probabilistic nature of sampling data for training, as well, as
the choice of model and the training algorithm. The latter is
technically reducible by obtaining additional training data.

Nowadays, there are a few established approaches to
properly capture uncertainty. The authors of [10] propose
to add regression outputs to DNNs in order to generate het-
eroscedastic models resulting in image-dependent uncertainty
measures. The model is trained with a negative log-likelihood loss depending on the uncertainty output. This approach has
found adaptations in modern DNNs for a broad range of applications. From a theoretical point of view, Bayesian DNNs [11, 12]
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represent an attractive framework for capturing epistemic uncertainty for DNNs by modeling their weights as random variables.
Practically, this approach introduces a large computational overhead making its application infeasible for tasks such as object
detection. Therefore, in variational inference approaches, weights are sampled from predefined distributions to address this.
A standard tool for estimating epistemic uncertainty is Monte-Carlo (MC) dropout variational inference [13, 14], employing
several forward passes under dropout. The same idea underlies deep ensemble sampling [15] where separately trained models
with the same architecture produce variational forward passes.

In [16] the usage of a learning gradient evaluated at the network’s own prediction was proposed to contain epistemic
uncertainty information. Since the initial investigation for image classification, the method has attracted attention in the literature.
A survey compared gradient metrics to other uncertainty quantification methods in [17] where gradient uncertainty was found to
be strongly correlated with the softmax entropy of classification networks. The method has also been applied gainfully to natural
language understanding [18] where gradient metrics and deep ensemble uncertainty were aggregated to obtain well-calibrated
confidence measures on out-of-distribution data.

The new method we propose here implements gradient-based uncertainty metrics for three modern object detection architectures
[2, 3, 4]. We use the obtained metrics for predicting detection quality and compare them in this discipline with the score as
well as MC dropout and the output-based framework proposed in [19]. We investigate how these methods can be combined by
aggregation for a more comprehensive estimation of prediction uncertainty. Our main contributions are:
• We introduce novel gradient-based epistemic uncertainty metrics and show how to implement them for different modern

object detection architectures.
• We investigate the performance of gradient metrics in terms of calibration, meta classification (FP detection) and meta

regression (prediction of intersection over union IoU with the ground truth) and compare them with other means to quantify
epistemic uncertainty. We show that the resulting meta classifiers can be used to improve object detection performance in
terms of mean average precision (mAP ).

• We provide a theoretical treatment of the computational complexity of gradient metrics in comparison with MC dropout.

II. RELATED WORK

Recent progress in the estimation of aleatoric uncertainty has been made in [20, 21, 22, 23, 24, 25]. In [20], a two-stage detector
is adapted to learn the IoU of its prediction with the ground truth directly. Meanwhile, approaches such as [21, 22, 23, 24,
26, 27] learn the bounding box localization regression for various architectures as Gaussian distributions for each localization
variable individually. These approaches aim at learning aleatoric uncertainty from the training dataset in the manner described
in [10].

As a tool for estimating epistemic uncertainty, MC dropout sampling has been successfully applied to deep object detection
in [28]. The authors of [26] employed MC dropout and Bayesian inference as a replacement of Non-Maximum Suppression
(NMS) to get a joint estimation of epistemic and aleatoric uncertainty. Similarly, uncertainty measures of epistemic and aleatoric
kind were obtained in [25]. A novel approach to predictive uncertainty estimation in object detection was presented in [19].
The approach is specific to anchor-based object detection architectures, where NMS is used to filter different output boxes
indicating the same object instance. The authors of [19] use the set of the filtered boxes for each predicted bounding box to
generate uncertainty metrics in a post-processing step. Deep ensemble object detectors were investigated in [29] for a variety of
architectures. The authors of [29] accumulate predictions from an ensemble of models and filter from all proposals by NMS
treating the entire ensemble as a single detector.

The concept of meta classification for detecting FP and FN on the basis of uncertainty metrics was first explored in [30].
The authors applied the central idea of combining different uncertainty metrics into one and then using the resulting quantity to
threshold upon, thereby discriminating true positives (TP) versus FP predictions. Since then, the approach has been applied
to semantic segmentation e.g. in [31, 32, 33, 34, 35], instance segmentation in videos [36] and object detection [19, 37].
The common idea in all of these adaptations is the usage of lightweight classification and regression models to explicitly
learn the map between uncertainty and the labels TP/FP or between uncertainty and IoU . Additionally, [31] introduces an
approach to use the mechanism of detecting FP predictions to improve network accuracy. This is achieved by first increasing
the DNN’s sensitivity resulting in additional FPs at first and then detecting those via a meta classifier. This method, therefore,
uses uncertainty information to improve prediction performance.

Our approach to uncertainty quantification is related to the one explored in [16] which was mentioned in section I. In contrast
to previous articles, the present work focuses on generating gradient uncertainty metrics for deep object detectors. In a manner
similar to [19], we use meta classification and meta regression to aggregate different gradient-based uncertainty metrics into
predictive models and investigate their performance and calibration. We adapt the approach from [31] to the object detection
setting and compare the different uncertainty sources in terms of the resulting detection performance.

III. METHODS

We fix the notation related to object detection in section A in detail.
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A. Epistemic uncertainty based on gradients

Generically, given an input x, a neural network infers a prediction ŷ(x,w) given a set of weights w. The latter is compared to
the ground truth y belonging to x by means of some loss function L(·, ·). Assume that ŷ is close to y, i.e., for all practical
purposes the prediction can be considered “correct”. Then, L(ŷ, y) is small, making only little adjustment in w necessary. This
adjustment is proportional to the gradient g(x,w, y) := ∇wL(ŷ(x,w); y) in standard gradient descent (see (8) in section A).
Hence, for correct predictions we expect this quantity to be of comparatively small magnitude. Conversely, when ŷ is decidedly
wrong, i.e., L(ŷ, y) is large, there is a large adjustment in w required. We then expect g(x,w, y) to have a relatively large
magnitude. Note, that this does not necessarily hold for non-convex optimization problems. In the following section, we
elaborate more in-depth upon this correspondence.

a) General intuition: In order to use g(x,w, y) as a measure of uncertainty, we assume that an optimally trained network
has maximal confidence in its then correct prediction ŷ(x,w). Regarding the loss function, such an optimally trained network
sits right at a global minimum of the function w 7→ L(ŷ(x,w), y). A network which is well-trained in the usual sense has w at
least close to a local minimum. Then, g(x,w, y) can still be interpreted as the amount of learning stress or weight adjustment
induced on w by training on the data (x, y). However, note that this makes use of the ground truth which is not accessible
during inference in all applications.

To assign uncertainty to the prediction ŷ(x,w), the approach presented in [16] is to replace the ground truth y by the
prediction ŷ. We then disregard its dependency on w when taking derivatives. That is, we use

g(x,w, ŷ) = ∇wL(ŷ(x,w), ŷ) (1)

as the basis for uncertainty metrics where now, derivatives are only taken w.r.t. the first slot of L(·, ·). In addition, we assume
that ŷ in the second slot takes on the form of a ground truth. For classification tasks, the class distribution ŷ(x,w) entering L
as the first argument is collapsed by an argmax to the predicted label before entering L in the second argument. In contrast to
g(x,w, y), eq. (1) indicates the network’s incentive to adjust w given that its own prediction is already correct.

It is a natural idea to then map g(x,w, ŷ) to its length or magnitude. To this end, we may employ e.g. some norm || · ||. In
our experiments, we investigate the usage of norms on the one hand, but also explore other maps casting vectors to scalars.
Additional relevant uncertainty information can be extracted from the gradient g(x,w, ŷ). In particular, we regard min(·),
max(·), the arithmetic mean mean(·) and the standard deviation std(·) in addition to the 1- and 2-norm || · ||1 and || · ||2. Note that
min(·) and max(·) are closely related to the sup norm || · ||∞, depending on the sign of the vector components. Experimentally,
we have found that both min(·) and max(·) carry relevant predictive uncertainty information.

The gradient (1) as a basis for uncertainty metrics exhibits some additional flexibility for extracting information. We are
able to compute uncertainty metrics for each summand of L individually. Also, we can restrict the amount of variables with
respect to which we take the gradient. While all trainable variables w of our model may be used, we can also use only a
subset w` of these and utilize the partial gradient ∇w`

L(ŷ(x,w), ŷ). Here, w` could be all the weights from one particular
network layer, one particular filter of a convolutional layer, or even singleton weights. This approach also potentially lets us
localize uncertainty within the network architecture, an idea that we mention here but which is not further investigated in this
work. We explain in section IV in more detail how we use these facts for our concrete application.

b) Application to object detectors: All N̂out output bounding boxes potentially contribute to g(x,w, y) in a single
optimization step (refer to section B for details). Hence, the gradient as defined in eq. (1) can be viewed as containing
uncertainty for the entire prediction ŷ(x,w) but not for individual boxes ŷj(x,w). Therefore, we regard only one fixed
prediction ŷj and imagine all other predictions erased from ŷ, so we treat only ŷj as the second argument of L. Suppose, we
inserted the entire prediction ŷ(x,w) as the first argument. The result L(ŷ(x,w), ŷj) measures the mistakes made by the
network given that the entire ground truth were ŷj . Potentially all previously learnt boxes will then be punished since they
deviate from the “restricted” ground truth ŷj . This happens irrespective of whether they are correct (compared with the real and
complete ground truth y) detections on x or not. Then, g(x,w, ŷj) adjusts w such that correctly predicted boxes are un-learnt.
This phenomenon is obviously undesired in light of our design motivation for gradient uncertainty. Our proposal to resolve this
issue is to adjust the first argument of L by only including boxes indicating the same object as ŷj (“candidate boxes”, see
section A):

gcand(x,w, ŷj) := ∇wL
(
cand[ŷj ](x,w), ŷj

)
. (2)

It follows that the loss function computed in this way only punishes instances belonging to a cluster of instances located close
to ŷj with the same assigned class.

c) Computational complexity of gradient metrics: Considering fully convolutional DNNs, we address the computational
cost of gradient uncertainty metrics. Similarly to [38, section 20.6], we regard a neural network with T ∈ N layers, where the
activation in layer t ∈ {1, . . . , T} is a stack of feature maps φt ∈ Rh×w×kt . Here, h,w, kt ∈ N are feature map height, width and
number of layer channels, respectively. The activation φt is obtained by convolution of φt−1 with a stack Kt ∈ Rkt−1×kt×(2st−1)

2

of filter matrices where st−1 ∈ N is the spatial expanse of the filter matrices (oftentimes 0 or 1). We consider the loss function
to be computed from the feature maps φT of the last layer with ground truth feature map γ which is considered fixed. The loss
function can then be regarded as a function `T : φT 7→ L(φT , γ). This way, the loss function implicitly also depends on all
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activations φt for t < T . We consider an explicit computation of the gradient by backpropagation and count the necessary
floating point operations (FLOP) to compute ∇KtL. We assume that binary decisions in the computation can be neglected
and for the sake of comparison with MC dropout uncertainty, that one full forward pass through the network has already
been performed. For this section we use the symbol D to denote total derivatives and D1 for the differential w.r.t. to the first
variable. The last layer gradient ∇KT

L = D1L|φT
· ∇KT

φT is already dependent on the derivative D1L|φT
, the concrete form

of which depends on the exact form of L. We defer the treatment of this term to section C. Here, we present a statement of
larger generality on the computational cost of gradients, when D1L|φT

has been evaluated once. We know the feature map
representation γj for any predicted box ŷj . We denote the mask µj over φT such that µjφT are the feature map representations
of the candidate boxes cand[ŷj ] of ŷj .

Theorem 1. In the setting explained above, the number of FLOP required to compute the gradient ∇KT
L(µjφT (KT ), γ

j) is
O(kThw+kT kT−1(2sT +1)4). Simlarly, for earlier layers, i.e., ∇KtL(µjφT (Kt), γ

j), we have O(kt+1kt+ktkt−1), provided
that we have previously computed the gradient for the consecutive layer t+ 1. Performing MC dropout with dropout on φT−1
requires O(kT kT−1hw) FLOP per dropout sample.

In section C, we provide a proof of these results and further detail such as the proportionality constants. Note, that dropout
anywhere earlier in the forward pass leads to a considerable increase in FLOP. The complexity of computing ∇KT

L and
∇KT−1

L for a number of boxes is, therefore, about on par with the complexity of MC dropout sampling in light of this fact.
Note, however that gradient metrics need to be iteratively computed whereas MC dropout runs in parallel.

B. Meta classification and meta regression

Meta classification denotes the task of discriminating the truth value of a prediction on the basis of uncertainty metrics. In
the context of object detection, we classify individual boxes as TP or FP. While the truth value TP/FP is binary, in object
detection we also determine prediction quality in terms of the maximum IoU with the ground truth. Capturing the relationship
between uncertainty metrics and IoU is the aim of meta regression. The two tasks are closely related to the motivation of
curing the short-comings of the score and are explored in section IV. Experiments from [19] indicate that the relation between
uncertainty metrics and the labels TP/FP or IoU is highly non-linear. We restrict our attention to gradient boosting [39] models
which have proven to effectively capture this non-linearity. Uncertainty metrics serve as co-variables for such a model, and we
compare their meta classification performance in terms of area under receiver operating characteristic (AuROC ) and average
precision (AP ) [40] as well as their meta regression performance in terms of R2. We train meta classifiers and meta regression
models on uncertainty metrics of boxes post NMS. This way, we obtain confidence estimates for boxes which would only be
discarded based on their score.

Detector
Bboxes

Score

Uncertainty
Metrics

Meta
Classification

Baseline

MetaFusion

NMS Threshold

Fig. 2. Schematic sketch of the baseline detection pipeline and the
alternative MetaFusion pipeline for an object detector.

a) MetaFusion: As a further application of uncertainty metrics,
we investigate an approach inspired by [31]. The authors of [31]
use computed uncertainty metrics and a meta classifier to improve
prediction performance by reducing the amount of FP predictions.
The adaptation to object detection is straight-forward in that we
compare the standard detection pipeline with a detection based on
meta classification. Whereas state-of-the-art object detectors use
score thresholding (fig. 2) in addition to NMS, we propose to base
a threshold on meta classification probabilities. Well-performing
meta classifiers (which accurately detect FPs) and an increase in
detection sensitivity offer a way to “trade” uncertainty information

for detection performance. Note, that in most object detection pipelines, score thresholding is carried out before NMS. We
choose to interchange them here as they commute for the baseline approach. The resulting predictions are compared in terms
of mean Average Precision (mAP [41]).

IV. EXPERIMENTS

We describe our numerical methods and experimental findings for the object detection datasets Pascal VOC [41], MS COCO
[42] and KITTI [43]. The splits for training and evaluation we used are indicated in table I. Since there is no designated test
split in KITTI which provides a ground truth, we take 2000 randomly chosen images from the annotated training split for
testing and only used the complementary split for training (∼ 5500 images).

a) Implementation details: For our experiments, we employ three common object detection architectures, namely YOLOv3
with Darknet53 backbone [2], Faster R-CNN [3] and RetinaNet [4], each with a ResNet50FPN [44] backbone. We started from
PyTorch [45] reimplementations,1, added dropout and trained from scratch on the datasets in table I.

1YOLOv3 from https://github.com/westerndigitalcorporation/YOLOv3-in-PyTorch Faster R-CNN and RetinaNet from the the
torchvision library
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TABLE I
Left: NUMBER OF LAYERS AND LOSSES UTILIZED AND RESULTING NUMBERS OF GRADIENT METRICS PER BOX. MULTIPLICATION IN # LAYERS DENOTES

PARALLEL OUTPUT STRANDS OF THE RESP. DNN NOT GENERATING ADDITIONAL GRADIENTS. Right: SPLITS FOR TRAINING AND EXPERIMENTAL
EVALUATION FOR THE INVESTIGATED DATASETS.

Architecture # layers # Losses # gradients

YOLOv3 2(×3) 3 6
Faster R-CNN 2(×4) 4 8
RetinaNet 2(×2) 2 4

Dataset training evaluation # eval images

VOC 2012 train 2007 train 4952
COCO 2017 train 2017 val 5000

KITTI random part
of training

complement part
of training 2000

We compute gradients layer-wise by standard backpropagation. In [16], it was reported that the last layers give rise to the
most informative gradients which is congruent with our experience. For YOLOv3, we use the last two convolutional (conv)
layers of each of the three detection arms. In Faster R-CNN, for the region proposal network we use the last two convolutional
layers and for the region of interest (RoI) head we use the two fully connected (fc) classification and regression layers. For
RetinaNet, we employ the last two conv layers of the classification and regression head, respectively. We install dropout layers
in-between those conv and fc layers in each model. MC dropout inference and gradient computation is always done with the
same weights, trained under dropout. Per inference, we always compute 30 dropout samples.

We exploit the split of L into different terms for localization, score and classification (eq. (7) in section A), by computing
partial gradients for each contribution to the loss function in order to increase the amount of information obtained. This results in
the number of gradients computed indicated in table I. From each gradient, we extract information via the following functions:

{min(·),max(·),mean(·), std(·), || · ||1, || · ||2} (3)

In order to save computational effort, we compute gradient metrics not for all predicted bounding boxes. We use a small
score threshold of 10−4 (KITTI, Pascal VOC), resp. 10−2 (COCO) as a pre-filter. On average, this produces ∼ 100 predictions
per image. For gradient boosting models, we employ the XGBoost library [46] with 30 estimators (otherwise standard settings).

b) Meta classification: We train gradient boosting classifiers on different sets of uncertainty metrics. For comparison of
meta classification performance, we compute the mean AuROC and average precision over 10-fold image-wise cross validation
(cv). The entries || · ||2 and || · ||1+|| · ||2 denote the respective maps used to extract gradient information. The largest set of gradient
metrics we are considering, i.e., all of (3) is indicated by “G”. For comparison and reference, we also state the respective
performance of the MetaDetect (“MD”, [19]) metrics.

Table II shows the results for YOLOv3. Note, that AP refers not to the object detector but the meta classifier. We see that
|| · ||2 yields better results than the score in all cases except for AP on the KITTI dataset, where they differ by 0.01 AP points.
As an enveloping model of || · ||2, || · ||1+|| · ||2 is better than the score across the board. The best purely gradient-based models G
achieve a consistently better trend of AP compared to MC. The combinations G+MC, G+MD and finally, G+MD+MC show
further relative boosts as compared to their individual components, indicating mutual non-redundancy between G, MC and MD.
We find congruent results for Faster R-CNN and RetinaNet, see section E.

c) Calibration: We evaluate the calibration of the obtained confidences by computing the standard calibration metrics
shown in table III (see section D for details) by employing 10 bins of width 0.1 and 10-fold cv as before except for the score
which is deterministic. We omit the ECE metric here, as we regard it as less informative but we list it in section D. Table III
indicates that all meta classifiers are always better calibrated than the score in both of the two metrics MCE and ACE . MC
dropout, || · ||2 and || · ||1+|| · ||2 show especially small miscalibration across datasets. The reliability diagrams in fig. 1 of section I
show the respective accuracy per bin for three of the entries for Faster R-CNN on KITTI. Meta classifiers show very little
mis-calibration as compared to the overconfident score. A full table of calibration errors for all our detectors can be found in
section E.

d) Pedetrian detection: Restricting ourselves to the KITTI class “Pedestrian” only, we compare score thresholding and
meta classification in fig. 3. By thresholding on score or meta classification probabilities (MC, G and G+MD+MC) from the
indicated metrics, we count FP and FN for a number of decision thresholds. The latter are sweeped between 0 (bottom right
in fig. 3) and 1 (top left) in increments of 10−4 to account for fine steps. This is especially important for the score where a
significant part of all predicted Pedestrian instances have scores between 10−4 and 5 · 10−4. We have also indicated two lines
of constant total (FP + FN) error in dashed gray showing that the score achieves the best total error on the Pedestrian class at
around 350 errors and the models G and G+MD+MC not far behind. However, in safety-critical applications of uncertainty
estimation, not all errors are equally important. Employing an object detector in an autonomous vehicle, might demand for a
reduction in FN predictions while still keeping the corresponding FPs reasonably low. Regarding the lower right part of fig. 3,
we see that at around 1100 FPs, the meta classification models MC, G and G+MD+MC reduce the number of FNs to almost
zero. The decision made by the score, in contrast, has more than 50 FNs at the same FP “cost”. Alternatively, we might be
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TABLE II
META CLASSIFICATION PERFORMANCE IN TERMS OF AuROC AND AP PER CONFIDENCE MODEL OVER 10-FOLD CV (std IN PARENTHESES).

MODEL: YOLOV3.

Pascal VOC COCO KITTI

AuROC AP AuROC AP AuROC AP

Score 0.8977 (0.0005) 0.6934 (0.0008) 0.8382 (0.0003) 0.6418 (0.0004) 0.9653 (0.0005) 0.9687 (0.0003)
MC 0.9530 (0.0002) 0.7614 (0.0018) 0.8956 (0.0002) 0.6653 (0.0010) 0.9760 (0.0007) 0.9717 (0.0010)
|| · ||2 0.9368 (0.0004) 0.7563 (0.0018) 0.8605 (0.0004) 0.6425 (0.0006) 0.9731 (0.0005) 0.9686 (0.0010)
|| · ||1+|| · ||2 0.9399 (0.0004) 0.7628 (0.0020) 0.8736 (0.0003) 0.6602 (0.0005) 0.9765 (0.0004) 0.9722 (0.0008)
G 0.9457 (0.0006) 0.7831 (0.0016) 0.8807 (0.0003) 0.6962 (0.0007) 0.9804 (0.0003) 0.9781 (0.0006)
MD 0.9443 (0.0003) 0.7812 (0.0009) 0.8716 (0.0004) 0.6941 (0.0007) 0.9823 (0.0002) 0.9806 (0.0002)
MD+MC 0.9609 (0.0002) 0.8217 (0.0010) 0.9088 (0.0003) 0.7426 (0.0004) 0.9837 (0.0002) 0.9819 (0.0004)
G+MC 0.9645 (0.0003) 0.8319 (0.0013) 0.9146 (0.0003) 0.7471 (0.0005) 0.9833 (0.0004) 0.9813 (0.0004)
G+MD 0.9521 (0.0003) 0.8022 (0.0013) 0.8862 (0.0004) 0.7150 (0.0008) 0.9850 (0.0003) 0.9837 (0.0004)
G+MD+MC 0.9652 (0.0003) 0.8373 (0.0016) 0.9157 (0.0004) 0.7566 (0.0008) 0.9859 (0.0002) 0.9845 (0.0002)

TABLE III
MAXIMUM (MCE ) AND AVERAGE (ACE ) CALIBRATION ERROR PER CONFIDENCE MODEL OVER 10-FOLD CV (std IN PARENTHESES EXCEPT FOR RAW

SCORE WHERE NO META CLASSIFIER IS TRAINED). MODEL: YOLOV3.

Pascal VOC COCO KITTI

MCE ACE MCE ACE MCE ACE

Score 0.237 0.108 0.065 0.041 0.348 0.227
MC 0.035 (0.006) 0.013 (0.001) 0.024 (0.004) 0.011 (0.001) 0.040 (0.017) 0.014 (0.004)
|| · ||2 0.033 (0.006) 0.014 (0.002) 0.013 (0.004) 0.004 (0.001) 0.046 (0.011) 0.019 (0.003)
|| · ||1, || · ||2 0.031 (0.005) 0.012 (0.001) 0.013 (0.003) 0.006 (0.001) 0.058 (0.023) 0.022 (0.006)
G 0.051 (0.011) 0.021 (0.003) 0.036 (0.006) 0.014 (0.001) 0.086 (0.017) 0.038 (0.004)
MD 0.048 (0.014) 0.018 (0.002) 0.033 (0.005) 0.014 (0.001) 0.078 (0.014) 0.028 (0.004)
G+MD+MC 0.062 (0.012) 0.027 (0.003) 0.041 (0.004) 0.018 (0.001) 0.088 (0.022) 0.044 (0.004)

interested in allowing e.g. at most 50 FNs across the entire dataset.2 Both, MC and G can reduce the score’s 1200 FPs to
around 600–700 FPs. G+MD+MC brings the number of FPs down to around 450, far less than half the FPs of the score.

e) Meta regression: We train a gradient boosting regression on the same sets of metrics as before and evaluate their
cross-validated performance. The quality of the obtained predictions is evaluated in terms of the coefficient of determination R2

which we have listed in table IV. We find the same qualitative behavior as for meta classification in table II. Again, our model G
performs better than MC dropout and score across the board and is roughly on par with MetaDetect. Combining different sources
of uncertainty metrics leads to additional, significant boosts with the best model gaining between 30% and 40% of the winnable
R2 range as compared to score in all cases. Meta regression on Faster R-CNN and RetinaNet show similar relative improvements
over the score (see table VII in section E). Figure 4 shows prediction samples for four of the regressions where the left-most

2Our evaluation split contains a total of 1152 Pedestrian instances.
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Fig. 3. Left: meta classification for the category “Pedestrian”. Curves obtained sweeping decision threshold on score or meta classification probability for MC
dropout, gradient metrics (G) or the combined model (G+MD+MC). Numbers in parentheses denote (AuROC/AP ) of the resp. classification. Right: score
baseline and MetaFusion mAP . Model: YOLOv3, dataset: KITTI.
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Fig. 4. Scatter plots for samples of Score and meta regression based on MC dropout, gradient metrics G and the combination model G+MD+MC. We draw
the optimal diagonal for reference. Model: YOLOv3, dataset: KITTI evaluation split.

panel shows the raw score as opposed to the respective entry in table IV which shows meta regression based on the score.

TABLE IV
META REGRESSION PERFORMANCE IN TERMS OF R2 PER CONFIDENCE
MODEL OVER 10-FOLD CV (std IN PARENTHESES). MODEL: YOLOV3.

Pascal VOC COCO KITTI

Score 0.4539 (0.0005) 0.3473 (0.0004) 0.7886 (0.0005)
MC 0.5966 (0.0010) 0.4586 (0.0007) 0.8210 (0.0011)
|| · ||2 0.5849 (0.0012) 0.4146 (0.0005) 0.8121 (0.0005)
|| · ||1+|| · ||2 0.5951 (0.0010) 0.4422 (0.0010) 0.8341 (0.0013)
G 0.6164 (0.0012) 0.4804 (0.0008) 0.8540 (0.0011)
MD 0.5899 (0.0014) 0.4640 (0.0011) 0.8588 (0.0010)
MD+MC 0.6552 (0.0009) 0.5422 (0.0010) 0.8661 (0.0007)
G+MC 0.6799 (0.0013) 0.5543 (0.0007) 0.8652 (0.0012)
G+MD 0.6345 (0.0021) 0.5052 (0.0014) 0.8770 (0.0011)
G+MD+MC 0.6858 (0.0009) 0.5682 (0.0007) 0.8805 (0.0010)

TPs are located in the top right of each panel (high confidence
and high IoU with the ground truth), FNs at the bottom right (low
confidence but high IoU ) and FPs at the top left (high confidence
and low / zero IoU ). In the left-most plot depicting results for
score, we find large amounts of FNs and strong deviations from
the diagonal in the TP region. The cluster in the top right above
the diagonal shows a very high concentration of “overconfident”
TP boxes which is absent in the meta regression models. The
latter show from left to right increasing concentration around the
diagonal.

f) MetaFusion: The approach described in section III-B can
easily be implemented in the way illustrated in fig. 2. Both, score
thresholding and meta classification constitute decision rules on
whether to regard a box that has survived the NMS filter as a
true or a false prediction, similar to the distinction made on the
left in fig. 3. For the resulting prediction, we compute the mAP metric as a measure for the prediction quality across the
respective evaluation dataset. As the actual prediction of an object detector depends on either the score threshold or in the
MetaFusion case on the meta classification probability threshold, we obtain curves by sweeping the decision threshold between
0 and 1 in steps of 0.025. On the right in fig. 3, we compare the default pipeline Score against MetaFusion pipelines based on
MC, G and G+MD+MC. The results have been obtained by 10-fold cv with standard error bands drawn in shaded regions. Note,
that the evaluation of the score baseline is deterministic, so it does not have any variance associated with it. We see that for
comparatively high decision thresholds ≥ 0.5, the MetaFusion models G and G+MD+MC achieve much higher mAP than the
score baseline, with the model based on the larger set of metrics always about 2 percentage points ahead. For decision thresholds
smaller than 0.4, the curves naturally approach roughly the same mAP since the thresholding does not filter many boxes
anymore and the mAP only differs in the ranking of the boxes, i.e., the order used to construct the class-wise precision-recall
curves. However, until the last thresholding step at 0.025, G and “G, MD, MC” still lead to better detection performance with a
boost of about 1-2 percentage points in mAP . Interestingly, MC dropout, only performs around as good as the score baseline
for thresholds smaller than 0.75. Across all decision thresholds, the gradient metrics-based MetaFusion pipeline achieves better
mAP than the MC-based one. We find analogous results also on other datasets (section E).

V. CONCLUSION AND OUTLOOK

Applications of modern DNNs in safety-critical environments demand high performance on the one hand, but also reliable
confidence estimation indicating where a model is not competent. Since network-intrinsic confidence is oftentimes mis-calibrated
for well-performing DNNs, there is a need for alternative mechanisms and sources of uncertainty information.

We introduced the natural extension (2) of the gradient-based uncertainty metrics introduced by [16] from the image
classification setting to object detection, thereby investigating a novel approach to epistemic uncertainty quantification. Equation (2)
can in principle be augmented to fit any DNN inferring and learning on an instance-based logic. Gradient-based uncertainty
metrics yield well-calibrated, powerful predictors and can be combined with other sources of epistemic uncertainty for additional
performance. The predictive capability of gradient uncertainty-based meta classifiers carries over to yield improved object
detection pipelines when implemented as a decision mechanism.

Adaptations to 3D-bounding box detection and instance segmentation are planned for our method. As additional applications,
meta classifiers are being investigated as a means to estimate dataset labeling quality. Meta regression models predict intersection
over union with the ground truth to considerable accuracy, indicating potential as a query mechanism for active learning cycles.
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An implementation of our method is publicly available at https://github.com/tobiasriedlinger/gradient-metrics-od. Find a visual
demonstration of meta regression based on gradient uncertainty metrics at https://youtu.be/L4oVNQAGiBc.

a) Foreseeable impact: While we see great benefits in increasing the safety of human lives through improved confidence
estimation, we also note that the usage of machine learning models in confidence calibration based on gradient information
adds another failure mode, which, if applied in automated driving, could lead to fatal consequences, if false predictions of
confidence occur. It is, therefore, necessary to be aware of the low technology readiness level of the method introduced here.
Despite the evidence provided that our method can significantly reduce the number of false negative pedestrians of an object
detector for certain datasets, application of our method in a safety-critical context requires extensive testing to demonstrate
robustness, e.g. with respect to domain shifts, prior to any integration into applications.

ACKNOWLEDGMENT

The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Energy within the
project “Methoden und Maßnahmen zur Absicherung von KI basierten Wahrnehmungsfunktionen für das automatisierte Fahren
(KI-Absicherung)". The authors would like to thank the consortium for the successful cooperation. Furthermore, we gratefully
acknowledge financial support by the state Ministry of Economy, Innovation and Energy of Northrhine Westphalia (MWIDE)
and the European Fund for Regional Development via the FIS.NRW project BIT-KI, grant no. EFRE-0400216. The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing
computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich
Supercomputing Centre (JSC).

REFERENCES

[1] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference on computer vision. Springer. 2016,
pp. 21–37.

[2] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv preprint arXiv:1804.02767 (2018).
[3] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. In: Advances

in Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc., 2015. URL:
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[4] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 2980–2988.

[5] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint arXiv:1312.6199 (2013).
[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial examples”. In: arXiv

preprint arXiv:1412.6572 (2014).
[7] Chuan Guo et al. “On calibration of modern neural networks”. In: International Conference on Machine Learning. PMLR.

2017, pp. 1321–1330.
[8] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in machine learning: An introduction to

concepts and methods”. In: Machine Learning (2021), pp. 1–50.
[9] Yarin Gal. “Uncertainty in deep learning”. PhD thesis. University of Cambridge, 2016.

[10] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?” In:
Advances in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL:
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf.

[11] John S Denker and Yann LeCun. “Transforming neural-net output levels to probability distributions”. In: Proceedings of
the 3rd International Conference on Neural Information Processing Systems. 1990, pp. 853–859.

[12] David JC MacKay. “A practical Bayesian framework for backpropagation networks”. In: Neural computation 4.3 (1992),
pp. 448–472.

[13] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting”. In: The journal of machine
learning research 15.1 (2014), pp. 1929–1958.

[14] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Representing model uncertainty in deep
learning”. In: international conference on machine learning. PMLR. 2016, pp. 1050–1059.

[15] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and Scalable Predictive Uncertainty Estimation
Using Deep Ensembles”. In: Proceedings of the 31st International Conference on Neural Information Processing Systems.
NIPS’17. Long Beach, California, USA: Curran Associates Inc., 2017, 6405–6416. ISBN: 9781510860964.

[16] Philipp Oberdiek, Matthias Rottmann, and Hanno Gottschalk. “Classification uncertainty of deep neural networks based
on gradient information”. In: IAPR Workshop on Artificial Neural Networks in Pattern Recognition. Springer. 2018,
pp. 113–125.

[17] Niclas Ståhl et al. “Evaluation of Uncertainty Quantification in Deep Learning”. In: International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer. 2020, pp. 556–568.



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

9

[18] Vishal Thanvantri Vasudevan, Abhinav Sethy, and Alireza Roshan Ghias. “Towards better confidence estimation for
neural models”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 7335–7339.

[19] Marius Schubert, Karsten Kahl, and Matthias Rottmann. “MetaDetect: Uncertainty Quantification and Prediction Quality
Estimates for Object Detection”. In: arXiv preprint arXiv:2010.01695 (2020).

[20] Borui Jiang et al. “Acquisition of localization confidence for accurate object detection”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 784–799.

[21] Jiwoong Choi et al. “Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous
driving”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 502–511.

[22] Youngwan Lee et al. “Localization Uncertainty Estimation for Anchor-Free Object Detection”. In: arXiv preprint
arXiv:2006.15607 (2020).

[23] Michael Truong Le et al. “Uncertainty estimation for deep neural object detectors in safety-critical applications”. In:
2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE. 2018, pp. 3873–3878.

[24] Yihui He et al. “Bounding box regression with uncertainty for accurate object detection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 2888–2897.

[25] Florian Kraus and Klaus Dietmayer. “Uncertainty estimation in one-stage object detection”. In: 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE. 2019, pp. 53–60.

[26] Ali Harakeh, Michael Smart, and Steven L Waslander. “Bayesod: A bayesian approach for uncertainty estimation in deep
object detectors”. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 87–93.

[27] Jiwoong Choi et al. “Uncertainty-based Object Detector for Autonomous Driving Embedded Platforms”. In: 2020 2nd
IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE. 2020, pp. 16–20.

[28] Dimity Miller et al. “Dropout sampling for robust object detection in open-set conditions”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 3243–3249.

[29] Zongyao Lyu et al. “Probabilistic Object Detection via Deep Ensembles”. In: European Conference on Computer Vision.
Springer. 2020, pp. 67–75.

[30] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-distribution examples in neural
networks”. In: arXiv preprint arXiv:1610.02136 (2016).

[31] Robin Chan et al. “MetaFusion: Controlled False-Negative Reduction of Minority Classes in Semantic Segmentation”. In:
arXiv preprint arXiv:1912.07420 (2019).

[32] Kira Maag, Matthias Rottmann, and Hanno Gottschalk. “Time-dynamic estimates of the reliability of deep semantic
segmentation networks”. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE. 2020, pp. 502–509.

[33] Matthias Rottmann et al. “Detection of False Positive and False Negative Samples in Semantic Segmentation”. In:
Proceedings of the 23rd Conference on Design, Automation and Test in Europe. DATE ’20. Grenoble, France: EDA
Consortium, 2020, 1351–1356. ISBN: 9783981926347.

[34] Matthias Rottmann et al. “Prediction error meta classification in semantic segmentation: Detection via aggregated
dispersion measures of softmax probabilities”. In: 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2020, pp. 1–9.

[35] Matthias Rottmann and Marius Schubert. “Uncertainty measures and prediction quality rating for the semantic segmentation
of nested multi resolution street scene images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. 2019.

[36] Kira Maag et al. “Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates”. In: arXiv
preprint arXiv:2012.07504 (2020).

[37] Kamil Kowol. et al. “YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera and Radar Sensors”. In:
Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, INSTICC.
SciTePress, 2021, pp. 177–186. ISBN: 978-989-758-484-8. DOI: 10.5220/0010239301770186.

[38] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge
university press, 2014.

[39] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-line learning and an application to
boosting”. In: Journal of computer and system sciences 55.1 (1997), pp. 119–139.

[40] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and ROC curves”. In: Proceedings of the
23rd international conference on Machine learning. 2006, pp. 233–240.

[41] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”. In: International Journal of Computer Vision
88.2 (June 2010), pp. 303–338.

[42] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European conference on computer vision. Springer.
2014, pp. 740–755.

[43] Andreas Geiger et al. “The KITTI vision benchmark suite”. In: URL http://www. cvlibs. net/datasets/kitti 2 (2015).



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

10

[44] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 770–778.

[45] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[46] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California,
USA: ACM, 2016, pp. 785–794. ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2939785. URL: http://doi.acm.org/10.
1145/2939672.2939785.

[47] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online learning and stochastic optimization.”
In: Journal of machine learning research 12.7 (2011).

[48] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint arXiv:1412.6980
(2014).

[49] Lukas Neumann, Andrew Zisserman, and Andrea Vedaldi. “Relaxed softmax: Efficient confidence auto-calibration for
safe pedestrian detection”. In: NIPS 2018 Workshop MLITS. 2018.

[50] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. “Obtaining well calibrated probabilities using bayesian
binning”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 29. 1. 2015.

[51] Fabian Kuppers et al. “Multivariate Confidence Calibration for Object Detection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 326–327.

APPENDIX A
OBJECT DETECTION

We regard the task of 2D bounding box detection on camera images. Here, the detection

ŷ(x,w) = (ŷ1(x,w), . . . , ŷN̂x(x,w)) ∈ RN̂x×(4+1+C) (4)

on an input image x, depending on model weights w, consists of a number N̂x ∈ N (dependent on the input x) of instances
ŷj . We give a short account of its constituents. Each instance

ŷj = (ξ̂j , ŝj , p̂j) ∈ R4+1+C (5)

consists of localizations ξ̂j = (x̂j , ŷj , ŵj , ĥj) encoded e.g. as center coordinates x̂, ŷ together with width ŵ and height ĥ.
Moreover, a list of N̂x integers κ̂ ∈ {1, . . . , C} represents the predicted categories for the object found in the respective boxes
out of a pre-determined fixed list of C ∈ N possible categories. Usually, κ̂ is obtained as the argmax of a learnt probability
distribution p̂ = (p̂1, . . . , p̂C) ∈ (0, 1)C over all C categories. Finally, N̂x scores ŝ ∈ (0, 1) indicate the probability of each box
being correct. The predicted N̂x boxes are obtained by different filtering mechanisms from a fixed number Nout (usually about
105 to 106) of output boxes. The latter are the regression and classification result of pre-determined “prior” or “anchor boxes”.
Predicted box localization ξ̂ is usually learnt as offsets and width- and height scaling of fixed anchor boxes [2, 4] or region
proposals [3] (see section B). The most prominent examples of filtering mechanisms are score thresholding and Non-Maximum
Suppression. By score thresholding we mean only allowing boxes which have ŝ ≥ εs for some fixed threshold εs ≥ 0.

a) Non-Maximum Suppression (NMS): NMS is an algorithm allowing for different output boxes that have the same class
and significant mutual overlap (meaning they are likely to indicate the same visible instance in x) to be reduced to only one
box. Overlap is usually quantified as intersection over union (IoU ). For two bounding boxes A and B, their intersection over
union is

IoU (A,B) =
|A ∩ B|
|A ∪ B| , (6)

i.e., the ratio of the area of intersection of two boxes and the joint area of those two boxes, where 0 means no overlap and 1
means the boxes have identical location and size. Maximal mutual IoU between a predicted box ŷj and ground truth boxes y
is also used to quantify the quality of the prediction of a given instance.

We call an output instance ŷi “candidate box” for another box ŷj if it fulfills the following requirements:
1) score (ŝi ≥ εs above a chosen, fixed threshold εs)
2) identical class κ̂i = κ̂j

3) large mutual overlap IoU (ŷi, ŷj) ≥ εIoU for some fixed threshold εIoU ≥ 0 (a widely accepted choice which we adopt
is εIoU = 0.5).

We denote the set of output candidate boxes for ŷj by cand[ŷj ]. In NMS, all output boxes are sorted by their score in descending
order. Then, the box with the best score is selected as a prediction and all candidates for that box are deleted from the ranked
list. This is done until there are no boxes with ŝ ≥ εs left. Thereby selected boxes form the Nx predictions.
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b) Training of object detectors: The “ground truth” or “label” data y from which an object detector learns must contain
localization information ξj for each of j = 1, . . . , Nx annotated instances on each data point x, as well as the associated Nx

category indices κj . Note that we denote labels by the same symbol as the corresponding predicted quantity and omit the hat
( ·̂ ).

Generically, deep object detectors are trained by stochastic gradient descent or some variant such as AdaGrad [47], or Adam
[48] by minimizing an empirical loss

L = Lξ + Ls + Lp . (7)

For all object detection frameworks which we consider here (and most architectures, in general) the loss function L splits up
additively into parts punishing localization inaccuracies (ξ̂), score (ŝ) assignment to boxes (assigning large loss to high score for
incorrect boxes and low score for correct boxes) and incorrect class probability distribution (p̂), respectively. We explicitly give
formulas for all utilized loss functions in section B. The trainable weights w of the model are updated in standard gradient
descent optimization by

w ← w − η∇wL(ŷ(x,w), y) (8)

where η is a learning rate factor. We denote by g(x,w, y) := ∇wL(ŷ(x,w); y) the learning gradient on the data point (x, y).

APPENDIX B
IMPLEMENTED LOSS FUNCTIONS

Here, we give a short account of the loss functions implemented in our experiments.
a) YOLOv3: The loss function we used to train YOLOv3 has the following terms:

LYOLOv3
ξ (ŷ, y) =2

Nout∑

a=1

Nx∑

t=1

Iobjat ·
[
MSE

((
τ̂aw
τ̂ah

)
,

(
τ tw
τ th

))
+BCE

(
σ

(
τ̂ax
τ̂ay

)
, σ

(
τ tx
τ ty

))]
, (9)

LYOLOv3
s (ŷ, y) =

Nout∑

a=1

Nx∑

t=1

[
Iobjat BCEa (σ(τ̂s),1Nout

) + Inoobjat (y)BCEa (σ(τ̂s),0Nout
)
]
, (10)

LYOLOv3
p (ŷ, y) =

Nout∑

a=1

Nx∑

t=1

Iobjat BCE
(
σ(τ̂ap ), σ(τ

t
p)
)
. (11)

Here, the first sum ranges over all Nout anchors a and the second sum over the total number Ngt of ground truth instances in
y. MSE is the usual mean squared error (eq. (14)) for the regression of the bounding box size. As introduced in [2], the raw
network outputs (in the notation of theorem 1 this is one component (φcT )ab of the final feature map φT , see also section C)
for one anchor denoted by

τ̂ = (τ̂x, τ̂y, τ̂w, τ̂h, τ̂s, τ̂p1 , . . . , τ̂pC ) (12)

are transformed to yield the components of ŷ:

x̂ = ` · σ(τ̂x) + cx, ŷ = ` · σ(τ̂y) + cy, ŵ = πw · eτ̂w , ĥ = πh · eτ̂h ,
ŝ =σ(τ̂s), p̂j = σ(τ̂pj ).

(13)

Here, ` is the respective grid cell width/height, σ denotes the sigmoid function, cx and cy are the top left corner position of the
respective cell and πw and πh denote the width and height of the bounding box prior (anchor). These relationships can be (at
least numerically) inverted to transform ground truth boxes to the scale of τ̂ . We denote by τ = (τx, τy, τw, τh, τs, τp1 , . . . , τpC )
that transformation of the ground truth y which is collected in a feature map γ. Then, we have

MSE(τ̂ , τ) =
∑

i

(τ̂i − τi)2. (14)

Whenever summation indices are not clearly specified, we assume from the context that they take on all possible values, e.g. in
eq. (9) w and h. Similarly, the binary cross entropy BCE is related to the usual cross entropy loss CE which is commonly
used for learning probability distributions:

BCE(p, q) =
∑

i

BCEi(p, q) = −
∑

i

qi log(pi) + (1− qi) log(1− pi), (15)

CE(p, q) = −
∑

i

qi log(pi) (16)

where p, q ∈ (0, 1)d for some fixed length d ∈ N. Using binary cross entropy for classification amounts to learning C binary
classifiers, in particular the “probabilities” p̂j are in general not normalized. Note also, that each summand in eq. (10) only has
one contribution due to the binary ground truth 1Nout , resp. 0Nout . The binary cross entropy is also sometimes used for the
center location of anchor boxes when the position within each cell is scaled to (0, 1), see LYOLOv3

ξ .
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The tensors Iobj and Inoobj indicate whether anchor a can be associated to ground truth instance t (obj) or not (noobj) which
is determined as in [3] from two thresholds ε+ ≥ ε− ≥ 0 which are set to 0.5 in our implementation.

Note, that both, Iobj and Inoobj only depend on the ground truth y and the fixed anchors, but not on the predictions ŷ. We
express a tensor with entries 1 with the size N as 1N and a tensor with entries 0 as 0N . The ground truth t one-hot class
vector is σ(τ tp) := pt = (δi,κt

)Ci=1.
b) Faster R-CNN: Since Faster R-CNN [3] has a two-stage architecture, there are separate loss contributions for the

Region Proposal Network (RPN) and the Region of Interest (RoI) head, the latter of which produces the actual proposals.
Formally, writing θξ := (θx, θy, θw, θh) for the respectively transformed ground truth localization, similarly θ̂ξ for the RPN
outputs ŷRPN and θ̂s the proposal score output (where ŝa = σ(θ̂as ) is the proposal score):

LRPN
ξ (ŷRPN, y) =

1

|I+|

NRPN
out∑

a=1

Nx∑

t=1

I+a Ĩ
obj
at smL1

β

(
θ̂aξ , θ

t
ξ

)
, (17)

LRPN
s (ŷRPN, y) =

NRPN
out∑

a=1

Nx∑

t=1

[
Iobjat BCEa

(
σ(θ̂s),1NRPN

out

)
+ I−a Ĩ

noobj
at BCEa

(
σ(θ̂s),0NRPN

out

)]
. (18)

The tensors Ĩobj and Ĩnoobj are determined as for YOLOv3 with ε+ = 0.7 and ε− = 0.3) but we omit their dependence on y
in our notation. Predictions are randomly sampled to contribute to the loss function by the tensors I+ and I−, which can be
regarded as random variables. The constant batch size b of predictions to enter the RPN loss is a hyperparameter set to 256 in
our implementation. We randomly sample n+ := min{|̃Iobj|, b/2} of the |̃Iobj| positive anchors (constituting the mask I+) and
n− := min{|̃Inoobj|, b− n+} negative anchors (I−). The summation of a ranges over the NRPN

out outputs of the RPN (in our
case, 1000). Proposal regression is done based on the smooth L1 loss

smL1
β(θ̂, θ) :=

∑

i

{
1
2 |θ̂i − θi|2 |θ̂i − θi| < β

|θ̂i − θi| − β
2 |θ̂i − θi| ≥ β

, (19)

where we use the default parameter choice β = 1/9. The final prediction ŷ of Faster R-CNN is computed from the proposals
and RoI results3 τ̂ in the RoI head:

x̂ = πw · τ̂x + πx, ŷ = πy · τ̂y + πy, ŵ = πw · eτ̂w , ĥ = πh · eτ̂h , p̂ = Σ(τ̂p), (20)

where Σi(x) := exi/
∑
j e
xj is the usual softmax function and π := (πx, πy, πw, πh) is the respective proposal localization.

Denoting with τξ := (τx, τy, τw, τh) ground truth localization transformed relatively to the respective proposal:

LRoI
ξ (ŷ, y) =

1

|Iobj|

Nout∑

a=1

Nx∑

t=1

Iobjat smL1
β

(
τ̂aξ , τ

t
ξ

)
, (21)

LRoI
p (ŷ, y) =

Nout∑

a=1

Nx∑

t=1

[
Iobjat CE(Σ(τ̂ap ), p

t) + Inoobjat CE(Σ(τ̂ap0), 1)
]
. (22)

Here, Iobj and Inoobj are computed with ε+ = ε− = 0.5.
c) RetinaNet: In the RetinaNet [4] architecture, score assignment is part of the classification.

LRet
ξ (ŷ, y) =

1

|Iobj|

Nout∑

a=1

Nx∑

t=1

Iobjat L
1
(
τ̂aξ , τ

t
ξ

)
, (23)

LRet
p (ŷ, y) =

1

|Iobj|

Nout∑

a=1

Nx∑

t=1


Iobjat

C∑

j=1

α(1− σ(τ̂apj ))γF · BCEj
(
σ(τ̂ap ), p

t
)

+ Inoobjat (1− α)σ(τ̂ap0)γF · BCE
(
σ(τ̂ap0), 0

)
]
.

(24)

For Iobj and Inoobj, we use ε+ = 0.5 and ε− = 0.4. Regression is based on the absolute loss L1(τ̂ , τ) =
∑
i |τ̂i − τi| and the

classification loss is a formulation of the well-known focal loss with α = 0.25 and γF = 2. Bounding box transformation
follows the maps in eq. (20), where π are the respective RetinaNet anchor localizations instead of region proposals. The
class-wise scores of the prediction are obtained by p̂j = σ(τ̂pj ), j = 1, . . . , C as for YOLOv3.

3The result τ̂ is similar to eq. (12), but without τ̂s where we have instead C + 1 classes, with one “background” class. We denote the respective probability
by p0.
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d) Theoretical loss derivatives: Here, we symbolically compute the loss gradients w.r.t. the network outputs as obtained
from our accounts of the loss functions in the previous paragraphs. We do so in order to determine the computational complexity
for D1L|φT

in section C. Note, that for all derivatives of the cross entropy, we can use

d

dτ
[−y log(σ(τ))− (1− y) log(1− σ(τ))] = σ(τ)− y. (25)

We find for b = 1, . . . , Nout and r ∈ {x, y,w, h, s, p1, . . . , pC}

∂

∂τ̂ br
LYOLOv3
ξ =2

Nx∑

t=1

Iobjbt





τ̂ br − τ tr r ∈ {w, h}
σ(τ̂ br )− σ(τ tr) r ∈ {x, y}
0 otherwise.

, (26)

∂

∂τ̂ br
LYOLOv3
s = δrs

Nx∑

t=1

[
Iobjbt (ŝb − 1) + Inoobjbt ŝb

]
, (27)

∂

∂τ̂ br
LYOLOv3
p =

Nx∑

t=1

Iobjbt

C∑

i=1

δrpi(p̂
b
i − pti), (28)

where δij is the Kronecker symbol, i.e., δij = 1 if i = j and 0 otherwise. Further, with analogous notation for the output
variables of RPN and RoI

∂

∂θ̂br
LRPN
ξ =

1

|I+|

Nx∑

t=1

I+b Ĩ
obj
bt





θ̂br − θtr |θ̂br − θtr| < β and r ∈ {x, y,w, h}
sgn(θ̂br − θtr) |θ̂br − θtr| ≥ β and r ∈ {x, y,w, h}
0 otherwise

, (29)

∂

∂θ̂br
LRPN
s = δrs

[
I+b Ĩ

obj
bt (ŝb − 1) + I−b Ĩ

noobj
bt ŝb

]
. (30)

Here, sgn denotes the sign function, which is the derivative of | · | except for the origin. Similarly,

∂

∂τ̂ br
LRoI
ξ =

1

|Iobj|

Nx∑

t=1

Iobjbt





τ̂ br − τ tr |τ̂ br − τ tr | < β and r ∈ {x, y,w, h}
sgn(τ̂ br − τ tr) |τ̂ br − τ tr | ≥ β and r ∈ {x, y,w, h}
0 otherwise

, (31)

∂

∂τ̂ br
LRoI
p = −

Nx∑

t=1


Iobjbt

C∑

j=1

ptj

(
δpjr −

C∑

k=0

δpkrΣ
k(τ̂ bp)

)
+ Inoobjbt

(
δp0r −

C∑

k=0

δpkrΣ
k(τ̂ bp)

)
 . (32)

Note that the inner sum over j only has at most one term due to δpjr. With σ′(τ) = σ(τ)(1 − σ(τ)), we finally find for
RetinaNet

∂

∂τ̂ br
LRet
ξ =

1

|Iobj|

Nx∑

t=1

Iobjbt

{
sgn(τ̂ br − τ tr) r ∈ {x, y,w, h}
0 otherwise

, (33)

∂

∂τ̂ br
LRet
p =

1

|Iobj|

Nx∑

t=1

[
Iobjbt

C∑

j=1

δpjrα(1− σ(τ̂ bpj ))γF [−γFσ(τ̂ bpj )BCEj(σ(τ̂ bp), pt) + σ(τ̂ bpj )− 1]

+ Inoobjbt δp0r(1− α)σ(τ̂ bp0)γF [−γF(1− σ(τ̂ bp0)) log(1− σ(τ̂ bp0)) + σ(τ̂ bp0)]

]
. (34)

APPENDIX C
COMPUTATIONAL COMPLEXITY

In this section, we discuss the details of the setting in which theorem 1 was formulated an give a proof for the statements
made there. The gradients for our uncertainty metrics are usually computed via backpropagation only for a few network layers.
Therefore, we restrict ourselves to the setting of fully convolutional neural networks.

a) Setting: As in [38, Chapter 20.6], we regard a (convolutional) neural network as a graph of feature maps with
vertices V =

⊔T
t=0 Vt arranged in layers Vt. For our consideration it will suffice to regard them as sequentially ordered. We

denote [n] := {1, . . . , n} for n ∈ N. Each layer Vt contains a set number kt := |Vt| of feature map activations (“channels”)
φct ∈ Rht×wt , c ∈ [kt]. We denote the activation of Vt by φt = (φ1t , . . . , φ

kt
t ). The activation φt+1 ∈ (Rht+1×wt+1)kt+1 is

obtained from φt by convolutions. We have kt × kt+1 quadratic filter matrices

(Kt+1)
d
c ∈ R(2st+1)×(2st+1), c ∈ [kt]; d ∈ [kt+1], (35)
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where st is a (usually small) natural number, the spatial extent of the filter. Also, we have respectively kt+1 biases bdt+1 ∈ R,
d ∈ [kt+1]. The convolution (actually in most implementations, the cross correlation) of K ∈ R(2s+1)×(2s+1) and φ ∈ Rh×w is
defined as

(K ∗ φ)ab :=
s∑

m,n=−s
Ks+1+p,s+1+qφa+p,b+q, a = 1, . . . , h, b = 1, . . . , w (36)

This is, strictly speaking, only correct for convolutions with “stride” 1, although a closed form can be given for the more
general case. For our goals, we will use stride 1 to upper bound the FLOPs which comes with the simplification that the feature
maps’ sizes are conserved. We then define

ψdt+1 =

kt∑

c=1

(Kt+1)
d
c ∗ φct + bdt+11ht×wt

, d ∈ [kt+1]. (37)

Finally, we apply activation functions αt : R → R to each entry to obtain φt+1 = αt+1(ψt+1). In practice, αt is usually a
ReLU activation, i.e., αt(x) = max{x, 0} or a slight modification (e.g. leaky ReLU) of it and we will treat the computational
complexity of this operation later. We can then determine the computational expense of computing ψt+1 from φt. In the
following, we will be interested in the linear convolution action

CKt : Rkt−1×ht−1×wt−1 → Rkt×ht×wt , (CKtφt−1)
d
ab :=

(
kt∑

c=1

(Kt)
d
c ∗ φct

)

ab

, (38)

where d ∈ [kt], a ∈ [ht] and b ∈ [wt]. Note that CK is also linear in Kt. On the last layer feature map φT we define the loss
function L : (φT , γ) 7→ L(φT , γ) ∈ R. Here, γ stands for the ground truth4 transformed to feature map size RhT×wT×kT . In
order to make dependencies explicit, define the loss of the subnet starting at layer t by `t, i.e.,

`T (φT ) := L(φT , γ), `t−1(φt−1) := `t(αt(ψt)). (39)

Straight-forward calculations yield

∇KT
L =∇KT

(`T ◦ αT ◦ ψT (KT ))

=D1L|φT
·DαT |ψT

· ∇KT
ψT

(40)

∇KT−1
L =∇KT−1

(`T ◦ αT ◦ ψT ◦ αT−1 ◦ ψT−1(KT−1))

=D1L|φT
·DαT |ψT

· CKT ·DαT−1|ψT−1
· ∇KT−1

ψT−1.
(41)

Here, D denotes the total derivative (D1 for the first variable, resp.) and we have used the linearity of CKT . Note, that in
section III, we omitted the terms DαT |ψT

and DαT−1|ψT−1
. We will come back to them later in the discussion. For the gradient

metrics we present in this paper, each ŷj for which we compute gradients receives a binary mask µj such that µj · φT are
the feature map representations of candidate boxes for ŷj (see section A). The scalar loss function then becomes L(µjφT , γj)
for the purposes of computing gradient uncertainty, where γj is ŷj in feature map representation. We address next, how this
masking influences eq. (40), eq. (41) and the FLOP count of our method.

b) Computing the mask: The complexity of determining µj (i.e., finding cand[ŷj ]) is the complexity of computing
all mutual IoU values between ŷj and the nT := hT · wT · kT other predicted boxes. Computing the IoU of a box
b1 = (xmin

1 , ymin
1 , xmax

1 , ymax
1 ) and b2 = (xmin

2 , ymin
2 , xmax

2 , ymax
2 ) can be done in a few steps with an efficient method

exploiting the fact that:

U =A1 +A2 − I, IoU = I/U, (42)

where the computation of the intersection area I and the individual areas A1 and A2 can each be done in 3 FLOP, resulting in
12 FLOP per pair of boxes. Note that different localization constellations of b1 and b2 may result in slightly varying formulas
for the computation of I but the constellation can be easily detemined by binary checks which we ignore computationally. Also,
the additional check for the class and sufficient score will be ignored, so we have 12nT FLOP per mask µj . Inserting the binary
mask5 µj in eq. (40) and eq. (41) leads to the replacement of D1L|φT

·DαT |ψT
by DLj := D1L(·, γj)|µjφT

· µj ·DαT |ψT

for each relevant box ŷj .
In table V we have listed upper bounds on the number of FLOP and elementary function evaluations performed for the

computation of DLj for the investigated loss functions. The numbers were obtained from the explicit partial derivatives
computed in section B. In principle, those formulas allow for every possible choice of b ∈ [Nout] which is why all counts are
proportional to it. Practically, however, at most the |µj | candidate boxes are relevant which need to be identified additionally as
foreground or background for ŷj in a separate step involving an IoU computation between ŷj and the respective anchor. The

4The transformations are listed in section B for the entries τ of φT .
5See section III. The mask µj selects the feature map representation of cand[ŷj ] out of φT .
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TABLE V
UPPER BOUNDS ON FLOP AND ELEMENTARY FUNCTION EVALUATIONS PERFORMED DURING THE COMPUTATION OF DLj (ALL CONTRIBUTIONS) AND MC

DROPOUT POST PROCESSING (PP) FOR Nsamp DROPOUT SAMPLES.

YOLOv3 Faster R-CNN RetinaNet

# FLOP DLj (9 + C)Nout 10NRPN
out + (2 + 2C)Nout (18 + 11C)Nout

# FLOP MC PP 8NoutNsamp (9 + 2C)NoutNsamp 8NoutNsamp

# evaluations DLj 0 0 2(1 + C)Nout

# evaluations MC PP (5 + C)NoutNsamp (3 + C)NoutNsamp (3 + C)NoutNsamp

total count of candidate boxes in practice is on average not larger than ∼ 30. When evaluating the formulas from section B
note, that there is only one ground truth box per gradient and we assume here, that one full forward pass has already been
performed such that the majority of the appearing evaluations of elementary functions (sigmoids, exponentials, etc.) have been
computed beforehand. This is not the case for the RetinaNet classification loss (34). In table V we also list the additional
post-processing cost for the output transformations (see section B, eqs. (13) and (20)) required in the MC dropout samples
(“MC PP”). The latter are also proportional to Nout, but also to the number Nsamp of samples.

c) Proof of theorem 1: Before we begin the proof, we first re-state the claims of theorem 1.

Theorem 1. In the setting explained above, the number of FLOP required to compute the gradient ∇KT
L(µjφT (KT ), γ

j) is
O(kThw+kT kT−1(2sT +1)4). Simlarly, for earlier layers, i.e., ∇Kt

L(µjφT (Kt), γ
j), we have O(kt+1kt+ktkt−1), provided

that we have previously computed the gradient for the consecutive layer t+ 1. Performing MC dropout with dropout on φT−1
requires O(kT kT−1hw) FLOP per dropout sample.

Our implementations exclusively use stride 1 convolutions for the layers indicated in section IV, so wT = wT−1 = wT−2 =: w,
resp. hT = hT−1 = hT−2 =: h. As before, we denote nt := hwkt, and regard DLj as a 1 × nT matrix. Next, regard the
matrix-vector multiplication to be performed in eq. (40). Since for all t ∈ [T ] we have that ψt is linear in Kt, we regard ∇Kt

ψt
as a matrix acting on the filter space Rkt−1×kt×(2st+1)2 . For d ∈ [kt], ψdt only depends on Kd

t (see eq. (37)), so ∇ψt only has
at most kt−1 · (2st + 1)2 · nt non-vanishing entries. Therefore, regard it as a nt × (kt−1(2st + 1)2) matrix. We will now show
that this matrix has kt(2st + 1)2-sparse columns.

Let c ∈ [kt], d ∈ [kt−1], p, q ∈ {−st, . . . , st}, a ∈ [ht] and b ∈ [wt]. One easily sees from eqs. (36) and (37) that

∂

∂((Kt)dc)pq
(ψt)

d
ab = (φt−1)

c
a+p−st−1,b+q−st−1, (43)

where φct−1 is considered to vanish for a+ p− st − 1 /∈ [ht] and b+ q − st − 1 /∈ [wt]. Consistency with the definition of p
and q requires that both the conditions

1 < a ≤ 2st + 2, 1 < b ≤ 2st + 2 (44)

are satisfied, which means that (∇Kt
ψt)

d can only have kt(2st+1)2 non-zero entries. Appealing to sparsity ∇KT
ψT in eq. (40)

is then, effectively, a (kT−1 · (2sT + 1)2)× (kT · (2sT + 1)2) matrix, resulting in a FLOP count of

[2 · kT (2sT + 1)2 − 1] · [kT−1 · (2sT + 1)2] (45)

for the multiplication DLj · ∇KT
ψT giving the claimed complexity considering that the computation of µj is O(kThw).

Next, we investigate the multiplication in eq. (41), in particular the multiplication DLj · CKT as the same sparsity argument
applies to ∇KT−1

ψT−1. First, for t ∈ [T ], regard CKt as a nt × nt−1 matrix acting on a feature map φ ∈ Rnt−1 from the left
via

(
CKtφ

)d
ab

=

kt−1∑

c=1

[
(Kt)

d
c ∗ φc

]
ab

=

kt−1∑

c=1

st∑

m,n=−st
[(Kt)

d
c ]st+1+m,st+1+n(φ

c)a+m,b+n, (46)

where d ∈ [kt], b ∈ [wt] and a ∈ [ht] indicate one particular row in the matrix representation of CKt . From this, we see the
sparsity of CKt , namely the multiplication result of row (d, a, b) acts on at most kt−1 · (2st + 1)2 components of φt−1 (i.e.,
kt−1(2st + 1)2-sparsity of the rows). Conversely, we also see that at most kt · (2st + 1)2 convolution products (CKtφ)dab have
a dependency on one particular feature map pixel (φc)ãb̃ (i.e., kt(2st + 1)2-sparsity of the columns). Now, let t ∈ [T − 1] and
assume that we have already computed the gradient

∇Kt+1
L = ∇Kt+1

`t+1(φt+1(Kt+1)) = D`t+1|φt+1
· αt+1|ψt+1

· ∇Kt+1
ψt+1, (47)

then by backpropagation, i.e., eq. (39), we obtain

∇Kt
L = ∇Kt

[`t+1 ◦ αt+1 ◦ ψt+1(φt(Kt))] = D`t+1|φt+1
· αt+1|ψt+1

· CKt+1 ·Dαt|ψt
· ∇Kt

ψt. (48)
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Here, the first two factors have already been computed, hence we obtain a FLOP count for subsequently computing ∇Kt
L of

[2 · kt+1(2st+1 + 1)2 − 1] · [kt(2st + 1)2] + [2 · kt(2st + 1)2 − 1] · [kt−1(2st + 1)2] (49)

via the backpropagation step from ∇Kt+1
L. The claim in theorem 1 addressing eq. (41), follows for t = T − 1 in eq. (49).

Finally, we address the computational complexity for MC dropout with dropout on φT−1. Again, we ignore the cost of
dropout itself as it is random binary masking together with a respective up-scaling/multiplication of the non-masked entries by
a constant. The cost stated in theorem 1 results from the residual forward pass φT−1 7→ φT = αT (C

KT · φT−1 + bT ) where
we now apply previous results. Obtaining all nT entries in the resulting sample feature map requires a total FLOP count of

2nT kT−1(2sT + 1)2 − 1 + nT (50)

as claimed, where we have considered the sparsity of CKT . The last term results from the bias addition.
d) Discussion: A large part of the FLOP required to compute gradient metrics results from the computation of the

masks µj and the term DLj for each relevant predicted box. In table V we have treated the latter separately and found
that, although the counts listed for DLj apply to each separate box, MC dropout post-processing comes with considerable
computational complexity as well. In that regard, we have similar costs for gradient metrics and MC dropout. Note in particular,
that computing DLj requires no new evaluation of elementary functions, as opposed to MC dropout. Once DLj is computed
for ŷj , the last layer gradient can be computed in O(kT kT−1) and every further gradient for layer Vt in O(kt+1kt + ktkt−1).
Each dropout sample results in O(nT kT−1) with dropout on φT−1. Performing dropout any earlier results in additional full
convolution forward passes which also come with considerable computational costs. We note that MC dropout uncertainty
can be computed in parallel with all Nsamp forward passes being performed simultaneously. Gradient uncertainty metrics, in
contrast, require one full forward pass for the individual gradients ∇tL(µjφT (Kt), γ

j) to be computed. Therefore, gradient
uncertainty metrics experience a slight computational latency as compared to MC dropout. We argue that in principle, all
following steps (computation of µj and ∇tL(µjφT (Kt), γ

j)) can be implemented to run in parallel as no sequential order of
computations is required. We have not addressed the computations of mapping the gradients to scalars from eq. (3) which are
roughly comparable to the cost of computing the sample std for MC dropout, especially once the sparsity of DLj has been
determined in the computation of ∇KT

L. The latter also brings a significant reduction in FLOP (from nT to |µj |) which cannot
be estimated more sharply, however. Since DLj is sparse, multiplication from the right with DαT |ψT

in eqs. (40) and (41)
for a leaky ReLU activation only leads to lower-order terms. The same terms were also omitted before in determining the
computational complexity of MC dropout. Also, for this consideration, we regard the fully connected layers used for bounding
box regression and classification in the Faster R-CNN RoI head as 1× 1 convolutions to stay in the setting presented here.

APPENDIX D
CALIBRATION

Generally, “calibration” methods aim at rectifying scores as confidences in the sense of section I such that the calibrated
scores reflect the conditional frequency of true predictions. For example, out of 100 predictions with a confidence of 0.3, around
30 should be correct.

Confidence calibration methods have been applied to object detection in [49] where temperature scaling was found to improve
calibration. In addition to considering the expected calibration error (ECE ) and the maximum calibration error (MCE ) [50],
the authors of [49] argue that in object detection, it is important that confidences are calibrated irrespective of how many
examples fall into a bin. Therefore, they introduced the average calibration error (ACE ) as a new calibration metric which is
insensitive to the bin counts. The authors of [51] introduce natural extensions to localization-dependent calibration methods and
a localization-dependent metric to measure calibration for different image regions.

In Sec. IV, we evaluated the calibration of meta classifiers in terms of the maximum (MCE , [50]) and average (ACE , [49])
calibration error which we define here. We sort the examples into bins βi, i = 1, . . . , B of a fixed width (in our case 0.1)
according to their confidence. For each bin βi, we compute

acci =
TPi
|βi|

, confi =
1

|βi|

|βi|∑

j=1

ĉi (51)

where |βi| denotes the number of examples in βi and ĉi is the respective confidence, i.e., the network’s score or a meta
classification probability. TPi denotes the number of correctly classified in βi. The mentioned metrics are then

MCE = max
i=1,...,B

|acci − confi|, ACE =
1

B

B∑

i=1

|acci − confi|, (52)

ECE =
1

B

B∑

i=1

B

|βi|
|acci − confi|. (53)

Table VI also shows the expected (ECE , [50]) calibration error which was argued in [49] to be biased toward bins with large
amounts of examples. ECE is, thus, less informative for safety-critical investigations.
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Fig. 5. Reliability diagrams of score, resp. meta classifiers for top left: (Faster R-CNN, VOC); top right: (Faster R-CNN, COCO); bottom left: (YOLOv3,
KITTI); bottom right: (RetinaNet, KITTI). Each panel shows the score (left), MC dropout uncertainty (center) and gradient uncertainty G (right).

APPENDIX E
FURTHER NUMERICAL RESULTS

a) Calibration of meta classifiers: For sake of completeness, we list in table VI the calibration metrics ECE , MCE and
ACE defined in section D for score and meta classifiers for all object detectors on all three datasets investigated in section IV.
This can be seen as an extension of table III. All calibration metrics are in line with the results from section IV with meta
classifiers being always better calibrated than the score by at least half an order of magnitude in any calibration metric. The
ECE metric is comparatively small for all meta classifiers and, therefore, insensitive and harder to interpret than MCE and
ACE . As was argued in [49], the former is also less informative as bin-wise accuracy is weighted with the bin counts. In
table VI we can see a weakly increasing trend of calibration errors in the meta classifiers due to overfitting on the increasing
number of co-variables. Similarly to the reliability histograms in fig. 1 for Faster R-CNN on KITTI, we show analogous
diagrams in fig. 5 for Faster R-CNN on VOC and COCO, as well as for YOLOv3 and RetinaNet on the KITTI dataset. Meta
classifiers are well-calibrated across the board. For Faster R-CNN (top row) we see the typical network score overconfidence
by the discrepancy to the diagonal towards low accuracy. In contrast, on the bottom left (YOLOv3, KITTI) we see strong
underconfidence in the network score which is still leading to large calibration errors and is, as mentoned in section I, arguably
even more dangerous than overconfidence. The bottom right panel (RetinaNet, KITTI) only shows small overconfidence for the
score in the range between 0.1 and 0.5 which is also reflected in the comparably less severe calibration errors computed in
table VI.
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Fig. 6. Confidence violin plots divided into TP and FP for Score (left), MC
(center) and G (right). Model: Faster R-CNN, dataset KITTI evaluation split.

b) Performance of meta classifiers: The meta classifiers
for the same combinations of uncertainty metrics as in table II
for Faster R-CNN and RetinaNet can be found in table VII.
The findings are similar to the analogous table for YOLOv3
with the combination models G+MD or G+MD+MC having
the best overall predictive power. Note that there is some
overfitting in G+MD+MC in particular on Faster R-CNN
where we compute the largest number of gradients (see
table I). In those cases there is no additional boost from MC
dropout. We find that MC dropout produces large standard
deviations in Faster R-CNN and RetinaNet for all boxes
except for those with very high score. The respective entries
in table VII suggest that MC dropout uncertainty metrics have
low predictive power in those cases. They, therefore, contain little to no valuable additional uncertainty information. Our
gradient-based model G is roughly on par with MD, outperforming the latter in terms of AuROC but trailing slightly in
terms of AP . For Faster R-CNN, G alone reaches an AuROC of 0.99 on the KITTI dataset. Figure 6 shows violin plots
for confidence samples of the cross-validated results in table VII for Faster R-CNN on the KITTI dataset. The violins for
Score (left) and G (right) look similar while the violin of MC (center) is less concentrated, reflecting the lower AuROC
found in table VII. We see that combining MD with G consistently leads to significant performance boosts, indicating mutual
non-redundancy as already seen in section IV.
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TABLE VI
EXPECTED (ECE , [50]), MAXIMUM (MCE , [50]) AND AVERAGE (ACE , [49]) CALIBRATION ERRORS PER CONFIDENCE MODEL OVER 10-FOLD CV (std IN

PARENTHESES).

Pascal VOC COCO KITTI

YOLOv3 ECE MCE ACE ECE MCE ACE ECE MCE ACE

Score 0.053 0.237 0.108 0.033 0.065 0.041 0.068 0.348 0.227
MC 0.006 (0.000) 0.035 (0.006) 0.013 (0.001) 0.005 (0.000) 0.024 (0.004) 0.011 (0.001) 0.005 (0.001) 0.040 (0.017) 0.014 (0.004)
|| · ||2 0.005 (0.001) 0.033 (0.006) 0.014 (0.002) 0.002 (0.001) 0.013 (0.004) 0.004 (0.001) 0.008 (0.001) 0.046 (0.011) 0.019 (0.003)

|| · ||1+|| · ||2 0.004 (0.000) 0.031 (0.005) 0.012 (0.001) 0.003 (0.000) 0.013 (0.003) 0.006 (0.001) 0.009 (0.001) 0.058 (0.023) 0.022 (0.006)
G 0.006 (0.001) 0.051 (0.011) 0.021 (0.003) 0.004 (0.000) 0.036 (0.006) 0.014 (0.001) 0.012 (0.001) 0.086 (0.017) 0.038 (0.004)

MD 0.006 (0.000) 0.048 (0.014) 0.018 (0.002) 0.006 (0.000) 0.033 (0.005) 0.014 (0.001) 0.011 (0.001) 0.078 (0.014) 0.028 (0.004)
MD+MC 0.007 (0.000) 0.054 (0.007) 0.021 (0.002) 0.005 (0.000) 0.033 (0.001) 0.014 (0.001) 0.012 (0.001) 0.065 (0.017) 0.028 (0.004)

G+MC 0.008 (0.001) 0.067 (0.010) 0.029 (0.004) 0.006 (0.000) 0.043 (0.006) 0.016 (0.001) 0.014 (0.001) 0.094 (0.015) 0.041 (0.005)
G+MD 0.008 (0.000) 0.061 (0.008) 0.025 (0.002) 0.007 (0.000) 0.044 (0.005) 0.020 (0.001) 0.014 (0.001) 0.095 (0.025) 0.043 (0.007)

G+MD+MC 0.008 (0.001) 0.062 (0.012) 0.027 (0.003) 0.006 (0.000) 0.041 (0.004) 0.018 (0.001) 0.015 (0.001) 0.088 (0.022) 0.044 (0.004)

Faster R-CNN

Score 0.016 0.534 0.287 0.057 0.275 0.179 0.007 0.376 0.128
MC 0.001 (0.000) 0.064 (0.009) 0.032 (0.004) 0.002 (0.000) 0.062 (0.013) 0.026 (0.005) 0.001 (0.000) 0.045 (0.016) 0.015 (0.003)
|| · ||2 0.000 (0.000) 0.026 (0.004) 0.009 (0.002) 0.001 (0.000) 0.014 (0.005) 0.004 (0.001) 0.000 (0.000) 0.051 (0.013) 0.019 (0.004)

|| · ||1+|| · ||2 0.000 (0.000) 0.025 (0.006) 0.008 (0.001) 0.001 (0.000) 0.019 (0.004) 0.007 (0.001) 0.000 (0.000) 0.048 (0.015) 0.016 (0.003)
G 0.001 (0.000) 0.035 (0.009) 0.013 (0.002) 0.001 (0.000) 0.016 (0.002) 0.007 (0.001) 0.001 (0.000) 0.068 (0.020) 0.022 (0.005)

MD 0.000 (0.000) 0.028 (0.010) 0.011 (0.003) 0.001 (0.000) 0.015 (0.003) 0.005 (0.001) 0.001 (0.000) 0.067 (0.018) 0.020 (0.004)
MD+MC 0.000 (0.000) 0.028 (0.009) 0.009 (0.002) 0.001 (0.000) 0.016 (0.002) 0.005 (0.001) 0.001 (0.000) 0.055 (0.020) 0.018 (0.005)

G+MC 0.001 (0.000) 0.044 (0.008) 0.017 (0.002) 0.001 (0.000) 0.020 (0.005) 0.007 (0.001) 0.001 (0.000) 0.087 (0.013) 0.026 (0.004)
G+MD 0.001 (0.000) 0.041 (0.010) 0.017 (0.002) 0.002 (0.000) 0.023 (0.005) 0.009 (0.001) 0.001 (0.000) 0.072 (0.015) 0.027 (0.003)

G+MD+MC 0.001 (0.000) 0.045 (0.006) 0.019 (0.002) 0.002 (0.000) 0.022 (0.003) 0.009 (0.001) 0.001 (0.000) 0.069 (0.018) 0.024 (0.003)

RetinaNet

Score 0.068 0.212 0.123 0.089 0.192 0.106 0.027 0.097 0.043
MC 0.004 (0.000) 0.112 (0.031) 0.041 (0.007) 0.001 (0.000) 0.066 (0.014) 0.021 (0.004) 0.004 (0.001) 0.051 (0.012) 0.017 (0.004)
|| · ||2 0.002 (0.000) 0.021 (0.005) 0.007 (0.001) 0.003 (0.000) 0.018 (0.003) 0.006 (0.001) 0.002 (0.000) 0.042 (0.008) 0.012 (0.002)

|| · ||1+|| · ||2 0.002 (0.000) 0.028 (0.009) 0.009 (0.002) 0.004 (0.000) 0.022 (0.004) 0.009 (0.001) 0.003 (0.000) 0.049 (0.010) 0.014 (0.002)
G 0.003 (0.000) 0.044 (0.009) 0.014 (0.001) 0.005 (0.000) 0.031 (0.006) 0.012 (0.001) 0.005 (0.001) 0.060 (0.013) 0.022 (0.004)

MD 0.003 (0.000) 0.031 (0.008) 0.011 (0.002) 0.005 (0.001) 0.022 (0.004) 0.009 (0.001) 0.003 (0.000) 0.044 (0.006) 0.016 (0.002)
MD+MC 0.003 (0.000) 0.031 (0.006) 0.013 (0.001) 0.005 (0.000) 0.022 (0.005) 0.010 (0.001) 0.004 (0.000) 0.045 (0.010) 0.016 (0.002)

G+MC 0.004 (0.000) 0.054 (0.010) 0.020 (0.002) 0.006 (0.000) 0.026 (0.003) 0.012 (0.001) 0.005 (0.001) 0.064 (0.017) 0.024 (0.004)
G+MD 0.005 (0.000) 0.064 (0.008) 0.024 (0.002) 0.007 (0.001) 0.032 (0.004) 0.015 (0.001) 0.006 (0.000) 0.070 (0.014) 0.028 (0.003)

G+MD+MC 0.005 (0.000) 0.056 (0.010) 0.022 (0.002) 0.007 (0.000) 0.032 (0.007) 0.015 (0.001) 0.006 (0.001) 0.064 (0.010) 0.027 (0.004)

TABLE VIII
META REGRESSION PERFORMANCE IN TERMS OF R2 PER CONFIDENCE
MODEL OVER 10-FOLD CV (std IN PARENTHESES) FOR FASTER R-CNN

AND RETINANET.

Pascal VOC COCO KITTI

Faster R-CNN

Score 0.3994 (0.0002) 0.4050 (0.0001) 0.7229 (0.0002)
MC 0.2370 (0.0017) 0.2356 (0.0009) 0.4009 (0.0017)
2-Norms 0.4488 (0.0005) 0.4493 (0.0004) 0.8154 (0.0005)
1- and 2-Norms 0.5670 (0.0006) 0.4827 (0.0003) 0.8404 (0.0004)
G 0.5940 (0.0003) 0.5044 (0.0004) 0.8631 (0.0007)
MD 0.4792 (0.0009) 0.4441 (0.0004) 0.7992 (0.0004)
MD+MC 0.4920 (0.0005) 0.4454 (0.0005) 0.7999 (0.0005)
G+MC 0.6074 (0.0007) 0.5109 (0.0004) 0.8685 (0.0004)
G+MD 0.6364 (0.0008) 0.5230 (0.0004) 0.8746 (0.0005)
G+MD+MC 0.6302 (0.0003) 0.5221 (0.0004) 0.8699 (0.0007)

RetinaNet

Score 0.4043 (0.0001) 0.3988 (0.0002) 0.7344 (0.0002)
MC 0.2445 (0.0009) 0.1946 (0.0006) 0.5051 (0.0012)
2-Norms 0.4619 (0.0005) 0.3801 (0.0004) 0.7917 (0.0004)
1- and 2-Norms 0.4964 (0.0006) 0.4196 (0.0005) 0.8135 (0.0005)
G 0.5723 (0.0007) 0.4774 (0.0006) 0.8447 (0.0004)
MD 0.5027 (0.0010) 0.4245 (0.0012) 0.7753 (0.0008)
MD+MC 0.5336 (0.0008) 0.4482 (0.0007) 0.7851 (0.0007)
G+MC 0.6173 (0.0004) 0.5063 (0.0007) 0.8508 (0.0004)
G+MD 0.6432 (0.0007) 0.5107 (0.0009) 0.8573 (0.0009)
G+MD+MC 0.6344 (0.0006) 0.5138 (0.0009) 0.8564 (0.0008)

c) Performance of meta regression: As for the meta classi-
fiers we also gather the complementary results for Faster R-CNN
and RetinaNet in table VIII. There is a trend similar to the meta
classification performance in that we have low predictive power
in MC dropout in all instances and we also see the corresponding
overfitting between G+MD and G+MD+MC. Here, we particularly
see the predictive power of G which is outperforming MD across
the board. Also, all combination models involving G (i.e., G+MC,
G+MD, G+MD+MC) see significant improvement compared to
their counter part without G. In addition to the scatter plots in
fig. 4 for YOLOv3 on the KITTI evaluation split, we also show
scatter plots in fig. 8 for YOLOv3 on VOC and COCO, as well
as for Faster R-CNN and RetinaNet on KITTI. For Faster R-
CNN and RetinaNet, we show G+MD instead of G+MD+MC as
the former is the slightly better model. Overall, we see similar
behavior as in fig. 4. Score always shows an overconfident island
in the TP region and especially for the YOLOv3 plots, all meta
regression models do not show FPs at high predicted IoU as
opposed to the score.

d) MetaFusion on Pascal VOC and COCO: We show
MetaFusion plots analogous to the right one of fig. 3 also for
YOLOv3 on the evaluation splits of VOC and COCO in fig. 7.
The qualitative behavior is analogous to the one presented for
the KITTI dataset in section IV with significant improvements
of G and G+MD+MC and over the score baseline in the region of low decision thresholds. Again, MetaFusion based on MC
dropout performs worse than the score baseline for decision thresholds of about 0.5 and larger.
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TABLE VII
META CLASSIFICATION PERFORMANCE IN TERMS OF AuROC AND AP PER CONFIDENCE MODEL OVER 10-FOLD CV (std IN PARENTHESES) FOR

FASTER-RCNN AND RETINANET.

Pascal VOC COCO KITTI

AuROC AP AuROC AP AuROC AP

Faster R-CNN

Score 0.9331 (0.0003) 0.6771 (0.0003) 0.9128 (0.0001) 0.6414 (0.0003) 0.9792 (0.0003) 0.9329 (0.0002)
MC 0.8999 (0.0006) 0.4422 (0.0026) 0.8580 (0.0003) 0.4048 (0.0012) 0.9339 (0.0007) 0.6782 (0.0024)
|| · ||2 0.9104 (0.0007) 0.6166 (0.0015) 0.8980 (0.0003) 0.6116 (0.0006) 0.9875 (0.0002) 0.9301 (0.0005)
|| · ||1, || · ||2 0.9491 (0.0004) 0.6773 (0.0010) 0.9064 (0.0003) 0.6253 (0.0007) 0.9897 (0.0003) 0.9389 (0.0006)
G 0.9588 (0.0005) 0.6874 (0.0013) 0.9138 (0.0003) 0.6331 (0.0007) 0.9920 (0.0001) 0.9460 (0.0007)
MD 0.9443 (0.0002) 0.7118 (0.0006) 0.9131 (0.0002) 0.6473 (0.0005) 0.9886 (0.0003) 0.9431 (0.0005)
MD+MC 0.9440 (0.0005) 0.7131 (0.0011) 0.913 (0.0002) 0.6491 (0.0003) 0.9882 (0.0003) 0.9425 (0.0005)
G+MC 0.9659 (0.0003) 0.7131 (0.0008) 0.9209 (0.0002) 0.6459 (0.0005) 0.9934 (0.0002) 0.9524 (0.0005)
G+MD 0.9677 (0.0005) 0.7360 (0.0007) 0.9230 (0.0002) 0.6567 (0.0005) 0.9937 (0.0002) 0.9538 (0.0004)
G+MD+MC 0.9672 (0.0004) 0.7351 (0.0010) 0.9230 (0.0001) 0.6577 (0.0006) 0.9935 (0.0002) 0.9537 (0.0003)

RetinaNet

Score 0.8753 (0.0003) 0.6630 (0.0005) 0.8509 (0.0001) 0.6858 (0.0001) 0.9591 (0.0002) 0.8993 (0.0002)
MC 0.8576 (0.0004) 0.4181 (0.0012) 0.7696 (0.0004) 0.4354 (0.0006) 0.8813 (0.0006) 0.7119 (0.0010)
|| · ||2 0.8786 (0.0004) 0.6435 (0.0006) 0.8162 (0.0004) 0.6395 (0.0003) 0.9593 (0.0003) 0.9003 (0.0005)
|| · ||1, || · ||2 0.8877 (0.0006) 0.6540 (0.0005) 0.8353 (0.0005) 0.6588 (0.0007) 0.9647 (0.0004) 0.9050 (0.0003)
G 0.9158 (0.0004) 0.6832 (0.0006) 0.8559 (0.0002) 0.6793 (0.0004) 0.9726 (0.0003) 0.9151 (0.0007)
MD 0.8957 (0.0004) 0.6843 (0.0007) 0.8495 (0.0004) 0.6832 (0.0006) 0.9619 (0.0003) 0.9013 (0.0004)
MD+MC 0.9006 (0.0002) 0.6906 (0.0007) 0.8520 (0.0003) 0.6846 (0.0004) 0.9627 (0.0002) 0.9022 (0.0006)
G+MC 0.9254 (0.0003) 0.7065 (0.0006) 0.8687 (0.0003) 0.6942 (0.0003) 0.9752 (0.0002) 0.9198 (0.0006)
G+MD 0.9299 (0.0003) 0.7230 (0.0008) 0.8715 (0.0005) 0.7016 (0.0007) 0.9761 (0.0002) 0.9226 (0.0005)
G+MD+MC 0.9295 (0.0003) 0.7233 (0.0007) 0.8720 (0.0004) 0.7021 (0.0003) 0.9763 (0.0001) 0.9230 (0.0003)
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Fig. 7. Score baseline and MetaFusion mAP for the VOC (left) and the COCO (right) evaluation dataset. Model: YOLOv3.
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Fig. 8. Meta regression scatter plots showing predicted IoU over true IoU for four confidence models. The optimal diagonal is shown as a dashed line. From
top to bottom: (YOLOv3, VOC); (YOLOv3, COCO); (Faster R-CNN, KITTI); (RetinaNet, KITTI).


